Abstract
							The Manin conjecture is established for Châtelet surfaces over $\mathbf{Q}$ arising as minimal proper smooth models of the surface $Y^2+Z^2=f(X)$ in $\mathbf{A}_{\mathbf{Q}}^3$, where $f\in \mathbf{Z}[X]$ is a totally reducible polynomial of degree $3$ without repeated roots. These surfaces do not satisfy weak approximation.
																	 
					
					
						
							Authors 
														   Régis de la Bretèche
							     							   
							   Institut de Mathématiques de Jussieu
 UMR 7586 Case 7012
 Université Paris 7 -- Denis Diderot
  2, place Jussieu
 F-75251 Paris cedex 05
 France							   							   
							   
														   Tim Browning
							     							   
							   School of Mathematics
 University of Bristol
 Bristol BS8 1TW
England							   							   
							   
														   Emmanuel Peyre
							     							   
							   Institut Fourier
 UMR 5582 du CNRS
 Université Joseph Fourier
 BP 74
 38042 Saint-Martin d'Hères
 France