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Abstract

We prove that, under some mild conditions, a two dimensional p-adic Galois rep-
resentation which is residually modular and potentially Barsotti-Tate at p is modular.
This provides a more conceptual way of establishing the Shimura-Taniyama-Weil
conjecture, especially for elliptic curves which acquire good reduction over a wildly
ramified extension of (3. The main ingredient is a new technique for analyzing flat
deformation rings. It involves resolving them by spaces which parametrize finite
flat group scheme models of Galois representations.
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Introduction

One of the most important advances in number theory in recent years was
the proof of modularity of elliptic curves of Q. After the breakthrough of Wiles
and Taylor-Wiles [Wi], [TW], proving the modularity of semi-stable elliptic curves,
the general case was completed in a series of papers culminating in the work of
Breuil-Conrad-Diamond-Taylor [BCDT] treating elliptic curves which attain good
reduction over a wildly ramified extension of (3. These results were proved by
establishing the modularity of certain 2-dimensional global p-adic Galois represen-
tations which are potentially Barsotti-Tate at p. That is, after restriction to some
finite extension K /Q, the representation is required to be the generic fiber of a
p-divisible group over the corresponding ring of integers Ok . Unfortunately, when
K /Q)p is wildly ramified such results were known only in certain very special cases
(which, luckily, suffice for the application to elliptic curves) and even then only as
a result of rather lengthy calculations. The purpose of this paper is to introduce a
new technique for dealing with the difficulties which arise in the presence of wild
ramification. This has the benefit of yielding a more general modularity result and
a more conceptual proof. To be precise, we prove the following:

THEOREM. Let p > 2 be a prime, and S a finite set of primes containing p and
the infinite prime. We denote by Gq,s the Galois group of the maximal extension of
Q unramified outside S. Let E /Q), be a finite extension with ring of integers O, and
residue field F. Let

p:Ga,s > GL2(0)

be a continuous representation whose determinant is the cyclotomic character times
a finite character. Suppose that

(1) The composite p: Gg,s ﬁ)GLz (0) — GL,(F) is absolutely irreducible when
restricted to Q(~/(—=1)P~1/2p),

(2) pis modular,
(3) p is potentially Barsotti-Tate at p.

Then p is modular.

The proof of the theorem is based on a modularity result over totally real
fields. The basic idea is a modification of the patching argument of Taylor-Wiles
or, more precisely, of a variant introduced by Diamond [Di2] and Fujiwara [Fu].
There one proves an equality R —> T between a deformation ring and a Hecke ring
by showing instead that an auxiliary surjection Ro, — T, Obtained by patching
deformation rings and Hecke rings at auxiliary levels, is an isomorphism. To do
this one shows that T, has a faithful module which is finite flat over a power series
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ring O[[x1, ..., x,] for some r € NT, while Ry is a quotient of another such ring
Ofly1, ..., yr]]. Comparing dimensions then shows that Roo —> T .

Here we show instead that R, is a power series ring over a certain local
deformation ring Rlv,’w (see Section (3.5) for the notation) in r — [F : Q)] variables,
where F denotes the totally real field. Note that in the cases previously considered
by Taylor-Wiles and others the corresponding local deformation ring was always a
power series ring (cf. [CDT], [BCDT], [Sav]), and then this condition is equivalent
to the previous one. In order to complete the argument we need to show that R;,’w
has dimension [F : Q] + 1 and that it is a domain. The former statement is not too
hard to show. Unfortunately the latter statement is not always true, but we are able
to give a precise description of the components of Rlv,’w, and this suffices for (some)
applications.

Our method for analyzing local flat deformation rings involves the construction
of certain auxiliary schemes which we term “moduli of finite flat group schemes”.
To explain this, suppose K/Q), is a finite extension with absolute Galois group
Gk, and that p > 2. Let F/F, be a finite extension, and V¢ an F-vector space of
dimension d < oo, equipped with a continuous G g-action. Suppose that Vf arises
as the generic fiber of a finite flat group scheme over Og and (for simplicity) that
Endg[g.1VF = F. We are interested in understanding the universal flat deformation
ring R?,F. This is a complete local, Noetherian ring, (pro)-representing the functor
which to a local Artinian W ([F)-algebra A, with residue field F, assigns the set of
deformations V4 of Vf to a finite free A-module with a continuous action of G,
such that V4 arises as the generic fiber of a finite flat group scheme over Og. When
K /Qp is ramified, and especially in the presence of wild ramification, one expects
that R?,[F is highly singular. One reason for the intractability of these rings is that
the condition on V4 involves the existence of an auxiliary object - the finite flat
group scheme - which is in general not unique. To overcome this problem we study
directly the finite flat group schemes which give rise to Vf and its deformations.
This leads to the construction of a certain projective R?,[F—scheme

Oy, : 4Ry, — Spec R}, .

The construction of 4Ry, does not work directly with finite flat group schemes.
Instead we use (a variant of) a closely related category of modules defined by Breuil
[Br5]. Although 4Ry, is not smooth, its local structure can be described in terms of
the local models of Shimura varieties studied by Pappas-Rapoport [PR]. In the case
when dimg VF = 2 the relevant local models are those for Hilbert modular varieties
studied by Deligne-Pappas [DeP]. Thus 9%y, may be thought of as a resolution of
Spec R?,[F .

It turns out that the map ®y, becomes an isomorphism after p is inverted. Thus
the analysis of the components of Spec R?,F is reduced (modulo p-torsion which
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we ignore) to those of YRy, ®z, Qp. The singularities of the scheme YRy, are
sufficiently well behaved that the components of Y%y, ®z, Q, can often be related
to those of YRy, o, the fiber of YRy, over the closed point of R?,[F. When d = 2,
we can compute the components of the projective F-scheme 4Ry, o in certain cases.
This involves a rather ad hoc calculation inside an affine Grassmannian, and is
at present the least conceptual part of the theory. To explain the outcome of this
computation note that if £/Q), is a finite extension and x € Spec R?,F (E) then there
is a corresponding representation of Gg on an E-vector space V5 of dimension d.
It is not hard to check that the p-adic Hodge type, as well as the dimensions of
the maximal unramified quotient and maximal multiplicative subspace of V are
invariants of the component of Spec R?,[F containing the image of x. One can define
corresponding invariants for the components of YRy, o. When our calculations
are successful we show that two points on YRy, o with the same invariants are
connected by a chain of rational curves, and hence that a component is characterized
by these invariants. We conjecture that this is always the case.

When the ramification degree of K satisfies e(K/Qp,) < p — 1, then the map
Oy, is an isomorphism. In this case we find that R?,F is itself isomorphic to a
complete local ring on a Hilbert modular variety. From this optic Ramakrishna’s
result that this ring is formally smooth when K = Q,, is related to the fact that
modular curves of level prime to p are smooth, even at supersingular points!

We have assumed above that End[g,1VF = F. However, we carry through the
theory and the applications without this assumption by using framed deformation
rings and the language of groupoids. One of the consequences of this is that the
theorem above yields new results even if p is ordinary, since we do not assume that
the restriction of p to the decomposition group at p has distinct diagonal characters
as in [SW2]. Indeed, this restriction may even have trivial image!

Our motivation for developing this local theory was the global applications to
modularity. However it yields results on finite flat group schemes which seem of
independent interest. Let us mention two of these (see Sections (2.1) and (2.2)).
From now on we no longer assume Endf[g,1VF = F. The first result describes
the set of models of V. More precisely, by a finite flat model of Vf we mean a
finite flat group scheme 4, equipped with an action of F, and an isomorphism of
F[Gg]-modules %(K) —> Vi, where K is an algebraic closure of K. Then we have

THEOREM. There exists a projective [F-scheme $Ry; o such that for any finite
extension F' [ F the set of finite flat models of Vi ¢ V' is in bijection with 6Ry, o (F').

Of course when e(K/Q),) < p — 1, Raynaud’s results [Ra] imply that 4Ry, o
is a single point, but in general the theorem reveals a surprising structure on the set
of finite flat models.
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The second result gives an incredibly simple description of the category of
p-divisible groups over O, which had been conjectured by Breuil [Br5, 2.1.2]. To
state it, we denote by k the residue field of K, and we write

S = Wk)[u].

Fix a uniformiser of Og and let £(u) € W(k)[u] denote its Eisenstein polynomial.
S is equipped with a Frobenius ¢ which is the canonical Frobenius on W (k)
and takes u to u”. We denote by (Mod FI/&)z, the category of finite free &-
modules 9 equipped with a ¢-semilinear map ¢gy : 99T — 9 such that the image
of 1 ® pgn : p*IM — M contains E(u)ON. Then

THEOREM. The category (Mod F1/8)z, is equivalent to the category of p-
divisible groups over Ok .

Let us mention a final local application. As remarked above, the usual method
of Taylor-Wiles requires a suitable local deformation ring to be a power series
ring. In [BCDT] the authors considered local deformations rings RII,)’ o» attached
to a representation D of the inertia group at p (a p-type). These correspond to
certain deformations which come from finite flat group schemes when restricted to
a particular extension K /Q,. The techniques of loc. cit. succeed in establishing
modularity when RI?, ¢ 18 a power series ring. The authors prove this is so in
particular cases when p = 3, and they give a conjectural description in terms of
the p-type of precisely when this should occur. Later Breuil and Mézard [BrM,
2.3.1.1] generalized this conjecture by predicting the Hilbert-Samuel multiplicity
of RII,)’ o in terms of an invariant ji,y defined in terms of D.

It turns out that one can use the modularity result stated above, together with
the techniques of Section 3.4 to relate the Hilbert-Samuel multiplicity of R‘l,)’ o
to that of a certain patched Hecke ring, and then to pay. (The construction is
explained in [Ki2, §2.2], where it is used to deduce modularity results from cases
of the Breuil-Mézard conjecture proved by a different method.) This gives a proof
of the Breuil-Mézard conjecture when k = 2. We hope to report on this in a future

paper.
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1. p-adic Hodge theory with coefficients

(1.1) Breuil modules. We begin by recalling some definitions from the papers
[Br3], [Br4] and [Br5].

We fix a finite extension k of [, and we assume that p # 2. Write W = W(k)
for the ring of Witt vectors of k, Ko = W[1/p] and K for a finite totally ramified
extension of K. Let Og be the ring of integers in K and w € Ok a fixed uniformiser.
We fix an algebraic closure K of K, and write O g for its ring of integers. We set
Gk = Gal(K/K).

(1.1.1) Let E(u) be the minimal polynomial of & over K¢, and consider the
surjective map s : W[u]u:n(@K. We denote by S the p-adic completion of the
divided power envelope of W [u] with respect to ker (s). Let Fil' S C S be the p-adic
completion of the ideal generated by the divided powers y; (E (1)) = E(u)' /i!.
The map s extends uniquely to a surjection S — Og. There is a unique map
¢ : W[u] — WJ[u] which extends the Frobenius on W and satisfies ¢(u) = u?.
Since E(u) = u® modulo p, where e = [K : Ky], the ideal (p, E(u)) is stable by ¢,
and ¢ has a unique continuous extension to S, which we again denote by ¢. One
checks that ¢ (Fil'S) C pS, and we write ¢ = p_1¢|Fﬂ]S, and ¢ = ¢1(E(u)).
Note that ¢ is a unit in S. For n a positive integer, we write S, = S/p"S.

Let /(Mod/S) denote the category whose objects are triples (A, FillAL, ¢1),
consisting of

(1) an S-module M.
(2) an S-submodule Fil'.t C containing Fil' S - M.

(3) a ¢-semi-linear map ¢ : Fil' t — A such that for all s € Fil' S and x € M we

have ¢1(sx) = ¢~ p1(5)$1 (E (u)x)

Morphisms are given by maps of S-modules respecting Fil'’s and ¢. There
is a natural structure of exact category on '(Mod/S). A sequence is short exact if it
is short exact as a sequence of S-modules, and induces a short exact sequence on
Fil'’s.

We denote by (Mod FI/S) the full subcategory of '(Mod/S) consisting of
objects such that

(1) As an S-module .t is isomorphic to ,; S/p™ S for some finite set /, and
n; a positive integer.
(2) ¢1(Fil' M) generates .l over S.

Finally we denote by (Mod/S) the smallest full subcategory of '(Mod/S)
which contains the objects of (Mod FI/S) which are killed by p, and is stable by
extension. (Mod/S) contains (Mod FI/S) as a full subcategory, and the objects
killed by p in these two categories coincide.
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(1.1.2) Let (p-Gr/Og) denote the category of finite flat group schemes over
SpecOg of p-power order. We denote by (p-Gr/Og)f the full subcategory of
(p-Gr/Ok) consisting of objects G such that for all positive integers n, G|[p"]
(considered as an fppf sheaf) is again represented by a finite flat group scheme.

We will make extensive use of the following result:

THEOREM (1.1.3) (Breuil). There exist quasi-inverse anti-equivalences of
categories

Gr: (Mod/S) — (p-Gr/Og) and Mod : (p-Gr/Og) — (Mod/S).
These restrict to anti-equivalences
Gr: (Mod FI/S) — (p-Gr/0g)" and Mod : (p-Gr/0Ok)" — (Mod FI/S).
These functors preserve short exact sequences.
Proof. This is in [Br3, 4.2.1.6, 4.2.2.5]. O
(1.1.4) We denote by
D : (p-Gr/Ok) — (p-Gr/0Ok)

the involution given by Cartier duality.
It will be more convenient to work with the functors obtained from those in
(1.1.3) by composing with D. For this we need the following:

LEMMA (1.1.5). D induces an involution
D : (p-Gr/0kg)" — (p-Gr/Og)™.
Proof Let G be in (p-Gr/Og )M, Consider the exact sequence of fppf sheaves

(1.1.6) 0—G[p"l - G5 G—G/p"G -0

Since G[p"]isin (p-Gr/0Ok), p"G =G/ G[p"] C G isin (p-Gr/Ok), and hence is
a closed subgroup of G. Thus G/ p™G is also in (p-Gr/Og). This shows that (1.1.6)
splits into two short exact sequences in (p-Gr/Og). Since D is exact we see that
D(G)[p™] may be identified with D(G/p"G), so that D(G) is in (p-Gr/Og)1. O

COROLLARY (1.1.7). Composing D with Gr and Mod induces equivalences
of categories
Modp :=Modo D : (p-Gr/Og) — (Mod/S)
and

Grp := D oGr: (Mod/S) — (p-Gr/0Og).

These induce equivalences of categories Grp : (Mod FI/S) — (p-Gr/0x)" and
Modp : (p-Gr/0g)" — (Mod FI/S). O
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(1.1.8) We recall the definitions of [Br3] and [Br4], as well as a slight variant.
Let & = Wu] and &, = Wy[u]l. The ring & is equipped with a Frobenius
endomorphism ¢ given by u — u?, and the natural Frobenius on W.

Denote by '(Mod/&) the category of G-modules 9t equipped with a ¢-semi-
linear map ¢ : 90t — 91 such that the cokernel of ¢* (M) := 6 ®y,e M — N, the
G-linear map induced by ¢, is killed by E (u). We give '(Mod/&) the structure of
an exact category induced by that on the abelian category of G-modules.

We denote by (Mod FI/&) the full subcategory of /(Mod/&) consisting of
those 9t such that as an G-module 9 is isomorphic to @, c; Sp,, where [ is a
finite set of positive integers, and 7; is a non-negative integer.

Finally we denote by (Mod/&) the smallest full subcategory of '(Mod/&)
which contains the objects of (Mod FI/&) which are killed by p, and is stable
under extensions. (Mod/&) contains (Mod FI/&) and the objects killed by p in
these two categories coincide.

LEMMA (1.1.9). For any MM in (Mod/&), the map 1 Q ¢ : ¢*IM — M is
injective.

Proof. By dévissage it suffices to consider the case when 90 is killed by p.
Then M is a free S/ pS-module of some rank r € N, and the determinant of 1 ® ¢

(in any choice of bases) divides u®” because the image of 1 ® ¢ contains u¢91.
Since u¢” € &/ pG is not a zero divisor, this implies the claimed injectivity. [

(1.1.10) We have a functor (Mod/&) — (Mod/S) given as follows (cf. [Br5,
§2.2] and the proof of [Br4, 3.3.2]): We have a map of W-algebras & — §
given by u — u, so we regard S as an G-algebra. We will denote by ¢ the map
& — S obtained by composing this map with ¢ on &. Given I in (Mod/ &), set
M=S ®¢pcM.

One has the map I ®¢ : S @y, M — S ®sM. Note that TorIG(S/Fil1 S,9m) =
0, since 91 is a successive extension of free &/ p&S-modules, so that Fil' S @ s M
is a submodule of S ® g M. Set

FillMl={y ed: (1®¢)(y) eFil'S @M C S ®c M}

and define ¢ : Fill.ll — Jl as the composite

1® ®1
Fillit "2 Fil' s e M 22 S @460 = L.

This gives .l the structure of an object of '(Mod/S).
We have the following result (cf. [Br5, 3.1.3]):

PROPOSITION (1.1.11). The functor (Mod/&) —'(Mod/S) above, induces
exact and fully faithful functors

(Mod/&) — (Mod/S) and (Mod F1/&) — (Mod FI/S).
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These functors are equivalences of categories between the full subcategories con-
sisting of objects killed by p.

