Moduli of finite flat group schemes, and modularity

Abstract

We prove that, under some mild conditions, a two dimensional $p$-adic Galois representation which is residually modular and potentially Barsotti-Tate at $p$ is modular. This provides a more conceptual way of establishing the Shimura-Taniyama-Weil conjecture, especially for elliptic curves which acquire good reduction over a wildly ramified extension of $\mathbb Q_3$. The main ingredient is a new technique for analyzing flat deformation rings. It involves resolving them by spaces which parametrize finite flat group scheme models of Galois representations.

Authors

Mark Kisin

Department of Mathematics
Harvard University
1 Oxford Street
Cambridge, MA 02138
United States