
Annals of Mathematics 174 (2011), 619–636
doi: 10.4007/annals.2011.174.1.20

On Roth’s theorem on progressions

By Tom Sanders

Abstract

We show that if A ⊂ {1, . . . , N} contains no nontrivial three-term arith-

metic progressions then |A| = O(N/ log1−o(1)N).

1. Introduction

In this paper we prove the following version of Roth’s theorem on arith-

metic progressions [Rot52], [Rot53].

Theorem 1.1. Suppose that A ⊂ {1, . . . , N} contains no nontrivial three-

term arithmetic progressions. Then

|A| = O

Ç
N(log logN)5

logN

å
.

There are numerous detailed expositions and proofs of Roth’s theorem and

the many related results, so we shall not address ourselves to a comprehensive

history here. Briefly, the first nontrivial upper bound on the size of such

sets was given by Roth [Rot52], [Rot53], and there then followed refinements

by Heath-Brown [HB87] and Szemerédi [Sze90], and later Bourgain [Bou99],

culminating in the above with the power 1/2 in place of 1 (up to doubly

logarithmic factors).

Bourgain then introduced a new sampling technique in [Bou08] which was

refined in [San10] to give the previous best bound which had a power of 3/4

(again up to doubly logarithmic factors) in place of 1. The methods of this

paper, however, are largely unrelated to these last developments. We do still

use the Bohr set technology of Bourgain [Bou99], but couple this with two new

tools: the first is motivated by the arguments of Katz and Koester in [KK10]

and is a sort of variant of the Dyson e-transform; the second is a result on the

Lp-invariance of convolutions due to Croot and Sisask [CS10a].

For comparison with these upper bounds, Salem and Spencer [SS42] showed

that the surface of high-dimensional convex bodies can be embedded in the in-

tegers to construct sets of size N1−o(1) containing no three-term progressions,

and Behrend [Beh46] noticed that spheres are a particularly good choice. Re-

cently Elkin [Elk10] tweaked this further by thickening the spheres to produce
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the largest known progression-free sets, and his argument was then consider-

ably simplified by Green and Wolf in the very short and readable note [GW10].

2. Notation

Suppose that G is a finite abelian group. We write M(G) for the space of

measures on G, and given a measure µ ∈ M(G) and a function f ∈ L1(µ) we

write fdµ for the measure induced by

C(G)→ C(G); g 7→
∫
g(x)f(x)dµ(x).

There is a privileged measure µG ∈ M(G) called Haar probability measure,

defined to be the measure assigning mass |G|−1 to each element of G.

The significance of this measure is that it is the unique (up to scaling)

translation invariant measure on G: for x ∈ G and µ ∈M(G) we define τx(µ)

to be the measure induced by

C(G)→ C(G); f 7→
∫
f(y)dµ(y + x),

and it is easy to see that τx(µG) = µG for all x ∈ G.

Translation can be usefully averaged by convolution: given two measures

µ, ν ∈M(G) define their convolution µ ∗ ν to be the measure induced by

C(G)→ C(G); f 7→
∫
f(x+ y)dµ(x)dν(y).

We use Haar measure to pass between the notion of function f ∈ L1(µG)

and measure µ ∈ M(G). Indeed, since G is finite we shall often identify µ

with dµ/dµG, the Radon-Nikodym derivate of µ with respect to µG. In light of

this we can easily extend the notion of translation and convolution to L1(µG):

given f ∈ L1(µG) and x ∈ G we define the translation of f by x point-wise by

τx(f)(y) :=
d(τx(fdµG))

dµG
(y) = f(x+ y) for all y ∈ G;

given f, g ∈ L1(µG) we define convolution of f and g point-wise by

f ∗ g(x) :=
d((fdµG) ∗ (gdµG))

dµG
(x) =

∫
f(y)g(x− y)dµG(y)

and similarly for the convolution of f ∈ L1(µG) with µ ∈M(G).

Convolution operators can be written in a particularly simple form with

respect to the Fourier basis which we now recall. We write “G for the dual

group, that is the finite Abelian group of homomorphisms γ : G → S1, where

S1 := {z ∈ C : |z| = 1}. Given µ ∈M(G) we define µ̂ ∈ `∞(“G) by

µ̂(γ) :=

∫
γdµ for all γ ∈ “G,
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and extend this to f ∈ L1(G) by f̂ :=÷fdµG. It is easy to check that ’µ ∗ ν = µ̂·ν̂
for all µ, ν ∈M(G) and ’f ∗ g = f̂ · ĝ for all f, g ∈ L1(µG).

Throughout the paper C’s will denote absolute, effective, but unspecified

constants of size greater than 1 and cs will denote the same of size at most 1.

Typically the constants will be subscripted according to the result from which

they come and superscripted within arguments.