Proof. We first check that the functor of (1.1.10) is exact. Let
0O->M - M—->M" -0

be a short exact sequence in (Mod/&). Since 90" is a successive extension of free
&/ pG-modules, and S is p-torsion free, one sees that TorIG(S , 901) = 0 where we
regard S as a G-module via ¢. It follows easily that the functor of (1.1.10) gives
rise to an exact sequence of S-modules

0— M —M—> M —0,
and a left exact sequence
0 — Fil'ul’ — Fil' . — Fil'a”.
To check that the final map is a surjection, choose x € Fil' At”. Since Fil' S +& = S

and Fil' S - it C Fill.l, we may alter x by an element of Fil'S - ", and assume
that x is the image of some X € ¢*(9M”). Now, by definition

Fil Ml = ker (I = S ©4,6M" 2 S @M /Fil' S@eM” > M/ E(u)-").

Hence ¥ € (1 ® ¢) " Y(E(u) - 9M”). Since E(u) - 9 surjects onto E(u) - M,
(1.1.9) implies that there exists y € ¢*(9t) which maps to X and is such that
(1® ¢)(F) € E(u)- M. Then the image of 7 in M is contained in Fil'.il and maps
to x. This proves the exactness.

Next we note that if 9 is in (Mod/&) then the image of ¢; generates .l as an
S-module, because 1 ® ¢ (Fil' M) contains E (1) ® 9, so that ¢y (Fil' M) contains
¢ @M, where ¢ € S* is the element defined in (1.1.1). Together with the exactness
proved above, this shows that we have functors

(Mod/&) — (Mod/S) and (Mod FI/&) — (Mod FI/S).

The proof of [Br4, 3.3.2] shows that our functors induce equivalences between
the full subcategories consisting of objects killed by p. The proposition now follows
by a dévissage argument as in [FoL, p. 584]. This uses the fact that short exact
sequences in (Mod/&) and (Mod/S) give rise to exact sequences of Hom’s and
Ext!’s in the usual way. This property holds in any exact category in the sense of

[Qu, §2]. O
(1.1.12) We now explain the connection between the categories introduced
above and Galois representations (cf. [Fo, A.3] and [Brl, 4.2]).
Let R = 1(111@ g/ p where the transition maps are given by Frobenius. By the
universal property of the Witt vectors W(R) of R, there is a unique surjective map
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0:W(R)— 6;5 to the p-adic completion 6}, which lifts the projection R —O0g/p
onto the first factor in the inverse limit. We denote by A5 the p-adic completion
of the divided power envelope of W(R), with respect to ker (8).

Let 7v/m € K be a root of 7, such that (""ﬂ/%)” = 7/m. Write 7 =
(”/7)n=0 € R, and let [] € W(R) be the Teichmiiller representative. We embed
the W -algebra W[u] C S into Acs by u — [xr]. Since 8([x]) = 7 this embedding
extends to an embedding S < A, and 6|g is the map S — Ok constructed
in (1.1.1). This embedding is compatible with Frobenius endomorphisms, and
identifies & C S with a subring of W(R).

Denote by O¢ the p-adic completion of &[1/u]. Then Og is a discrete valuation
ring with residue field the Laurent series ring k((u)). We write € for the field of
fractions of Og. If FrR denotes the field of fractions of R, then the inclusion
& — W(R) extends to an inclusion € — W(FrR)[1/p]. Let

€" C W(FrR)[1/ p]

denote the maximal unramified extension of € contained in W(FrR)[1/p], and
Oz C W(FrR) its ring of integers. The field FrR is algebraically closed [Fo,
A.3.1.6], so the residue field Ogur / pOgur is a separable closure of k((1)). We denote
by Oz the p-adic completion of Ogu, and by €' its field of fractions. We set
6" = Oa N W(R) C W(FrR).

Let Koo = Up>1 K( 74/7), and write Gk = Gal(K / Kso). We will denote
by Repz, (Gk.,) the category of continuous representations of Gg__ on finite Z,-
modules. Gk fixes O¢ C W(FrR), and hence 03, 1s stable under the action of
Gk...-

We denote by ®Mg, the category of finite O¢-modules M, equipped with the
¢-semi-linear map M — M, such that the induced Og-linear map ¢* (M) — M is
an isomorphism.

The argument of [Brl, 2.1.1] shows that K,/ K is a strictly APF extension in
the sense of [Win]. Then [Fo, A. 1.2.6], and the constructions of [Fo, A. 3] imply
that the functor

T : ®Mg, — Repy, (Gk.,): M > (04 ®o, M)*=!

is an equivalence of abelian categories (cf. also [Br4, 3.3]). A quasi-inverse is given
by

Repy, (Gk,,) > PMg,: V> (05 ®z, V)CGkoo

Note that E(u) € Og is a unit, since its image in the residue field of O¢ is u°.
Thus, if 9 is in (Mod FI/&), then O¢ ® s M has a natural structure of an object
of ®Mg, .
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PROPOSITION (1.1.13). Let M be in (Mod/ &), and M in (Mod/S), the image
of M under the functor of (1.1.11). There is a canonical isomorphism of Gk -
representations

T (O (% m)(1) = Grp (M) (0 g) |Gk, -
where, as usual (1), denotes the Tate twist.
Proof. Since Grp (M) (0 g) = Hom(Gr(M)(0 z), Qp/Zp(1)), it suffices by [Fo,
A .1.2.7] to construct a canonical Gk __-invariant isomorphism
Homg 4 (91, €" /Ogur) —> Gr(M) (0 g).
For this we follow the method of [Br4, 3.3.2]. By [Fo, B.1.8.4], the natural map
Homg ¢ (M, S¥[1/p]/ &™) — Home, ¢ (M, €™ /Ogur)

is an isomorphism. In particular [Fo, A.§1.2] implies that the left-hand side is exact
in 9. On the other hand by [Br2, 2.3.11] and the description of Gr(/M)(0g) given
in [Br3, 5.3.1], we have an isomorphism of Gg__-modules

Gr(A)(0g) > Homg it (AL, Aceis[1/p)/ Acts).

Here the filtration on Acis[1/ p]/ Acris is induced by the usual filtration on Acys.
Since ¢(F111Acris) C pAcris, Acris and Acis[1/ p]/ Aeris are equipped with the struc-
ture of an object of "(Mod/S). Thus, it suffices to show that the natural map

(1.1.14) H0m6,¢ (M, &"[1/p]/&") — HOmS’(m JFill (M, Acris[1/ pl/ Actis)
obtained by sending f : 9 — &Y [1/p]/&" to

1 f 1®¢
M=S ®¢s69ﬁ —- S ®¢,6 6ur[1/p]/6ur - Acris[l/p]/Acris

is an isomorphism. We have already seen that the left-hand side of (1.1.14) is exact
in 901, while the right side is exact in Jl since Gr is exact. Thus, by dévissage, it
suffices to consider the case when p - 9 = 0, and this follows from [Br4, 3.3.2]
and its proof. O

LEMMA (1.1.15). Let 9 and M be as in (1.1.13). Then Grp (M) is étale (resp.
multiplicative), if and only if the map 1 @ ¢ : ¢*IM — M has image equal to
Eu) -9 (resp. is an isomorphism).

Proof. By dévissage, it suffices to consider the case when 9% and Jit are killed
by p. Using [BCDT, 5.1.3], one sees that Grp (M) is étale (resp. multiplicative)
if and only if Fill.l = .t (resp. Fill.l = Fil'S - .t). (Note that the result of
loc. cit. describes the Dieudonné module of Gr()).
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Now from the definition of Fil'.ilt we have an embedding

M/FI S S @6 M (Fil'S @6 M) —> M/ E ()M,

The image of this embedding is the image of the composite ¢*(9) — M —
9/ E(u)9M. From this we see that Fill.l = .t if and only if 1 ® ¢ has image
E(u) - 9. Similarly, using the above embedding, and the fact that .(/Fil'S -
M p* (9N / E (u)p™* (M), one sees that Fil'.Ml = Fil' S - AL if and only if 1 ® ¢
is an isomorphism. O

(1.1.16) We call an object M of (Mod/&) étale if the image of 1 ® ¢ is equal
to E(u)9M, and multiplicative if 1 ® ¢ is an isomorphism.

(1.2) Breuil modules with coefficients. For a Z,-algebra A, we set S4 =
S ®z, A and 64 = 6 ®z, A. We denote by '(Mod/S ) the category consisting
of pairs (M, t) where JL is in '(Mod/S) and ¢ : A — End (/) is a Z,-algebra map.
We define similarly the category '(Mod/&) 4.

(1.2.1) We denote by (Mod FI/&)y4 the full subcategory of '(Mod/&) 4 con-
sisting of those objects 91 such that 901 is a finite projective S4-module.
We denote by (Mod FI/S),4 the full subcategory of '(Mod/S)4 consisting of
those objects Jl such that
(1) M is a finite projective S4-module.
(2) The quotient .t /Fil' Al is a finite projective A-module.
(3) The image of ¢; generates .l as an S-module.
We will only make use of the category (Mod FI/S)4 when A is a finite Z,-algebra.
However, we will make crucial use of (Mod FI/&),4 in more general situations.

Note that if A is finite then an object of (Mod FI/&)4 (resp. (Mod FI/S)4) may
be viewed as an object of (Mod FI/&) (resp. (Mod FI/S)).

LEMMA (1.2.2). Suppose that M is in Mod FI/&) 4. Then:
(1) The natural map 1 ® ¢ : ¢* (M) — M is injective.
(2) The cokernel of the map 1 ® ¢ is a finite projective A-module.
3) (1 ®¢)(P*(IM))/ E(u)M is a finite projective A-module.
(4) Suppose that |A| < co. Then locally on Spec A, I is a finite free S 4-module.

Proof. We may assume that A is a finitely generated Z,-algebra, and that 91
has constant & ®z, A-rank r. The map 1 ® ¢ is a map between two free & ®z,, A-
modules of the same rank. Since its image contains E(u)90, its determinant in any
choice of bases divides E(u)". Since &/E(u)" is Z,-flat, being an extension of
copies of Ok, E(u)" is not a zero divisor in & ®z, A, and (1) follows. The same



MODULI OF FINITE FLAT GROUP SCHEMES, AND MODULARITY 1097

argument also shows that 1 ® ¢ remains injective after applying ®4A4/1 for any
ideal I of A. Since 9 is A-flat, this shows that the cokernel of 1 ® ¢ is A-flat.
Since it is a quotient of the finite Ox ®z, A-module 9/ E (u)IN, it must be finite
and hence projective over A. This proves (2).

For (3) note that we have an exact sequence

0— (1® ) (@™ (M))/E@)M — M/E )M — M/(1® ¢)(¢* (M) — 0.

The term on the right is A-projective, and the middle term is Og ®z, A-projective,
and hence A-projective. (3) follows.

Finally, to show (4), we may replace A by a residue field at a prime ideal, and
assume that A is a finite field. Then &4 has finitely many maximal ideals. If p is
such an ideal, denote by r, the rank of 91 at p. We extend ¢ to an A-linear map
¢ : 64— Sy4. Since 1 ® ¢ identifies ¢* (M) with a submodule of I, by (1), we
have rp < rg(p). But ¢ permutes the maximal ideals of G4 transitively, and so all
the r, must be equal. It follows that 91 is a free &4-module. O

LEMMA (1.2.3). Let A — A’ be a map of Z,-algebras. Then there are natural

Jfunctors

®4A" : Mod FI/S)4 — (Mod FI/S) 4
and

®4A": (Mod FI/&)4 — (Mod FI/&) 4.

Proof. If (M, Fil', ¢1) is in (Mod FI/S) 4, then (M®4 A", Fil' M®4 A", p1 1)
is in (Mod FI/S) 4. Note that Fil' Mt ®4 A’ C M®4 A as M/Fil' M is A-projective.
A similar remark applies to (Mod FI/S)4. O

LEMMA (1.2.4). When |A| < oo, the functor of (1.1.10) induces an exact and
fully faithful functor

(Mod FI/&)4 — (Mod FI/S) 4.

Proof. If M is in (Mod FI/B)y4, then M = S ®¢ & M has a natural structure
of an object of (Mod FI/S) by (1.1.10), and it is equipped with an A-action by
functoriality. To check that JL/Fil' /il is a projective A-module, note that, as in the
proof of (1.1.15), we have an embedding

1® ~
M/FIL S S @6 M (Fil'S @6 M) —> M/ E(u)M

whose image is the image of the composite ¢*(9) — M — M/ E (u)IN, which
is A-projective by (1.2.2)(3). This proves the existence of the required functor.
The exactness and full faithfulness follow from the corresponding properties in
(1.1.11). d

LEMMA (1.2.5). If |A| < oo and p - A = 0, then the functor of (1.2.4) is an
equivalence.
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Proof. Suppose Al is in (Mod FI/S)4. By (1.1.11), J viewed as an object of
(Mod FI/S) arises from an object 9t of (Mod FI/&), and 9 is equipped with an
action of A by functoriality. Suppose that .l is a free S4-module of rank . Since

W@GW—)Z@H W®¢,GSDIL>W®S M,

where we view W as an S-algebra via u — 0, W ®g 91 is free of rank d over
k ®¢, A. Hence there exists a surjection (& 4)% — M. On the other hand, this map
must be an isomorphism, since both sides are free &/ p-modules, and they have
the same rank, as can be checked after applying S®¢ &. |

(1.2.6) If |A| < oo, then we denote by Rep/, (G ) the category of continuous
representations of Gg_ on finite A-modules. We denote by Rep, (G, ) the full
subcategory of Rep/; (G, ) consisting of those objects which are free as A-modules.

We denote by ®PMg, 4 the category consisting of an object of ®Mg, equipped
with an action of A.

LEMMA (1.2.7). (1) The functor T of (1.1.12) induces an equivalence of
abelian categories

T4 : ®Mg, 4 — Rep)(Gk_).
(2) If A — A’ is a finite map then there is a functor
®qA" : ®PMg, 4 — PMg, 4; M > M @4 A'.
(3) For M in ®Mg,, 4 there is a natural isomorphism
TaM)®4 A —> Ty (M @4 A).
(4) If M is in ®Mo, 4, then Tg(M) is free over A of rank r € N if and only if
M is a free O¢ ®z, A-module of rank r.

Proof. (1) follows immediately from the fact that 7" is an equivalence. (2) is
proved as in (1.2.3). For (3) note that for any finite A-module N we have a natural
map

(1.2.8) Ta(M)®4 N — T4(M ®4 N).

Since (1.2.8) is evidently an isomorphism when N is free over A, and both sides
are right exact in V, it must be an isomorphism in general, as can be seen by taking
a presentation of N, and using the 5-lemma. In particular,

TA(M) X4 A = TA(M R4 A,) = TA/(M X4 A,).

For (4), we immediately reduce to the case where A is an Artinian local
ring. Let my denote the maximal ideal of A. The isomorphism (1.2.8), and the
exactness of T4 imply that M is A-flat if and only if T4(M) is A-flat. Thus, it
suffices to show that if M is A-flat, then it is finite free over O¢ ®z, A, since



MODULI OF FINITE FLAT GROUP SCHEMES, AND MODULARITY 1099

the A-rank of T4(M) and the O¢ ®z, A-rank of M must then be equal, as the
A/mg-rank of Tyg/m,(M ®4 A/my) and the O¢ ®z, A/my-rank of M are equal
by [Fo, A. 1.2.4(1)].

Now if M is A-flat, then M is free over O¢ ®z, A if and only if M ®4 A/my
is free over O¢ ®z, A/my; so we may assume that A is a finite field. Then O ®z, A
is a product of fields, so that M is automatically projective over O¢ ®z, A. Now
an argument using Frobenius, as in the proof of (1.2.2)(4), shows that M is free
over O¢ ®z, A. O

LEMMA (1.2.9). Suppose that A is a local Zp-algebra with |A| < oo.
(1) The functor T4 of (1.2.7) induces a functor

Ts,4: (ModFI/&)4 — Repy(Gk.); M= Ty(0r @aIMN).

(2) If A — A’ is a finite map, then for M in (Mod FI/&)y4 there is a natural
isomorphism T 4(M) @4 A —> Tg 4/(M @4 A).

Proof. This follows from (1.2.7). O

(1.2.10) Now let A be any Z,-algebra. Following (1.1.16) we call an object
M4 of (Mod FI/S)4 étale (resp. multiplicative) if ¢p*9ty — M4 has image equal
to E(u)My (resp. is an isomorphism).

Given My in (Mod FI/&),4, we define its dual 9t} as follows: As an S4-
module, M’ = Homg, (M4, S4), and the map 1 @ ¢ : ™ (M) — M} is defined
by

¢* (M) —> Home, (¢™ (M4), ¢*(S4)) — Home, (E(u)My, ¢*(S4))
—> Homg, (E(u)My, S4) — Homeg, (My, Sy),

where the second map is induced by regarding ¢*(9t4) as an & 4-submodule of
M4 via the injective map 1 ® ¢, and restricting maps to E(u)Myg C ¢™(My), the
third map is induced by the isomorphism 1 ® ¢ : $*(S4) —> G4, and the final
map by the isomorphism

-E
o, =% B,

One sees easily that Mty is étale if and only if 9T} is multiplicative, and
that the usual double duality isomorphism 9013* —> 9t is an isomorphism in
(Mod FI/G) 4.

