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On Manin’s conjecture
for a family of Châtelet surfaces

By Régis de la Bretèche, Tim Browning, and Emmanuel Peyre

Abstract

The Manin conjecture is established for Châtelet surfaces over Q aris-

ing as minimal proper smooth models of the surface Y 2 + Z2 = f(X) in

A3
Q, where f ∈ Z[X] is a totally reducible polynomial of degree 3 without

repeated roots. These surfaces do not satisfy weak approximation.
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1. Introduction

The purpose of this paper is to prove Manin’s conjecture about points of

bounded height for a family of Châtelet surfaces over Q. These surfaces have

been considered by F. Châtelet in [Châ59] and [Châ66], by V. A. Iskovskikh

[Isk71], by D. Coray and M. A. Tsfasman [CT88], and by J.-L. Colliot-Thélène,

J.-J. Sansuc, and P. Swinnerton-Dyer in [CTSSD87a] and [CTSSD87b], among

others.

297

http://annals.math.princeton.edu/annals/about/cover/cover.html
http://dx.doi.org/10.4007/annals.2012.175.1.8
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The surfaces considered here are smooth proper models of the affine sur-

faces given in A3
Q by an equation of the form

Y 2 + Z2 = X(a3X + b3)(a4X + b4)

for suitable a3, b3, a4, b4 ∈ Z.

It is important to note that the surfaces we consider do not satisfy weak

approximation, the lack of which is explained by the Brauer-Manin obstruction,

as described in [CTSSD87a] and [CTSSD87b]. Up to now, the only cases for

which Manin’s principle was proven despite weak approximation not holding

were obtained using harmonic analysis and required the action of an algebraic

group on the variety with an open orbit. The method used in this paper is

completely different. Following ideas of P. Salberger [Sal98], we use versal

torsors introduced by Colliot-Thélène and Sansuc in [CTS77], [CTS80], and

[CTS87] to estimate the number of rational points of bounded height on the

surface. Such a combination of descent methods with analytic number theory

was used in [HBS02] to prove that the Brauer-Manin obstruction to weak ap-

proximation is the only one for hypersurfaces related to norm forms. Therefore

we can reasonably hope that further developments of these techniques may be

successful in proving the refined conjectures of Manin for other such varieties.

This paper is organised as follows. In Section 2, we recall some facts about

the geometry of the surfaces. In Section 3, we define the height and state our

main result. Section 4 contains the description of the versal torsors we use.

In Section 5, we describe the lifting of rational points to the versal torsors.

This lifting reduces the initial problem to the estimation of some arithmetic

sums denoted by U (T ). The following sections contain the key analytical tools

used in the proof. In Section 7 we give a uniform upper bound for U (T ) and

in Section 8 an asymptotic formula for it. The last section is devoted to an

interpretation of the leading constant.

Let us fix some notation for the remainder of this text.

Notation and conventions. If k is a field, we denote by k an algebraic clo-

sure of k. For any variety X over k and any k-algebra A, we denote by XA

the product X ×Spec(k) Spec(A) and by X(A) the set HomSpec(k)(Spec(A), X).

We also put X = Xk. The cohomological Brauer group of X is defined as

Br(X) = H2
ét(X,Gm), where Gm denotes the multiplicative group. The pro-

jective space of dimension n over A is denoted by Pn
A and the affine space by

An
A. For any (x0, . . . , xn) ∈ kn+1 {0}, we denote by (x0 : · · · : xn) its image

in Pn(k).

Acknowledgements. While working on this paper the second author was

supported by EPSRC grant number EP/E053262/1. Parts of the work were

supported by the ANR project Points entiers et points rationnels.
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2. A family of Châtelet surfaces

Let us fix a1, a2, a3, a4, b1, b2, b3, b4 ∈ Z such that

∆i,j =

∣∣∣∣∣ai aj
bi bj

∣∣∣∣∣ 6= 0

for any i, j ∈ {1, 2, 3, 4} with i 6= j. We then consider the linear forms Li
defined by Li(U, V ) = aiU + biV for i ∈ {1, 2, 3, 4} and define the hypersurface

S1 of P2
Q ×A1

Q given by the equation

X2 + Y 2 = T 2
4∏
i=1

Li(U, 1)

and the hypersurface S2 given by the equation

X ′
2

+ Y ′
2

= T ′
2

4∏
i=1

Li(1, V ).

Let U1 be the open subset of S1 defined by U 6= 0 and U2 be the open subset

of S2 defined by V 6= 0. The map Φ : U1 → U2 which maps ((X : Y : T ), U)

onto ((X : Y : U2T ), 1/U) is an isomorphism and we define S as the surface

obtained by glueing S1 to S2 using the isomorphism Φ. The surface S is

a smooth projective surface and is a particular case of a Châtelet surface.

The geometry of such surfaces has been described by J.-L. Colliot-Thélène,

J.-J. Sansuc, and P. Swinnerton-Dyer in [CTSSD87b, §7]. For the sake of

completeness, let us recall part of this description which will be useful for the

description of versal torsors.

The map S1 → P1
Q (resp. S2 → P1

Q) which maps ((X : Y : T ), U) onto

(U : 1) (resp. ((X ′ : Y ′ : T ′), V ) onto (1 : V )) glue together to give a conic

fibration π : S → P1
Q with four degenerate fibres over the points given by

Pi = (−bi : ai) ∈ P1(Q) for i ∈ {1, 2, 3, 4}. In fact, the glueing of P2
Q ×A1

Q to

P2
Q ×A1

Q through the map

(2.1) ((X : Y : T ), U) 7→ ((X : Y : U2T ), 1/U)

gives the projective bundle1 P = P(O2 ⊕O(−2)) over P1
Q and S may be seen

as a hypersurface in that bundle.

Over Q(i), if ξ ∈ {−i, i}, then the map AQ(i) → S1Q(i) which is given by

u 7→ ((ξ : 1 : 0), U) extends to a section σξ of π. The surface SQ(i) contains

10 exceptional curves, that is irreducible curves with negative self-intersection.

1We define here P(O2⊕O(−2)) as the projective bundle associated to the sheave of graded

commutative algebras Sym(O2 ⊕O(2)). In other words the fibre over a point is given by the

lines in the fibre of the vector bundle and not by the hyperplanes.



300 RÉGIS DE LA BRETÈCHE, TIM BROWNING, and EMMANUEL PEYRE

Eight of them are given in SQ(i) by the following equations:

Dξ
j : Lj(π(P )) = 0 and X − ξY = 0

for ξ ∈ {−i, i} and j ∈ {1, 2, 3, 4}; the last ones correspond to the section σξ
and are given by the equations

Eξ : T = 0 and X − ξY = 0.

Here X, Y , and T are seen as sections of OP(1). Let us denote by G the Galois

group of Q(i) over Q and by z 7→ z the nontrivial element in G . Then we have

Eξ = Eξ and Dξ
j = Dξ

j

for ξ ∈ {−i, i} and j ∈ {1, 2, 3, 4}. We shall also write D+
j (resp. D−j , E+, E−)

for Di
j (resp. D−ij , Ei, E−i). The intersection multiplicities of these divisors

are given by

(Eξ, Eξ) = −2, (Dξ
j , D

ξ
j ) = −1, (Dξ

j , D
−ξ
j ) = 1, (Eξ, Dξ

j ) = 1,

where ξ ∈ {−i, i} and j ∈ {1, 2, 3, 4}, all other intersection multiplicities being

equal to 0 (see [CTSSD87b, p. 73]). The geometric Picard group of S, that

is Pic(S), is isomorphic to Pic(SQ(i)) and is generated by these exceptional

divisors with the relations

(2.2) [D+
j ] + [D−j ] = [D+

k ] + [D−k ]

for j, k ∈ {1, 2, 3, 4} and

(2.3) [E+] + [D+
j ] + [D+

k ] = [E−] + [D−l ] + [D−m]

whenever {j, k, l,m} = {1, 2, 3, 4}. Using the fact that Pic(S) = (Pic(SQ(i)))
G

it is easy to deduce that Pic(S) has rank 2.

It follows from the adjunction formula that the class of the anticanonical

line bundle is given by

ω−1
S = 2E+ +

4∑
j=1

D+
j = 2E− +

4∑
j=1

D−j .

Lemma 2.1. Using the trivialisation described by (2.1), the 5-tuple of

functions

(T,UT, U2T,X, Y )

gives a basis of Γ(S, ω−1
S ).

Proof. Let C be a generic divisor in |ω−1
S |. Then C is a smooth irreducible

curve; let gC be its genus. According to the adjunction formula, we have that

2gC − 2 = ωS .(ωS − ωS) = 0. Thus gC = 1. The exact sequence of sheaves

0 −→ OS −→ ω−1
S −→ ω−1

S ⊗ OC −→ 0
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gives an exact sequence

0 −→ H0(S,OS) −→ H0(S, ω−1
S ) −→ H0(C,ω−1

S |C) −→ H1(S,OS).

But S is geometrically rational and H1(S,OS) = {0}. We get that

h0(S, ω−1
S ) = 1 + h0(C,ω−1

S |C).

Let D = ω−1
S |C . We have that deg(D) = 4 and deg(ωC − D) = −4 since

ωC = 0. Applying the Riemann-Roch theorem to C, we get that

h0(D) = deg(D) + 2gC − 2 = 4

and h0(S, ω−1
S ) = 5. Since the sections T,UT, U2T,X, and Y are linearly

independent, and extend to a section of OP(1), we get a basis of Γ(S, ω−1
S ). �

Lemma 2.2. The linear system |ω−1
S | has no base point and the basis

given in Lemma 2.1 gives a morphism from S to P4
Q, the image of which is

the surface S′ given by the system of equationsX0X2 −X2
1 = 0,

X2
3 +X2

4 = (aX0 + bX1 + cX2)(a′X0 + b′X1 + c′X2),

where

a = a1a2, b = a1b2 + a2b1, c = b1b2,

a′ = a3a4, b′ = a3b4 + a4b3, c′ = b3b4.

The induced map ψ : S → S′ is the blowing up of the conjugate singular points

of S′ given by P ξ = (0 : 0 : 0 : 1 : −ξ) with ξ2 = −1 and ψ−1(P ξ) = Eξ .

Proof. This follows from the fact that the map from S to P4
Q induces the

maps

((x : y : t), u) 7−→ (t : ut : u2t : x : y)

from S1 to P4
Q and

((x′ : y′ : t′), v) 7−→ (v2t′ : vt′ : t′ : x′ : y′)

from S2 to P4
Q. �

Remark 2.3. The surface S′ is an Iskovskikh surface [CT88]; it is a singular

Del Pezzo surface of degree 4 with a singularity of type 2A1, and ψ : S → S′

is a minimal resolution of singularities for S′.
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3. Points of bounded height

Over Q or even Q(i), the only geometrical invariant of S is the cross-ratio

α =

∣∣∣∣∣a3 a1

b3 b1

∣∣∣∣∣
¬∣∣∣∣∣a3 a2

b3 b2

∣∣∣∣∣∣∣∣∣∣a4 a1

b4 b1

∣∣∣∣∣
¬∣∣∣∣∣a4 a2

b4 b2

∣∣∣∣∣
∈ Q.

Indeed the automorphisms of P1
Q sending the points P1, P2, P3 onto the points

∞ = (0 : 1), 0 = (1 : 0), and 1 = (1 : 1) lifts to an isomorphism from S to the

Châtelet surface with an equation of the form

X2 + Y 2 = βU(U − 1)(U − α)T 2,

where β ∈ Q. Over Q(i) we may further reduce to the case where β = 1. In

particular, without any loss of generality, we may assume that

(3.1) a1 = b2 = 1 and a2 = b1 = 0.

Hypothesis 3.1. From now on we assume relations (3.1), that we have

gcd(a3, b3) = gcd(a4, b4) = 1, and that a3b3a4b4(a3b4 − a4b3) 6= 0.

Notation 3.2. Let C =
»∏4

j=1(|aj |+ |bj |). We equip the projective space

P4
Q with the exponential height H4 : P4(Q)→ R defined by

H4(x0 : x1 : x2 : x3 : x4) = max

Ç
|x0|, |x1|, |x2|,

|x3|
C
,
|x4|
C

å
if x0, . . . , x4 are coprime integers. Using the morphism ψ : S → S′, we get a

height H = H4 ◦ ψ which is associated to the anticanonical line bundle ω−1
S .

We denote by Val(Q) the set of places of Q. For any v ∈ Val(Q), Qv

is the corresponding completion of Q. As explained in [Pey95, §2], such a

height enables us to define a Tamagawa measure ωH on the adelic space

S(AQ) =
∏
v∈Val(Q) S(Qv). We also consider the constant α(S) defined in

[Pey95, Def. 2.4] which is equal to 1
2 in our particular case and, following

Batyrev and Tschinkel [BT95], we also put β(S)=]
Ä
coker(Br(Q)→Br(S))

ä
=4

(see [Sko01, Prop. 7.1.2]). We then set

CH(S) = α(S)β(S)ωH(S(AQ)Br),

where S(AQ)Br is the set of points in the adelic space for which the Brauer-

Manin obstruction to weak approximation is trivial.

We are interested in the asymptotic behaviour of the number of points of

bounded height in S(Q), that is by the number

NS,H(B) = ]{P ∈ S(Q), H(P ) 6 B}

for B ∈ R with B > 1.
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We can now state the main result of this paper.

Theorem 3.3. For any Châtelet surface as above, we have the asymptotic

formula

(F) NS,H(B) = CH(S)B log(B) +O
Ä
B log(B)0.972

ä
.

Remarks 3.4. (i) One may note that, as S(Q) is dense in S(AQ)Br by

[CTSSD87a, Th. B], this formula is compatible with the empirical formula (F)

described in [Pey03, formule empirique 5.1] which is a refinement of a conjec-

ture of Batyrev and Manin [BM90].

(ii) Over R, the image of S(R) on P1(R) is the union of two intervals

defined by the conditions
∏4
j=1 Lj(U, V ) > 0. Therefore we may choose indices

j, k∈{1, 2, 3, 4} such that j 6=k and the sign of Lj(U, V )Lk(U, V ) is not constant

on S(R). The evaluation of the element (−1, Lj(U, V )/Lk(U, V )) ∈ Br(S)

(see [Sko01, Prop. 7.1.2]) is not constant on S(R). Therefore in all the cases

we consider, S(AQ)Br 6= S(AQ).