3. Fourier analysis on Bohr sets

Fourier analysis on Bohr sets was introduced to additive combinatorics by

Bourgain in [Bou99] and has since become a fundamental tool. The material

is standard so we shall import the results we require from [San10] without

comment; for a more detailed discussion the reader may wish to consult the

book [TV06] of Tao and Vu.

A set B is called a Bohr set with frequency set Γ ⊂ “G and width function

δ ∈ (0, 2]Γ if

B = {x ∈ G : |1− γ(x)| 6 δγ for all γ ∈ Γ}.

The size of the set Γ is called the rank of B and is denoted rk(B).

There is a natural way of dilating Bohr sets which will be of particular

use to us. Given such a B and ρ ∈ R+ we shall write Bρ for the Bohr set with

frequency set Γ and width function1 ρδ so that, in particular, B = B1.

With these dilates we say that a Bohr set B′ is a sub-Bohr set of another

Bohr set B and write B′ 6 B, if

B′ρ ⊂ Bρ for all ρ ∈ R+.

Finally, we write βρ for the probability measure induced on Bρ by µG, and β

for β1.

3.1. Size and regularity of Bohr sets. The rank of a Bohr set is closely

related to its dimension: a Bohr set B is said to be d-dimensional if

µG(B2ρ) 6 2dµG(Bρ) for all ρ ∈ (0, 1],

and we have the following standard averaging argument; see [TV06, Lemma

4.20].

Lemma 3.2 (Dimension of Bohr sets). Suppose that B is a rank k Bohr

set. Then it is O(k)-dimensional.

1Technically, width function γ 7→ min{ρδγ , 2}.
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A key observation of [Bou99] was that some Bohr sets behave better than

others: a d-dimensional Bohr set is said to be C-regular if

1

1 + Cd|η|
6
µG(B1+η)

µG(B1)
6 1 + Cd|η| for all η with |η| 6 1/Cd.

Crucially, regular Bohr sets are plentiful:

Lemma 3.3 (Regular Bohr sets). There is an absolute constant CR such

that whenever B is a Bohr set, there is some λ ∈ [1/2, 1) such that Bλ is

CR-regular.

The result is proved by a covering argument due to Bourgain [Bou99]; for

details one may also consult [TV06, Lemma 4.25]. For the remainder of the

paper we shall say regular for CR-regular.

3.4. The large spectrum. Given a probability measure µ, a function f ∈
L1(µ) and a parameter ε ∈ (0, 1] we define the ε-spectrum of f with respect to

µ to be the set

Specε(f, µ) := {γ ∈ “G : |(fdµ)∧(γ)| > ε‖f‖L1(µ)}.

This definition extends the usual one from the case µ = µG. We shall need a

local version of a result of Chang [Cha02] for estimating the ‘complexity’ or

‘entropy’ of the large spectrum.

Conceptually the next definition is inspired by the discussion of quadratic

rank Gowers and Wolf give in [GW10]. The (K,µ)-relative entropy of a set Γ

is the size of the largest subset Λ ⊂ Γ such that∫ ∏
λ∈Λ

(1 + Reω(λ)λ)dµ 6 exp(K) for all ω : Λ→ D,

where D := {z ∈ C : |z| 6 1}. The definition is essentially relativising the

notion of being dissociated (if µ = µG and K = 0, it is precisely this), but

the reader does not need to have a deep understanding for the purposes of

this paper, as it is only used to couple the next two results from [San10] into

Lemma 3.8.

Lemma 3.5 (The Chang bound, [San10, Lemma 4.6]). Suppose that 0 6≡
f ∈ L2(µ). Then Specε(f, µ) has (1, µ)-relative entropy

O(ε−2 log 2‖f‖L2(µ)‖f‖−1
L1(µ)).

Low entropy sets of characters are majorised by large Bohr sets, a fact

encoded in the following lemma.

Lemma 3.6 ([San10, Cor. 6.4]). Suppose that B is a regular d-dimensional

Bohr set and ∆ is a set of characters with (η, β)-relative entropy k. Then there
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is a Bohr set B′ 6 B with

rk(B′) 6 rk(B) + k and µB(B′) > (η/2dk)O(d)(1/2k)O(k)

such that |1− γ(x)| 6 1/2 for all x ∈ B′ and γ ∈ ∆.

3.7. The energy increment method. The final lemma of the section encodes

the Heath-Brown-Szemerédi energy increment technique from [HB87], [Sze90]

which shows how to get a density increment on a Bohr set from large energy

on a large spectrum.

Lemma 3.8. Suppose that B is a regular d-dimensional Bohr set, A ⊂ B
has density α > 0, B′ ⊂ Bρ′ is a regular rank k Bohr set, T ⊂ B′ has relative

density τ and ∑
γ∈Specη(1T ,β′)

|((1A − α)1B)∧(γ)|2 > να2µG(B).