PROPOSITION (1.2.11). Suppose that |A| < o0, and let My be in (Mod FI/ &) 4.
There exists a maximal multiplicative subobject M} C My, and a maximal étale
quotient sm;t of M 4. (That is any other étale quotient of M4 is a quotient of f)ﬁit.)
These satisfy the following properties:

(1) Both the quotient M4 /M'{ and the kernel of My — smﬁ; are objects of

(Mod FI/S) 4.
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(2) For any finite A-algebra B,
(M4 ®4 B)™ =M R4 B and (M4 @4 B)* = MG @4 B.
(3) There are natural isomorphisms
(" > (MP* and (M > (MF)*.

Proof. Since ¢* (M) — My is injective by (1.2.2)(1), and ¢ on & is a flat
map, the maps 1 ® ¢” : (¢*)" (IMy) — M4 are also injective, for r € N*. From
now on we regard (¢*)" (9M4) as a submodule of My via 1 R ¢”.

We set M = Mo (™) M4 It will be clear that MY C My is the maximal
multiplicative submodule, once we check that it is a projective & 4-module. Since
the map ¢* (M) — I is a bijection, the induced map ¢* (MY /udN}) —
L /ud'Y is surjective, and hence bijective. It follows that an element x of DY
is divisible by u if and only if ¢ (x) is divisible by u for i sufficiently large. This
implies that 4/} is u-torsion free, for if y € My and uy € N, then the
sequence {¢' (uy)}i>o goes u-adically to 0 in 94 and hence also in Y by the
Artin-Rees lemma. Hence uy is divisible by u in 00U}, and y € 9Y'.

Since A is Artinian, there is a canonical decomposition

Ma/udMg = (Mg /uIMg)nit © (Ma/uM4)unic

where ¢ is nilpotent on the first factor, and bijective on the second. By what we have
just seen M /uM'}' may be identified with an & 4-submodule of (M4 /UM 4)unic =
o2 d" (M4 /uMy). In fact this inclusion is an equality. To see this suppose
that xo € (o ¢" (9M4/udMy), and for r > 1, choose x, € My /uMy such that
¢" (x;) = xg. Let X, € My be alift of x;. Then one checks easily that the sequence
¢" (Xr) converges to an element of M’} which maps to xo.

In particular we see that D% /uf’} is a direct summand in 94 /ut4 and
hence is a projective G4/uG4-module. After replacing A by a localization at a
maximal ideal, we may assume that 94 /u4 is a free A-module, and then an
argument as in (1.2.2) shows that it is free over S4/uS4. Lifting an isomorphism
(G4 /uSy)4 => /Uy, to a surjection 6;{ — ONF, and applying Nakayama’s
lemma to the kernel of this last map, we see that Gi — My

To check that the formation of 9t is compatible with extension of scalars,
write Mp = M4 ®4 B. Since N4 /MY is u-torsion free, and its reduction modulo
u is a projective G4/u&4-module, M4 /N is flat and hence projective over
S4. Now the reductions of M4 /MY ®4 B and Mg /M modulo u may both
be identified with (M4 /uM4)nit ®4 B —> (Mp/uMp)ni, and hence have the
same B-rank. Hence the natural surjection Mg /MY ®4 B — Mp /My is an
isomorphism, and 97 ®4 B — M.



MODULI OF FINITE FLAT GROUP SCHEMES, AND MODULARITY 1101

Finally, we define E)ﬁj‘ by M = (i)ﬁ;’m )*. Then S)th} is the maximal étale
quotient of My, since an object of (Mod FI/&)y4 is étale if and only if its dual
is multiplicative. We have already seen (1) and the first isomorphism in (2). The
second isomorphism in (2) follows from duality. Similarly, the isomorphisms in (3)
follow using the definition of 91, and duality. O

(1.3) Weakly admissible modules with coefficients. We will need the analogues
of some of the above results for weakly admissible modules. The proofs are usually
easier, since we now work in a situation where p is invertible.

(1.3.1) Let A be a finite, local (,-algebra. We denote by (Mod/Ko)4 the
category of weakly admissible ¢-modules equipped with an action of A, and
by (Mod/ K¢) 4.t the full subcategory of (Mod/Kp)4 consisting of those weakly
admissible modules Jt such that gr®Mg is a projective A-module, where Mg =
MK Ko K.

LEMMA (1.3.2). If M is in (Mod/Ko)A.t:» then gr® Mg is a finite projective
A ®q, K-module, and M is free over A ®q, Ko.

Proof. The first claim follows from the isomorphism of functors
Homygq, k (Mk . -) — Homke,, k (K, Homy (k. )

where K is a K ®q,, K-algebra via the multiplication map. In fact the right-hand
side is a composite of two exact functors, since K is a projective K ® g, K-module.

By descent this implies that . is finite projective over A ®q, Ko. That it is
free follows by an argument using Frobenius as in the proof of (1.2.7). O

(1.3.3) We denote by Rep®™™ the category of crystalline G -representations,
and for A as above, we denote by Repﬁ{iS the category of G -representations on
finite free A-modules, which are crystalline when considered as representations on
a Q,-vector space. By the main result of [CF], we have an exact equivalence of
abelian categories

Deris : Rep™ > (Mod/Ko)a,: V > (Buis ®q, V)%
with a quasi-inverse given by
Veris : (Mod/ Ko)a, —> Rep™; M > Fil®(Beis ®a, M)?=".

PROPOSITION (1.3.4). The functors Dis and Vs induce exact equivalences
of categories

Dcris,A : Repiris — (MOd/ KO)A—fr and Vs - (MOd/ KO)A—fr — Repzris.

Proof. For any finite A-module N and Al in (Mod/ Kj) 4, M &4 N has a natural
structure of object in (Mod/ K¢)4. This can be seen by writing a presentation for NV,



1102 MARK KISIN

and keeping in mind that (Mod/Kp)4 is abelian, and hence, in particular, admits
cokernels. Now the same argument as in the proof of (1.2.7) shows that there is a
natural isomorphism Veyis (M) @4 N —> Veyis(M® 4 N). As in the proof of (1.2.2)(4),
this implies that, if JL is in (Mod/ K¢) 4. then Vs (M) is a free A-module.

Conversely, if V' is in Rep<™s, an analogous argument shows that Dis(V) ®4
N — Dgis(V ®4 N). Since the category of crystalline representations is stable
under quotients V' ®4 N is crystalline, so that Dis(V)®4 N is naturally an object of
(Mod/Kp)4. Since the functor Jl — gr®Mg on the category of weakly admissible
modules is exact (because morphisms between weakly admissible modules are strict
for filtrations),

(gr.Dcris(V)K) ®4 N — gr.(Dcris(V)K ®4 N) — gr.Dcris(V ®4 N)K-

Since the right-hand side is exact in N, this shows that gr® D.s(V)k is a free
A-module. O

PROPOSITION (1.3.5). If A’ is a finite local A-algebra, then for V in Repl'flriS
there is a natural isomorphism

Dcris,A(V) ®4 A= Dcris,A’(V X4 A/),
in (Mod/ Ko) 4.t and for M in (Mod/ Kg) 4.5, there is a natural isomorphism

Vcris,A(/‘/L) X4 A= Vcris,A’(M R4 A/)
in Repjlris.

Proof. That the sources and targets of each of these two maps lie in the
indicated category follows from (1.3.4). Now the proposition follows as in (1.2.7),
by the observation already made in the proof of (1.3.4), that D s and Vi commute
with the functor ® 4 N for any finite A-module N. O

2. Moduli of finite flat groups schemes

(2.1) Definitions and first properties. From now on we will freely use the
language of groupoids. A summary of the definitions and properties we will need
is given in the appendix. Readers who wish to avoid this, at least initially, may
substitute the term “functor on” for “groupoid over”. However, as mentioned in
the appendix, the correct definition of fibers requires groupoids (either explicitly or
implicitly).

Let O be a local Zj-algebra with maximal ideal mg. We will denote by 2AR¢ the
category of finite, local, Artinian O-algebras A, with maximal ideal m4, equipped
with an isomorphism A4/my —> 0/mg.
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We denote by 2ugg the category consisting of pairs (A4, ) where A is an
O-algebra, and I C A is a nilpotent ideal with mgA C /. A map (A,1) — (B, J)
is a map of rings A — B taking I into J.

Note that we do not assume that A is finite over 0. We remark that if (4, my)
is in ANRg, then we may also regard it as an object in ™Augg, so that ANRe is a full
sub-category of 2ugg.

A groupoid D over 2AR¢g has a canonical extension to a groupoid over the
category 91’9?@ consisting of complete local O-algebras with residue field O/mg.
This is explained in (A.7). We will again denote this extension by D (rather than
by D as in the appendix).

We fix a finite extension [ of [, and a continuous representation of Gg on
an F-vector space VF of dimension d € NT. We will assume that Vf is the generic
fiber of a finite flat group scheme.

(2.1.1) As in (A.3), we define a groupoid Dy; over 2Ry ), by declaring
the objects of Dy, (A) to be finite free A-modules V4 equipped with a continuous
Gk-action, and an F-linear, G g-equivariant isomorphism ¥ : V4 @4 F — Vf. A
morphism (V4, ) — (Var, ¥') covering a given morphism A — A’ is an equivalence
class of isomorphisms V4 ® 4 A’ —> V4 which are A’-linear, G g-equivariant, and
respect the maps v and ¥’. Two isomorphisms are equivalent if they differ by a
unit of A’. If Endp[g,1VF = F then this groupoid is pro-represented by a complete
local W([F)-algebra Ry;.

We denote by D?,[F the full subcategory of Dy, such that the objects of D?,[F (A)
consists of deformations V4 which are the generic fiber of a finite flat group scheme.
By [Ram, §2] the morphism Dlﬂ,IF — Dy, is relatively representable. Hence, if
EndfG .1 VF = [ then D?,[F is pro-represented by a quotient R‘;‘,[F of Ry,.

It will be convenient to extend Dy; to a groupoid over 2lugy ). We will again
denote the larger category by the same symbol. Given (4, I) in Augy ), denote
by Ql%{,‘lv’(lm the category of rings A" in AR ) equipped with an injective map
of W([F)-algebra map A’ — A, such that the radical of A" maps to /. The set of
such rings forms a filtering direct limit: If A” and A” are two such rings, then so is
Im (A’ ®w) A” — A). We define

Dy.(A,I)= lim Dy (4).
A EUART
More precisely, if A" is in 919‘{3]’(@), write QI%@,’(I[F) - 4 for the full subcategory of

Ql,‘){év’(lﬂ consisting of rings which contain A’. We view m%\%)z 4 as a category

over ARwr). Then

. Al
DV[F (A’ I) = ll_I)l'l /em%\i‘,ié) HoleERW(F) (mmW([F),ZA” DV[F)-
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Given a morphism f : (A,1) — (B, J), and objects n € Dy, (A, ) and
§ € Dy, (B, J), we define the set of maps n — & which cover f to be

Homp,, (1,§)y = limy limp-Homp,, (Var, Vp')s

where A’ runs over sufficiently large elements of Ql%év’I[F , B’ runs over sufficiently
large elements of 219‘{@’(?) which contain f(A4"), V4 = n(A’) € Dy, (A"), Vg =
£(B’) € Dy, (B’), and the subscript f in the right-hand side denotes maps in Dy,
which cover the induced map A" — B’ in AR y). Note that the transition maps in
the inverse limit are all bijections.

We define D?,[F (A, ) in an analogous way. For (4, 1) in &Augyg) we will
sometimes write Dy; (A) and DY, (4) for Dy, (A, I) and Dy, (A, I), respectively,
when this causes no confusion.

(2.1.2) Let Mf in ®Mg, f be the pre-image of VF(—1) under the equivalence
T of (1.2.7). We define a groupoid Dy, over 2Ry ) by declaring the objects of
D, (A) to be modules M4 in ®Mg, 4, which are free over Og ®z, A, and equipped
with an isomorphism ¥ : M4 ® 4 F —> Mf in ®Mg, ;. A morphism (M4, ) —
(My, ") covering a given morphism A — A in AR ) is an equivalence class of
isomorphisms My ®4 A’ —> My in ®Mg, 4/, compatible with i and ¥, where
two isomorphisms are equivalent of they differ by a unit of A’.

Asin (2.1.1), we extend Dy, to a groupoid over 2lugy ), which we denote
by the same symbol. If (A4, 1) is in Augwy ) then we have

Du,(A)=Dp, (A1) = lim Dy (4).
Areuny)
and morphisms are defined as in (2.1.1). If A’ € Qli)%‘f,’(l[F) and My € Dy, (A'), we

will slightly abuse notation, and regard My = M4 ® 4’ A as the corresponding
object of Dpg,(A). By (1.2.7), we have a morphism over 2lugy):

(2.13) Dy, — Dt Var> (O, ®z, Va(—1)) %o,

We now define a groupoid Dg p; over 2ugy ) by declaring the objects of
De m; (A, I) to be modules Mty of (Mod FI/S)4 equipped with an isomorphism
of O¢ ®w(,) A/I-modules

V(O @My @4 A/T)—> My 5 A/l

which is compatible with the Frobenius endomorphism on both sides. A morphism
(M4, ¥) — (M4, ¥') covering a given morphism (A, 1) — (A’, I') in Augy )
is an equivalence class of isomorphisms 9y ®4 A" —> My in (Mod FI/ &) 4/
compatible with the maps ¥ and v’. Again, two isomorphisms are equivalent if
they differ by a unit in A’.
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PROPOSITION (2.1.4). There is a diagram of morphisms of categories over
lugw ) which commutes up to equivalence

(2.1.3)
pt C13 p,,

N

De M,

where for (A, I) in Augy ) the vertical functor on (A, I )-points is given by Mg
O RacIM 4. The horizontal functor, induced by (2.1.3), is fully faithful. In particular,
Ovy; is uniquely determined, up to equivalence, by requiring the commutativity of
the diagram.

Proof. Suppose (4, 1) is in Augwy ) and My is in D p; (A, 1). Set My =
Og ®c My. Then My is equipped with a map ¢*(My4) — My, which is an
isomorphism as ¢*(94) — My has cokernel killed by E(u). Moreover, by
definition of Dg py, there is a ¢-equivariant isomorphism Mg ®4 A/ —> My ®f
A/I. In particular, this implies that My is a free O¢ ®z, A-module, since it is
projective by construction.

Let A denote the preimage of [ under the projection A — A/I, and let M+
denote the preimage of M under the composite

My —> Mg QR4 A/I ;M[F®[FA/I.
Then My+ is a free Og ®7z, AT -module equipped with an isomorphism
¢ (My+) —> My

A standard argument shows that there exists a finitely generated W ([F)-subalgebra
A’ C AT, and a free O¢ ®z, A’-submodule My C M4+ such that My = My Qg4 A,
and the above map induces an isomorphism ¢*(My/) —> My/. But any finitely
generated W(F)-subalgebra of A™ is a local Artin ring. Hence A’ is in ANRw (), and
My is in Dy (A’). Similarly for any finitely generated A’-subalgebra A” C AT
we obtain a module My~ in Dy, (A”), and a canonical isomorphism M4 ®g4
A" =5 M. We define the vertical functor by sending 94 to the image of My
in Dy, (A), or more precisely the image of the functor Qlf)‘i\‘i,’(lﬂ 4 —> Dy, given
by A” — My». This gives a well defined morphism over ARy ), because the
construction of M4+ is functorial.

To construct ®y,, we retain the above notation. Set My = My NMy C My.
Then My is stable by ¢. Moreover, using the exact sequence

(a,b)>b—a
(2.1.5) 0O—->My > Mgy My —> My
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and the snake lemma, one sees that the cokernel of ¢*(9y) — My is killed
by E(u), as the analogous statements hold for 94 and M4/. (We do not claim
that 94/ is free over O¢ Rz, A’, and this is in general false). Thus, 9)i4- has the
structure of an object in '(Mod/&), and we claim that it is actually in (Mod/&).
To see this, first note that, since 914 is a G-submodule of the finite Og-module
M/, and has no infinitely u-divisible elements, being contained in 914, one easily
checks that 9ty is finitely generated over S. Next, for each non-negative integer i
we set
f)nil/ = piMA/ NMy = piMA/ NNy

Then imf;l /O, C pP Y My / pt My is a finitely generated &/ p&S-module, which
is necessarily free, being u-torsion free. Moreover D', 1 /9%, is stable under ¢,
and the cokernel of ¢*(9ﬁf471 /M) — 93?271 /O, is killed by E (u), since this is
true for 1 ® ¢ on My,. Hence 9171271 /O, is an object of (Mod FI/&) killed by p,
and 2y is a successive extension of such objects and hence in (Mod/&).

Now let

Var = Ta(Ma)(1) —> Ta (O ®e Mar)(1).