4. Description of versal torsors

Versal torsors were first introduced by J.-L. Colliot-Thélène and J.-J. San-

suc in [CTS77], [CTS80], and [CTS87] as a tool to prove that the Brauer–Manin

obstruction to the Hasse principle and weak approximation is the only one. In

[CTS87, §2.6], these authors give a description of the versal torsors for Châtelet

surfaces up to birational equivalence. To be able to parametrise the points of

S(Q) we in fact need to construct the versal torsors themselves. Our construc-

tion is akin to the one used by Colliot-Thélène and Sansuc but also to the

constructions based upon Cox rings.

We shall first introduce an intermediate versal torsor which corresponds

to the Picard group of S over Q, that is to the maximal split quotient of TNS.

Definition 4.1. Let Tspl be the subscheme of A5
Z = Spec(Z[X,Y, T, U, V ])

defined by the equation

(4.1) X2 + Y 2 = T 2
4∏
j=1

Lj(U, V )

and the conditions

(X,Y, T ) 6= 0 and (U, V ) 6= 0.

The split algebraic torus Tspl = G2
m,Z acts on Tspl via the morphism of tori

(λ, µ) 7→ (λ, λ, µ−2λ, µ, µ)

from G2
m,Z to G5

m,Z and the natural action of G5
m,Z on A5

Z. Let Tspl be the

variety Tspl,Q. We have an obvious morphism πspl from Tspl to S which may



304 RÉGIS DE LA BRETÈCHE, TIM BROWNING, and EMMANUEL PEYRE

be described as follows: for any extension K of Q and any point (x, y, t, u, v) of

Tspl(K), if v 6= 0, then the point ((x : y : tv2), u/v) belongs to S1(K) ⊂ S(K).

If u 6= 0, then the point ((x : y : tu2), v/u) belongs to S2(K) ⊂ S(K) and the

points obtained in S(K) coincide if uv 6= 0. The morphism πspl makes of Tspl

a G2
m-torsor over S.

We now turn to the construction of the versal torsors.

Notation 4.2. We denote by ∆ the set of exceptional divisors in SQ(i)

and consider it as a G -set. Let ∆Q be the set of G -orbits in ∆. We put

E = {E+, E−} and Dj = {D+
j , D

−
j } for j ∈ {1, 2, 3, 4}. Then

∆Q = {E,D1, D2, D3, D4}.

For δ ∈ ∆Q, we may also write δ = {δ+, δ−}. We consider the affine space

A∆,Z of dimension 10 over Z

A∆,Z = Spec(Z[Xδ, Yδ, δ ∈∆Q])

and define A∆ = (A∆,Z)Q. For any δ ∈ ∆Q, we put Zδ+ = Xδ + iYδ and

Zδ− = Xδ − iYδ. We may then consider the algebraic torus

T∆ = Spec
Ä
(Q(i)[Zδ, Z

−1
δ , δ ∈∆])G

ä
as an open subvariety of A∆. We shall also write Zεk (resp. Zε0) for ZDε

k
(resp.

ZEε) and use similar conventions for the variables Xδ and Yδ.

We now wish to construct for each isomorphism class of versal torsors over

S with a rational point a representative of this class in A∆.

Notation 4.3. Let n = (n1, n2, n3, n4) belong to (Z {0})4. We define Yn
as the subscheme of A∆,Z given by the equations

(4.2) ∆j,knl(X
2
l + Y 2

l ) + ∆k,lnj(X
2
j + Y 2

j ) + ∆l,jnk(X
2
k + Y 2

k ) = 0

if 1 6 j < k < l 6 4. The scheme Tn is the open subset of Yn given by the

conditions

(4.3) (Zδ1 , Zδ2) 6= (0, 0),

whenever δ1 ∩ δ2 = ∅. We denote by Tn the variety (Tn)Q.

Remark 4.4. Equations (4.2) define an intersection of two quadrics in A8
Q,

upon which we will ultimately need to count integral points of bounded height.

As shown by Cook in [Coo71], the Hardy-Littlewood circle method can be

adapted to handle intersections of diagonal quadrics in at least nine variables.

Here we will need to deal with an intersection of diagonal quadrics in only

eight variables. For this we will call upon the alternative approach based on

the geometry of numbers in [dlBB08].
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It follows from [CTS80, Prop. 2] that the set of isomorphism classes of

versal torsors over S with a rational point is finite. We introduce a finite set

which parametrises this set.

Notation 4.5. Let S be the set of primes p such that2 p | ∏16j<k64 ∆j,k.

For any j in {1, 2, 3, 4}, we put

Sj =

®
p ∈ S, p ≡ 3 mod 4 and p |

∏
k 6=j

∆j,k

´
and

Σj =

®
(−1)ε−1

∏
p∈Sj

pεp , (ε−1, (εp)p∈Sj ) ∈ {0, 1} × {0, 1}
Sj

´
.

Finally, we define Σ to be the set of m = (mj)16j64 ∈
∏4
j=1 Σj such that the

four integers are relatively prime, m1 is positive and
∏4
j=1mj is a square. For

any m ∈ Σ, we denote by αm the positive square root of
∏4
j=1mj .

Let m belong to Σ. We define a morphism πm : Tm → S. In order to do

this, it is enough to define a morphism π̂m : Tm → Tspl which is done as follows.

For any extension K of Q and any z = (zδ)δ∈∆ in Tm(K), conditions (4.2)

and (4.3) ensure that there exists a pair (u, v) ∈ K2 {0} such that

(4.4) Lj(u, v) = mjz
+
j z
−
j

for j ∈ {1, 2, 3, 4}. Let (x, y, t) ∈ K3 {0} be given by the conditions

(4.5)


x+ iy = αm(z+

0 )2∏4
j=1 z

+
j ,

x− iy = αm(z−0 )2∏4
j=1 z

−
j ,

t = z+
0 z
−
0 .

Then we have the relation

x2 + y2 = t2
4∏
j=1

Lj(u, v)

and (x, y, t, u, v) belongs to Tspl(K).

It remains to describe the action of the torus TNS associated to the G -lattice

Pic(S) on Tm. The algebraic torus T∆ corresponds to the G -lattice Z∆ and

T∆ acts by multiplication of the coordinates on A∆. The natural surjective

morphism of G -lattices

−pr : Z∆ −→ Pic(S)

induces an embedding of the algebraic torus TNS on T∆.3

2Over Z/2Z, one of the ∆j,k has to be zero, and so 2 ∈ S.
3There is some question of convention in the definition of versal torsors which leads us to

use the opposite of the projection map.
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Proposition 4.6. Let m belong to Σ. The variety Tm is invariant un-

der the action of TNS on A∆, and the variety Tm equipped with the map

πm : Tm → S and this action of TNS is a versal torsor above S.

Proof. The description of the kernel of the morphism pr (see (2.2), (2.3))

give the following equations for TNS:

(4.6) Z+
j Z
−
j = Z+

k Z
−
k

for j, k ∈ {1, 2, 3, 4} and

(4.7) Z+
0 Z

+
j Z

+
k = Z−0 Z

−
l Z
−
m

if {j, k, l,m} = {1, 2, 3, 4}. Equations (4.2) are invariant under the action of

TNS thanks to (4.6) as are inequalities (4.3). Therefore the action of TNS on

A∆ induces a natural action of TNS on Tm. This description of TNS also

implies that πm is invariant under the action of TNS on Tm. Indeed let K be

an extension of Q, let t belong to TNS(K), and z to Tm(K). We put z′ = tz. It

follows from (4.4) and (4.6) that z and z′ define the same point (u : v) ∈ P1(K)

and from (4.5), (4.6), and (4.7) that z and z′ give the same point (x : y : tv2)

(resp. (x : y : tu2) in P2(K)).

We note that for any extension K of Q, if R ∈ Tm(K), then π−1
m (πm(R))

coincides with the orbit of R under the action of TNS. Indeed if R′ ∈ Tm(K)

satisfies πm(R′) = πm(R), then there exists a unique z ∈ T∆(K) such that

R′ = zR. Let us write z = (zδ)δ∈∆. Using (4.4) and (4.5) and the description

of the action of G2
m(K) on Tspl, we get that z+

i z
−
i = z+

j z
−
j if 1 6 i < j 6 4,

and

z+
0 z
−
0 (z+

k z
−
k )2 = (z+

0 )2
4∏
j=1

z+
j = (z−0 )2

4∏
j=1

z−j

for k ∈ {1, 2, 3, 4}. We deduce from these equations that z ∈ TNS(K).

It is enough to prove the result over Q. By choosing square roots αj of mj

such that
∏4
j=1 αj = αm, and using a change of variable of the form Zεj

′ = αjZ
ε
j

for ε ∈ {+1,−1} and j ∈ {1, 2, 3, 4} we may assume that m = (1, 1, 1, 1). Note

that for any δ in ∆, the variety π−1
m (E∆) is the subvariety of Tm defined by

Zδ = 0. If ε ∈ {+1,−1}, we consider the open subset

Uε = S − Eε −
4⋃
j=1

Eεj

of S and for j ∈ {1, 2, 3, 4}, we put

Uj = S − E+ − E− −
⋃
k 6=j

(E+
k ∪ E

−
k ).

The open subsets U1, U2, U3, U4, U+, and U− form an open covering of S. If

ε ∈ {+1,−1}, we consider that X + εiY = 1 on Uε, and we define a section s1
ε
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(resp. s2
ε) of π1 over Uε ∩ S1 (resp. Uε ∩ S2) by Zε0 = Zε1 = Zε2 = Zε3 = Zε4 = 1,

Z−ε0 = t and Z−εj = Lj(U, 1) (resp. Z−εj = Lj(1, V )) for j ∈ {1, 2, 3, 4}. Simi-

larly, for j ∈ {1, 2, 3, 4}, fix k, l,m so that {j, k, l,m} = {1, 2, 3, 4}. On Uj , we

may consider that Lk(U, V ) = 1 and T = 1. We may then define a section sj
of π1 over Uj by Z+

k = Z−k = Z+
0 = Z−0 = Z+

l = Z+
m = 1 and

Z−l = Ll(U, V ), Z−m = Lm(U, V ), Z+
j =

X + iY∏
r 6=j Z

+
r
, and Z−j =

X − iY∏
r 6=j Z

+
r
.

Condition (4.3) ensures that, for any point P ∈ T1(Q), the stabilizer of P in

TNS(Q) is trivial. Using the action of TNS on T1 we then get an equivariant

isomorphism from TNS×U to π−1
1 (U) for each open subset U described above.

This proves that Tm is a TNS-torsor over S.

It remains to prove that the endomorphism of Pic(S) defined by this torsor

is the identity map. Let us first recall how this endomorphism may be defined.

If L is a line bundle over S, then the class of L defines a morphism of Galois

lattices Z→ Pic(S) and therefore a morphism of algebraic tori φL : TNS → Gm

and an action of TNS on Gm. The restricted product T×TNS Gm is a Gm-torsor

over S which defines an element of Pic(S). For any δ in ∆, the function Zδ
on Tm is invariant under the action of the kernel of the map φδ : TNS → Gm

defined by the class of δ in Pic(S). Therefore this function defines an antiequiv-

ariant map from Tm×TNS Gm to A1 which vanishes with multiplicity one over

π−1
m (δ). Thus the endomorphism defined by Tm on Pic(S) sends the class of δ

to itself for any δ ∈∆. This proves that Tm is a versal torsor over S. �

To conclude these constructions it remains to prove that the set of rational

points S(Q) is the disjoint union of the sets πm(Tm(Q)) where m runs over

the set Σ.

Lemma 4.7. For any P ∈ S(Q), we have

](π−1
spl (P ) ∩Tspl(Z)) = ]G2

m(Q)tors = 22.

Proof. Let us start with a point P = ((x0 : y0 : t0), u0) in S1(Q). We then

have the relation

x2
0 + y2

0 = t20

4∏
j=1

Li(u0, 1).

We may write u0 = u/v with u, v ∈ Z and gcd(u, v) = 1. Then we may find

an element λ of Q such that the rational numbers x = λx0, y = λy0 and

t = λt0/v
2 are coprime integers and we have

x2 + y2 = t2
4∏
j=1

Lj(u, v).
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The same construction works for any point of S2(Q), and if P belongs to

S1(Q)∩S2(Q), the elements of Z5 thus obtained coincide up to multiplication

of the first three or the last two coordinates by −1. �

Remark 4.8. Note that if we impose conditions like

t > 0, L1(u, v) > 0 and
4∏
j=2

Lj(u, v) > 0,

the lifting of P is unique.

Proposition 4.9. Let P belong to S(Q). Then there exists a unique m

in Σ such that P belongs to πm(Tm(Q)).

Proof. Let Q = (x, y, t, u, v) ∈ Tspl(Z) be such that πspl(Q) = P . Without

loss of generality we may assume that Q = (x, y, t, u, v) ∈ Z5 is such that

(4.8)


x2 + y2 = t2

∏4
j=1 Lj(u, v),

gcd(x, y, t) = 1, gcd(u, v) = 1,

t > 0, L1(u, v) > 0, and
∏4
j=2 Lj(u, v) > 0.

The fact that t2
∏4
j=1 Lj(u, v) is the sum of two squares implies that

(4.9)
4∏
j=1

Lj(u, v) > 0

and, if
∏4
j=1 Lj(u, v) 6= 0, for any prime p congruent to 3 modulo 4,

(4.10)
4∑
j=1

vp(Lj(u, v)) ≡ 0 mod 2.

Let j belong to {1, 2, 3, 4}. If Lj(u, v) 6= 0, we denote by εj ∈ {−1,+1} the

sign of Lj(u, v) and by Σj(Q) the set of prime numbers p which are congruent

to 3 modulo 4 and such that vp(Lj(u, v)) is odd. We then put

mj = εj ×
∏

p∈Σj(Q)

p.