Then there is a regular Bohr set B′′ with

rk(B′′) 6 k +O(η−2 log 2τ−1) and µB′(B
′′) >

Å
η

2k log 2τ−1

ãO(k+η−2 log 2τ−1)

such that ‖1A ∗ β′′‖L∞(µG) > α(1 + Ω(ν)) provided ρ′ 6 c3.8να/d.

Proof. By Lemma 3.5 the set Specη(1T , β
′) has (1, β′)-relative entropy

O(η−2 log 2τ−1). The dimension of B′ is O(k) so it follows by Lemma 3.6 that

there is a Bohr set B′′ 6 B′ with

rk(B′′) 6 k +O(η−2 log 2τ−1) and µB′(B
′′) >

Å
η

2k log 2τ−1

ãO(k+η−2 log 2τ−1)

such that

Specη(1T , β
′) ⊂ {γ : |1− γ(x)| 6 1/2 for all x ∈ B′′}.

By the triangle inequality and Parseval’s theorem it follows that

Ω(να2µG(B)) =
∑
γ∈Ĝ

|((1A − α)1B)∧(γ)|2|β̂′′(γ)|2

= ‖(1A − α1B) ∗ β′′‖2L2(µG).

Since B′′ 6 B′ ⊂ Bρ′ and B is regular, we have that

‖(1A − α1B) ∗ β′′‖2L2(µG) = ‖1A ∗ β′′‖2L2(µG) − α
2µG(B) +O(αρ′dµG(B)).

It follows that if ρ′ is sufficiently small, then

‖1A ∗ β′′‖2L2(µG) > α
2(1 + Ω(ν))µG(B),

and we get the result by Hölder’s inequality. �
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4. Katz-Koester and the Dyson e-transform

In [KK10] Katz and Koester introduced a new way of transforming sum-

sets. This method has seen impressive applications in, for example, [Sch11]

and [SS11], and is particularly ripe for iteration. The arguments of this sec-

tion evolved from these Katz-Koester techniques but in their final form may

be seen to have more in common with the Dyson e-transform (see e.g. [TV06,

§5.1]). In any case, from our perspective what is important is that it provides

a sort of density increment without the cost of passing to an approximate

subgroup.

Specifically, our aim is to transform the set A in Roth’s theorem into two

sets L and S where L is thick, S is not too thin, and L + S ⊂ A − 2.A. This

dovetails with the regime of strength of the results in the next section.

The main idea is to construct such sets L and S iteratively using the

Katz-Koester transformation. Suppose that L, S,A and A′ are sets of density

λ, σ, α and α′ respectively and L+S ⊂ A+A′. Unless A is ‘quite structured’

one expects there to be very few x for which

1L ∗ 1−A(x) > α/2;

on the other hand, by averaging, there are many x ∈ G such that

1−S ∗ 1A′(x) > σα′/2.

It follows that unless A is ‘quite structured,’ one may find an x ∈ G such that

1L ∗ 1−A(x) 6 α/2 and 1−S ∗ 1A′(x) > σα′/2.

Now, if we put

L′ := L ∪ (x+A) and S′ := S ∩ (A′ − x),

then we have

µG(L′) > µG(L) + µG(x+A)− 1L ∗ 1−A(x) > λ+ α/2 and µG(S′) > α′σ/2

and also

L′ + S′ ⊂ (L+ S′) ∪ ((x+A) + S′) ⊂ (L+ S) ∪ (x+A+A′ − x) ⊂ A+A′.

We see that unless A is quite structured, we have a new pair (L′, S′) whose

sumset is contained in A + A′, but for which L′ is somewhat larger (than L)

while S′ is not too much smaller (than S).

The actual result we require is the following relativised and weighted ver-

sion of the above.

Proposition 4.1. Suppose that B is a regular d-dimensional Bohr set,

B′ is a regular rank k Bohr set with B′ ⊂ Bρ′ ,B
′′ ⊂ B′ρ′′ , A ⊂ B has relative

density α and A′ ⊂ B′ has relative density α′. Then either
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(i) there is a regular Bohr set B′′′ of rank at most k + O(α−1 log 2α′−1)

with

µB′(B
′′′) >

Å
α

2k log 2α′−1

ãO(k+α−1 log 2α′−1)

and ‖1A ∗ β′′′‖L∞(µG) > α(1 + Ω(1)),

(ii) or there are sets L ⊂ B and S ⊂ B′′ with β(L) = Ω(1) and β′′(S) >
(α′/2)O(α−1) such that

1L ∗ (1Sdβ
′′)(x) 6 C4.1α

−1µB′(B
′′)−11A ∗ (1A′dβ

′)(x)

for all x ∈ G,

provided ρ′ 6 c4.2α/d and ρ′′ 6 c4.2α
′/k.

The proof is an iteration of the following lemma.