By (1.2.7)(4) V4 is a finite free A’-module, and by (1.2.7)(3), it is equipped with a
Gk -equivariant isomorphism V4 ® 4/ F — V. By (1.1.13) the action of Gg__
on V4 can be extended to an action of Gg in such a way that V4 becomes the set
of O points of a finite flat group scheme. Moreover, this extension is unique, by
[Br4, 3.4.3], which asserts that the restriction functor from finite flat representations
of Gk to representations of Gk is fully faithful. The full faithfulness also implies
that the G g-action respects the A’-module structure on V4, and is compatible with
the isomorphism Vg ® 4/ F —> V.

Now we define Oy, (M) to be the image of Vy € D?,[F(A’) in D?,IF (A). One
easily checks that this is independent of the choice of A’ (use (1.2.7)), and gives
a well defined morphism of categories over 2ugy ). The full faithfulness of
the horizontal functor, and hence the uniqueness of @y, follows from the full
faithfulness in [Br4, 3.4.3], already used above. ]

(2.1.6) Let A be a ring in ARy ), with maximal ideal my4, and fix an object
§ = Va € Dy, (A). Write

My = (O, ®2z, Va(—1)) K.

Since D?;[F is a groupoid over Augy ), we can attach a category over Augy ) to
&, (which we again denote £; see (A.5)). Using this, and the morphism Oy, we
may form the 2-fiber product

De mi e =& *py Demy-

We regard this product as a groupoid over 2dugy.
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PROPOSITION (2.1.7). With the notation above, there exists a projective A-
scheme GRy, ¢ such that for any (B, I) in 2lugy, there is a canonical bijection

(2.1.8) |De,m; £|(B, 1) —> Homgpec 4(Spec B, 4Ry, ¢).

Proof. For (B, I) in 2Aug,, write Mp = M4 ®4 B. By (2.1.4), (the class of)
& is the unique class in |D?,[F |(A) mapping to [M4]. It follows from the definitions,
that | Dg as; | (B, I) may be identified with the set of & g-submodules Mp C Mp
which are projective of rank d, span the &p[1/u]-module Mp, are stable under the
Frobenius endomorphism of Mp, and such that the induced map 1®¢ : ¢p* (Mp) —
<M p has cokernel killed by E(u). Note that this is independent of 7, as is the right-
hand side of (2.1.8).

Now let S denote the u-adic completion of Gp, and write

Mp = Mp ®¢, 5.

The main result of [BL1] implies that the association Mg = Mp Ve, & B induces
a bijection between the set of finite projective Sp-submodules Mg C Mp of rank
d which span Mp, and the set of finite projective & g-submodules of Mp of rank
d which span Mp. It follows that the former functor is represented by the affine
Grassmannian for Resw(k)/z,GLg over A. This is an Ind-projective scheme [Fa,
p. 42] (cf. also [BL2, Thm. 2.5]). The condition that 1 ® ¢ sends ¢*(9ip) into
Mp and has cokernel killed by E (u) defines a subfunctor, represented by a closed
subspace of the affine Grassmannian, which we denote by YRy, ¢.

Now fix a finite projective S 4-submodule 914 C My of rank d, which spans
My. A priori Ry, ¢ is Ind-projective. To show it is projective we have to show
that there exists an integer i such that for any (B, /) in 2Aug,, and any Gp sub-
module Mp C Mp corresponding to an elements of Dg pr, (B, 1), we have
u'Ng C Mp Cu"'MNg (cf. the description in [Fa, §2]), where 9lp = 94 ®4 B.!

To see this let r be the least integer such that u” g C (1 ® ¢)p*(MNp) C
u~"MNp, and i be the least integer such that 9tz C u~' M p. By considering a matrix
which transforms some & g-basis of 9ip into a G g-basis of Mg, we see that the
least integer j such that (1 ® ¢)¢*(Mp) C u=/ (1 ® ¢p)p*(Mp) is equal to ip.
However

1®¢)p*(Ng) Cu"Mg Cu™' " Mp
= Ew) " (E@)Mp) CuT TR (1@ ¢)p* (M),

where k is the least integer such that pX = 0 in A. Hence ip < ek +i +r, and
i <(ek+r)/(p—1).

1'We thank Brian Conrad for pointing out that it is obviously not sufficient to show that sm% -
u" My for My, Mp in De pry £(B. 1).
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Similarly, if i is the least integer such that Mg C u~'Np, then
(1®¢)p™(Mp) CMp Cu™'Ng Cu™' " (18 $)¢* (MNp).
sothatip <i+r,andi <r/(p—1). |

REMARK (2.1.9). Had we defined D g, s, over W(F)-schemes equipped with
a nilpotent sheaf of ideals, rather than just on rings, then (2.1.7) would just say that
the morphism Dg pr; — Dy, is relatively representable.

Suppose that R is a complete local ring with residue field F and maximal
ideal mg. Fix a point £ € Dﬂ (R) and a deformation Vg of Vf to R. Fori > 1,
let & € Dﬂ (R /m R) be the 1mage of £&. Applying the construction of (2.1.6)
with A = R/mR, and V4 = Vg QR R/mR, we obtain a groupoid Dg py, ¢ Over
2Alug p iy . We denote by D p, ¢ the category over 2lugg whose fiber over a pair
(B, I) is given by

De ;. e(B,I) =1im; Dg,p1; g (B, 1)

where the right-hand side is defined for i sufficiently large since / is nilpotent, and
where the morphisms are again defined by the obvious inverse limit. Note that in
these inverse limits the transition maps are equivalences of categories for i large
(depending on (B, I)). In fact we will make use only of the associated functor

|De, Myl = 1im; [De a1, g, |-

PROPOSITION (2.1.10). The functor |Dg p, g| is represented by a projective
R-scheme $Ry, ¢, in the sense that for any (B, I) in dugpg, there is a canonical
isomorphism

Hompg (Spec B, Y%y, ¢) — | Do m; £|(B. I).

Proof. Applying (2.1.7) with A = R /miR, yields_ a projective R /miR—scheme
YRy, £,; such that the reduction of Ry, ¢ ; modulo m’R_1 is canonically isonl(gphic
to GRy; £,;—1. The inductive limit of the 6Ry, ¢ ; yields a formal scheme 4Ry, ¢.
The proof of (2.1.7) shows that each Ry, ¢ ; is a closed subspace of the affine
Grassmannian over R. Now the affine Grassmannian is equipped with a line bundle
£ whose restriction to any closed subscheme of finite type is very ample [Fa,
p. 42-43]. Thus %QRV[F ¢ 1s equipped with a formal line bundle whose restrlctlon to
YRy, g0 is very ample. It follows by formal GAGA [GrD, III, 5.4.5] that %%V[F
is the completion along mg of a projective R-scheme 4Ry, . O

COROLLARY (2.1.11). IfEndg[G ) VE=F, then D?,IF is (pro)-representable by
a complete local W (F)-algebra Rﬂ[F, and there is a projective map of W (IF)-schemes

Oy, : YRy, — Spec R?,[F
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which represents the morphism Oy, of (2.1.4), in the sense that for any (B, I) in
lugw ) we have a canonical commutative diagram

Homyy 5 (Spec B, 4Ry, ) —— Homy(r)(Spec B, Spec R?,[F)

5 -

(2.1.4)
D (B.1) DI (B, 1)

where the Homs in the top line denote maps of schemes such that the radical of R?,[F
pulls back into the ideal I.

Proof. The pro-representability of D?,[F was already remarked on in (2.1.1).
The rest of the corollary follows by applying (2.1.10) to the tautological point
£ e DY, (R},). O

(2.1.12) By a finite flat model of Vf we mean a finite flat group scheme %
over Ok, equipped with an action of F, and an isomorphism Vg — %(0 g) which
respects the action of Gg and F. We have

COROLLARY (2.1.13). There exists a projective F-scheme $Ry; o such that
for any finite extension V' of T, the set of (isomorphism classes of) finite flat models
of Vir = Vi Q¢ V' is in natural bijection with Ry, o(F).

Proof. We take 42y, o to be the projective [F-scheme obtained by taking R =T,
and § = Vg € D}, (F) in (2.1.10).

By definition, 4Ry, (F) is in bijection with the set of free Sp/-submodules
M C My of rank d, which are stable under ¢, span My as a Sy/[1/u]-module,
and such that the cokernel of ¢* (M) — M is killed by u€. Given such an Mg,
we obtain a finite flat Og-group scheme % by composing the functors of (1.1.3) and
(1.1.11). It is equipped with an action of [’ by functoriality. By (1.1.13) we have
Vi —> %(0 ¢) respecting the action of F" and Gk . Hence by the full faithfulness
result of [Br4] used above, this isomorphism respects the action of Gg.

Conversely, given a finite flat model % of Vi, we know that ¢ arises from
a module My in (Mod FI/&), since (1.1.3) and (1.1.11) are equivalences on
objects killed by p. We have

Te (Mp)(1) = Vi — %(0z) — Ty (0¢ @ M) (1)

by (1.1.13), so that Mp — O¢ ® s M. This isomorphism is compatible with
the action of " and ¢, so that 9 gives rise to an element of |Dg az, ¢|(F) =
Ry, o0(F). O

PROPOSITION (2.1.14). Suppose that e(K/Qp) < p — 1. Then the map Oy,
is an equivalence of categories.
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Proof. Let R and £ be as in (2.1.9). By (2.1.13) and [Ra, 3.3.3], we see that
the reduced fiber of YRy, ¢ over the closed point of R consists of a single point,
corresponding to the unique finite flat model of V¢. This implies that 4Ry, ¢ —
Spec R is a finite map, so it suffices to check that YRy, ¢ ® g R/mp is reduced.

Consider an F[¢]-valued point (€2 = 0), y, of this scheme. By (1.1.11) and the
construction of 4Ry, ¢, y corresponds to an extension of finite flat group schemes

0—>% —>Y—> %) — 0,

such that the corresponding extension of F[Gg]|-modules splits. However, this
implies that the above extension is split by [Ra, 3.3.6(2)], so that y factors through
[F[e] — F. Since y was arbitrary, this implies that Ry, ¢ ® g R/mp is reduced. [

(2.2) Local analysis. In this subsection we analyze the local structure of §Ry,,
and of certain of its subschemes. We begin by recalling some of the main results of
[PR].

(2.2.1) Let A be a free Og-module of rank d, and K(S)ep an algebraic closure of
K. For each Ko-algebra embedding ¢ : K — K" choose an integer ry, € [0, d].

The reflex field F C K(S)ep of r=(ry), is a finite extension of K¢ corresponding
to the subgroup of Gal(KSep / Ko) consisting of those automorphisms ¢ such that
Toop = I'y. Let O be the ring of integers of F', and [ its residue field. For an O -
scheme T we write M (T) for the set of Ox ®g¢ KOOT—submodules L CA®qg K()@T
such that L is, locally on 7', a direct summand as an O7-module, and for a € O,

det(a|L) = 1;[ o(a)®

as polynomial functions on Og with values in I'(7, O7) in the sense of [Ko, §5].
Recall that this means that, if X, X1, ..., Xe—1 are indeterminates, then there is
an equality of polynomials with coefficients in I'(7, O7)

det(Xo + X1 +... 7 Ko |L) = [[(Xo +o(m) X1 + ..o Xen)™.
@

Note that the right-hand side actually has coefficients in O . The functor M, is
representable by a projective O g-scheme. Its closed fiber My := M, ®¢ [ depends
only onr = Z(p ry. More precisely, if T' is an [-scheme, then M,(T) consists of
Ok ®¢ Ko O7-submodules L C A ®¢ Ko@ 1 which are Or-direct summands, locally
on T, and such that one has det(X —7®1|L) = X" [PR, §2].

The reduced subscheme of M has a stratification by locally closed subschemes
M, s where s = {si}l‘.l:1 is a partition of r = Z(p Iy satisfying s1 > 2 --- > s4 and
s; €[0,e]. If F is a finite extension of F, then a point in M;(F’) lies in My 5(F’)
if the nilpotent endomorphism 7 ® 1 acting on the corresponding Ox ®u, -
submodule L C A Qg I’ has Jordan type s. If s and s’ are two such partitions,
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then Mr,s/ is contained in the closure of Mr,s if and only if 8’ <'s, which means that
Z'jj:1 5] < Z{:l s; for j €[1,d] (see [PR, §3]).

In fact the M, s can be identified with orbits of GL; (F[[u]]) on the affine
Grassmannian for GL4. Namely, if we regard Og ®q [ as an Fllu]-algebra via
u > @1, and we fix an isomorphism A Qg | = (F[u]}/u€)?, then one assigns
to the submodule L the F'[[u]]-sublattice of (F/[[u]])¢ given by the pre-image of L
under the composite

FTl)? > FTul/u)? > A @qy, F'-
By [PR, 5.3, 5.8, 5.10], [Wel,

PROPOSITION (2.2.2). Let M}OC denote the scheme theoretic closure of
M, Qg F in My, and set M}*° = M!*° ®q,.F. Then:

(1) Mrl‘)C is normal and Cohen-Macaulay.

2) Mrloc is reduced and normal, with rational singularities. It is equal to the
closure of M,y in My, where ¥ denotes the dual partition to r.

(3) If any two of the integers ry differ by at most 1, then Mrl"C = M, provided
eitherr =3, ry <e, (i.e., ry = 0 or 1 for each ¢) or e < 2.

(2.2.3) In view of (2), when the r,, differ by at most 1, the equality MrlOC =M,
is equivalent to M, being reduced. In [PR] Pappas and Rapoport conjecture that
this is always the case when the r, differ by at most 1, and they prove this in the
cases mentioned in (3).

(2.2.4) Now for each Q,-algebra embedding ¥ : K — KT choose an integer
vy € [0, d]. Denote by g the restriction of ¥ to Kg. For each o € Gal(Ko/Q)p)
we fix a lifting 6 of o to K(S)ep. We set Vo = (vy)5-10y,» Where in the indexing set,
Y runs over embeddings with Y9 = o. Let F C ngp be a finite Galois extension
of @, which contains the reflex field of v, for each o € Gal(Ko/Q)), and write
OF for its ring of integers, and [ for its residue field.

Set v = (vy )y . For an Op-scheme T, we denote by My (T) the set of Ok ®z,
Or-submodules L C A ®z, O7 such that locally on T, L is a direct summand as

an Or-module, and for a € Og, we have
det(a|L) = Vv
det(a| L) 1;[ ¥ (a)

as polynomial functions on Ok.
We again write My, for the pull-back of My (which is defined over the ring of
integers of the reflex field of v) to Of.
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PROPOSITION (2.2.5). Denote by Mvi the pull-back of My by G|o,.. There is
a canonical isomorphism

~ G
My =5 X 0, M3 .
ag

Proof. For an Of-scheme T', write 797" for the pull-back of 7 by 6! on
Of. We have a decomposition

(2.2.6) Ok ®z, 01 — @y Ok ®ox,.0 O —> o Ok ®0x, 0751,

where the first map is O7-linear, and the second map is 6~ !|g -semi-linear.
Thus, we have a corresponding decomposition A ®z, 07 — P, A ®¢ Ko

Op5-1,and for L € My(T') a decomposition L = P, Ly, where L, C A ®z, O

is the preimage of an Ox ®z, @T5—1 -submodule Ly C A ®@K0@ —1, which is an

0

TO'
—1-module direct summand, locally on 797"

For o € Gal(K¢/Qp), let €5 € Ok ®z,, OF be the idempotent such that (2.2.6)
identifies €5 -Og ®7, O with the summand Og ®@K0©T;,—1 .Fori=0,1,...,e—1,
let X; ; be an indeterminate. Then the determinant condition on L means that

(2.2.7) %ert (Zeanfxi,o|L) = ];[Z(w(eon")xi,a)“‘/f

TG

where i runs over 0, 1,...,e —1, and o over the elements of Gal(K(/@Qp). On the
right-hand side of (2.2.7) we have again denoted by v the map Og ®z, 0 — 0 K

induced by the inclusion ¢ : K — KSEP. Now multiplication by €, induces the
identity on L and the zero map on L/, for o’ # 0. Similarly, y(e5) = 1,if o =0
and 0 otherwise. Hence, if for 0’ # o we set X; o =0 for i # 0, and X¢ = 1,
then (2.2.7) becomes

%?(Znixi,ﬂl‘;) = l_[ Z(‘/f(ni)xi,a)vw

W0=O' i

so that

det 7' Xi o L(,) = ( 57 1o n")Xi,a v,
g (i I (oo )i
Thus {Lo}o € [1y My, (T%') =1, M (T).

Conversely, given a collection {Ls}s € [, My (T), we can regard L as an
0)7¢ ®ok, ©T5_1 -submodule ~o_flA ok, @Ta—l, which is a direct summand as an
0,.5-1-module, locally on 79 . Then it is easy to invert the above construction to
produce a submodule L. C Og ®z, O which corresponds to an element of My(T').

|
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COROLLARY (2.2.8). Let M‘l,OC denote the scheme theoretic closure of
My ®q, F in My, and write M} = M!*° ®¢ . F. Then:
€)) M‘lf’c is normal and Cohen-Macaulay.