If Lj(u, v) = 0, we define mj as the only integer in Σj such that
∏4
k=1mk is a

square. By construction, we have mj | Lj(u, v) and the quotient Lj(u, v)/mj

is the sum of two squares.

Let us now check that m = (m1,m2,m3,m4) belongs to Σ. According

to (4.10), if a prime number belongs to Σj(Q) for some j ∈ {1, 2, 3, 4}, then

there exists k ∈ {1, 2, 3, 4} with k 6= j such that p ∈ Σk(Q). In particular, p

divides both Lj(u, v) and Lk(u, v) as well as

∆j,ku = bkLj(u, v)− bjLk(u, v)
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and ∆j,kv. Since gcd(u, v) = 1, we get p | ∆j,k. Thus m ∈ ∏4
j=1 Σj . But

combining (4.9), (4.10), and the definition of m we get that
∏4
j=1mj is a

square. If d divides all the mj , it divides gcd16j<k64(∆j,k) which is equal to

1 since ∆1,2 = 1 under condition (3.1). Finally m1 > 0 since L1(u, v) > 0 or∏4
j=2 Lj(u, v) > 0. Thus, m belongs to Σ.

We now wish to prove that Q belongs to π̂m(Tm(Q)). By construction of

m, for any j in {1, 2, 3, 4}, the integer Lj(u, v)/mj is the sum of two squares.

Moreover if p is a prime number, congruent to 3 modulo 4, then p generates a

prime ideal of Z[i]. From relations (4.8), if p | t, then p | (x+iy)(x−iy). In that

case we have p | x and p | y, which contradicts the fact that gcd(x, y, t) = 1.

As t > 0, we get that t may also be written as the sum of two squares.

If
∏4
j=1 Lj(u, v) 6= 0, we choose for j ∈ {1, 2, 3} an element z+

j ∈ Z[i] such

that Lj(u, v)/mj = z+
j z

+
j and an element z+

0 ∈ Z[i] such that t = z+
0 z

+
0 . Then

we get the relation

L4(u, v)/m4 =

(
x+ iy

αm(z+
0 )2

∏3
j=1 z

+
j

)(
x+ iy

αm(z+
0 )2

∏3
j=1 z

+
j

)
,

and we put z+
4 = (x+ iy)/(αm(z+

0 )2∏3
j=1 z

+
j ) ∈ Q[i]. If

∏4
j=1 Lj(u, v) = 0, we

choose z+
1 , z

+
2 , z

+
3 , z

+ as above and z+
4 ∈ Z[i] such that L4(u, v)/m4 = z+

4 z
+
4 .

In both cases, we put z−j = z+
j for j ∈ {1, 2, 3, 4} and z−0 = z+

0 .

The family so constructed satisfy relations (4.5) and (4.8), from which it

follows that the corresponding family (zδ)δ∈∆ is a solution to the systems (4.2)

and (4.3). Thus we obtain a point R in Tm(Q) such that πm(R) = P .

Let m′ belong to Σ and assume that the point P belongs to the set

πm′(Tm′(Q)) as well. Then by (4.8), for any prime number p, we have

vp(m
′
j)− vp(m′k) = vp(Lj(u, v))− vp(Lk(u, v)) = vp(mj)− vp(mk)

for any j, k in {1, 2, 3, 4} such that Lj(u, v)Lk(u, v) 6= 0. Similarly, denoting

by sgn(m) the sign of an integer m, we have

sgn(m′j)/ sgn(m′k) = sgn(mj)/ sgn(mk).

These relations between m and m′ remain valid if Lj(u, v)Lk(u, v) = 0 since

the products
∏4
j=1mj and

∏4
j=1m

′
j are squares. But, by definition of Σ, we

have

m′1 > 0 and min
16j64

vp(m
′
j) = 0

for any prime number p, and similarly for m. We obtain that m = m′. �

5. Jumping up

Having constructed the required versal torsors explicitly, we now wish

to lift our initial counting problem to these torsors. In order to do this, we
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shall define an adelic domain Dm in the adelic space Tm(AQ) so that for any

P ∈ πm(Tm(Q)), the cardinality of π−1
m (P ) ∩Dm is ]TNS(Q)tors.

5.1. Idelic preliminaries. We first need to gather a few facts about the

adelic space TNS(AQ).

Notation 5.1. Let A be a commutative ring. We may identify the A-points

of A∆ with the elements of the invariant ring

A∆ =
(∏
δ∈∆

A⊗Z Z[i]
)G
.

Let P be the set of prime numbers.

Let p ∈ P. We put Sp = Spec(Qp ⊗Z Z[i]) which we may identify with

the set of places of Q[i] above p. If a = (ap)p∈Sp and b = (bp)p∈Sp belong to

ZSp , we write a > b if ap > bp for p ∈ Sp and min(a, b) = (min(ap, bp))p∈Sp .

The valuations induce a map

v̂p : Qp ⊗Z Z[i] −→ (Z ∪ {∞})Sp .

Thus we get a natural map

(Qp ⊗Z Z[i])∆ −→ (Z ∪ {∞})Sp×∆.

The action of G on Sp and ∆ induces an action of G on the set on the right-

hand side so that the above map is G -equivariant. Denoting by Γp the set of

invariants in (Z ∪ {∞})Sp×∆ and by Γp its intersection with ZSp×∆, we get a

map

logp : A∆(Qp) −→ Γp

whose restriction to T∆(Qp) is a morphism from this group to the group Γp
and logp is compatible with the action of T∆(Qp) on the left and the action

of Γp on the right. We denote by Ξp the set of elements (rp,δ) of Γp such that

rp,δ > 0 for any p ∈ Sp and any δ ∈∆.

If T is an algebraic torus over Q which splits over Q(i), then X∗(T ) de-

notes the group of characters of T over Q(i) and X∗(T ) = Hom(X∗(T ),Z) its

dual, that is the group of cocharacters of T . We denote by 〈·,·〉 the natural pair-

ing X∗(T )×X∗(T )→ Z. For any place v of Q, we denote by X∗(T )v the group

of cocharacters of T over Qv, which may be described as X∗(T )Gal(Qv/Qv). We

also consider the groups X∗(T )Q = X∗(T )G and X∗(T )Q = X∗(T )G . The

group Γp may then be seen as the group X∗(T∆)p. The restriction of logp from

T∆(Qp) to Γp is then the natural morphism defined in [Ono61, §2.1]. For any

(rδ)δ∈∆ ∈ Γp, we put r±j = rD±j
for j ∈ {1, 2, 3, 4} and r±0 = rE± . The group

X∗(TNS)p is then the subgroup of Γp given by the equations

r+
j + r−j = r+

l + r−l
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for 1 6 j < l 6 4 and

r+
0 + r+

j + r+
l = r−0 + r−m + r−n

if {j, l,m, n} = {1, 2, 3, 4}.

Remarks 5.2. (i) If p ≡ 3 mod 4 or p = 2, then there exists a unique

element p in Sp. Thus Γp is canonically isomorphic to Z∆Q . If p ≡ 1 mod 4,

then choosing an element p ∈ Sp, we get an isomorphism from Z∆ to Γp.

(ii) We may note that an element Q ∈ Tm(Qp) belongs to Ym(Zp) if and

only if logp(Q) belongs to Ξp.

Lemma 5.3. For any prime p, the morphism logp induces an isomorphism

from the quotient TNS(Qp)/TNS(Zp) to X∗(TNS)p and there is an exact sequence

1 −→ TNS(Q)tors −→ TNS(Q) −→
⊕
p∈P

X∗(TNS)p −→ 0.

Proof. By [Dra71, p. 449], the kernel of the map logp from TNS(Qp) to

X∗(TNS)p coincides with TNS(Zp) for any prime p. Let us prove that the map⊕
p logp from TNS(Q) to

⊕
pX∗(TNS)p is surjective. We first assume that p 6= 2.

If p ≡ 1 mod 4, we choose an element $ ∈ Z[i] such that p = $$ and identify

Sp with {$,$}. If r ∈ Γp, we then define

exp$(r) = ($r$,δ$r$,δ)δ∈∆.

If p ≡ 3 mod 4, then we put $ = p and for r ∈ Γp, we define exp$(r) to

be ($rp,δ)δ∈∆. By construction, exp$ is a morphism from Γp to T∆(Q) and

satisfies logp ◦ exp$ = IdΓp and log` ◦ exp$ = 0 for any prime ` 6= p. Moreover

we have

(5.1) χ(exp$(r)) = p〈χ,r〉

for any χ ∈ X∗(T∆)Q and any r ∈ Γp. Therefore, if r belongs to X∗(TNS)p,

then exp$(r) belongs to TNS(Q). It remains to prove a similar result for p = 2,

although there is no morphism which satisfies (5.1). Let r belong to X∗(TNS)2.

Let us write rj = r+
j = r−j for j in {0, . . . , 4}. Since r belong to X∗(TNS)2,

we have r1 = r2 = r3 = r4. We put z+
j = (1 + i)rj for j ∈ {0, 1, 2, 3} and

z+
4 = (−i)r0+2r1(1+ i)r0 and z−j = z+

j for j ∈ {0, . . . , 4}. Then log2(z) = r and

z satisfies equation (4.6). Moreover if {j, k, l,m} = {1, 2, 3, 4}, then one has

z+
0 z

+
j z

+
k /(z

−
0 z
−
l z
−
m) =

(1 + i)r0+2r1

(1− i)r0+2r1
(−i)r0+2r1 = 1

which proves that z satisfies (4.7).

If z belongs to the kernel of the map
⊕

p logp, then its coordinates are

invertible elements in Z[i]. Thus z is a torsion element of TNS(Q). �
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5.2. Local domains. To construct Dm, for any prime p and any m ∈ Σ

we shall define a fundamental domain in Tm(Qp) under the action of TNS(Qp)

modulo TNS(Zp). In other words, we want an open domain Dm,p ⊂ Tm(Qp)

such that:

(i) The open set Dm,p is stable under the action of TNS(Zp).

(ii) For any t in TNS(Qp) TNS(Zp), one has t.Dm,p ∩Dm,p = ∅.
(iii) For any x in Tm(Qp), there exists an element t in TNS(Qp) such that x

belongs to t.Dm,p.

Lemma 5.4. For any prime number p, the domain Tspl(Zp) is a funda-

mental domain in Tspl(Qp) under the action of Tspl(Qp) modulo Tspl(Zp).

Proof. As in the proof of Lemma 4.7, if P belongs to S(Qp), then there

exists a point Q = (x, y, t, u, v) ∈ Tspl(Qp) such that πspl(Q) = P and

min(vp(x), vp(y), vp(t)) = min(vp(u), vp(v)) = 0.

The last condition is equivalent to Q ∈ Tspl(Zp). The lemma then follows from

the facts that the action of Tspl(Qp) on Tspl(Qp) is given by

((λ, µ), (x, y, t, u, v)) 7→ (λx, λy, µ−2λt, µu, µv)

and Tspl(Qp)-orbits are the fibers of the projection πspl : Tspl(Qp)→ S(Qp).

�

Lemma 5.5. Two elements of Tm(Qp) belong to the same orbit under the

action of TNS(Zp) if and only if they have the same image by πm and logp.

Proof. According to Proposition 4.6, two elements of Tm(Qp) belong to

the same orbit under the action of TNS(Qp) if and only if their image by

πm coincide. On the other hand, TNS(Zp) = TNS(Qp) ∩ T∆(Zp) is the set of

elements of A∆(Qp) which are sent to the origin of Γp by logp. Therefore if two

elements of Tm(Qp) belong to the same orbit for TNS(Zp), their image in Γp
coincides. Conversely, let x and y be elements of Tm(Qp) which have the same

image by πm and logp. Then there exists an element t ∈ TNS(Qp) such that

y = tx. Since logp(x) = logp(y), if a coordinate zδ of x is different from 0, the

corresponding component of logp(t) is 0. Taking into account conditions (4.3)

and equations (4.6) and (4.7) which define TNS, this implies that logp(t) is the

unit element and thus t ∈ TNS(Zp). �

Remark 5.6. The idea behind the construction of Dm,p is first to consider

the intersection

π̂−1
m (Tspl(Zp)) ∩ Ym(Zp),

which is stable under the action of TNS(Zp). For all primes p for which there

is good reduction, this intersection coincides with Tm(Zp). More generally, if

p is good or if p 6≡ 1 mod 4, this intersection satisfies conditions (i)–(iii) and
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yields the wanted domain. On the other hand, if p is a prime dividing one of

the ∆j,k and such that p ≡ 1 mod 4, then for any Q ∈ Tspl(Zp)∩ π̂m(Tm(Qp)),

the intersection

π̂−1
m (Q) ∩ Ym(Zp)

is the union of a finite number of TNS(Zp)-orbits. We then select a total order

on Γp and choose the minimal element in the image of the last intersection by

φp. In that way, we construct the wanted domain.

To better understand the construction, we describe the conditions satisfied

by logp(R) for a lifting R of a point Q ∈ Tspl(Qp). Let R = (zδ)δ∈∆ ∈ Tm(Qp)

and let Q = (x, y, t, u, v) = π̂m(R). Let us denote by (rδ)δ∈∆ ∈ Γp the image

of R by logp. We also put nj = v̂p(Lj(u, v)/mj) for j ∈ {1, 2, 3, 4}, n0 = v̂p(t),

and n± = v̂p((x± iy)/αm). Then we have the relations

nj = r+
j + r−j(5.2)

for j ∈ {0, . . . , 4}, and

n± = 2r±0 +
4∑
j=1

r±j .(5.3)

Lemma 5.7. Let p be a prime number and let m belong to Σ. Let Q belong

to the intersection Tspl(Zp) ∩ πm(Tm(Qp)) and let (nj)j∈{0,...,4} and n+,n−

be the corresponding elements of ZSp defined in Remark 5.6.

(a) One has nj > 0 for j ∈ {0, . . . , 4}, n+ > 0 and n− > 0.

(b) If p 6∈ S, then min(ni,nj) = 0 if 1 6 i < j 6 4.

(c) If p 6≡ 1 mod 4, then n0 = 0.

(d) One has min(n0,n
+,n−) = 0.