Lemma 4.2. Suppose that B is a regular d-dimensional Bohr set, B′ is a

regular rank k Bohr set with B′ ⊂ Bρ′ ,B
′′ ⊂ B′ρ′′ , A ⊂ B has relative density

α and A′ ⊂ B′ has relative density α′.

If, additionally, there is a set L ⊂ B of relative density λ and S ⊂ B′′ of

relative density σ, then either

(i) there is a regular Bohr set B′′′ of rank at most k + O(α−1 log 2α′−1)

with

µB′(B
′′′) >

Å
α

2k log 2α′−1

ãO(k+α−1 log 2α′−1)

and ‖1A ∗ β′′′‖L∞(µG) > α(1 + Ω(1)),

(ii) or there are sets L′ ⊂ B and S′ ⊂ B′′ with β(L′) > λ + α/4 and

β′′(S′) > α′σ/2 such that

1L′ ∗ (1S′dβ
′′)(x) 6 1L ∗ (1Sdβ

′′)(x) + µB′(B
′′)−11A ∗ (1A′dβ

′)(x)

for all x ∈ G,

provided λ 6 c4.2, ρ′ 6 c4.2α/d and ρ′′ 6 c4.2α
′/k.

Proof. We put

L := {x ∈ B′ : 1−L ∗ (1Adβ)(−x) > α/2}

and split into two cases. First, when β′(L) is large we shall show that A has

a density increment on a Bohr set; secondly, when it is small we shall proceed

as per the heuristic at the start of the section.

Case. β′(L) > α′/8.

Proof. This is a textbook translation of a physical space condition into a

density increment via the Fourier transform. We consider the inner product

αβ′(L)/2 6 〈1−L ∗ (1Adβ), 1−L〉L2(β′).
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By regularity we have that if ρ′ is sufficiently small then

|〈1−L ∗ β, 1−L〉L2(β′) − λβ′(L)| 6 β′(L)/4.

It follows by the triangle inequality that

|〈1−L ∗ ((1A − α)dβ), 1−L〉L2(β′)| > αβ′(L)(1/4− λ) > αβ′(L′)/8

if λ is sufficiently small. By Fourier inversion and rescaling we then have∣∣∣∣ ∑
γ∈Ĝ

‘1−L(γ)(1A − α1B)∧(γ) ◊�1−Ldβ′(γ)

∣∣∣∣ > αβ′(L)µG(B)/8.

By Cauchy-Schwarz and Parseval on the sum of |‘1−L(γ)|2 we get that∑
γ∈Ĝ

|(1A − α1B)∧(γ)|2| ◊�1−Ldβ′(γ)|2 > α2β′(L)2µG(B)/64.

On the other hand, Parseval’s theorem tells us that if η :=
√
α/16, then∑

γ 6∈Specη(1−L,β′)

|(1A − α1B)∧(γ)|2| ◊�1−Ldβ′(γ)|2 6 α2β′(L)2µG(B)/162.

Thus, by the triangle inequality and since | ◊�1−Ldβ′(γ)| 6 β′(L), we get that∑
γ∈Specη(1−L,β′)

|((1A − α)1B)∧(γ)|2 = Ω(α2µG(B)).

It follows by Lemma 3.8 that we are in the first case of the lemma provided ρ′

is sufficiently small. �

Case. β′(L) 6 α′/8.

Proof. First we show that the set

S := {x ∈ B′ : (1−Sdβ
′′) ∗ 1A′(x) > α′σ/2}

is large by averaging. In particular,

β′(S)σ + α′σ/2 >
∫

(1−Sdβ
′′) ∗ 1A′dβ

′ =

∫
1A′d((1−Sdβ

′′) ∗ β′).

Of course, by regularity we have that

‖(1−Sdβ′′) ∗ β′ − σβ′‖ = O(σkρ′′),

whence

β′(S) > α′/2−O(kρ′′) > α′/4

provided ρ′′ is sufficiently small. Now, since L is assumed to be so small, there

must be some x ∈ S \ L; we put

L′ := L ∪ ((x+A) ∩B) and S′ := S ∩ (A′ − x).
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Now L′ ⊂ B, and since x 6∈ L, we have

β(L ∩ (x+A)) = β((−L) ∩ (−x−A)) = 1−L ∗ (1Adβ)(−x) 6 α/2.

But then

β(L′) > λ+ β((x+A) ∩B)− α/2 > λ+ α/2−O(dρ′) > λ+ α/4

provided ρ′ is sufficiently small. Additionally S′ ⊂ S ⊂ B′′ and

β′′(S′) = β′′(S ∩ (A′ − x)) = (1−Sdβ
′′) ∗ 1A′(x) > α′σ/2,

and finally

1L′ ∗ (1S′dβ
′′) 6 1L ∗ (1S′dβ

′′) + 1x+A ∗ (1S′dβ
′′)

6 1L ∗ (1Sdβ
′′) + µG(B′′)−11x+A ∗ 1A′−x

= 1L ∗ (1Sdβ
′′) + µB′(B

′′)−11A ∗ (1A′dβ
′) �

as required.