2) M‘I,OC is reduced and normal with rational singularities. It is equal to the closure
of X@FMV‘I v in Xog MY , where the superscript G denotes pull-back by &,
o o,Vo o o
as before.
(3) Iffor each o € Gal(Ko/Q)p) any two of the integers vy, with o = o differ by
at most 1, then M‘l,OC = M, provided either vy, =0 or 1 for all Y, or e < 2.
Proof. By (2.2.5) we have le"c = Xop Mvh;c’&. Then the Cohen-Macaulay

property in (1) follows immediately from (02.2.2)(1), and (2) follows from (2.2.2)(2)
(cf. [GrD, IV 6.6.1]). For the normality in (1) it then suffices to check that M‘l,OC is
regular in codimension 1, which follows from the fact that it has normal fibers over
SpecOF. Finally (3) follows from (2.2.2)(3). O

(2.2.9) Fix v and F as in (2.2.4). We also fix an object Mif of (Mod FI/&)f
such that for a € Og

(2.2.10) det(al(1® ¢)(@™ (M) /uMp) = [ v (@)™
¥

as polynomial functions on Og. We also fix an isomorphism of Ox ®z, F-modules
L: m[p/uegﬁ[p = A 7z, .

We now define three groupoids over 2ANR¢,.. Let A be in AR .. We define
Dy, by declaring the objects of Dy (A4) to be Ok ®z, A-modules L equipped
with an embedding ¢4 : L — A ®z, A such that:

(1) L is an A-module direct summand in A ®z, A.

(2) For a € Og we have detg(a|L) = HW ¥ (a)¥, where, as usual, Y runs over
the Q,-algebra embeddings K < K, and the formula is to be interpreted
as an equality of polynomial functions on Og.

(3) The composite
®1 ~
L@4F S Az, F—>Mp/u My
-

identifies L ®4 F with (1 ® ¢)(¢™ (M) /uéME.

We define Dgy by declaring the objects of Dy (A) to consist of an object
M4 in (Mod FI/S)4 equipped with an isomorphism ¥4 : My @4 F —> M in
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(Mod FI/G)g, and such that for a € Ok
dft(al(l ® @) (9" (Ma))/ Ew)My) = ]_[ V(@)™
¥

as polynomial functions on Og with values in A. Note that the left-hand side makes
sense, since (1 ® ¢)(¢p*(My4))/ E(u)MNy is a finite free A-module by (1.2.2)(3).

Finally we define D;ﬁr by declaring the objects of D;JI,F(A) to consist of
an object My in Diva(A) equipped with an isomorphism of Og ®z, A-modules
L4 Ma/Eu)My — A ®z, A such that the diagram

1
Ma/E)Mg @4F 222 A @7, F

- |

mm/uem[p A®Z,, F

commutes.

A morphism for the first (resp. second, resp. third) groupoid covering a mor-
phism A — A" in ARg,. consists of an isomorphism L4 ®4 A" —> Ly (resp.
My ®4 A’ —> My/) compatible with the embeddings ¢4 and g4/ (resp. ¥4 and
Wy, resp. ¥y, and Yy/, and 14 and ty4-).

PROPOSITION (2.2.11). We have morphisms of groupoids over ARg . :

(2.2.12) DYy, — DYy Mg —> My
and
(2.2.13) DYy — Dy My > 1a((1® ¢)p™ (M) / E(u)My).

The first of these morphisms is relatively pro-representable, and both are formally
smooth. That is, they give rise to formally smooth maps of functors on ARe . .

Proof. Let A be in %li)‘{@F, and £ = 914 be an object of Dg)’m(A). If A’ is
in ANRg,., an object of D;JI{F,S(A, ) consists of a morphism A — A’, an object
My of Dsz[F(A,)’ an isomorphism M4 R4 A/%EU}A/, and an isomorphism
My /E@)My — A ®2z, A’. Hence one sees that DY, . is represented by a

%!S
complete local A-algebra R whose A’-points are given by the pre-image of ¢ under

Homog,, 4/ (Ma/E@)M4) ®4 A", A ®7, A)
— Homey @, F(Me/ Eu)Mr, A Qz, F).
Thus Spf R is a torsor under the formal group G over A whose A’ points are

given by
G(A/) = ker (Aut@K®ZpA,(A ®Z,, A,) — Aut@K@Zp[F(A ®zp F)).
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In particular R is formally smooth over A, and this establishes the claims regarding
(2.2.12).

Now suppose that L4 € DV (A), and that I C A is a nilpotent ideal. Write
Layr=La®4A/l € D} (A/I) Let My, in Dy o (4/1) be an object which
maps to the 1s0m0rphlsm class of Ly/y. Let My be a free &4-module of rank
d, and choose an isomorphism My ®4 A/I —> My, and an isomorphism 4 :
Ma/Eu)My — A ®z, A making the diagram

Ma/Eu)My A ®z, A
Ma/Eu)Myg®@4A/1
Mayr/E@)My) 1 A®z, A/l

commute. Let LJr denote the preimage of ¢ (L 4)in 94, and define LT A1 CMyy 1
analogously. Then 1®¢:d*(My 1) — My, factors through Lt AT since its
image contains E(u)94 7. Since ¢* (M) is a free &4-module, the composite

¢ (My) = " (Myy1) — My 1

lifts to a map ¢*(My) — L+ Since L+ ®Q4A/T —> LA/I, this lift is a surjective
map, and gives My the structure of an ob]ect of Dv (A) which maps to the
isomorphism classes of 04,7 and L4 in D} o (A/1) and D} oy, (4) respectively. [

LEMMA (2.2.14). The groupoid Dzm[F over UANRg . is pro-represented by a
complete, local Noetherian O -algebra.

Proof. By definition, ng is represented by the completion of a local ring on
M. O

(2.2.15) Let Rv o be the complete local O p-algebra pro-representing DV
We denote by RV 1°¢ the quotient of RV by its ideal of p-power torsion elements
and by DY the corresponding full sub groupoid of ng. That is, if A is in
ANRo -, then an object of D} o, (4) is in Dv sloc (A) if and only if the corresponding
map RV — A factors through RV loc,

Note that it may happen that RmF is the O ring, in which case D;;i;’ “ is empty.
(2.2.16) To end this subsection, we explain how one can use the techniques

above to prove (for p > 2) a conjecture of Breuil which asserts that (Mod FI/ &)z,
is equivalent to the category of p-divisible groups over Ok [Br5, 2.1.2].2

2 According to the introduction of [Br5] one of the main reasons for introducing the category
(Mod FI/&) was to try to obtain a classification of p-divisible groups and finite flat group schemes
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Let M be as before. For simplicity we assume from now on that all the vy,
are equal to a common non-negative integer v, that ' = Q, (so that F = [,), and
that (1 ® ¢)p* M, /u®IMp,, is a free k[[u] /u®-module of rank v.

Some of what we will do below goes through with weaker assumptions, and
we leave it to the reader to formulate these results in the greatest generality.

Let Jlg, in (Mod FI/S)g, be the image of M under the functor (1.2.4).
We define a groupoid Dy, over ARz, by declaring the objects of D (A4) to
consist of an object .il4 in (Mod FI/S) 4 equipped with an isomorphism v : M4 ® 4
Fp — g, in (Mod FI/S)g,. Similarly, we define a groupoid Dy, over ARz,
by declaring the objects of Doy, (A4) to consist of an object My in (Mod FI/S)4
equipped with an isomorphism ¥ : My ®4 Fp — Mg, in (Mod FI/S)g,. As
usual, in the first (resp. second) case a morphism (Mg, ) — (Mygs, V') (resp.
(M4, ) = (My,¥)) covering a given morphism A — A" of ARz, consists of
an isomorphism M4 ® 4 A’ — M4/ in (Mod FI/S) 4/ (resp. M4 @4 A —> My in
(Mod FI/&) 4/) compatible with ¥ and ¢’.

LEMMA (2.2.17). For A in ARz, and.

(1) For My in Doy, (A), (1 ® ¢)(¢* M)/ E )My and M4/ (1 ® ¢)(¢*M4)
are finite free Og ®z, A-modules.
(2) The natural morphism of groupoids
D;R[Fp — ng[Fp
is an equivalence.

Proof. Let my denote the maximal ideal of A. By (1.2.2)
(1®¢) (9" Ma)/E(u)My

is a finite free A-module whose reduction modulo my4 is

(1®¢) (9™ M)/ E@)M,,.

By assumption, the latter is finite free over Og/pOg of rank v, and so by Nakayama’s
lemma (1 ® ¢)(¢*M4)/ E(u)My is a quotient of (Ox ®z, A)*. However, since
(1®¢)(P*My)/E(u)MMy is A-flat, Nakayama’s lemma applied to the kernel of
the quotient map shows that this map is actually an isomorphism. This proves the
claim in (1) regarding, (1 ® ¢)(¢*M4)/E(u)M4 and (2) follows immediately.
The same argument shows that 04 /(1 ® ¢)(¢*My) is a finite free O ®z, A-
module, once we have checked that M, /(1 ® ¢)(¢*Mg,) is finite free over
k[u]]/u®. For this consider any exact sequence of finite k[Ju]]/u¢ modules

0O->M >M-—>M"'"-0,

when p = 2. Unfortunately we do not yet have a complete understanding of the precise relationship
between these objects when p = 2.
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with M finite free. If M" is finite free, then so is M. Since k[[u]]/u® is a Gorenstein-
Artin ring, the functor Homy .7 /ue (-, k[[u]l /u®) induces an exact involution of the
category of finite k Ju]]/u®-modules. Hence we see that, conversely, if M’ is free,
then so is M". O

LEMMA (2.2.18). The functors | Doy, | and | D ug, | admit versal deformation
rings RVer and R}f;p respectively. Both these rings are Noetherian.

Proof. This is a standard argument using Schlessinger’s criterion [Ma, 1.2].
To see the finiteness of the reduced tangent spaces, write S; = S/(p,u'¢/i Di>p-
Then [Br3, 2.1.2.2], implies that for any A in 2ARg,,, an element M4 in D Mg, (A)is
determined up to canonical isomorphism by the S; ®, A-module M4 R Sy with
its induced Frobenius and filtration. This shows that | D Mg, | has a finite dimensional
reduced tangent space, whence so does |D%p |, by (1.2.4). O

PROPOSITION (2.2.19). There is an equivalence of groupoids over UARz,,:
(2.2.20) ng[Fp — D/‘/tuﬁp; My = S Qp,cMa.

Proof. The functor (2.2.20) is induced by that in (1.2.4), and its full faithfulness
follows from that of (1.2.4). Hence it suffices to show that the corresponding map
of functors

(2.2.21) |Dam,, | = [Dug, |

is an isomorphism.

Denote by [Dox;, | and [D g, |*" the functors on 2Rz, represented by
R;;{[Fp and R}’v‘f;p respectively. By (1.2.5), [Da,, | = [ Do, | is an isomorphism on
2R, , and so we may choose an isomorphism

| Doy, " lare,, — [Duttg, " loaons,,

which covers (2.2.21). Since [ Dy, ,|*" is formally smooth over | D, | (this is one
of the defining properties of the versal deformation), this isomorphism lifts to a
map Doy, , ¥ — | D, [*" which covers (2.2.21).

Let RJVv‘fr — RVer be the corresponding map of rings. This map is an isomor-
phism modulo )22 As 1n the proof of (2.2.17), it follows that it is an isomorphism,
provided we can show that Rverp is Zp,-flat. Assuming this for a moment, we

conclude that | Doy, , [*" — [ Dy, |*". It follows that for any A in ARz, the map
(2.2.21) is surjective on A-valued points. However, the full faithfulness in (1.2.4)
implies that it is injective on A-valued points, and this proves the proposition.
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It remains to show that Ryy is Zp-flat. We will show that Ryy is even
I’
formally smooth over Z,. For this we consider the Cartesian diagram of functors

| ver

|Dop ,|"" — | Dap |

l |

| Doy, |"" —— | Do, |-

Here we have written D~£me for DY . and the top left term is defined so that the
diagram is Cartesian. Now the bottom map is formally smooth by the properties of
the versal deformation, and hence so is the top map. On the other hand by (2.2.11)
we have a formally smooth map

DNgm{Fp — Dm = D;JI[F,,

Moreover an argument as in the proof of (2.2.17) implies that, if A4 is in ARz,
and L4 is in Dmp, then L4 and A ®z, A/L4 are free Og ®f, A-modules (this
can also be deduced directly from (2.2.17)), and it follows easily that |ng[Fp |, and
hence |D%p |Y¥', is formally smooth. On the other hand, the map on the right
is formally smooth by (2.2.11) and (2.2.17), hence so is the map on the left. In
particular this map is surjective on A-valued points for any A in ARz, ; thus, the

formal smoothness of |l§§m[Fp ¥ implies that of [ Doy, [*. |

COROLLARY (2.2.22). The category (Mod F1/8&)z,, is equivalent to the cate-
gory of p-divisible groups over Og.

Proof. By [Br3, 4.2.2.9] the category (Mod FI/S)z, is anti-equivalent to
the category of p-divisible groups over Og, and we turn this into an equivalence
by composing with Cartier duality. Now applying (1.2.4) with A = Z/p"Z, and
passing to the limit over 7, we obtain a fully faithful functor (Mod FI/&)z, —
(Mod F1/S)z, .

To show this is essentially surjective, let /it be in (Mod FI/S)z,, and write
My = M/ p" M. By (1.2.5) there exists My in (Mod FI/S), which maps to iy
under the functor of (1.2.5). As above, we have a natural isomorphism

(1 ® @)™ (M) /u®My —> My /Fil' sty = (M/Fil' M) ®7, Z/ pZ,

and the left-hand side is a free k[Ju]]/u¢ = Og/ pOg-module, because .l /Fil* il is
Z p-free, and hence Ok -free. It follows that we may apply (2.2.19) with Mg, = M.
This tells us that (the class of) Jt in | Dy, |(Zp) corresponds to an element 9 in
|Dox, |(Zp), and proves the required essential surjectivity. |
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(2.3) Generic fibers of flat deformation rings. In this section we will explain
some techniques for analyzing the generic fibers of deformation rings, and in
particular deformation rings of Galois representations.

(2.3.1) Let E/Q) be a finite extension with residue field containing F, and
Ofg C E the ring of integers. We denote by AR g the category of finite, local
W(F)[1/ p]-algebras B with residue field E. In particular B is then canonically an
E-algebra.

We denote by Intp the category of finite Og-subalgebras A C B, such that
A ®g, £ = B. The morphisms in this category are given by the natural inclusions.
Note that Intg is ordered by inclusion, and that any two elements of Intp are
contained in a third.

Let O be a discrete valuation ring, finite over W([F) and with 0 C O, and D
a groupoid over ARg. As explained in (A.7), D extends to a groupoid over Q/(i)\‘i@
As in (A.8) we denote by 2/[9\‘{@,(@ ) the category consisting of an O-algebra A in
Q/li)\%@, equipped with a map of O-algebras A — Of. In particular, we may regard
Intp as a subcategory of Q/li)\%@,(@ £)

Fix an object £ € D(Og). The construction of (A.8) gives a groupoid D )
over Q/li)\%@(o )» such that an object of the category D)(A) consists of an object
n of D(A) equipped with a morphism « : n — £ in D covering the given map
A — Of. We define a groupoid D g) over AR by setting

D(g) (B) = li_f)nAeIntB D(S) (A)

for B in AR . Here the limit is taken in the same sense as in the definition
of Dy, (A, ) in (2.1.1). More precisely, for A € Intp, denote by Intp > 4 the
subcategory of Intg consisting of the subrings A’ C B which contain 4. Then

D)(B) =limgempHomgg,  ~ (Intg.24. D).

The morphisms in this groupoid are also defined in an analogous fashion.

LEMMA (2.3.2). Let D — D’ be a formally smooth morphism of groupoids
over ANRg. Let £ be in D(OF), and &' in D' (Og) the image of &. Then the morphism
Dg — ng,) of groupoids over AR g is formally smooth.

Proof. Let B be in AR E, and A € IntB. Choose an object n = (, ) of
D(E’) (A). The morphism « : n — &’ gives & the structure of an object of D, (0g).
Unwinding definitions reveals that (D)), = (Dy) (). Thus we may replace D’
by the groupoid attached to n and D by D, and hence assume that D and D’ are
pro-representable. In this case, the lemma follows from (2.3.3) below. O
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LEMMA (2.3.3). If D is pro-represented by a complete local O-algebra R, then
the groupoid D gy on AR is pro-represented by the complete local O[1/ p]-algebra
IQE obtained by completing R ®¢ E along the kernel I¢ of the map R ®¢ E — E
induced by .

Proof. Since D is representable as a groupoid over Q/li)\%@, for any A4 in Q/[S)\‘{@,
any two isomorphic objects of D(A) are related by a unique isomorphism. Hence
for any B in /AR, any two isomorphic objects of D) are related by a unique
isomorphism, and it suffices to check that Iég represents the functor | D g)|.

Let B be in AR E. Any element of |Dg)|(B) is induced by a map R — A4,
for some A in Intg, such that the composite map R ¢ O — A Q¢ O — Of kills
the preimage of /¢ in R ®¢ Og. Hence we get a map R ®¢ £ — B with kernel
containing a power of /¢, since B is Artinian.