(e) There exists a solution in Ξp to equations (5.2) and (5.3).

(f) The number of such solutions is finite.

(g) There exists a unique solution to these equations in Ξp if p 6∈ S or

if p 6≡ 1 mod 4.

Proof. We write m = (m1, . . . ,m4) and Q = (x, y, t, u, v). As Q be-

longs to the set πm(Tm(Qp)), one has that p|mi if and only if p ≡ 3 mod 4

and vp(Li(u, v)) is odd. If these conditions are verified, vp(αm) = 1 and

αm|Li(u, v). Similarly, using equation (4.1), we have that αm|x± iy and this

concludes the proof of a).

We now assume that p 6∈ S. Let i, j be such that 1 6 i < j 6 4. Thus p

does not divide ∆i,j . This implies that min(vp(Li(u, v)), vp(Lj(u, v))) = 0 and

so min(ni,nj) = 0.

We now prove assertion (c). If p|t, then by equation (4.1), it follows that

p2|x2 + y2. If we assume that p = 2 or p ≡ 3 mod 4, then this implies that p|x
and p|y which contradicts the fact that min(vp(x), vp(y), vp(t)) = 0.
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Let p ∈ Sp. If p divides x + iy, x − iy, and t, then p divides x, y and t.

This proves assertion (d).

Since Q belongs to πm(T(Qp)), equations (5.2) and (5.3) have a solution

in Γp. If p ≡ 3 mod 4 or p = 2, then the integers r±j ∈ Z are such that r+
j = r−j

for j ∈ {0, . . . , 4}. Therefore the equations in (5.2) have a unique solution in

Γp. By (a) the coordinates of this solution are positive. If p ≡ 1 mod 4, then

by choosing an element p ∈ Sp we are reduced to solving the equations

nj = r+
j + r−j

for j ∈ {0, . . . , 4}, and

n± = 2r±0 +
4∑
j=1

r±j

in Z∆, where nj > 0 for j ∈ {0, . . . , 4}, n+ > 0 and n− > 0. Since we have the

relation 2n0 +
∑4
j=1 nj = n+ + n−, we may write n+ = 2a+

0 +
∑4
j=1 a

+
j where

0 6 a+
j 6 nj for j ∈ {0, . . . , 4}. Then we put a−j = nj − a+

j for j ∈ {0, . . . , 4}
to get a solution with nonnegative coordinates.

Assertion (f) follows from the fact that there is only a finite number of

nonnegative integral solutions to an equation of the form n = k+ + k−.

If p ≡ 3 mod 4 or p = 2, we have already seen that the solution to the

system of equations is unique. If p 6∈ S and p ≡ 1 mod 4, then it follows from

assertions (b) and (d) that r±j = min(nj , n
±), which implies that the solution

is unique. �

Lemma 5.8. If p is a prime number such that p ≡ 1 mod 4 or p 6∈ S, then

for m ∈ Σ, the set Ym(Zp) ∩ π̂−1
m (Tspl(Zp)) satisfies the conditions (i)–(iii)

and defines a fundamental domain in Tm(Qp) under the action of TNS(Zp).

Proof. To prove the lemma it is sufficient to prove that the intersection of

any nonempty fiber of πm with Tm(Zp) is not empty and is an orbit under the

action of TNS(Zp). Let P belong to the set πm(Tm(Qp)). By Lemma 5.4 we

may lift P to a point Q which belongs to Tspl(Zp). According to Lemma 5.7(e),

we may find an element r ∈ Ξp which is a solution to equations (5.2) and (5.3).

Let R′ be any lifting of P to Tm(Qp) and let r′ = logp(R
′). The difference r′−r

belongs to X∗(TNS)p. According to Lemma 5.3, there exists t ∈ TNS(Qp) such

that logp(t) = r−r′. Then the point R = t.R′ ∈ Tm(Qp) satisfies logp(R) = r

and R belongs to Ym(Zp) ∩ π̂−1
m (Tspl(Zp)).

It remains to prove that if two element R and R′ of Tm(Zp) are in the same

fibre for πm, then they belong to the same orbit under the action of TNS(Zp).

Their images in Tspl(Qp) belong to Tspl(Zp) and therefore are contained in the

same orbit for the action of Tspl(Zp), which means that the equations described

in Remark 5.6 for logp(R) and logp(R
′) are exactly the same. We then apply

assertion (g) of Lemma 5.7 and Lemma 5.5. �
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Lemma 5.9. If the prime number p does not belong to S, then for m ∈ Σ,

we have

Tm(Zp) = Ym(Zp) ∩ π̂−1
m (Tspl(Zp)).

Proof. We keep the notation used in the proof of the previous lemma.

Using Lemma 5.7(b) and (d), and the positivity of the coefficients in r, we get

that min(rδ1 , rδ2) = 0 whenever δ1 ∩ δ2 = ∅, which means that R belongs to

Tm(Zp). �

Definition 5.10. Let m belong to Σ. If p 6∈ S, we put Dm,p = Tm(Zp). If

p ∈ S and p 6≡ 1 mod 4, we put

Dm,p = Ym(Zp) ∩ π̂−1
m (Tspl(Zp)).

It remains to define the domain for the primes p ∈ S such that p ≡ 1 mod 4.

Notation 5.11. We put S′ = {p ∈ S, p ≡ 1 mod 4}. For any p ∈ S′, we

fix in the remainder of this text a decomposition p = $p$p for an irreducible

element $p ∈ Z[i]. We may then write Sp = {$p, $p}. The group Γp is

isomorphic to Z∆ through the map φp which applies a family (rp,δ)(p,δ)∈Sp×∆

onto the family (r$p,δ)δ∈∆. Let j 6= k be two elements of {1, 2, 3, 4} such that

p|∆j,k. We then define f j,k = (fδ)δ∈∆ ∈ Z∆ by

fδ =

1 if δ ∈ {D−j , D
+
k },

0 otherwise.

We put ej,k = φ−1
p (f j,k) and consider the set

(5.4) Λp = Ξp
⋃

{(j,k)∈{1,2,3,4}|j<k and p|∆j,k}
ej,k + Ξp.

Definition 5.12. Let m belong to Σ. If p ∈ S and p ≡ 1 mod 4, then we

define Dm,p to be the set of R ∈ π̂−1
m (Tspl(Zp)) such that logp(R) ∈ Λp.

Remark 5.13. In particular, one has Dm,p ⊂ Ym(Zp) for any prime num-

ber p.

Lemma 5.14. If p ∈ S and p ≡ 1 mod 4, then for m ∈ Σ, the set Dm,p

satisfies conditions (i)–(iii) and defines a fundamental domain in Tm(Qp) un-

der the action of TNS(Zp).

Proof. According to Lemma 5.5 and Lemma 5.7(e), we have only to prove

that for any Q ∈ Tspl(Zp) ∩ π̂m(Tp), there exist a unique solution of equa-

tions (5.2) and (5.3) which belongs to Λp. Among the solutions in Ξp, there

is a unique solution such that if s = φp(r), the quadruple (s+
1 , s

+
2 , s

+
3 , s

+
4 ) is

maximal for the lexicographic order. It remains to prove that the solution

satisfies this last condition if and only if r belongs to Λp. Let r be the solution
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for which the above quadruple is maximal and r̃ be any solution in Ξp and

s̃ = φp(r̃). If r 6= r̃, then we consider the smallest j ∈ {1, 2, 3, 4} such that

s+
j > s̃+

j . With the notation of Remark 5.6, this implies that nj 6= 0, n+ 6= 0,

and n− 6= 0. Therefore n0 = 0 and there exists k > j such that s+
k < s̃+

k .

Since s−j < s̃−j , we may conclude that r̃ ∈ ej,k + Ξp. Moreover p | ∆j,k. Con-

versely if r̃ belongs to ej,k+Ξp for some j, k ∈ {1, 2, 3, 4} such that j < k, then

r̃ − ej,k + ek,j is another solution to system of equations which gives a bigger

quadruple for the lexicographic order. �

5.3. Adelic domains and lifting of the points.

Definition 5.15. Let m ∈ Σ. We define the open subset Dm of Tm(AQ)

as the product Tm(R)×∏p∈P Dm,p.

Proposition 5.16. The set Dm is a fundamental domain in Tm(AQ)

under the action of TNS(Q) modulo TNS(Q)tors. In other words :

(i) The open set Dm is stable under the action of TNS(Q)tors.

(ii) For any t in TNS(Q) TNS(Q)tors, one has t.Dm ∩Dm = ∅.
(iii) For any x in Tm(AQ), there exists an element t in TNS(Q) such that x

belongs to t.Dm.

Proof. Assertion (i) followssince Dm,p is stable under TNS(Zp) for any

prime number p. If t belongs to TNS(Q) TNS(Q)tors, then, by Lemma 5.3,

there exists a prime number p such that logp(t) 6= 0. Thus t.Dm,p ∩Dm,p = ∅,
which proves (ii). Let x belong to Tm(AQ). For any prime number p, there

exists an element tp ∈ TNS(Qp) such that tp.x ∈ Dm,p. By Lemma 5.3, there

exists an element t ∈ TNS(Q) such that logp(t) = logp(tp) for any prime number

p and t.x ∈ Dm. �

Corollary 5.17. Let P belong to S(Q) and let m be the unique element

of Σ such that P ∈ πm(Tm(Q)). Then

](π−1
m (P ) ∩Dm) = ]TNS(Q)tors = 28.

Proof. This corollary follows from the last proposition and the fact that

π−1
m (x) is an orbit under the action of TNS(Q). �

Let us now lift the heights to the versal torsors.

Definition 5.18. As in Notation 3.2 we put C =
»∏4

j=1 |aj |+ |bj |. Let w

be a place of Q. We define a function Hw on Q5
w by

Hw(x, y, t, u, v) =

max( |x|wC , |y|wC ,max(|u|w, |v|w)2|t|w) if w =∞,

max(|x|w, |y|w,max(|u|w, |v|w)2|t|w) otherwise
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for any (x, y, t, u, v)∈Q5
w. If m∈Σ, we shall also denote by Hw : Tm(Qw)→R

the composite function Hw ◦ π̂m. We then define H : Tm(AQ) → R by

H =
∏
w∈Val(Q)Hw.

Remarks 5.19. (i) The line bundle ω−1
S defines a character χω on the torus

Tspl = G2
m,Q simply given by (λ, µ) 7→ λ, and we have the relation

(5.5) Hw(t.R) = |χω(t)|wHw(R)

for any t ∈ Tspl(Qw) and any R ∈ Tspl(Qw). A similar assertion is true on Tm
for m ∈ Σ.

(ii) As a point Q = (x : y : t : u : v) in Tspl(R) satisfies equation (4.1), we

have that

max(|x|, |y|)2 6
4∏
j=1

(|aj |+ |bj |) max(|u|, |v|)4|t|2,

and it follows that

H∞(Q) = max(|u|, |v|)2|t|.

Proposition 5.20. Let m ∈ Σ. For any R ∈ Tm(Q), one has

H(πm(R)) = H(R).

Proof. We may define a map ψ̂ : Q5 → Q5 by

(x, y, t, u, v) 7→ (v2t : uvt : u2t : x : y).

The restriction of the map ψ̂ from Tspl to A5
Q {0} is a lifting of the map

ψ : S → S′. On S′, the height H4 is given by

H4(x0 : · · · : x4) = max

Ç
|x0|∞, |x1|∞, |x2|∞,

|x3|∞
C

,
|x4|∞
C

å
×
∏
p∈P

max
06j64

(|xj |p)

for any (x0, . . . , x4)∈Q5. This formula implies the statement of the lemma. �

Corollary 5.21. For any real number B, we have

N(B) =
1

]TNS(Q)tors

∑
m∈Σ

]{R ∈ Tm(Q) ∩Dm, H(R) 6 B}.

Proof. This corollary follows from Propositions 4.9, 4.6, 5.20, and Corol-

lary 5.17. �

Remark 5.22. For any prime number p and any m ∈ Σ, we have Dm,p

belonging to π̂−1
m (Tspl(Zp)). Therefore, for any R = (Rw)w∈Val(Q) belonging

to Dm, we have H(R) = H∞(R∞).

Notation 5.23. For any real number B, and any m ∈ Σ, we denote by

Dm,∞(B) the set of R ∈ Tm(R) such that the point Q = (x, y, t, u, v) = π̂m(R)
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satisfies the conditions

(5.6) H∞(Q) 6 B and H∞(Q) > max(|u|, |v|)2 > 1.

We define Dm(B) as the product Dm,∞(B)×∏p∈P Dm,p.

Remark 5.24. Let F be a fiber of the morphism π : S → P1
Q. Then the

Picard group of S is a free Z-module with a basis given by the pair ([F ], [ω−1
S ]).

According to formula (5.5), the function H∞ corresponds to [ω−1
S ]. In a similar

way the map applying (x, y, t, u, v) to max(|u|, |v|) corresponds to [F ]. On the

other hand, the cone of effective divisors in Pic(S) is the cone generated by [F ]

and [E+] + [E−] = [ω−1
S ]− 2[F ]. But, by the preceding remark, the function

Q = (x, y, t, u, v) 7−→ H∞(Q)

max(|u|, |v|)2

corresponds to [E+]+[E−]. Thus the lower bounds imposed in the definition of

Dm,∞(B) correspond to condition (3.9) of [Pey01, p. 268]. These lower bounds

are automatically satisfied by any point R in Dm∩Tm(Q). Indeed Q = π̂m(R)

belongs to Tspl(Z), and writing Q = (x, y, t, u, v) we get that max(|u|, |v|) > 1.

Since (x, y, t) 6= 0, by equation (4.1), we also have that t 6= 0 and therefore

|t| > 1 which yields the second inequality.

Corollary 5.25. For any real number B, we have

N(B) =
1

]TNS(Q)tors

∑
m∈Σ

](Tm(Q) ∩Dm(B)).

Proof. This follows from the last remark and the preceding corollary. �

5.4. Moebius inversion formula and change of variables. As is usual with

these type of problems, we now wish to use a Moebius inversion formula to

replace the coprimality conditions by divisibility conditions.