The completes the proof of Lemma 4.2. �

Proof of Proposition 4.1. We produce a sequence of sets (Li)i and (Si)i
iteratively with Li ⊂ B, Si ⊂ B′′, λi := β(Li) and σi := β′′(Si) such that

(4.1) λi > αi/4 and σi > (α′/2)i+1

and

(4.2) 1Li ∗ (1Sidβ
′′) 6 iµB′(B

′′)−11A ∗ (1A′dβ
′).

To initialise the iteration we consider the inner product∫
1A′ ∗ β′′dβ′ = α′ +O(ρ′′k).

Thus, if ρ′′ is sufficiently small, then it follows that there is some x ∈ B′ ⊂ B

such that

β′′(B′′ ∩ (A′ − x)) > α′/2.

We put L0 := ∅ and S0 := B′′ ∩ (A′ − x) and note that this satisfies (4.1) and

(4.2).

We now repeatedly apply Lemma 4.2. If at any point we are in the first

case of that lemma, then we terminate in the first case here; otherwise we have

the sequence as required. This process terminates after some i0 = O(α−1)

steps, when λi > c4.2 = Ω(1). We set L := Li0 and S := Si0 and the result is

proved. �
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5. A consequence of the Croot-Sisask lemma

In light of the previous section, rather than counting three-term progres-

sions by examining the inner product 〈1A ∗ 1A, 12.A〉L2(µG), we shall be able

to examine (a relativised version of) 〈1L ∗ 1S , 12.A〉L2(µG) where L has density

Ω(1), and S, of density σ, is potentially thin but not too thin. To do this we

shall find a Bohr set B such that

(5.1) ‖1L ∗ µS ∗ β − 1L ∗ µS‖Lp(µG) 6 ε,

so that

|〈1L ∗ 1S ∗ β, 12.A〉L2(µG) − 〈1L ∗ 1S , 12.A〉L2(µG)| 6 εσ‖12.A‖Lp/(p−1)(µG).

If the error is small enough this will give rise to a density increment on B; to

get a sense of how small it needs to be we think of the second term on the left

as being typically of size µG(L)σα = Ω(σα). Now,

(i) if p = 2 then ‖12.A‖Lp/(p−1)(µG) = α1/2 and we would need ε ∼ α1/2 for

the error term not to swamp the main term;

(ii) if p ∼ logα−1 then ‖12.A‖Lp/(p−1)(µG) ∼ α so we would only need ε ∼ 1

for the error term not to swamp the main term.

Of course, which of these two ranges to use depends on how the size of the

Bohr set found varies with p and ε. We shall use an argument of Croot and

Sisask [CS10a] to show that we can take

(5.2) µG(B) > exp(−O(ε−2p log σ−1))

in (5.1), and so in particular case (ii) above leads to a much larger Bohr set.

This argument of Croot and Sisask is an important new approach for

studying the Lp-invariance of convolutions. It relies on random sampling in

physical space to approximate a convolution by a small number of translates

and works for general groups, not just abelian ones.

We shall now record a version of their result which will be particularly

useful to us. For completeness — and since it is simple — we include the proof

of the result as well.

Lemma 5.1 (Croot-Sisask). Suppose that G is a finite abelian group, f ∈
Lp(µG) and A,S ⊂ G have µG(S+A) 6 KµG(A). Then there is an s ∈ S and

a set T ⊂ S with µS(T ) > (2K)−O(ε−2p) such that

‖τt(f ∗ µA)− f ∗ µA‖Lp(µG) 6 ε‖f‖Lp(µG) for all t ∈ T − s.

Proof. Let z1, . . . , zk be independent uniformly distributed S-valued ran-

dom variables, and for each y ∈ G define Zi(y) := τ−zi(f)(y)− f ∗ µA(y). For

fixed y, the variables Zi(y) are independent and have mean zero, so it follows
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by the Marcinkiewicz-Zygmund inequality, with constants due to Yao-Feng and

Han-Ying [YFHY01, Th. 2], that∥∥∥∥ k∑
i=1

Zi(y)

∥∥∥∥p
Lp(µkA)

6 O(p)p/2kp/2−1
k∑
i=1

∫
|Zi(y)|pdµkA.

Integrating over y and interchanging the order of summation we get

(5.3)∫ ∥∥∥∥ k∑
i=1

Zi(y)

∥∥∥∥p
Lp(µkA)

dµG(y) 6 O(p)p/2kp/2−1
∫ k∑

i=1

∫
|Zi(y)|pdµG(y)dµkA.