Conversely, any map R ®¢ E — B which kills a power of /¢ sends R ®c Of
onto a compact subring A of B, so that A € Intp, and the induced map R — A
produces an element of [Dg)|(A) C |Dg)|(B). O

(2.3.4) Let F/F, be a finite extension. Consider a representation of Gx on a
finite dimensional F-vector space Vi of dimension d. We will need a variant of the
groupoid Dy; introduced in (2.1.1). Namely we apply the discussion of (A.6) with
G = Gk, and we obtain a groupoid D%‘F over ARy () such that D%‘F (A) consists
of pairs (V4, B4) where V4 in Dy, (A) is a deformation of the Gk -representation
Vr to a finite free A-module, and B4 is an ordered A-basis of V4 lifting Bf.

If pr : Gk — GL4(Vf) is the map corresponding to S, then |DI|;['F|(A) is the
set of liftings of pf to a map pg : Gg — GL;(A) (not just up to equivalence). We
call p4 a framed deformation of pr to A. By Schlessinger’s criterion [Ma, 1.2], the
functor |DI|;['F | is pro-representable by a complete local W (F)-algebra RD[F, which we

call the universal framed deformation ring of V. Since the objects of D%'F have no
non-trivial automorphisms, this groupoid is also pro-represented by R I';'IF (cf. (A.5)).

There is a natural map of groupoids D%‘F — Dy, which is easily seen to be for-
mally smooth. We remark that the fibers of the map |DIE'F |(Fle]) = | Dy |(F[e]) are

principal homogeneous spaces under ad V/ (adV[F)GK , where adVy = Homg (VE, V),
and hence

dimg| D} | (Fle]) = dimg| Dy, |(F[e]) + dimpad Vi — dimg (ad Vs) X .

We will often have occasion to use this formula and its variants.

Suppose that E/Q), is a finite extension whose residue field contains [, and
let E = (Vor.Boy) € DE| (Of). We denote by ¢ the image ofé in Dy, (Og). Write
Ve = Vo Qo E. This i 1s an E-vector space equipped with a continuous action of
Gk, and an ordered basis B g induced by B¢ ..
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Applying the construction of (A.3) with E in place of [, and V¢ in place of
VE, we obtain a groupoid Dy, over 2R g such that the objects of Dy, (B) consist
of a deformation of the G -representation V¢ to a finite free B-module. Similarly,
applying (A.6), we obtain a groupoid DE& over 2R g, such that for B in ARE,

DES (B) is the category of deformations of the G g -representation Vg to a finite free
B-module Vg, together with an ordered B-basis 8p for Vg, which lifts .

PROPOSITION (2.3.5). There are natural isomorphisms of groupoids over
ARE,
D ~
Vi, (§)
Proof. Let B be in AR . If A € Intp, then an object of Dy, (¢)(A) corresponds
to a continuous representation of Gx on a finite free A-module V4, equipped with
an isomorphism V4 ® 4 O —> Vg - Hence, we have natural maps

(2.3.6) Dy, (6)(B) = limaems Dy; ¢)(4) = Dy, (B)

and this underlies a map of groupoids Dy, ¢y — Dy, over ARE.

The argument of [Kil, 9.5] shows that any element of | Dy, |(B) arises from
an element of | Dy, (¢)[(A) for some A € Intg. Hence the morphism of groupoids
underlying (2.3.6) is essentially surjective, and it is fully faithful, because if
V4. W4 € Dy, (¢)(A), then any isomorphism V4 ®4 B —> W4 ®4 B is induced by
an isomorphism V4 ®4 A’ —> W4 ®4 A’ for some A C A’ € Intp.

The straightforward argument for the construction of the second isomorphism
1s similar, and left to the reader. O

Dy, (&) —> Dy, and DY} . —>Dy..

(2.3.7) Keeping the above notation, suppose now that Vf comes from a finite
flat group scheme. As in (2.1.1), we denote by D?,E C Dy, the full subcategory
over AR ) corresponding to deformations which are the generic fiber of a finite

flat group scheme. It is again a groupoid. We define D?,’[FD C D?,LF analogously, so
that
1,0 ~ A |
DV[F _)DVUI XDV|]: DV[F

Since D{'}[F — Dy, is relatively representable, and D%‘F is pro-representable, D?,’FD
is pro-representable by a complete local W ([F)-algebra R?,’[FD.

Suppose that § € D?;’[FD (Of) and £ is its image in D?,LF (Og). Then we denote
by D?,r; the full subgroupoid of Dy, corresponding to deformations which are

crystalline, and we define a subgroupoid D?,r:’lj of DIE'é in a similar way.

PROPOSITION (2.3.8). The isomorphisms of (2.3.5) induce isomorphisms

fl ~ cris 1,00 ~ cris,[J
Dy & — DVs and DV[F,(§) — DVS .
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Proof. The second isomorphism follows easily from the first and (2.3.5), so
we need only to establish the first isomorphism.
Let Bbein R g and A € Intp. If V4 isin D?,[F(A), then V4 / p"™ V4 extends to
a finite flat group scheme for every n, so that V4 is the Tate module of a p-divisible
group [Ra, 2.3.1], and VB = V4 ®z, Qp is crystalline. This shows, in particular,
that Vg is Barsotti-Tate, and that the first morphism of (2.3.6) induces a morphism
D?;[F,(S) — D%};S over ARE. .
Now suppose that Vp € D‘;,;‘S(B) is crystalline. As a Q,-representation it is
a successive extension of copies of Vg, and hence its Hodge-Tate weights are all
either O or 1. By (2.3.5), there exists a Gg-stable, free, A-submodule V4 C Vp
with V4 ® 4 B —> V. On the other hand, by [Br3, 5.3.1], there exists a Gg-stable
Zp-lattice L C Vg such that L is the Tate module of a p-divisible group. We may
assume that V4 C L. The quotient L/ Vy is killed by p” for some positive integer r.
Hence for every integer n > r, V4 /p" " V4 is a subquotient of L/ p" L. It follows
that V4 / p"~" V4 extends to a finite flat group scheme [Ram, 2.1], which shows that
V4 € D{Ii/m,(é) (A). It follows that D1l — D%};S is essentially surjective, and it is

Vl]:a(g)
fully faithful because the morphisms in (2.3.5) are. |

LEMMA (2.3.9). The functor |Df};s| is formally smooth.

Proof. Let B be in AR g and I C B an ideal with /2 = 0. Suppose [VB/1]is
in |D§};S|(B /1). Since Vg, is crystalline, it corresponds to a weakly admissible
¢-module g, y, which lies in (Mod/Ko¢) g/t by (1.3.4). Moreover, since Vp/j,
considered as a Qp-representation, is a successive extension of copies of Vg, we
have Fillﬂ/tB/I,K =0 and Fil_lﬂ/tB/I,K = Mp,1,k - Here the subscript K denotes
tensoring by ® g, K.

By (1.3.2), Mp/g is free as a B/I ®q, Ko-module. Choose a free B ®q,, Ko-
module Jp and an isomorphism Jlp ®p B/I %JI/LB/I. Since gr®Mp/; g is a
projective B/I ®q, K-module, one sees easily that there exists a projective B ®q,,
K -submodule FilOJ(/LB, Kk CJMp, g such that Mp g/ FilO./(/LB, x 1s also projective over
B®aq, K, and Fil’Mlpg xk ®p B/1 =Fil®Mp/; x C Mg/ k. Similarly, we can lift
the morphism ¢* (Mg, ;) — g, to a morphism ¢*(Mp) — Mp. Now we have
an exact sequence

O_>I®B/IMB/I — JMp —)JI/LB/I -0

which is compatible with Frobenius maps, and remains exact after tensoring by
®k, K and applying Fil®. Now choosing a presentation of I by free B/I-modules,
we see that the term on the left is admissible, since the category of weakly admissible
modules, admits cokernels. Since this category is stable under extensions, this
shows that Jlp is weakly admissible.
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Now setting Vg = V5,8 (Mp) and using (1.3.5), we see that Vp lifts Vg, 7.
O

(2.3.10) Let v and F be as in (2.2.4), and E/F be a finite extension. If
£e D?,[F (Og), we say that & or Vg has p-adic Hodge type v if for alla € K

det(a] Deris(Ve) x /Fil° Ders (Ve)x) = [ [ ¥ (@)™
¥
Now, § in D?,’[FD (Og) has p-adic Hodge type v if its image in D?,IF (Og) has p-adic
Hodge type v.
We denote by Iég’u the completion of R?,’[FD ®w(r) E along the kernel of the map
R?,’[FD ®w(F) E — E corresponding to é . Similarly, if End[G.1VF = F, then f\’g de-
notes the completion of R?,[F ®w(r) E along the kernel of the map R?,E Qwmr E—E

corresponding to £.

COROLLARY (2.3.11). The E-algebra Iég’u is formally smooth over E. If &
has p-adic Hodge type v, and d = dimg Vg, then

dimEﬁg’D =d*+ Z(d — Uy ) Uy
v

IfEndgiG 1 VE =F, then ﬁg is formally smooth over E and

dimEI%g =1+ Z(d — vw)vw.
¥

Proof. The claims regarding formal smoothness follows from (2.3.8), (2.3.9)
and (2.3.3).

Given this, to check that dimg Ii’g’u (resp. dimg Iég) is given by the above
formula, it suffices to check that this is the dimension of its tangent space. By what
we have already shown this is equal to dim g |D$;S’D |(E[€]) (resp. dimpg D%};S(E e])
(where €2 = 0). Now |D$;S|(E[e]) = Hf1 (Gk.adVg) has E-dimension Z]/,(d —
Uy ) Uy +dimg H O(G k- adVg) by [Ne, 1.24], which, in particular, proves the second
formula of the corollary. As in (2.3.4) we then have

dimg |D§,§S’D|(E[e]) = dimg| D{f*|(E[€]) + d* — dimg H (Gk, ad V)

=d?+ Z(d — Uy ) Uy

(2.4) Connected components. ¥In this subsection we analyze the connected
components of Spec R?;E[l /p] and Spec R?,[F[l /p] using $Ry, and the related
schemes introduced in Section (2.1). We retain the notation of the previous section.
As in Section (2.1), we denote by MF the preimage of Vf(—1) under the functor 7.

O
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(2.4.1) Let R be a complete, local, Noetherian O g -algebra with maximal ideal
mpg, and residue field F, and fix & € D?,IF(R). Let E/F be a finite extension and
y : R — O a map of Of-algebras. We say that y has p-adic Hodge type v if the
object of ng (Og) obtained from & by applying @ ROg has p-adic Hodge type v.

Let ™" denote the p-adic analytic space attached to Spf R [del, §7]. The
points of &*" are in bijection with the maximal ideals of R[1/p] [de], 7.1.9]. In
particular, any y as above corresponds to a point of ¥*" which we again denote by
y. Denote by (vy,y )y the p-adic Hodge type of y. By the main result of [Se], for
each Q,-algebra embedding ¥ : K — K, the coefficients of X 4~Vv.» (X —1)Vv.»
are analytic functions of y € ¥*". Since they are in fact integers, they must be
constant on the connected components of ¥*", and the functions y > vy, are
likewise constant on these components. (Sen considers a more general situation
involving families of representations which are not necessarily Hodge-Tate, and so
his functions are in general non-constant.)

The connected components of ¥*" coincide with those of Spec R[1/p]. When
R is normal this follows from [delJ, 7.4.1], which shows that any idempotent function
on %" is contained in R. For the general case, let R denote the normalization
of R, and %™ the associated analytic space. Then R is a finite R-algebra, so
that % — %" is finite [delJ, 7.2.1]. Since the points of ¥*" are in bijection with
the closed points of Spec R[1/ p], one sees that the images in Spec R[1/ p] of two
connected components of SpecR[l / p] meet if and only if the images in ¥*" of the
corresponding components of ¥ meet.

Hence there is a subset of the set of connected components of Spec R[1/ p]
such that y has p-adic Hodge type v if and only if (the image of) y lies on one of
these connected components. We denote by RY the quotient of R corresponding to
the closure of these connected components in Spec R.

(2.4.2) Restricting D p; to 2Augg,. yields a groupoid D e, ary |2mug, = and we
denote by D‘é’ M, the full subgroupoid whose value on (4, I) in QAugg, consists
of those M4 in D pm, (A, I) such that for a € Og we have

det(a|(1® ¢)(¢™ (Ma))/ E@)Mg) = [ [y (@)™
W

. . v _ v
as polynomial functions on Og. We set D6,M[F,E =¢£ XD'?/[FMug@F DG,M[;'

LEMMA (2.4.3). The groupoid D § M is representable in the sense of (2.1.10)

by a closed subscheme

(gg{‘{/hs C %%VF,E

Proof. Let T be any O -scheme, and L be an Og ®7z, Or-module which is
locally Or-free. With the notation of the proof of (2.2.5), equating coefficients in
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the equality
det ( Y e’ Xi,0|L) =[] W(en')Xio)"
T \Nio v i
defines a closed subspace of T'.
Now over 4Ry, ¢ we have a universal sheaf of & ® @cqg{V e-modules gruniv,
equipped with a morphism ¢* (S)JT““‘V) — S)thm" The closed subspace ‘Q%V £ C

YRy, ¢ can be constructed by applylng the remark of the previous paragraph with
T =%Ry, ¢ L= ¢*(9ﬁ§"iv)/E(u)9ﬁ‘§“iV. O

(2.4.4) If F is a finite extension of [ and F**P the residue field of Kf)ep, then
following (2.2.5), for any o € Gal(Ko/Qp), we denote by €; € k ®, [’ the

1
idempotent which is 1 modulo the kernel of the map k ®, 3 F*°P corresponding
to o, and 0 modulo the other maximal ideals of k ®,, F.

From now on we make the following assumption:

(2.4.5) The morphism & — D?, of groupoids over ANRg,. is formally smooth.

The two most important examples for apphcatlons are R = R - Qw(r) OF if
Endg[G1VF = F, or more generally, R = R ®W([|:) OF.

PROPOSITION (2.4.6). Let 4R): Og denote the closed subscheme of (QQRV E
corresponding to the ideal sheaf of p-power torsion sections, and write CQQRV £ =

GRY,  ®o,F and GRy, s = GRS ®c - F. Then:
(1) GRY; loc is normal and Cohen-Macaulay.

Ve.§
2) ‘QQRVI £ s reduced and normal with rational singularities.

3) IfF / [ is a finite extension, and smp in (Mod FI/ &)y corresponds to a point of
y € S’%QRV[F g(F'), then y € %97{ S(”:/) if and only if for every o € Gal(Ko/Qp),
the endomorphism 1 ® m of eg(l ® ¢)p* (M) E(u)My has Jordan type Sy,
satisfying Sg < V.

4) If for any o € Gal(Ko/Q)p) any two of the integers vy, with Yo = o differ by
at most 1, then §R7; Og = 4Ry, Vi provided either vy, = 0 or 1 for each , or
e <2

Proof. Since each of the statements is local on YR, Ve £ it suffices to prove
them in a neighborhood of a closed point y of 4%y, Ve £ w1th residue field F'. After
replacing F by ', and R by R ®w ) W(F'), we may assume that F' = [F. We denote
by 9 the object of (Mod FI/ &) corresponding to y.

If (A, my) is in AR, and M4 is in DSVmE(A), then we can also regard Mi4 as
an object of DVG’M[F(A, my). Thus we get a morphism of groupoids Dy, — DVG,M
on 2ANRg,.. (Here we again denote by D‘é’ My the restriction of DVG’ M, 10 ARo
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and we will adopt the analogous convention for other groupoids below.) This fits
into a commutative diagram of groupoids over 2ARg,..

(2.4.7) D;m f— Dy, — DY,
Doy, g —— Doy,

ngt‘{/m,'é DVG,M[F

Oy
i
§ Dy,
Here the lowest square is Cartesian by definition, and DEmF £ and D% g are defined

so that the other two squares are Cartesian. The two maps with DV as their source
are given by (2.2.12) and (2.2.13).

From the definitions one sees that the completion of the local ring on ‘Q%%,[F’S
at the point y represents the groupoid ng & Let R¥, > denote this complete R-
algebra. By (2.2.11) Dv Wy £ is also (pro)-represented by a complete local R-algebra
RV . Let Ry ploc , and Rv o , denote the quotient of Ry,  and Rv , Tespectively by
thelr ideals of p power torswn elements. Since DV —> DV 1s formally smooth
by (2.2.11), R‘{,lo; = R;;O; ®Ry, , Rv y 18 formally smooth over R;lo;

Now for any Noetherian local rmg A its completion A is flat over A, and
this implies that A[p®]- A = A[p®]. From this we deduce that R?,[Flo; is the
completion of the local ring of %97%; Og at y, if y lies in this closed subscheme, and
is 0 otherwise.

On the other hand, D;J%[SC and Dv are represented by complete local rings
R;;qfc and RV respectively. These are the complete local rings at points on
the schemes M| 1°° and M, respectively, where M| loc and My are the O f-schemes
introduced in Section (2.2). By (2.2.11), and the formal smoothness of & — Df .
Rv , is formally smooth over RY.. , and hence RV IOC = RV ,® Ry, RV loc
YV, loc

formally smooth over Ryy
The proposition now follows from (2.2.8). O

PROPOSITION (2.4.8). The map Oy, of (2.1.4) induces a projective map of
O -schemes
1
M CGRYy; Og — SpecR".

