Abstract
We show that if $A \subset \{1,\dots,N\}$ contains no nontrivial three-term arithmetic progressions then $|A|=O(N/\log^{1-o(1)}N)$.
We show that if $A \subset \{1,\dots,N\}$ contains no nontrivial three-term arithmetic progressions then $|A|=O(N/\log^{1-o(1)}N)$.