On the other hand,Å∫
|Zi(y)|pdµG(y)

ã1/p

= ‖Zi‖Lp(µG) 6 ‖τ−zi(f)‖pLp(µG)

+ ‖f ∗ µA‖Lp(µG) 6 2‖f‖Lp(µG)

by the triangle inequality. Dividing (5.3) by kp and inserting the above and

the expression for the Zis we get that∫ ∫ ∣∣∣∣1k
k∑
i=1

τ−zi(f)(y)− f ∗ µA(y)

∣∣∣∣pdµG(y)dµkA(z) = O(pk−1‖f‖2Lp(µG))
p/2.

Pick k = O(ε−2p) such that the right-hand side is at most (ε‖f‖`p(G)/4)p and

write L for the set of x = (x1, . . . , xk) ∈ Ak for which the integrand above is at

most (ε‖f‖`p(G)/2)p; by averaging µkA(Lc) 6 2−p and so µkA(L) > 1−2−p > 1/2.

Now, ∆ := {(s, . . . , s) : s ∈ S} has L+ ∆ ⊂ (A+ S)k, whence |L+ ∆| 6
2Kk|L| and so

〈1∆ ∗ 1−∆, 1−L ∗ 1L〉L2(µ
Gk

) = ‖1L ∗ 1∆‖2L2(µ
Gk

) > |∆|
2|L|/2Kk,

by the Cauchy-Schwarz inequality since the adjoint of g 7→ 1L∗g is g 7→ 1−L∗g
and similarly for g 7→ g ∗ 1∆.

By averaging it follows that at least |∆|2/2Kk pairs (z, y) ∈ ∆2 have

1−L ∗ 1L(z − y) > 0, and hence there is some s ∈ S such that there is a set

T ⊂ S with µS(T ) > 1/2Kk and 1−L ∗ 1L(t, . . . , t) > 0 for all t ∈ T − s.
Thus for each t ∈ T − s there is some z(t) ∈ L and y(t) ∈ L such that

y(t)i = z(t)i + t for all i. But then by the triangle inequality we get that

‖τ−t(f ∗ µA)− f ∗ µA‖Lp(µG) 6 ‖τ−t

(
1

k

k∑
i=1

τ−z(t)i(f)

)
− f ∗ µA‖Lp(µG)

+ ‖τ−t

(
1

k

k∑
i=1

τ−z(t)i(f)− f ∗ µA

)
‖Lp(µG).
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However, since τt is isometric on Lp(µG), we see that

‖τt(f ∗ µA)− f ∗ µA‖Lp(µG) 6
∥∥∥∥1

k

k∑
i=1

τ−y(t)i(f)− f ∗ µA
∥∥∥∥
Lp(µG)

+

∥∥∥∥1

k

k∑
i=1

τ−z(t)i(f)− f ∗ µA
∥∥∥∥
Lp(µG)

,

and we are done since z(t), y(t) ∈ L. �

The quantitatively weaker arguments of [Bou90] and the usual Bogolyubov-

Chang argument in the case p = 2 actually endow T with the structure of a

Bohr set, while the set we found has, a priori, no structure. Croot and Sisask

noted that this could, to some degree, be recovered by taking repeated sum-

sets, and we shall couple this idea with Chang’s theorem to get the necessary

strength in our corollary.

This may sound like we cannot have gained anything over the usual multi-

sum version of the Bogolyubov-Chang argument. However, we do get some

extra strength from the fact that we are in some sense able to increase the

number of summands without decreasing the (higher order) additive energy or

having the individual summands become too thin. A similar sort of observation

is exploited by Schoen in [Sch11] (see also [CS10b]) for the purpose of proving

a remarkable Frĕıman-type theorem.

Corollary 5.2. Suppose that B is a regular d-dimensional Bohr set,

B′ ⊂ Bρ′ is a regular rank k Bohr set, L,A ⊂ B have relative densities λ and

α respectively, S ⊂ B′ has relative density σ. Then either

(i) (large inner product)

〈1L ∗ (1Sdβ
′), 1A〉L2(β) > λσα/2,

(ii) (density increment) or there is a regular Bohr set B′′′ and an

m = O(λ−2(log 2λ−1α−1)2(log 2α−1)(log 2σ−1))

with rk(B′′′) 6 k +m and µB′(B
′′′) > (1/2km)O(k+m) such that

‖1A ∗ β′′′‖L∞(µG) > α(1 + Ω(λ)),

provided ρ′ 6 c5.2λα/d.

Proof. We can certainly assume that all of λ, α and σ are positive, and

to begin we set some parameters, the choices for which will become apparent

later:

l := dlog 2λ−1α−1e, p := 2 + logα−1 and ε := λ/8el.
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The Bohr set B′ has dimension O(k), whence we may pick ρ′′ = Ω(1/k) such

that B′′ := B′ρ′′/2l is regular and µG(B′′ +B′) 6 2µG(B′). Then

|B′′ + S| 6 |B′′ +B′| 6 2|B′| 6 2σ−1|S|,

and we apply Lemma 5.1 to the sets S, B′′ and the function 1L respectively2

with parameters p and ε. We get that there is an s ∈ B′′ and a set T ⊂ B′′

with β′′(T ) > (σ/2)O(pε−2) such that

‖τt(1L ∗ (1Sdβ
′))− 1L ∗ (1Sdβ

′)‖Lp(µG) 6 εσ‖1L‖Lp(µG) for all t ∈ T − s.