5.4.1. First inversion. The first inversion corresponds to the conditions

imposed at the places p ∈ S with p ≡ 1 mod 4.

Notation 5.26. Let N(a) = #(Z[i]/a) denote the norm of an ideal a of the

ring of Gaussian integers Z[i]. We define“D = {b ⊂ Z[i], N(b) ∈ D},

where

(5.7) D = {d ∈ Z>0, p | d⇒ p ≡ 1 mod 4}.

Let A be a commutative ring. Let b = (bδ)δ∈∆ be a family of ideals of

A⊗Z Z[i] such that bδ = bδ for any δ ∈∆. Then (
∏
δ∈∆ bδ)

G is an ideal of A∆
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and for any n ∈ Z4, we define

Yn(b) = Yn(A) ∩
(∏
δ∈∆

bδ
)G
.

We define I∆(A) as the set of such families of ideals. For any p, the map logp
induces a map from I∆(Z) to Γp. If log2(a) = 0, then we define

λ(a) =
∏

p∈P {2}
exp$p(logp(a)).

For any a ∈ I∆(Z), we also put N(a) = (N(a+
j ))16j64 ∈ Z4

>0.

If λ = (λδ)δ∈∆ belongs to T∆(Q)∩Z∆, then we put N(λ) = (λ+
j λ
−
j )16j64

belonging to Z4
>0 and define a morphism mλ : YN(λ)n → Yn using the action of

the torus T∆ on A∆. For any commutative ring A, we may define an element

λA∆ ∈ I∆(A) by taking the family of ideals (λδA)δ∈∆. If a ∈ I∆(Z) satisfies

log2(a) = 0, then a = λ(a)Z∆. For any a ∈ I∆(Z), we similarly define aA∆

as (aδA)δ∈∆ ∈ I∆(A).

Let m ∈ Σ and let a = (aj)16j64 ∈ “D4. We may see a as an element of

I∆(Z) by putting a+
j = aj and a−j = aj for j ∈ {1, 2, 3, 4} and a+

0 = a−0 = Z[i].

Let n = mN(a) = (mjN(aj))16j64. Recall that αm is the positive square root

of
∏4
j=1mj . We put

αm,a = αm ×
4∏
j=1

λ(a)+
j .

Note that
∏4
j=1 nj = N(αm,a). We then define a map π̂m,a : Yn → A5

Z as

follows. Thanks to equations (4.2) and the fact that, by (3.1), the family

(aj , bj)16j64 generates Z2, the system of equations

(5.8) Lj(U, V ) = nj(X
2
j + Y 2

j )

in the variables U and V has a unique solution in the ring of functions on Yn.

We also define T = X2
0 + Y 2

0 and define X and Y by the relation

X + iY = αm,a(X0 + iY0)2
4∏
j=1

(Xj + iYj).

The morphism π̂m,a is then defined by the family of functions (X,Y, T, U, V ).

Since these functions satisfy the relation

X2 + Y 2 = T 2
4∏
j=1

Lj(U, V ),

the image of π̂m,a is contained in the Zariski closure Yspl of Tspl in A5
Z.

Let m ∈ Σ and a ∈ “D4. For any prime number p, we define D1
m,a,p

as Yn(Zp) ∩ π̂−1
m,a(Tspl(Zp)) where n = mN(a). For any real number B, we

also define D1
m,a,∞(B) as the set of R ∈ Yn(R) such that π̂m,a(R) satisfies
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conditions (5.6). We then put D1
m,a(B) = D1

m,a,∞(B) ×∏p∈P D1
m,a,p. When

aj = Z[i] for j ∈ {1, 2, 3, 4}, we shall forget a in the notation.

Let S′ be the set of p ∈ S such that p ≡ 1 mod 4. For any p ∈ S′, we

consider the set Ep of subsets I of ∆ {E+, E−} such that:

(i) if δ+
j ∈ I, then there exists k < j such that δ−k ∈ I;

(ii) if δ−k ∈ I, then there exists j > k such that δ+
j ∈ I;

(iii) if δ+
j ∈ I and δ−k ∈ I with j 6= k, then p | ∆j,k.

For any I ∈ Ep, we define f I = (fδ)δ∈∆ ∈ Z∆ by

fδ =

1 if δ ∈ I,

0 otherwise.

Using Notation 5.11, we then consider

eI = ϕ−1
p (f I) and Σ′p =

¶
exp$p(eI), I ∈ Ep

©
.

We define Σ′ as the subset of I∆(Z) defined by

Σ′ =

®Ç∏
p∈S′

λp

å
Z∆, (λp)p∈S′ ∈

∏
p∈S′

Σ′p

´
.

An element a ∈ Σ′ is determined by the quadruple (a+
j )16j64, and we shall

also consider Σ′ as a subset of “D4. For p ∈ S′, we define a map µp : Ep → Z by

the conditions

µp(∅) = 1 and
∑
J⊂I

µp(J) = 0 if I 6= ∅.

The map µ : Σ′ → Z is defined by µ(a) =
∏
p∈S′ µp(Ip(a)).

We shall denote by Af,∞ the ring R×∏p∈P Zp.

Remarks 5.27. (i) Let λ = (λδ)δ∈∆ ∈ T∆(Q)∩Z∆. Let A be a commuta-

tive ring. Then mλ is a bijection from the set YN(λ)n(A) to the set Yn(λA∆).

(ii) With the same notation, for the ring A = Zp, the set Yn(d) is the

inverse image by logp of the set logp(λ) + Ξp.

Lemma 5.28. Let p ∈ S′. For any subset K of Γp, we denote by 1K its

characteristic function. Then

1Λp =
∑
I∈Ep

µp(I)1eI+Ξp .

Proof. For any j, k in {1, 2, 3, 4} such that j < k and p | ∆j,k, we put

Ij,k = {δ−j , δ
+
k }. Let K be a subset of

{(j, k) ∈ {1, 2, 3, 4}2, j < k and p | ∆j,k}.
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Let I =
⋃

(j,k)∈K Ij,k. Then we have

⋂
(j,k)∈K

(ej,k + Ξp) = eI + Ξp.

On the other hand, a subset I of ∆ belongs to Ep if and only if it is the

union of subsets Ij,k with j < k and p | ∆j,k. The lemma then follows from

equation (5.4) which defines Λp and the fact that the map I 7→ eI +Ξp reverses

the inclusions. �

Lemma 5.29. Let a ∈ Σ′ and let B be a positive real number. The multi-

plication by λ(a) ∈ T∆(Q) maps D1
m,a(B) onto D1

m(B) ∩ Ym(a(Af,∞)∆).

Proof. By Remark 5.27(i), the map mλ(a) is a bijection from the set

YN(a)m(Af,∞) onto the set Ym(a(Af,∞)∆). Let us now compare the maps

π̂m ◦mλ(a) and π̂m,a. The map π̂m,a is given by the relations


Lj(U, V ) = N(a+

j )mi(X
2
j + Y 2

j ) for j ∈ {1, 2, 3, 4},
T = X2

0 + Y 2
0 ,

X + iY = αm,a(X0 + iY0)2∏4
j=1(Xj + iYj),

whereas π̂m ◦mλ(a) is given by


Lj(U, V ) = λ(a)+

j λ(a)−j mi(X
2
j + Y 2

j ) for j ∈ {1, 2, 3, 4},
T = X2

0 + Y 2
0 ,

X + iY = αm

Ç∏4
j=1 λ(a)+

j

å
(X0 + iY0)2∏4

j=1(Xj + iYj).

Therefore π̂m ◦ mλ(a) coincides with π̂m,a. This proves that for any prime

number p, the map mλ(a) maps π̂−1
m,a(Zp) onto π̂−1

m (Zp). Moreover mλ(a) sends

the set D1
m,a,∞(B) onto D1

m,∞(B). �

Proposition 5.30. For any real number B, we have

N(B) =
1

]TNS(Q)tors

∑
m∈Σ

∑
a∈Σ′

µ(a)](TN(a)m(Q) ∩D1
m,a(B)).

Proof. Proposition 5.30 follows from Lemma 5.28, the definition of Dm(B),

and Lemma 5.29. �

5.4.2. Second inversion. The inversion we shall now perform corresponds

to the condition gcd(x, y, t) = 1.
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Notation 5.31. The map µ : “D → Z is the multiplicative function such

that

µ(pk) =


1 if k = 0,

−1 if k = 1,

0 otherwise

for any prime ideal p in “D and any integer k > 0.

Let m ∈ Σ and a ∈ Σ′ ⊂ “D4. Let b = (bj)j∈{1,2,3,4} ∈ “D4. We put

n = N(ab)m and µ(b) =
∏4
j=1 µ(bj). Let B be a real number. Let p be a

prime number. If R belongs to Yn(Zp), we denote by X,Y, T, U , and V the

functions on Yn which define π̂m,ab. The local domain D2
m,a,b,p is then defined

as follows:

• If p ≡ 3 mod 4 or p = 2, then D2
m,a,b,p is the set of R ∈ Yn(Zp) such

that T (R) ∈ Z∗p and min(vp(U(R)), vp(V (R))) = 0.

• If p ≡ 1 mod 4, then D2
m,a,b,p is the set of R = (zδ)δ∈∆ ∈ Yn(Zp) such

that z−0 belongs to
⋂4
j=1 bj , with min

Ä
vp(T (R)), vp

Ä∏4
j=1 N(aj)

ää
= 0

and min(vp(U(R)), vp(V (R))) = 0.

We also put D2
m,a,b,∞(B) = D1

m,a,∞(B) and

D2
m,a,b(B) = D2

m,a,b,∞(B)×
∏
p∈P

D2
m,a,b,p.

Proposition 5.32. For any real number B, we have the relation

N(B) =
1

]TNS(Q)tors

∑
m∈Σ

∑
a∈Σ′

∑
b∈D̂4

µ(a)µ(b)](TN(a)N(b)m(Q) ∩D2
m,a,b(B)).

Proof. Let m ∈ Σ, let a ∈ Σ′ and let p be a prime number.

Let us first assume that p 6≡ 1 mod 4. By Lemma 5.7(c), we have vp(t) = 0

for any (x, y, t, u, v) ∈ Tspl(Zp). Conversely, let R belong to YmN(a)(Zp). If

vp(T (R)) = 0, then min(vp(X(R)), vp(Y (R)), vp(T (R))) = 0.

We now assume that p ≡ 1 mod 4. For any R = (zδ)δ∈∆ ∈ YmN(a)(Qp),

we have the relations

T (R) = z+
0 z
−
0 and X(R) + iY (R) = αm,a(z+

0 )2
4∏
j=1

z+
j .

Note that if $p|αm,a for any prime p ≡ 1 mod 4, then p|αm,a. Therefore we

have the relation gcd(X(R), Y (R), T (R)) = 1 in Zp if and only if R satisfies

the following two conditions:

(i) One has min(vp(T (R)), vp(N(
∏4
j=1 aj))) = 0.

(ii) There is no j ∈ {1, 2, 3, 4} and no $ ∈ Sp such that z+
j ∈ $ and

z+
0 ∈ $.
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We denote by b̂ the unique element of I∆(Z) such that b̂+
j = bj for j belonging

to {1, 2, 3, 4} and b̂−0 =
⋂4
j=1 bj . A classical Moebius inversion yields that the

characteristic function of the set of the elements R in YmN(a)(Zp) which satisfy

condition (ii) is equal to ∑
b∈D̂4

µ(b)1
YmN(a)

Ä
b̂(Zp)∆

ä.
By Remark 5.27(i), the multiplication map mλ(b) maps YmN(a)

Ä
b̂(Zp)∆

ä
onto the set of (zδ)δ∈∆ in YmN(ab)(Zp) such that z−0 belongs to

⋂4
j=1 bj . The

rest of the proof is similar to the proof of Lemma 5.29. �

5.4.3. Third inversion. The last inversion corresponds to the condition

gcd(u, v) = 1, in which it will prove nonetheless useful to retain the fact that

u, v cannot both be even.

Notation 5.33. Let m ∈ Σ and a ∈ Σ′. Let b = (bj)j∈{1,2,3,4} ∈ “D4. We

put n = N(a)N(b)m. Let ` be an odd integer. Let p be a prime number. The

local domain D3
m,a,b,`,p is then defined as follows:

• If p = 2, then D3
m,a,b,`,p is the set of R ∈ Yn(Zp) such that T (R) ∈ Z∗p

and min(vp(U(R)), vp(V (R))) = 0.

• If p ≡ 3 mod 4, then D3
m,a,b,`,p is the set of R ∈ Yn(Zp) such that

T (R) ∈ Z∗p and ` divides U(R) and V (R).

• If p ≡ 1 mod 4, then D3
m,a,b,`,p is the set of R = (zδ)δ∈∆ ∈ Yn(Zp) such

that z−0 belongs to
⋂4
j=1 bj , with min

Ä
vp(T (R)), vp

Ä∏4
j=1 N(aj)

ää
= 0

and and such that ` divides U(R) and V (R).

We define D3
m,a,b,`,∞(B) = D2

m,a,b,∞(B) and

D3
m,a,b,`(B) = D3

m,a,b,`,∞(B)×
∏
p∈P

D3
m,a,b,`,p.

Proposition 5.34. For any positive real number B, we have that N(B)

is equal to

1

]TNS(Q)tors

∑
m∈Σ

∑
a∈Σ′

∑
b∈D̂4

∞∑
`=1
2-`

µ(a)µ(b)µ(`)](TN(a)N(b)m(Q) ∩D3
m,a,b,`(B)).

6. Formulation of the counting problem

We are now ready to begin the analytic part of the proof of Theorem 3.3.

Let us recall that the linear forms that we are working with take the shape

L1(U, V ) = U, L2(U, V ) = V, L3(U, V ) = a3U + b3V, L4(U, V ) = a4U + b4V,
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with integers a3, b3, a4, b4 such that gcd(a3, b3) = gcd(a4, b4) = 1 and

(6.1) ∆ = a3b3a4b4(a3b4 − a4b3) 6= 0.