This map becomes an isomorphism after we apply Qg .F'.
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Proof. To check that the composite

v,loc ®V[F>‘§
(2.4.9) GRY'% > GRy, ¢ — SpecR

factors through Spec RY, it suffices to check that the map obtained from (2.4.9)
by inverting p factors through Spec R¥[1/ p]. Since the latter scheme is a union
of connected components of Spec R[1/ p], it is enough to check that for any finite
extension £/ F, any E-valued point of C@?R;;Og ®0, F maps to Spec R¥[1/ p](E).

Let y be such a point. Then y corresponds to a map R — O, and hence to a
point of (Q%;[iog, by the valuative criterion for properness. These two Og-valued
points give rise, respectively, to a continuous representation of G on a finite free
Of-module Vg, and an object Mg, of (Mod FI/&)¢.

Let A denote the object of (Mod FI/S)¢, corresponding to Mg,. Using
(1.1.3), one can attach a p-divisible group Gr(.l) to Jl, whose Cartier dual we
denote by Grp (/l). The latter p-divisible group is the one attached to g, by
the functor of (2.2.22). Gr(/l) and Grp (M) are equipped with an action of Og by
functoriality.

Now write Vg = Vo, Q¢ E, and for a p-divisible group 9, let V,(9) =
Tp(9) ®z, Qp, where T (9) is the Tate module of 4. Given a continuous represen-
tation of Gk on a (p-vector space V', we set

l)cris(Vyk = HOII]@P[GK](V, Besis).
We compute
DcriS(VE)K/FﬂODcriS(VE)K
—> D cris (Vp (GrD (M)) (_ 1))K/Fi10 Dcris(Vp (GrD (M)) (_ 1))K

5> DX (Vo (Gr( L)) x /Fil' D, (V,(Gr(M))) k

> (M/Fil' M) @ K —> ((1® $)(¢™(Mo))/ E@)Mo) Qo K.

The first isomorphism follows from (1.1.13), and the full faithfulness of [Br4, 3.4.3],
the third from [Br3, 5.3.1], and the final isomorphism was noted in the proof of
(1.2.4), and has been used several times above. It now follows from the definitions
that y corresponds to an E-valued point of RY. This proves the existence of the
map ®¥,[F’ £

To check that @}F, £ becomes an isomorphism after ®¢ I, we begin by check-
ing that it induces a bijection on O g-valued points for any finite extension E/F.
Consider an Og-valued point y of R, and let Vg, be the corresponding Gg-
representation. By definition Vg / p" Vi, comes from a finite flat group scheme, so
Vo =Tp(%9) for a p-divisible group 9 [Ra, 2.3.1], which is unique by Tate’s theorem
[Ta, Thm. 4]. By (2.2.22) 4 arises from a unique module M, in (Mod FI/&)z,,,
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which carries an action of Ofg. Since Mg . is free over G, Mg . /uMg . is free over
S/u6, and hence it is finite flat over &g, /uSg,.. This implies that Mg . is finite
flat over &g, so that Mg, is in (Mod FI/S)g,,. Finally, if F’ denotes the residue
field of Of, the isomorphism Vo, ®¢p F' =5 V¢ ® F induces an isomorphism
W@E Ko [F/[l/u] = M QF F.

This, together with the calculation already done above, shows that Mg,
corresponds to an E-valued point y of (Qgt‘{,% £ which maps to y. Any other such E-
valued point 3’ corresponds to an object zng of (Mod FI/8)¢,.. Since Mg, and
EITZ%E both give rise to Vg, the construction in (2.1.7) shows that we may identify
Mo [1/u] with Mg [1/u]. On the other hand, M, . gives rise to a p-divisible
group ¢9', and if we identify the generic fibers Gk and 9y with the étale p-divisible
group over K corresponding to Vg, then this identification extends uniquely to
an isomorphism % —> ¢, by Tate’s theorem. This implies that the isomorphism
Mo [1/u] —> Mg . [1/u] identifies M, with M, so that § = §.

It follows that ©}, . induces a bijection on E-valued points. Let O}, . ®q F
denote the map obtained from @}F, £ by inverting p. It is a projective map, which
induces a bijection on closed points. In particular, this implies that ®¥/[;, ¢ ®or Fis
a finite map.

By (2.4.6)(1) the source of this map is normal, and by (2.3.2), (2.3.8), (2.3.9)
and the condition (2.4.5), its target is regular. Hence ®¥,[F’ £ ®g¢ I is an isomorphism.

|

COROLLARY (2.4.10). For a topological space X we denote by Ho(X) the
v,loc v,loc

set of connected components of X. Let (Q%VF o denote the fiber of (Q%V’[F g over the
closed point of RY. There is a bijection

Ho(Spec R*[1/ p]) > Ho(4R}).

Proof. Consider a connected component of ng{;;og ®ge I, and let e be the
idempotent which is 1 on this component, and vanishes on the others. If 7 € Of
is a uniformiser, let  be the least non-negative integer n such that 7% e extends to
a section of ‘5?]1;;05 . We have

(nlte)? = nlt(n'ke).
If n > 1, this implies that nﬁe induces a non-zero, nilpotent function on %97%‘;,;; =
CQQR‘{,’IOC ®gq . However, this scheme is reduced by (2.4.6)(2). It follows that n = 0.

!S
This [Fimplies that

(2.4.11) Hy (@%;’;‘E ®c, F) => Hy (@%;;‘jg).
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On the other hand, if <§9Rv sloc denotes the formal scheme obtained from Cg%;log
completing along mg, then we have

(2.4.12) Ho(99y,%) —> Ho (cg@t;;?g) 5 Hy (%;1"5)

where the first isomorphism follows from the fact that ‘QQRV sloc o and GRY; log have the
same underlying topological space, while the second 1som0rph1sm follows from
[GrD III, 5.5.1]; the key point is that the global idempotent functions on ‘QQRV Jloc
and GRY; log are in bijection [GrD, III, 4.1.5]. Combining (2.4.11) and (2.4.12) w1th
(2.4.8) proves the corollary. O

(2.4.13) We will make a conjecture regarding the connected components
of Spec RY[1/ p] or, equivalently those of C@?RVOS To formulate it we need a
strengthened version of (1.2.11).

PROPOSITION (2.4.14). Let (A, I) be in Jugy ), and My in De pr. (A, ).
Then My admits a maximal multiplicative subobject M and a maximal étale
quotient smf;. Moreover:

(1) Both the quotient M4 /M'{ and the kernel of My — fmj are objects of
(Mod FI/&) 4.

(2) If (A, 1) — (B, J) is a morphism in 2ugy ) then there are natural isomor-
phisms

(M4 ®4 B)" =M @4 B and (M4 @4 B)* = MG @4 B.
(3) There are natural isomorphisms
O™ > (MD* and (M) > (M)*.

Proof. Standard arguments show that it is enough to consider the case where
A is finitely generated over W([F), and we assume this from now on.

Let x be a closed point of A/, and «(x) be its residue field. By (1.2.11),
the object My, x = My ®4 k(x) of (Mod FI/&), () has a maximal multiplicative
subobject zm;l", .- By (1.2.2)(4), sz” .. is finite free over &, (y), and we denote its
rank by d, (x). Locally on A we may choose a basis for 04 /uM,4, and consider
the characteristic polynomial P(7) of the matrix for ¢ acting on 974 /uM4 in this
basis. Then d,;(x) is equal to the greatest integer i such that the coefficient of
T4 in P(T) does not vanish at x. Hence d,, is lower semi-continuous for the
Zariski topology on the closed points of Spec A/I. We will show that it is also
upper semi-continuous, and hence constant.

We extend the definition of (1.2.6), and denote by ®Mg, 4 the category of
finite O¢ ®z, A-modules M4 equipped with an isomorphism ¢* (M) — M. Let
W4 be a finitely generated A-module, equipped with an action of Gg__ such that
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the orbit of any element y € Wy under the action of Gg__ generates a finite W ([F)-
module. Consider the functor from such A[Gk__]-modules to ®Mg, 4 given by

Dg: Wyt (05 ®7, Wq)CKeo,

C(g\.ll'

An argument as in (1.2.7) shows that D4 is exact, commutes with extensions of
scalars for any morphism 4 — B in 2dugyp), and that Wy is locally free over A if
and only if D4(Wjy) is locally free over O¢ ®z, A.

Let V4 be the image of 914 under the functor Oy, of (2.1.4). V4 corresponds
to a Galois representation Vs in Dlﬂ/[F (A") where A’ is in Qli)‘ié,’(I[F). We will again
write V4 for the A-module V4 ® 4/ A equipped with the induced A-linear action
of Gk . Suppose that L4 C Vj is a Gg-stable, projective A-submodule, such that
V4/ L4 is also projective, and that the action of Gg on L 4(—1) is unramified. Write
k for the residue field of K. The above remarks show that

Da(La(=1)) = Og ®wi) (W(k) ®7, La(—1))CKe
C Da(Va(—1)) = My [1/u]

is a locally free O¢ ®z, A-submodule, with locally free quotient, and that its
formation commutes with extension of scalars in the same sense as above.
Now fix an integer d,;, < d. We define a groupoid DdGZ"M[F over Augy ) as

follows: For (4, I) in 2lugyy), an object of DéTM[F(A, I) consists of an object
My of De p,, together with a Gk -stable, projective A-submodule Ly C V4 of
rank dy, (here Vy is associated to 914 as above), such that V4 /L 4 is projective, the
action of Gg on L4(—1) is unramified, and we have

Ua(La) := (W(k) ®2z, La(—1))%%o C My C Da(Va(=1)).

Formation of U4(L4) (as a functor in L4) commutes with extension of scalars,
because D4(L 4(—1)) has this property, and Og is a faithfully flat W(k)-algebra.
In particular DémM[F is a well defined groupoid.

The morphism D‘IIG””ME — Dg, m; given by sending (Mg, L4) to My is rela-
tively representable and projective. Its fiber over an object M4 in D py, is given
by a closed subspace of the Grassmannian of dj,-dimensional subspaces of V4. To
see this it suffices to show that given a projective submodule L4 C Vy of rank d,,
with V4 /L4 projective, there is an ideal J C A such that for any map A — A’ in
Augw(r), L4 ®4 A" isin Dé’j’M[F (A’) if and only if JA” = 0. The conditions that L 4
is Gk -stable and that the action of Gg on L 4(—1) is unramified obviously cut out a
closed subscheme of Spec A. Hence we may assume that L4 already satisfies these
conditions. Noting that S4[1/u]/ &4 is a free A-module, so that M4 [1/u]/M4 is
a projective A-module, we identify it with a direct summand in ;. A4 for some
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index set /. Let r denote the composite
r:Ua(La)— Da(Va(=1)) = Da(Va(=1)) /Mg — Ma[1/u]/Ma—D;c A

Set J equal to the ideal generated by the co-ordinates of the elements r(u) where
u runs over Uy(L4). Using the fact that formation of Ugq(L4) commutes with
extension of scalars, one sees immediately that J has the required property.

Let A be a finitely generated W([F)-algebra, § = M4 in Dg p,(A), and
Dde’fM[F’ £ the fiber of Dé’fM[F over &.

Suppose first that A is a local Z,-algebra with |A| < co. Then we have the
maximal multiplicative submodule D% = (V72 (¢*)" (M4) defined in (1.2.11).
Since M}’ and M4 /MY are finite free S4-modules by (1.2.2)(4),

LY = (04 ®z, MY [1/u)*=1(1) = (W(K) ®z, MP)*=1(1)

and V4 /L) are finite free A-modules by (1.2.7)(4), the former module having rank
ke, 7. Hence for any finite local A-algebra A’, DdG””M[F,S (A”) consists of the
finite projective submodules L4/ C L’} ® 4 A’ of rank dp, such that (L'} ®4 A")/ L4/
is projective. Here we have used that the formation of 9" and L' commutes with
extension of scalars A — A’ by (1.2.11)(2) and (1.2.9)(2).

In particular, we see that for any finitely generated W([F)-algebra A, and
& =My in Da p, (A), a closed point x of Spec A (or equivalently of A/7) is in
the image of Ddé’”j\/{%S if and only if d,,(x) > d,;,. This shows that the function
d,; is upper semi-continuous, and hence constant on the closed points of Spec A.
Moreover, if d,;, (x) = dy,, then the morphism DdG’fM[F’ £ Spec A is an isomorphism
in a neighborhood of any closed point in its image. It follows that this map is an
isomorphism onto those components of Spec A where the function d,, is equal to dp,.
In particular, using the universal A-submodule L4 C V4, we obtain a multiplicative
submodule

" =6 ®z, (Wk)®z, La(—1))%K C My.

When |A| < oo this agrees with the definition of I} in (1.2.11). To see this,
temporarily denote by M3 = (22, (¢*)" (M) the submodule defined in (1.2.11).
Then IV} C MY, and

Oz ®z, MF/u)?=1 (1) = LY = Oz @z, MY [1/u])*=" (1).

Hence MY [1/u] = 9U7'[1/u]. Since the map ¢*(IM'Y) — MY is an isomorphism,
this implies that 90U} = 9} (cf. the proof of (2.1.7)).
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For any A, the formation of 9} commutes with extension of scalars. In
particular, if A’ is any Artinian quotient of A, with |4’| < oo, then

o0
My @4 A' = (M4 @4 A)" = [)($*) (M4 @4 A).
r=1
Hence M’y ®4 A’ contains the image of (7= (¢*)" (M4) in My ®4 A". It follows
that for any maximal ideal m of A, and any positive integer i, we have

(0 @ @)/my <l ma/my).

and so MY = MNreq (™) (M4). This proves that I is the maximal multiplicative
submodule of 4. Its other properties follow by construction. The existence and
properties of smf; now follow by duality as in (1.2.11). O

(2.4.15) Let DJZB’IOC denote the universal sheaf of G ®z,, Ogv.lc -modules on
VE.O

CQQR‘{,’;OS. We may apply (2.4.14) to obtain a submodule EITI‘(;’IOC’m C Uﬁg’loc and a

quotient module Sm(v)’loc’ét. On any connected component of CQQR}’[:OS the ranks of
these modules are well defined, and constant.

Let d = {dg, dm } be a pair of non-negative integers. We denote by ‘99{‘{,’;?8"1 -
CQQR‘{,’;O; the union of the connected components on which Dﬁg’loc’m has rank d,,
and Emz’loc’ét has rank dg.

Suppose that E/F is a finite extension, and that x € Spec Ry, (E). Let Vg
denote the corresponding representation of Gg. It is not hard to check that (the
image of) x lies on a connected component of Spec R¥,[F [1/ p] which corresponds
via the isomorphism of (2.4.10) to a connected component of ‘Q%‘{,’;Og’d, if and only
if the maximal unramified subrepresentation of Vg (—1) has E-dimension d,,, and
the maximal unramified quotient of Vg has dimension dj.

CONJECTURE (2.4.16). Suppose that Endgg.1VF = F. Then (ggi\{/,[:og,d is
connected.

(2.4.17) We want to give a conjectural description of the normalization of RY.
Given (A, I) in Rugg,., and a point y € DVG,M[F,S(A’ I) we obtain an object iy
of (Mod FI/&)4. Let My 0 = Ny /uIMy. This is a finite free W ®7z, A-module
equipped with a Frobenius semi-linear map ¢ : My,0 — My,0. Hence (p[k:[FP]
induces a linear endomorphism of 94,0. We denote by P (T) its characteristic
polynomial.

Since the construction of PJ(7') is functorial in y, there is a polynomial

Py (T) € T(GRy, ¢, Ouary, [T

which pulls back to PJ(T’) for every point y as above.
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We note for later reference that if £/Q) is a finite extension, y € (Spec R¥)(E)
and Vy, denotes the G g-representation corresponding to y, then y may be viewed
as an E-valued point of %@i}ﬁs by (2.4.8), and the pull-back of PIV,[F(T) by y
is the characteristic polynomial of (p[k ‘Frl on Dcris(Vy*). This follows from the
construction and [Br3, 5.3.1].

Let RY denote the subring of I'(QQQR;’;O;, @(gg{v,locé) generated by RY (via the
s VE.

map of (2.4.8)) and the images of the coefficients of PIV,[F(T).

v,loc 0

CONJECTURE (2.4.18). The natural inclusion R® C F(‘QQRV[F £ (g%v,locs) is an
5 Vi,

isomorphism. In particular, RY is the normalization of R.

(2.4.19) Note that the two statements in the conjecture are equivalent, because

(Q%‘I’,[:Og is normal by (2.4.6), so that F(‘Q@t‘{,’;?;, 6‘5%%0}) is normal and finite over

RY. Because of the formal smoothness condition (2.4.5), the truth of (2.4.18)
depends only on Vf and not on the choice of R.

(2.5) Rank 2 calculations. In this subsection we assume that d = 2, that the
integers vy, = 1 for all ¥ and, unless explicitly stated otherwise, that Ko = Q. In
this situation we will verify the conjecture (2.4.16).