Of course

‖τt(1L ∗ (1Sdβ
′))− 1L ∗ (1Sdβ

′)‖pLp(β)

6
1

µG(B)

∫
|τt(1L ∗ (1Sdβ

′))− 1L ∗ (1Sdβ
′)|pdµG 6 εpσpβ(L) 6 εpσp,

whence

‖τt(1L ∗ (1Sdβ
′))− 1L ∗ (1Sdβ

′)‖Lp(β) 6 εσ for all t ∈ T − s.

It follows by the triangle inequality that

‖τt(1L ∗ (1Sdβ
′))− 1L ∗ (1Sdβ

′)‖Lp(β) 6 2lεσ for all t ∈ l(T − T ).

Integrating and applying the triangle inequality again, we get

‖1L ∗ (1Sdβ
′) ∗ f − 1L ∗ (1Sdβ

′)‖Lp(β) 6 2lεσ

where f := µT ∗ · · · ∗ µT ∗ µ−T ∗ · · · ∗ µ−T , and there are l copies of µT and l

copies of µ−T . By Hölder’s inequality we have

|〈1L ∗ (1Sdβ
′) ∗ f, 1A〉L2(β) − 〈1L ∗ (1Sdβ

′), 1A〉L2(β)|
6 2lεσ‖1A‖Lp/(p−1)(β) 6 λσα/4.

It follows that we are either in the first case of the corollary, or else

〈f ∗ (1Sdβ
′) ∗ 1L, 1A〉L2(β) 6 3λσα/4,

which we assume from hereon.

Now, supp f ⊂ 2lB′′ ⊂ B′ρ′′ ⊂ Bρ′ so∫
1L ∗ (1Sdβ

′) ∗ fdβ = λσ +O(ρ′dσ),

whence

|〈1L ∗ (1Sdβ
′) ∗ f, 1A − α〉L2(β)| > λσα/8

2So that A is S, and S is B′′.
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provided ρ′ is sufficiently small. We now apply Fourier inversion to get that∣∣∣∣ ∑
γ∈Ĝ

|”µT (γ)|2l÷1Sdβ′(γ)1̂L(γ)(1A − α1B)∧(γ)

∣∣∣∣ > λσαµG(B)/8.

By the Cauchy-Schwarz inequality and the Hausdorff-Young inequality (in the

trivial case which ensures |÷1Sdβ′(γ)| 6 σ) we see that

σ

Ç∑
γ∈Ĝ

|1̂L(γ)|2
å1/2Ç∑

γ∈Ĝ

|”µT (γ)|4l|(1A − α1B)∧(γ)|2
å1/2

> λσαµG(B)/8.

Parseval’s theorem tells us that the first sum is λµG(B) and so∑
γ∈Ĝ

|”µT (γ)|4l|(1A − α1B)∧(γ)|2 > λα2µG(B)/64.

We put η := (λα)1/2l/161/l = Ω(1) and since µT = 1Tdβ
′′ note, by the triangle

inequality, that ∑
γ∈Specη(1T ,β′′)

|(1A − α1B)∧(γ)|2 = Ω(λα2µG(B)).

The corollary is completed by Lemma 3.8 provided ρ′ is sufficiently small. �

6. Proof of the main theorem

We shall now prove the following theorem from which our main result

follows by the usual Frĕıman embedding.

Theorem 6.1. Suppose that G is a group of odd order and A ⊂ G has

density α > 0. Then

〈1A ∗ 1−2.A, 1−A〉L2(µG) = exp(−O(α−1 log5 2α−1)).

There is some merit in trying to control the logarithmic term here. Indeed,

while it seems likely that with care one could improve the 5 a bit, if one could

replace it by 1−Ω(1), then one could use the W -trick (as popularised by Green

[Gre05]) to deduce van der Corput’s theorem pretty easily; if one could replace

it by −Ω(1), then van der Corput’s theorem would follow directly from the

prime number theorem.

Even more ambitiously, the Erdős-Turán conjecture would follow (for pro-

gressions of length three) if one could replace the 5 by −(1 + Ω(1)). However,

despite the fact that such an improvement appears small it seems that a new

idea would probably be required to prove such a result since it is not known

even in the model setting of G = (Z/3Z)n. (The best result known there is the

celebrated Roth-Meshulam theorem of Meshulam [Mes95].)