It is clear that the forms involved are all pairwise nonproportional. In this

section we will further translate our counting problem in terms of the familiar

multiplicative arithmetic function

r(n) = ]{(x, y) ∈ Z2, x2 + y2 = n} = 4
∑
d|n

χ(d),

where χ is the real nonprincipal character modulo 4. It is to this expression

that we will be able to direct the full force of analytic number theory.

In what follows we will allow the implied constant in any estimate to

depend arbitrarily upon the coefficients of the linear forms involved. Further-

more, we will reserve j for an arbitrary index from the set {1, 2, 3, 4}. Finally,

many of our estimates will involve a small parameter ε > 0, and it will ease

notation if we also permit the implied constants to depend on the choice of ε.

We will follow common practice and allow ε to take different values at different

parts of the argument.

Recall the definitions of Σ,Σ′ from Sections 4 and 5 respectively. In par-

ticular we have mjN(a+
j ) = O(1) whenever m ∈ Σ and a ∈ Σ′.

Proposition 6.1. For B > 1, we have

N(B)=
1

]TNS(Q)tors

∑
m∈Σ
a∈Σ′

µ(a)
∞∑
`=1
2-`

µ(`)
∑
b∈D̂4

µ(b)
∑
t∈D

gcd(t,N(a))=1
N(
⋂

bj)|t

r
( t

N(
⋂
bj)

)
U
(B
t

)
,

where

U (T ) =
∑

(u,v)∈Z2∩
√
TRm

`|u,v
2-gcd(u,v)

mjN(a+
j bj)|Lj(u,v)

4∏
j=1

r
( Lj(u, v)

mjN(a+
j bj)

)

and

(6.2)

Rm =
{

(u, v) ∈ R2, 0 < |u|, |v| 6 1, mjLj(u, v) > 0 for j ∈ {1, 2, 3, 4}
}
.

Proof. We apply Proposition 5.34. Let m ∈ Σ, a ∈ Σ′, and b ∈ “D4. We

wish to express ](TN(a)N(b)m(Q)∩D3
m,a,b,`(B)) in terms of the function r. But

given (t, u, v) ∈ Z3, the number of elements R in that intersection such that

(T (R), U(R), V (R)) = (t, u, v) is 0 if (t, u, v) does not satisfy the conditions

gcd(t,N(a)) = 1, N(
⋂

bj)|t, `|u, v, 2 - t gcd(u, v) and mjN(a+
j bj) | Lj(u, v)
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and is equal to

r

Ç
t

N(
⋂
bj)

å 4∏
j=1

r

(
Lj(u, v)

mjN(a+
j bj)

)
otherwise. �

Let us set

(6.3) dj = mjN(a+
j )N(bj), Dj =

[dj , `] if j = 1 or 2,

dj if j = 3 or 4,

where [dj , `] is the least common multiple of dj , `. Then dj , Dj are odd positive

integers such that dj | Dj . We may write

(6.4) U (T ) =
∑

(u,v)∈ΓD∩
√
TRm

2-gcd(u,v)

4∏
j=1

r
(Lj(u, v)

dj

)
,

where

(6.5) ΓD = {(u, v) ∈ Z2, Dj | Lj(u, v)}.

Before passing to a detailed analysis of the sum U (T ) and its effect on

the behaviour of the counting function N(B), we will first corral together some

of the technical tools that will prove useful to us. It is clear that ΓD defines

a sublattice of Z2 of rank 2, since it is closed under addition and contains the

vector D1D2D3D4(u, v) for any (u, v) ∈ Z2. Let us write

(6.6) %(D) = det ΓD,

for the determinant. It follows from the Chinese remainder theorem that there

is a multiplicativity property %(g1h1, . . . , g4h4) = %(g1, . . . , g4)%(h1, . . . , h4),

whenever g1 · · · g4 and h1 · · ·h4 are coprime. Recall the definition (6.1) of ∆.

Then [HB03, eq. (3.12)] shows that

(6.7) %(pe1 , . . . , pe4) = pmaxi<j{ei+ej}

for any prime p - ∆. Likewise, when p | ∆ one has

(6.8) %(pe1 , . . . , pe4) � pmaxi<j{ei+ej},

whence

(6.9) %(D) � [D1D2, D1D3, D1D4, D2D3, D2D4, D3D4],

where the symbol � means that the two quantities involved have the same

order of magnitude.
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7. Estimating U (T ): an upper bound

Our goal in this section is to provide an upper bound for U (T ) that is

uniform in the various parameters. This will allow us to reduce the range of

summation for the various parameters appearing in our expression for N(B).

Our main tool will be previous work of the first two authors [dlBB06], which

is concerned with the average order of arithmetic functions ranging over the

values taken by binary forms.

Throughout this section we continue to adhere to the convention that all

of our implied constants are allowed to depend upon the coefficients of the

forms Lj . Recall the expression for U (T ) given in (6.4), with dj , Dj given by

(6.3). We then have the following result.

Lemma 7.1. Let ε > 0, let T > 1, and write d = d1d2d3d4. Then we have

U (T )� (d`)ε
( T

[D1D2, . . . , D3D4]
+
T 1/2+ε

`

)
.

Proof. Since we are only concerned with providing an upper bound for

U (T ), we may drop any of the conditions in the summation over (u, v) that

we care to choose. Thus it follows that

U (T ) 6
∑

(u,v)∈ΓD∩(0,
√
T ]2

4∏
j=1

r
( |Lj(u, v)|

dj

)
,

where ΓD is the lattice defined in (6.5).

Let e1, e2 be a minimal basis for ΓD. This is constructed by taking e1 ∈ ΓD

to be any nonzero vector for which |e1| is least, and then choosing e2 ∈ ΓD to

be any vector not proportional to e1, for which |e2| is least. The successive

minima of ΓD are the numbers si = |ei| for i = 1, 2. We claim that one

has s1 > min{D1, D2} > `. For this we recall definition (6.3) of D1, D2 and

note that ΓD ⊆ Λ = {(u, v) ∈ Z2, D1 | u, D2 | v}, where Λ ⊆ Z2 is a

sublattice of rank 2, with smallest successive minimum min{D1, D2}. The

desired inequalities are now obvious, and we conclude that

(7.1) ` 6 s1 6 s2, s1s2 � %(D) 6 s1s2,

where % is defined in (6.6).

Write Mj(X,Y ) for the linear form obtained from d−1
j Lj(U, V ) via the

change of variables (U, V ) 7→ Xe1 + Y e2. Each Mj has integer coefficients

of size O(%(D)). Furthermore, it follows from work of Davenport [Dav63,

Lemma 5] that x � max{|u|, |v|}/s1 and y � max{|u|, |v|}/s2 whenever one

writes (u, v) ∈ ΓD as (u, v) = xe1 + ye2, with x, y ∈ Z. Let T1 = s−1
1

√
T and
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T2 = s−1
2

√
T , so that in particular T1 > T2 > 0. Then we may deduce that

U (T ) 6
∑

x�T1,y�T2

4∏
j=1

r(|Mj(x, y)|).

Suppose that Mj(X,Y ) = aj1X + aj2Y , with coefficients aji = O(%(D)).

We proceed to introduce a multiplicative function r1(n), via

r1(pν) =

®
1 + χ(p), ν = 1 and p - 6d`

∏
aji,

(1 + ν)4, otherwise,

where d = d1d2d3d4. Then r(n1)r(n2)r(n3)r(n4) 6 28r1(n1n2n3n4), and

one checks that r1 belongs to the class of nonnegative arithmetic functions

considered previously by the first two authors [dlBB06]. An application of

[dlBB06, Cor. 1] now reveals that

U (T )� (d`)ε(T1T2 + T 1+ε
1 )� (d`)ε

( T

s1s2
+
T 1/2+ε

s1

)
for any ε > 0. Combining (7.1) with (6.9) we therefore conclude the proof of

the lemma. �

The main purpose of Lemma 7.1 is to reduce the range of summation of

the various parameters appearing in Proposition 6.1. Let us write E0(B) for

the overall contribution to the summation from values of bj , ` such that

(7.2) max N(bj) > log(B)D or ` > log(B)L

for parameters D,L > 0 to be selected in due course. We will denote by N1(B)

the remaining contribution, so that

(7.3) N(B) = N1(B) + E0(B).

Henceforth, the implied constants in our estimates will be allowed to depend

on D and L, in addition to ε and the coefficients of the linear forms Lj . We

have the following result.

Lemma 7.2. We have E0(B)� B log(B)1−min{D/4,L/2}+ε for any ε > 0.

Proof. We begin observing that U (B/t) = 0 in E0(B), unless Dj 6
»
B/t,

in the notation of (6.3). But then it follows that we must have

t 6
B√

D1D2D3D4
6
B
»

gcd(N(b1), `) gcd(N(b2), `)

`
»

N(b1) · · ·N(b4)
= B0,

say, in the summation over t. Here we have used the fact that mjN(a+
j ) = O(1)

whenever m ∈ Σ and a ∈ Σ′. It will be convenient to set K = N(b1) · · ·N(b4).
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We now apply Lemma 7.1 to bound U (B/t), giving

E0(B)�
∑
m∈Σ
a∈Σ′

∑
`

`ε
∑

b1,...,b4

Kε
∑
t6B0

N(
⋂

bj)|t

r
( t

N(
⋂

bj)

)( B

t[D1D2, . . . , D3D4]
+
B1/2+ε

t1/2+ε`

)

for any ε > 0, where the summations over ` and bj are subject to (7.2). In

view of the elementary estimates

(7.4)
∑
n6x

r(n)

nθ
�

log(2x) if θ > 1,

x1−θ if 0 6 θ < 1,

we easily conclude that

E0(B)�
∑
m∈Σ
a∈Σ′

∑
`

`ε
∑

b1,...,b4

Kε

N(
⋂
bj)

( B log(B)

[D1D2, . . . , D3D4]
+
B1/2+εB

1/2−ε
0

`

)
.

The second term in the inner bracket is

� B · gcd(N(b1), `)1/4 gcd(N(b2), `)1/4

`3/2−εK1/4−ε .

Similarly rapid consultation with (6.3) reveals that the first term in the inner

bracket is

� B log(B)

(D1D2)3/4(D3D4)1/4
� B log(B) · gcd(N(b1), `)1/4 gcd(N(b2), `)1/4

`3/2K1/4
.

Bringing these estimates together we may now conclude that

E0(B)� B log(B)
∑
`

∑
b1,...,b4

1

N(
⋂
bj)
· gcd(N(b1), `)1/4 gcd(N(b2), `)1/4

`3/2−εK1/4−ε ,

where the sums are over ` ∈ Z>0 and b1, . . . , b4 ⊆ “D such that (7.2) holds.

For fixed ` ∈ Z>0, and ε > 0 we proceed to estimate the sum

S`(T ) =
∑

b1,...,b4⊆Z[i]
max N(bj)>T

gcd(N(b1), `)1/4 gcd(N(b2), `)1/4

N(
⋂
bj)K1/4−ε ,

using Rankin’s trick and the observation that N(a) | N(a∩b) for any a, b ⊆ Z[i].

Thus it follows that N(
⋂
bj) > [N(b1), . . . ,N(b4)], whence

S`(T ) 6
1

T δ

∑
b1,...,b4⊆Z[i]

gcd(N(b1), `)1/4 gcd(N(b2), `)1/4

[N(b1), . . . ,N(b4)]1−δK1/4−ε

� 1

T δ

∞∑
b1,...,b4=1

gcd(b1, `)
1/4 gcd(b2, `)

1/4

[b1, . . . , b4]1−δb
1/4−ε
1 · · · b1/4−ε4

�δ `
εT−δ,

provided that δ < 1/4, as is obvious from the corresponding Euler product.
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Armed with this we see that the overall contribution to the above estimate

for E0(B) arising from `, b1, . . . , b4 for which ` > log(B)L is

� B log(B)
∑

`>log(B)L

`−3/2+εS`(1)� B log(B)1−L/2+ε,

which is satisfactory. In a similar fashion the overall contribution arising from

`, b1, . . . , b4 for which max N(bj) > log(B)D is

� B log(B)
∑
`

`−3/2+εS`(log(B)D)� B log(B)1−D/4+ε,

which is also satisfactory. The statement of Lemma 7.2 is now obvious. �

8. Estimating U (T ): an asymptotic formula

In view of our work in the previous section it remains to estimate N1(B),

which we have defined as the contribution to N(B) from values of bj , ` for

which (7.2) fails. Thus

N1(B) =
1

]TNS(Q)tors

∑
m∈Σ
a∈Σ′

µ(a)
∑

`6log(B)L

2-`

µ(`)

×
∑

b1,...,b4∈D̂
N(bj)6log(B)D

4∏
j=1

µ(bj)
∑

t∈D∩[1,B]
gcd(t,N(a))=1

N(
⋂

bj)|t

r
( t

N(
⋂
bj)

)
U
(B
t

)
.

Here we have inserted the condition t 6 B in the summation over t, since the

innermost summand is visibly zero otherwise. Whereas the previous section

was primarily concerned with a uniform upper bound for the sum U (T ) de-

fined in (6.4), our work in the present section will revolve around a uniform

asymptotic formula for U (T ). The error term that arises in our analysis will

involve the real number

(8.1) η = 1− 1 + log(log(2))

log(2)
,

which has numerical value 0.086071 . . . .

Before revealing our result for U (T ), we must first introduce some nota-

tion for certain local densities that emerge in the asymptotic formula. In fact

estimating U (T ) boils down to counting integer points on the affine variety

(8.2) Lj(U, V ) = dj(S
2
j + T 2

j ), (1 6 j 6 4),

in A10
Q , with U, V restricted to lie in a lattice depending on D. Thus the ex-

pected leading constant admits an interpretation as a product of local densities.
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Given a prime p > 2 and d,D as in (6.3), let

Nd,D(pn) = ]
{

(u, v, s, t) ∈ (Z/pnZ)10,
Lj(u, v) ≡ dj(s2

j + t2j ) mod pn

Dj | Lj(u, v)

}
.

The p-adic density on (8.2) is defined to be

(8.3) ωd,D(p) = lim
n→∞

p−6n−λ1−···−λ4Nd,D(pn)

when p > 2, where

(8.4) λ =
Ä
vp(d1), . . . , vp(d4)

ä
, µ =

Ä
vp(D1), . . . , vp(D4)

ä
.

When d,D are as in (6.3) and p > 2, we will set

(8.5) σp(d,D) = ωd,D(p).

Turning to the case p = 2, we define

(8.6) σ2(d,D) = lim
n→∞

2−6nNd,D(2n),

where

Nd,D(2n) = ]
{

(u, v, s, t) ∈ (Z/2nZ)10,
Lj(u, v) ≡ dj(s2

j + t2j ) mod 2n

2 - gcd(u, v)

}
.

Finally, we let ωRm(∞) denote the usual archimedean density of solutions to

the system of equations (8.2), with (u, v, s, t) ∈ Rm ×R8 and Rm defined in

(6.2). We are now ready to record our main estimate for U (T ).

Lemma 8.1. Let d,D be as in (6.3). Then for any ε > 0 and T > 2 we

have

U (T ) = cd,D,RmT +O
((d1d2d3d4`)

εT

log(T )η−ε

)
,

where

(8.7) cd,D,Rm = ωRm(∞)
∏
p∈P

σp(d,D).

Proof. Our primary tool in estimating U (T ) asymptotically is the sub-

ject of allied work of the first two authors [dlBB08]. We begin by bringing

our expression for U (T ) into a form that can be tackled by the main results

there. According to (6.1) we may assume that the binary linear forms Lj are

pairwise nonproportional and primitive. Furthermore, the region Rm ⊂ R2

defined in (6.2) is open, bounded, and convex, with a piecewise continuously

differentiable boundary such that mjLj(u, v) > 0 for each (u, v) ∈ Rm.

A key step in applying the work of [dlBB08] consists in checking that the

“normalisation hypothesis” NH2(d) is satisfied in the present context. In fact

it is easy to see that Lj ,Rm will satisfy NH2(d) provided that

L1(U, V ) ≡ d1U (mod 4), L2(U, V ) ≡ V (mod 4).
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The second congruence is automatic since L2(U, V ) = V . Recalling that

L1(U, V ) = U , we therefore conclude that NH2(d) holds if d1 ≡ 1 mod 4.

Alternatively, if d1 ≡ 3 mod 4, we make the unimodular change of variables

(U, V ) 7→ (−U, V ) to place ourselves in the setting of NH2(d). We leave the

reader to check that this ultimately leads to an identical estimate in the en-

suing argument. Thus, for the purposes of our exposition here, we may freely

assume that Lj ,Rm satisfy NH2(d) in U (T ).

We proceed by writing

(8.8) U (T ) = U1(T ) + U2(T ) + U3(T ),

where U1(T ) denotes the contribution to U (T ) from (u, v) such that 2 - uv,

U2(T ) denotes the contribution from (u, v) such that 2 - u and 2 | v, and

finally U3(T ) is the contribution from (u, v) such that 2 | u and 2 - v. For each

1 6 i 6 3, we will establish an estimate of the form

(8.9) Ui(T ) = ciT +O
( (d`)εT

log(T )η−ε

)
,

where d = d1d2d3d4.

Beginning with the case i = 1, we observe that U1(T ) = S1(
√
T ,d, ΓD), in

the notation of [dlBB08, eq. (1.9)]. An application of [dlBB08, Ths. 3 and 4]

with (j, k) = (1, 2) therefore reveals that (8.9) holds with

c1 = ωRm(∞)ω1,d(2)
∏
p>2

ωd,D(p).

Here ωd,D(p) is given by (8.3) for p > 2 and ωRm(∞) is defined prior to

the statement of the lemma. Finally, for i ∈ {0, 1}, the corresponding 2-adic

density is given by

ωi,d(2)= lim
n→∞

2−6n]
{

(u, v, s, t) ∈ (Z/2nZ)10,
Lj(u, v) ≡ dj(s2

j + t2j ) mod 2n

u ≡ 1 mod 4, v ≡ i mod 2

}
.

Note that the notation introduced in [dlBB08] involves an additional subscript

in ωi,d(2) whose presence indicates which of the various normalisation hy-

potheses the Lj ,Rm are assumed to satisfy. Since we have placed ourselves in

the context of NH2(d) in each case, we have found it reasonable to suppress

mentioning this here. Let us now shift to a consideration of the sum U2(T )

in (8.8), for which one finds that U2(T ) = S0(
√
T ,d, ΓD). Applying [dlBB08,

Ths. 3 and 4] with (j, k) = (0, 2) therefore yields (8.9) with i = 2 and

c2 = ωRm(∞)ω0,d(2)
∏
p>2

ωd,D(p).

Finally we turn to the sum U3(T ) in (8.8). Making the unimodular change of

variables (U, V ) 7→ (V,U), one now sees that U3(T ) = S0(
√
T ; d, Γ[D), where

the underlying region is R[
m = {(u, v) ∈ R2, (v, u) ∈ Rm} and Γ[D is defined
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as for ΓD, but with the linear forms Lj(U, V ) replaced by Lj(V,U). Thus an

application of [dlBB08, Ths. 3 and 4] with (j, k) = (0, 2) produces (8.9) with

i = 3, and

c3 = ωR[
m

(∞)ω[0,d(2)
∏
p>2

ω[d,D(p) = ωRm(∞)ω[0,d(2)
∏
p>2

ωd,D(p).

Here the superscripts [ indicate that the local densities are taken with respect

to the linear forms Lj(V,U).

We are now ready to bring together our various estimates for U1(T ), U2(T )

and U3(T ) in (8.8). This leads to the asymptotic formula in the statement of

the lemma, with leading constant

cd,D,Rm = ωRm(∞)
Ä
ω1,d(2) + ω0,d(2) + ω[0,d(2)

ä∏
p>2

ωd,D(p).

The statement of the lemma easily follows with recourse to definitions (8.5)

and (8.6) of the local densities σp(d,D). �

We will need to consider the effect of the error term in Lemma 8.1 on the

quantity N1(B) that was described at the start of the section. Accordingly, let

us write

(8.10) N1(B) = N2(B) + E1(B),

whereN2(B) denotes the overall contribution from the main term in Lemma 8.1

and E1(B) denotes the contribution from the error term.

Lemma 8.2. We have E1(B)� B log(B)1+L−η+ε for any ε > 0.

Proof. Inserting the error term in Lemma 8.1 into our expression for

N1(B), we obtain

E1(B)� B log(B)ε
∑

`6log(B)L

∑
b1,...,b4∈D̂

N(bj)6log(B)D

∑
t6B

N(
⋂

bj)|t

r
( t

N(
⋂
bj)

)
· 1

t log(2B/t)η

� B log(B)L+ε
∑

b1,...,b4∈D̂
N(bj)6log(B)D

1

N(
⋂
bj)

∑
t6B1

r(t)

t log(2B1/t)η
,

where we have written B1 = B/N(
⋂
bj), for ease of notation. Combining the

familiar (7.4) with partial summation, we therefore conclude that

E1(B)� B log(B)1+L−η+ε
∑

b1,...,b4∈D̂
N(bj)6log(B)D

1

N(
⋂
bj)
� B log(B)1+L−η+ε.

This concludes the proof of the lemma. �
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Let ε ∈ {−1,+1} and |z| < 1. To proceed further we will need to calculate

expressions for the geometric series

(8.11) Sε(z) =
∑

n∈Z4
>0

εn1+n2+n3+n4zm(n),

where m(n) = maxi 6=j{ni + nj}. We claim that

(8.12) S−1(z) =
(1− z)2

(1 + z)2(1 + z2)
, S+1(z) =

1 + 2z + 6z2 + 2z3 + z4

(1− z)4(1 + z)2
.

A similar calculation can be found in [HB03, §8] and so we shall be brief. The

key idea is to observe that

Sε(z) = Sε0(z) + 2Sε1(z) + z2Sε(z),

where for any ε ∈ {−1,+1}, Sε0(z) (resp. Sε1(z)) denotes the contribution

from n such that min{n1, n2} = min{n3, n4} = 0 (resp. min{n1, n2} > 1

and min{n3, n4} = 0). The calculation of Sε0(z) and Sε1(z) is straightforward

and readily confirms the expressions for Sε(z) in (8.12).

We now have the tools in place with which to produce a uniform upper

bound for the constant (8.7) appearing in Lemma 8.1. This is achieved in the

following result.

Lemma 8.3. Let ε > 0. Then we have

cd,D,Rm �
(D1D2D3D4)ε

[D1D2, . . . , D3D4]
,

where d,D are given by (6.3).

Proof. It follows from [dlBB08, Th. 4] that ωRm(∞) = π4 Vol(Rm) � 1.

Similarly, we have σ2(d,D) 6 24, since for any A ∈ Z there are at most 2n+1

solutions of the congruence s2 + t2 ≡ A mod 2n by [dlBB08, eq. (2.5)]. Thus

we have

cd,D,Rm �
∏
p>2

|σp(d,D)|,

where σp(d,D) is given by (8.5). For p > 2, an application of [dlBB08, Th. 4]

yields

σp(d,D) =
(
1− χ(p)

p

)4 ∞∑
ν1,...,ν4=0

χ(p)ν1+ν2+ν3+ν4

%(pmax{µ1,λ1+ν1}, . . . , pmax{µ4,λ4+ν4})
,

where % is the determinant given in (6.6) and λ,µ are given by (8.4). Using

the multiplicativity of % we may clearly write∏
p>2

|σp(d,D)| = 1

%(D)

∏
p>2

|σ′p(d,D)|,
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where now

σ′p(d,D) =
(
1− χ(p)

p

)4 ∞∑
ν1,...,ν4=0

χ(p)ν1+ν2+ν3+ν4%(pµ1 , . . . , pµ4)

%(pmax{µ1,λ1+ν1}, . . . , pmax{µ4,λ4+ν4})
.

In view of (6.9), it will suffice to show that

(8.13)
∏
p>2

|σ′p(d,D)| � (D1D2D3D4)ε

in order to complete the proof of the lemma.

Recall definition (6.1) of ∆ and write D = D1D2D3D4. For any n ∈ Z4
>0,

let m(n) = maxi 6=j{ni + nj}. Then for p - ∆D, it follows from (6.7) that

σ′p(d,D) =
(
1− χ(p)

p

)4 ∞∑
ν1,...,ν4=0

χ(p)ν1+ν2+ν3+ν4

pm(ν)
.

In the notation of (8.11) we deduce from (8.12) that

σ′p(d,D) =
(
1− 1

p

)4
S+1(1/p) =

1 + 2/p+ 6/p2 + 2/p3 + 1/p4

(1 + 1/p)2
,

if p ≡ 1 mod 4, and

σ′p(d,D) =
(
1 +

1

p

)4
S−1(1/p) =

(1− 1/p2)2

(1 + 1/p2)
,

if p ≡ 3 mod 4. Thus σ′p(d,D) = 1 +O(1/p2) for p - ∆D.

Suppose now that p | ∆D. Then (6.8) implies that

σ′p(d,D)�
∞∑

ν1,...,ν4=0

1

pm(n)−m(µ)
� 1,

where n = (max{µ1, λ1 + ν1}, . . . ,max{µ4, λ4 + ν4}). Putting this together

with our treatment of the factors corresponding to p - ∆D, we are easily led to

the desired upper bound in (8.13). This therefore concludes the proof of the

lemma. �

9. The dénouement

Let ε > 0. Take D = 4 and L = 2η/3 in Lemmata 7.2 and 8.2. We

therefore deduce that

N(B) = N2(B) +O
Ä
B log(B)1−η/3+ε

ä
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via (7.3) and (8.10), where N2(B) is equal to

B

]TNS(Q)tors

∑
m∈Σ
a∈Σ′

µ(a)
∑

`6log(B)2η/3

2-`

µ(`)

×
∑

b1,...,b4∈D̂
N(bj)6log(B)4

4∏
j=1

µ(bj)cd,D,Rm

∑
t∈D∩[1,B]

gcd(t,N(a))=1
N(
⋂

bj)|t

r(t/N(
⋂
bj))

t
.

Here cd,D,Rm is given by (8.7), with d,D being given by (6.3) and Rm given

by (6.2). The following simple result is classical and allows us to carry out

the inner summation over t. The proof follows from a routine analysis of the

corresponding Dirichlet series and will not be presented here.

Lemma 9.1. Let m ∈ Z>0 and let T > 1. Then for any ε > 0, we have∑
t∈D∩[1,T ]
gcd(t,m)=1

r(t)

t
= Cm log(T ) +O(mε),

where

Cm = 2L(1, χ)
∏

p≡3 mod 4

(
1− 1

p2

) ∏
p|m

p≡1 mod 4

(
1− 1

p

)2
.

Making the obvious change of variables it now follows from Lemma 9.1

that ∑
t∈D∩[1,B]

gcd(t,N(a))=1
N(
⋂

bj)|t

r(t/N(
⋂
bj))

t
=
ca,b log(B)

N(
⋂
bj)

+O(1),

where

ca,b =

CN(a) if gcd(N(
⋂
bj),N(a)) = 1,

0 otherwise.

In particular it is clear that ca,b = O(1). Applying Lemma 8.3 it is easy to

conclude that the overall contribution to N2(B) from the error term in this

estimate is

� B
∑

`6log(B)2η/3

`ε
∑

N(bj)6log(B)4

(N(b1) · · ·N(b4))ε

[N(b1)N(b2), . . . ,N(b3)N(b4)]

� B log(B)2η/3+ε
∏

p6log(B)4

S+1(1/p)

in the notation of (8.11). This is therefore seen to be O(B log(B)2η/3+ε) via

(8.12).
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In conclusion, we may write

N(B) = N3(B) +O
Ä
B log(B)1−η/3+ε

ä
,

where now N3(B) is given by

B log(B)

]TNS(Q)tors

∑
m∈Σ
a∈Σ′

µ(a)
∑

`6log(B)2η/3

2-`

µ(`)
∑

b1,...,b4∈D̂
N(bj)6log(B)4

ca,bcd,D,Rm

N(
⋂
bj)

4∏
j=1

µ(bj).