The proof of Theorem 6.1 is an iterative application of the following

lemma.
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Lemma 6.2. Suppose that B is a regular d-dimensional Bohr set, B′ is a

regular rank k Bohr set with B′ ⊂ Bρ′ ,B
′′ ⊂ B′ρ′′ , A ⊂ B has relative density

α and A′ ⊂ B′ has relative density α′. Then either

(i) (large inner product)

〈1A ∗ (1A′dβ
′), 1−A〉L2(β) > µB′(B

′′)(α′/2)O(α−1),

(ii) (density increment) or there is a regular Bohr set B′′′ with rank at

most k +O(α−1(log3 2α−1)(log 2α′−1)) and

µB′(B
′′′) >

Å
α

2k log 2α′−1

ãO(k+α−1(log3 2α−1)(log 2α′−1))

and ‖1A ∗ β′′′‖L∞(µG) > α(1 + c6.2),

provided ρ′ 6 c6.2α/d and ρ′′ 6 c6.2α
′/k.

Proof. We apply Proposition 4.1 to see that (provided ρ′ and ρ′′ are not

too large) either we are in the second case of the lemma, or else there are sets

L ⊂ B and S ⊂ B′′ with β(L) = Ω(1) and β′′(S) > (α′/2)O(α−1) such that

1L ∗ (1Sdβ
′′) 6 C4.1α

−1µB′(B
′′)−11A ∗ (1A′dβ

′).

In this latter case we apply Corollary 5.2 (to the set −A provided ρ′ is not too

large) to get that either we are in the second case of the lemma, or else

〈1L ∗ (1Sdβ
′′), 1−A〉L2(β) > αβ(L)β′′(S)/2 > (α′/2)O(α−1),

and we are in the first case of the lemma. �

Proof of Theorem 6.1. We construct a sequence of regular Bohr sets B(i)

and sequences

ki := rk(B(i)), di = dimB(i) and αi := ‖1A ∗ β(i)‖L∞(µG).

We initialise with B(0) = G which is easily seen to be regular so that α0 = α.

Suppose that we are at stage i of the iteration.

We have di = O(ki), and so by regularity we have that

‖1A ∗ β(i) ∗ β(i)
ρ′ + 1A ∗ β(i) ∗ β(i)

ρ′ρ′′ − 2(1A ∗ β(i))‖L∞(µG) = O(ρ′ki).

It follows that we can pick ρ′, ρ′′ = Ω(α/ki) such that B(i)′ := B
(i)
ρ′ is regular

of dimension di, B
(i)′′ := 2.B

(i)
ρ′ρ′′ is regular of rank ki,

B(i)′′ ⊂ B(i)′

c6.2α/2di

and

‖1A ∗ β(i) ∗ β(i)′ + 1A ∗ β(i) ∗ β(i)′

ρ′′ − 2(1A ∗ β(i))‖L∞(µG) 6 c6.2α/4.

If

‖1A ∗ β(i)′‖L∞(µG) > αi(1 + c6.2/4) or ‖1A ∗ β(i)′

ρ′′ ‖L∞(µG) > αi(1 + c6.2/4),
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then we let B(i+1) be B(i)′ or B
(i)′

ρ′′ respectively and see that

ki+1 = ki, µG(B(i+1)) > µG(B(i))(α/2ki)
O(ki) and αi+1 > αi(1 + c6.2/4).

Otherwise, by averaging, there is some xi such that

1A ∗ β(i)′(xi) > αi(1− c6.2/2) and 1A ∗ β(i)′

ρ′′ (xi) > αi(1− c6.2/2).

Translating by xi we get a set A1 := (A−xi)∩B(i)′ and A2 := (2xi−2.A)∩B(i)′′

such that

β(i)′(A1) > αi(1− c6.2/2) and β(i)′′(A2) > α/2,

and

〈1A ∗ 1−2.A, 1−A〉 > µG(B(i)′)µG(B(i)′′)〈1A1 ∗ (1A2dβ
(i)′′), 1−A1〉L2(β(i)′ ).

Now we apply the preceding lemma to see that either

(6.1) 〈1A ∗ 1−2.A, 1−A〉 > µG(B(i)′)µG(B
(i)′′

c6.2α/2ki
)(α/2)O(α−1),

or there is a Bohr set B(i+1) such that

ki+1 6 ki +O(α−1
i log4 2α−1),

µG(B(i+1)) > µG(B(i))

Å
α

2ki

ãO(ki+α
−1
i log4 2α−1)

,

and

αi+1 > αi(1 + c6.2/2).

Since αi cannot exceed 1, the iteration described above must terminate

after i0 = O(log 2α−1) steps with (6.1). By summing the geometric progression

we see that

ki0 = O(α−1 log4 2α−1) and µG(B(i0)) > (α/2)O(α−1 log4 2α−1).

Inserting this in (6.1) gives the required result. �
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