Here we have used (8.1) to observe that 1 − η/3 > 2η/3. Finally, through

a further application of Lemma 8.3, it is now a trivial matter to re-apply

the proof of Lemma 7.2 to show that the summations over ` and bj can be

extended to infinity with error O(B log(B)1−η/3+ε). This therefore leads to the

final outcome that

N(B) = cB log(B) +O
Ä
B log(B)1−η/3+ε

ä
for any ε > 0, where if cd,D,Rm is given by (8.7) and d,D are given by (6.3),

then

(9.1) c =
1

]TNS(Q)tors

∑
m∈Σ
a∈Σ′

µ(a)
∞∑
`=1
2-`

µ(`)
∑

b1,...,b4∈D̂

ca,bcd,D,Rm

N(
⋂
bj)

4∏
j=1

µ(bj).

10. Jumping down

We shall now relate the constant c defined by equation (9.1) with the one

expected, as required to complete the proof of Theorem 3.3.

10.1. Expression in terms of volumes. Let us first recall that the adelic

set Tn(AQ) comes with a canonical measure which is defined as follows. The

canonical line bundle on ωTn is trivial [Pey01, lemme 3.1.12] and the invertible

functions on Tn are constant. Therefore up to multiplication by a constant

there exists a unique section ω̆Tn of ωTn which does not vanish. By [Wei82, §2],

this form defines a measure ωTn,v on Tn(Qv) for any place v of Q. According to

[Pey01, lemme 3.1.14], the product
∏
v ωTn,v converges and defines a measure

on Tn(AQ). By the product formula, this measure does not depend on the

choice of the section ω̆Tn . Let us now describe explicitly how to construct such

a section ω̆Tn .

Notation 10.1. Let Xn be the subscheme of

A8
Z = Spec(Z[Xj , Yj , 1 6 j 6 4])

defined by equations (4.2). Then Yn is the product Xn ×A2
Z. We denote by

X ◦
n the complement of the origin in Xn. For three distinct elements j, k, l of
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{1, 2, 3, 4}, let us denote by Pj,k,l the quadratic form

∆j,knl(X
2
l + Y 2

l ) + ∆k,lnj(X
2
j + Y 2

j ) + ∆l,jnk(X
2
k + Y 2

k ).

Then we have the relations

ajPk,l,m + akPl,m,j + alPm,j,k + amPj,k,l = 0,

bjPk,l,m + bkPl,m,j + blPm,j,k + bmPj,k,l = 0

whenever {j, k, l,m} = {1, 2, 3, 4}. Since ∆1,2 = 1, the scheme X ◦
n is the

complete intersection in A8
Z {0} of the quadrics defined by P1,2,3 and P1,2,4.

Therefore the corresponding Leray form is a nonzero section of the canonical

line bundle ωX ◦n,Q
. On A2

Z, we may take the natural form ∂
∂X0
∧ ∂

∂Y0
. The

exterior product of these forms gives a form on an open subset of Yn, and by

restriction, a form ω̆Tn on Tn which does not vanish. We denote by ωn,v the

corresponding measure on Yn(Qv) for v ∈ Val(Q).

Lemma 10.2. Let m ∈ Σ and a ∈ Σ′. Let b = (bj)j∈{1,2,3,4} belong to“D4. Let ` be an odd integer. Let dj and Dj be defined by formula (6.3). Then

for any prime number p, we have

ωn,p(D
3
m,a,b,`,p) = βpp

−vp
Ä

N
Ä⋂

j bj

ää
lim
n→∞

p−6nNd,D(pn),

where

βp =



1
2 if p = 2,

1− 1
p2 if p ≡ 3 mod 4,Ä

1− 1
p

ä2
if p | ∏j N(a+

j ) and p ≡ 1 mod 4,

0 if p | ∏j N(a+
j ) and p | ∏j N(bj),

1 otherwise.

Proof. In the product XN(ab)m×A2
Z, the domain D3

m,a,b,`,p decomposes as

a product. The projection onto the eight coordinates Xj , Yj , where j belonging

to {1, 2, 3, 4}, gives an isomorphism from the complete intersection in A10
Z −{0}

given by the equations

Lj(U, V ) = nj(X
2
j + Y 2

j )

for j ∈ {1, 2, 3, 4} to the scheme X ◦
n . Moreover this isomorphism map is com-

patible with the respective Leray forms. Since the measure defined by the Leray

measure coincides with the counting measure (see, e.g., [Lac82, Prop. 1.14]),

the volume of the first component is equal to limn→∞ p
−6nNd,D(pn). The mea-

sure on A2
Z is the standard Haar measure. On the other hand, the image of

the domain in Z2
p may be described as follows:

• It is Z[i]1+i (1 + i)Z[i]1+i if p = 2.

• It is Z2
p pZ2

p if p ≡ 3 mod 4.
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• It is the set of (x, y) ∈ Z2
p such that p does not divide N(x + iy) if

p | ∏j N(a+
j ), the prime p does not divide N(

⋂
j bj), and p ≡ 1 mod 4.

• It is empty if p | ∏j N(a+
j ) and p | ∏j N(bj).

• It is (
⋂
j bj)Zp[i] otherwise.

Therefore βpp
−vp
Ä

N
Ä⋂

j bj

ää
is the volume of this component. �

Lemma 10.3. Let m ∈ Σ and a ∈ Σ′. Let b = (bj)j∈{1,2,3,4} belong to“D4. We put n = N(ab)m. Let ` be an odd integer. For any real number B,

we have

ωn,∞(D3
m,a,b,`,∞(B)) =

4L(1, χ)π4∏4
j=1 nj

Vol(Rm)f(B),

where f(B) =
∫ log(B)
0 ueu du = B log(B)−B + 1.

Proof. The functions U and V on Yn = Xn×A2 are induced by functions

on Xn which we shall also denote by U and V . Let HF,∞ : Xn(R)→ R and

HE,∞ : R2 → R be defined by

HF,∞(R) = max(|U(R)|, |V (R)|) and HE,∞(x0, y0) = x2
0 + y2

0.

Then the domain D3
m,a,b,`,∞(B) is the set of (R, (x0, y0)) ∈Xn(R)×R2 such

that

HF,∞(R) > 1, HE,∞(x0, y0) > 1, and HF,∞(R)2HE,∞(x0, y0) 6 B.

Let us denote by vn,1(t) (resp. v2(t)) the volume of the set of R ∈Xn(R) (resp.

(x0, y0) ∈ R2) such that HF,∞(R) 6 t (resp. HE,∞(x0, y0) 6 t). Then the

functions vn,1 and v2 are monomials of respective degrees 2 and 1. Therefore

the volume of the domain D3
m,a,b,`,∞(B) is given by

vn,1(1)v2(1)

∫
t>1,u>1
t2u6B

2tdudt = vn,1(1)v2(1)f(B).

To compute the value of vn,1(1), we may use the change of variables x′j =»
|nj |xj and y′j =

»
|nj |yj . Since the Leray form may be locally described as

∣∣∣∣∣
∂P1,2,3

∂X1

∂P1,2,3

∂X2
∂P1,2,4

∂X1

∂P1,2,4

∂X2

∣∣∣∣∣
−1

dX3 dX4

4∏
j=1

dYj = (4∆3,4X1X2)−1 dX3 dX4

4∏
j=1

dYj ,

we get that vn,1(1) = vε,1(1)
∏4
j=1 n

−1
j , where εj = sgn(nj) = sgn(mj). It

follows that vn,1(1) = (
∏4
j=1 nj)

−1π4 Vol(Rm). We conclude the proof with

the equalities v2(1) = π = 4L(1, χ). �
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Proposition 10.4. Let m ∈ Σ and a ∈ Σ′. Let b = (bj)j∈{1,2,3,4} belong

to “D4. Let ` be an odd integer. Then
ca,bcd,D,R
N(
⋂
bj)

f(B) = Vol(D3
m,a,b,`(B)),

where f(B) = B log(B)−B + 1.

Proof. This follows from Lemmata 10.2 and 10.3; indeed, by [dlBB08,

eq. (2.8)], we have ωRm(∞) = π4 Vol(Rm) and∏
p∈P

σp(d,D) =
1∏4

j=1 nj

∏
p∈P

lim
k→∞

p−6kNd,D(pk),

where n = N(ab)m. �

10.2. Moebius reversion.

Proposition 10.5. Let B be a real number and m belong to Σ. Then

Vol(Dm(B)) =
∑
a∈Σ′

∑
b∈D̂4

∑
` odd

µ(a)µ(b)µ(`) Vol(D3
m,a,b,`(B)).

Proof. For any λ ∈ T∆(Q) ∩ Z∆ and any n ∈ Z4, the multiplication by

λ defines an isomorphism from YN(λ)n to Yn. Therefore it sends the canon-

ical form on the adelic set YN(λ)n(AQ) onto the canonical form on Yn(AQ).

Therefore the volume of D3
m,a,b,`(B) coincides with the volume of its image

in Ym(AQ). The formula then follows from Lemma 5.28 and the proofs of

Propositions 5.32 and 5.34. �

10.3. The constant.

Proposition 10.6. We have

CH(S)B log(B) =
1

]TNS(Q)tors

∑
m∈Σ

Vol(Dm(B)) +O(B).

Proof. The following proof is based upon the ideas of P. Salberger [Sal98],

as described in [Pey01, §5.3].

We may identify ω−1
S with OS′(1) (see Lemma 2.2). This enables us to

define an adelic metric on ω−1
S by

‖y‖v =

min
(∣∣∣ y
X0(x)

∣∣∣ , ∣∣∣ y
X1(x)

∣∣∣ , ∣∣∣ y
X2(x)

∣∣∣ , C ∣∣∣ y
X3(x)

∣∣∣ , C ∣∣∣ y
X4(x)

∣∣∣) if v =∞,

min06i64

(∣∣∣ y
Xi(x)

∣∣∣
v

)
otherwise

for x ∈ S′(Qv) and y in the corresponding fiber OS′(1)x ⊗Qv, with the con-

stant C defined in Notation 3.2. This adelic metric defines the height used

throughout the text. Let v be a place of Q. We denote by ωH,v the measure

on S(Qv) corresponding to the adelic metric on ω−1
S (see [Pey95, §2]). Let us

recall that on a split torus Gn
m, the form

∧n
j=1 ξ

−1
j dξj , where (ξj)16j6n is a basis
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of X∗(Gn
m), up to sign does not depend on the choice of the basis. Therefore

there is a canonical Haar measure on TNS(Qv) which we shall denote by ωTNS,v.

Let m be an element of Σ. The functions Hw defined in Definition 5.18 may

been seen as the composite of the metrics on ω−1
S with the natural morphism

from the universal torsor Tm to the line bundle ω−1
S . Let U 6= ∅ be an open

subset of πm(Tm(Qv)). According to [Pey01, lemme 3.1.14] and [Pey98, §4.4],

if s : U → Tm(Qv) is a continuous section of πm, then the measure ωm,v is

characterised by the relation

(10.1)∫
π−1
m (U)

f(y)ωm,v(y) =

∫
U

∫
TNS(Qv)

f(t.s(x))Hv(t.s(x))ωTNS,v(t)ωH,v(x)

for any continuous function f on π−1
m (U) with compact support.

By Lemmata 5.8 and 5.14, for any prime number p, Dm,p is a fundamental

domain in Tm(Qp) under the action of TNS(Qp) modulo TNS(Zp). Moreover,

by definition, we have that Dm,p is contained in π̂−1
m (Tspl(Zp)) and thus Hp is

equal to 1 on Dm,p. Using (10.1), we get that

ωm,p(π
−1
m (U) ∩Dm,p) = ωTNS,p(TNS(Zp))ωH,v(U)

for any open subset U of πm(Dm,p).

The maps log ◦HF , log ◦HE define a map log∞ : Tm(R)→ Pic(S)∨⊗Z R,

and using log∞×πm, we get a homeomorphism

Tm(R)→ Pic(S)∨ ⊗Z R× πm(Tm(R)).

Let

T 1
NS(R) = {t ∈ TNS(R), ∀χ ∈ Pic(S), |χ(t)| = 1}.

Then for any real number B and any open subset U of πm(Dm,∞(B), we get

ωm,∞(π−1
m (U) ∩Dm,∞(B))

=

∫
{y∈Ceff(S)∨, 〈ω−1

S ,y〉6log(B)}
e〈ω
−1
S ,y〉 dy × ωTNS

(T 1
NS(R))ωH,∞(U)

= α(S)ωTNS,∞(T 1
NS(R))ωH,∞(U)f(B),

where Ceff(S)∨ is the dual to the closed cone in Pic(S)⊗Z R generated by the

effective divisors.
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Taking the product over all places of Q, we get the formula

(10.2)

ωm(Dm(B)) = α(S)ωTNS,∞(T 1
NS(R))ωH,∞(πm(Tm(R)))

∫ log(B)

0
ueu du

×

Ñ∏
p∈P

Lp(1,Pic(S))ωTNS,p(TNS(Zp))

é
×

Ñ∏
p∈P

Lp(1,Pic(S))−1ωH,p(πm(Tm(Qp)))

é
.

By Lemma 5.3, the map from TNS(Q) to
⊕
p∈P X∗(TNS)p is surjective. It

follows that

T 1
NS(AQ) = (T 1

NS(R)×
∏
p∈P

TNS(Zp)).TNS(Q),

and we get an exact sequence

1 −→ TNS(Q)tors −→ T 1
NS(R)×

∏
p∈P

TNS(Zp) −→ T 1
NS(AQ)/TNS(Q) −→ 1.

Combining this with formula (10.2) and the definitions of the adelic measures,

we get the formula

ωm(Dm(B)) = ]TNS(Q)torsα(S)τ(TNS)ωH(πm(Tm(AQ)))

∫ log(B)

0
ueu du,

where τ(TNS) denotes the Tamagawa number of TNS. By Ono’s main theo-

rem [Ono63, §5], τ(TNS) is equal to ]H1(Q,Pic(S)/]X1(Q, TNS) and using Sal-

berger’s argument [Sal98, proof of lemma 6.17] and Proposition 4.9, any point

in S(AQ)Br belongs to exactly ]X1(Q, TNS) sets of the form πm(Tm(AQ)).

This concludes the proof of the proposition. �
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