Since vy = 1 for all Y, we have 4Ry, , = %97{;[:(’; by (2.4.6)(4). Following
the notation of the previous section, we regard CQQ?},F’E as an RY-scheme via the
map Oy, of (2.1.10), and we denote by (Qgt‘{,[“() its fiber over the closed point of
RY. This is of course equal to (Qgt‘{,% , Where z is the object Vf of D?,[F(I]:).

We will assume that Spec RY is non-empty.

LEMMA (2.5.1). If V' is a finite extension of T, then the elements of 4Ry, o(F')
naturally correspond to finite free G ®g, F' = F'[u]] submodules My C My :=
Mg ®¢ F' of rank 2 such that:

(1) My is stable under the map ¢ : My — M.

(2) For some (and hence any) choice of an F'[[u]]-basis of M, the induced map
¢ - My — Mp has determinant cu® where o € F'[lul™.

Proof. By definition, 4Ry, (F') corresponds to finite free I'[u]] submodules
M C My of rank 2 such that u¢IMp C (1 ® ¢) (@™ (Mp)) C M, and satisfying
the condition of (2.4.2). Since Ko = Qp, this condition becomes (cf. (2.2.1))

det(T —7|(1® P (@™ (M) /uMer) = T¢,

which is equivalent to the condition dimg ((1 @ ¢)(¢* (D)) /uéMy) = e, because
7 induces a nilpotent endomorphism of (1 ® ¢)p™ (M) /ué M.

Now any ¢-stable, finite free F'[[u]] submodule 9 C My of rank 2 admits a
basis {e},es} such that (1 ® ¢)(¢* (M) = (u'eq,u’ es) for some non-negative
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integers i, j. (Note that ¢* Mg — M is an isomorphism). If v,, denotes the u-adic
valuation on [F'[[u]] then we have vy (det(¢p|9F)) =i + j, where the determinant is
computed with respect to any choice of basis of M. Thus, M satisfies (2) above
if and only if u®Mp C (1 ® ¢)(¢™ (M), and

dimg ((1 ® ¢)(¢™ (D)) /uMp) =2e —i — j =e. O

(2.5.2) Let Ix C Gk denote the inertia subgroup, and k the residue field of
K. Recall that the fundamental character of level n, w, = wy, k is given by

wn g >k g g(P" ) Y.

The formation of fundamental characters is not, in general, compatible with change
of field. Namely, if K’/ K is a finite extension with ramification degree e, then 7 is
a product of e uniformisers of K’, so that w, k|7, = o K

If K’/K is a finite unramified extension, which contains the (p”—1)-th roots
of unity, then w, extends to a character of Gg- given by the same formula as above,
which we again denote w,. Note however, that this extension depends on the choice
of uniformiser .

LEMMA (2.5.3). If Vg is reducible its semi-simplification V;** satisfies
V[FssllK ~ a)ll ® a){

withi,j €[0,e],and p—1|e—i—j.
If VE is irreducible and Isz C [, then

i pi

for an integer i such that i = io + piy, for integers io, i1 € [0, e] with p+ 1 t i and
p—1]|e—i. Here we regard wy and wy as F-valued via any embedding F — k.

Proof. The image of Gk in Autg Vf is either contained in a Borel subgroup,
or is dihedral [Ra, 3.2]. This corresponds to the two cases in the lemma. In the
first case, it follows from local class field theory and the assumption Ko = Q,, that
VS lig ~ a)’l <) a){ for some integers 7, j. Since Vf extends to a finite flat group
scheme, 7, j can be chosen in [0, e], by [Ra, 3.4.3]. In the second case local class
field theory and Ko = Q) imply that V¢|7, ~ w’2 & wf " for some integer i. Since
VF extends to a finite flat group scheme, i can be chosen to be of the form ip + piy
for some integers ig,i; € [0,e]. If p+ 1], then a)’2 = a)é”, and Vf cannot be
irreducible, hence p + 1 }i.

It remains to check the claims regarding divisibility by p — 1. These are
equivalent to asking that /g acts on dety Vf via a)f . On the other hand, if Spec R?,’[FV
is non-empty then Vf lifts to a characteristic 0 representation whose restriction to
Ik has cyclotomic determinant. (This follows easily from the definition of R?,’IFV in
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(2.4.1), and the fact that vy, = 1 for all ¥.) Thus it remains to show that w{ is the
reduction mod p of the cyclotomic character. When K = Q,, this is a standard fact,
and the general case follows from the remarks of (2.5.2). O

(2.5.4) If M is an object of (Mod FI/ &) of rank 2 over F[[u]], then we call
M ordinary if it is an extension of an étale object by a multiplicative object, each
of rank 1. By (1.1.15), if Mf is the image of MM under the functor of (1.2.4), then
Mg is ordinary, if and only if Grp (M) is ordinary.

For any sublattice 9t C M in (Mod FI/&)f and any A € M, (F((u))) we
will write 90t ~ A if M has an F[u]]-basis {e1, €2} such that the corresponding
F((u))-basis of Mg, satisfies ¢ (e} ) = A(¢} ). Similarly, we will write My ~ A if
M has a basis in which ¢ is given by A, in the sense just explained.

Finally, we will make the convention that if 91 C Mf is an F[u]-sub-
module with a chosen basis {e;,e;}, and A € M, (F((u#))), then we denote by
Mg, = A-Mp,; the F[u]-span of the entries of (4(¢})), and we will consider
M o with the basis given by these entries.

We will denote by v, the u-adic valuation on F((u)).

LEMMA (2.5.5). Suppose that Vi is irreducible, and let My be the module
in ®Mg, ¢ assigned to Vi(—1) by the equivalence of (1.2.7). If F' denotes the

quadratic extension of F, then
F Q¢ M ~ (0 a)

d 0
for some a,d € F'[lu]] such that v, (ad) = e, and p + 1 } vy, (d) — vy (a).

Proof. Fix an embedding [’ — k. Let K’ be the unramified extension of K
of degree 2. By (2.5.3), Ix acts on dety Vf via the cyclotomic character. Hence
VE(—=1)|14 is isomorphic to the dual of V|7, . Since VF(—1) is irreducible, it is
induced from a character of G-, and by (2.5.3) we have

F ®¢ Vi(=1)|g,, ~ Aoy’ & Aoy’

for some integer i such that i = ig + pi; for integers ip,i1 €[0,¢e], p—1|e—1i,
and p + 1 } i, and some unramified character A : Gg- — F'*. After replacing V¢
by F' ®¢ Vf, and F by I/, we may assume that A is F*-valued, and that F2CF.

Note that replacing (ig,i1) by (i1, i), interchanges a)’2 and a)é’i, SO we may
assume that either iy € [1,e — 1] or i; = 0 and iy = e¢. Now choose an integer
j €]0,e] such that j = ﬁ modulo p + 1. If e > p + 1 this is obviously possible.
If e < p, then our choice of iy and i; guarantees that ﬁ €[0,e].

Let k" — [ 2 denote the residue field of K’, and denote by o € Gal(k/ k') the
geometric Frobenius. Let Ny be the object of Mg, r with F((u))-basis {e1, e>},
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and ¢ given by
P(e1) =A(0)u’e; and ¢(er) =ue;.

Since Nj ~ (Moo)uj “eo_j ). it will suffice to check that T¢(Np) —> Vi(—1)|gx. -

Note that v, (u¢~7) — vy (A(o)u’) = % mod (p + 1), and that p + 1 4

W. To see the second condition, observe that if it fails, then i = (pTH)k
2i

for some integer k, and p — 1|e — TrT =€~ k. Since p — l|e —i this implies
p—1li—k= (”T_l)k, so that k is even, and p + 1|i, a contradiction. Hence the
condition p + 1 } vy, (d) — vy, (a) is satisfied.

Using the notation of (1.1.12), let u5 € R be an element with ugz_l =u. Then
k((u))[uz] C FrR is a separable extension of k((u)), so that u5 € Ogur/ pOgur. Note
that g(us) = wa(g)u» for g € Ggr. We also choose an element w), € (k ®F, F)*,
such that g(w;) =1®A(g)-w,, for g € Gg’. The element w), is uniquely determined
up to multiplication by an element of (F 2 ®, F)*. Note that ¢ (w;) =0~ (w;) =
1®A0) wy.

Let €7 € k' ®g, [ be the idempotent which is 1 modulo the kernel of the
map k' ®, F — k induced by the chosen inclusion F C k, and is contained in
the other maximal ideal of k” ®¢, F. Set €2 = ¢(e1). Then for a € k' we have
(@®1)e; =(1®a)eq, and (@a? ® 1)ex = (1 ® a)es.

Let i’ = pj +e— j, and define elements vy, vp € Ogu / pOgur @ ((u)) Nr by

v = wrer(uy’ ®er) + pw)A(0)eauy? ul ®@ey)
and
v = wrer(u;’ ®er) +dwA(o)er (uy” u! ®ey).

Here we view Ogur/ pOgur ®p(u)) NF as a k ®r, F-module via the inclusion of k in
Ogur / pOgur and the natural action of F on Nf. A straightforward calculation shows
that v; and v, are invariant under ¢. Since TF(NVf) is 2-dimensional over F, it must
be spanned by v; and v,. Write K, = K’ Kso. By the choice of j, we have that
i =i’ modulo p?—1, so that for g € Gg,_,

gw1) =vi-AMgwy (g) and g(v2) = v2-A(g)w, P (g).

This implies that 7'(Ny) — Vg(—1) as Gg/_-representations, and hence as Gk -
representations, since V¢(—1) is irreducible, and obtained by inducing Aw; Lo

PROPOSITION (2.5.6). Let F'/F be a finite extension. Suppose x1,Xp €
(Qgt}',ho(ﬂ:’ ) and that the corresponding objects of (Mod/ &)y, My 1 and My » are
both non-ordinary. Then (the images of ) x1 and x; lie on the same component of
GRY,

VE,0
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Proof. After replacing Vf by F' ®p V¢, we may assume that ' = [F. Suppose
then that 9% ; ~ A for some A. If we fix the corresponding choice of basis for
M1, then Mr 2 = B - M1 for some B € GL,(F((n))), and My o ~ ¢(B)AB_1.
Note that B is uniquely determined up to multiplication on the left by elements
of GL; (F[[u])). Thus, by the Iwasawa decomposition, we may assume that B is
upper triangular. By (2.5.1)(2), det¢(B) det B! = y for some y in F[[u]*. Thus,
the diagonal entries of B are of the form piu’ and pou™" for puy, po € Fu]*,
and some i € Z. After replacing B by diag(ut1, t2) ! B, we may assume B has
diagonal entries % and u’. Note that although B depends on the choice of basis
for M, 1, we may choose B with diagonal entries u~" and u’ for any such choice
of basis. Thus, we will often choose a basis, and then assume B is of the above
form.

We will show that x1 and x, are connected by a chain of rational curves. For
this we need the following result:

LEMMA (2.5.7). Keeping the above notation, suppose that N is a nilpotent
element of M (F(())) such that Mg = (1 + N)-Mg.1. Let N* = —N denote
the adjoint matrix of N. If (N)AN € M, (F[[u]]) then there exists a map P! —
(QQR‘{,[F,O sending 0 to x1 and 1 to x».

Proof. Let M) = F[T] ®¢ My, and Mp[r),1 = F[T] ®F Mp,1. We consider
9771 With the basis induced by the chosen basis of i 1. Define an F[[u]|[T]-
submodule M) C M1 by M7y = (1+NT)-9p(77,1- This submodule induces
a map from A! into the affine Grassmannian parametrizing [F[[u]]-sublattices of Mf,
and takes O to x; and 1 to x,. It remains to check that this map actually factors
through @%%’0. For this, note that multiplying the chosen basis of 9% 1 by 1+ NT
gives an F[[u]|[T]-basis of M7}, and hence a F((u))[T]-basis of Mg[r). In this
basis ¢ is given by
(25.8) ¢(1+TN)A(1+TN)™*

= A+ TP(N)A+ TAN™ + T?¢(N)ANY
=A+T(p(N)A+ AN" + p(N)AN™) + (T* —T)(¢(N)AN™).

Now specializing the right-hand side of (2.5.8) to T = 1, yields an element
of M, (F[u])) because M, is ¢-stable. Thus, p(N)A + AN + p(N)ANY €
My (F[[u]), and ¢(N)AN € My (F[u])) by assumption. It follows that the right-
hand side of (2.5.8) is an element of M (F[[u]|[T]), so that M7 is ¢-stable. On
the other hand, det¢ (1 + TN)A(1 + TN)~! = det A4, since N is nilpotent, and so
(2.5.1) shows that for any finite extension [’ of [, specializing T by an [F'-valued
point of A!, yields a point of (597{;%0. If follows that the map, constructed above,
from A! into the affine Grassmannian does indeed factor through %97{‘{,%0, and any
such map extends to P!, as ‘QQR%’O is projective. O
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(2.5.9) We return to the proof of (2.5.6). Suppose first that Vf is reducible. In
this case MF contains a ¢-stable F((u))-line Lg. If we choose an ordered basis for
9,1 such that the first basis vector lies on L, then the matrix A is upper triangular.
Write A = (4 5) and B = (”;’ V ). Interchanging M ; and 9y », if necessary
(and hence replacing B by B 1), we may assume that i > 0. Now,

1 (uTPTg()) (a b (u' —v
Mo~ ¢(B)AB —( 0 upi)(() d)(o u"')

u'=Plg —avuTP 4 yTiTIPh L p(v)uTld
0 uPi=id ’

Thus, vy, (d) > 0, v,(a) > pi —i, and
(2.5.10) vu(—avu' +b+pW)u'Pd)=>i+ip.

In fact, the first two inequalities can be improved to vy, (d) > 1, and vy, (a) > pi —i +1,
since if vy (d) = 0, then vy (a) = e by (2.5.1), and M, ; would be an extension of
an étale module by a multiplicative module, which contradicts the assumption that
Mg 1 is non-ordinary. Similarly, if vy (a) = pi —i, then v, (u'~Pa) = 0, so that
IME,2 is an extension of a multiplicative module by an étale module. It is easy to
see that any such extension splits. (One can of course also deduce this from the
analogous fact for finite flat group schemes.) This implies that 91 5 is ordinary,
which is again a contradiction.
Now set M 3 = ((1) ‘”fi ) M 1. Then
(2.5.11)

m 1 ¢(W)uP'\ (a b (1 —vu! _{a —avu' +b+p(w)u'Pd
B0 1 odj\o 1 ) \o d

and Mo = (“;i l?,- )-im[m. Note that the right-hand side of (2.5.11) is in M5 (F[[u])),
by (2.5.10), and because i > 0. By (2.5.1) 9,3 corresponds to a point x3 €
C@QR‘{,[F’O(H:), and x3 lies on the same connected component as x, by (2.5.7), since if
N = (8 Vgi ), then ¢(N)AN? = 0. Moreover 9 3 is non-ordinary (for example
because the corresponding group scheme is an extension of two connected group
schemes). _

It follows that we may replace 95,1 by Mg 3 and B by (“;l uol- ). By (2.5.10)
this implies that we may assume vy, (b) >i +ip. For j =0,1,2,...,i we have

u=/ 0 u=Pl 0 ab u/ 0
M. ::( 0 uf')'m“ N( 0 upf) (0 d) (0 u—f)
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since vy (b) > i + pi > j + pj. Hence 91 ; corresponds to a point of %%V 0 and
is non-ordinary. Replacing (9 1, Mr,2) by (D, -1, NF, ;) for successive values
of j, it suffices to consider the case B = ("51 2), when vy, (a) > p, vy(d) > 1 and
vu(b) > p+ 1.

In this case, since (“81 2) =(9 zlu)( 2, - o "), we have My » = ( 2, 0”)
ME,1. Thus, by (2.5.7), to prove that x; and xz lie on the same connected component
of GRY, . it suffices to check that if N = (11 =), then ¢(N) AN € Ma(F[[u]).

However, for any (y 'g ) € My (F[Ju]]), a direct calculation shows that
(2.5.12)
a fp d —pu~! 0
N o —
o) (y 8) N (—cxu_l’ —Bu P 4 Su™t aul™P 4 Bu=P W
for some W € My (F[[u])). It follows that ¢(N)AN2 € M, (F[[u])), and this com-
pletes the proof of the proposition if Vf is reducible.

(2.5.13) Suppose that Vf is irreducible. By (2.5.5) it suffices to consider the
case where 4 = (2 ‘3), with p + 1 } v, (d) — vy (a). As before, we may assume

B= (" ") Then

Mey ~ (u_l’i qﬁ(v.)) (0 d) (ui —v‘) _ (auiqﬁ'(v‘) du=Pi—i —q¢(v)v)
’ 0 u? a0 0 u™’ auP' T —auP'y
and, in particular, the right-hand side of (2.5.14) is in M (F[[u])).
Suppose first that v =0, so that B = (”;l fi ) In this case we may interchange
M 1 and N >, while retaining our assumption about the form of A. In particular,
we may assume thati > 0. For j =0,1,2,...i setNf ; = (“ / 0 ) M,1. Then

0
in the basis of 1 j obtained by multiplying the chosen basis of ,‘Jﬁ[p,l by (“ 0] uof ),

¢ is given by ( S du™ gj ])
Comparlng thls to the right-hand side of (2.5.14), we see that 91 ; is ¢-stable,

and gives rise to a point y; € ‘Q%VF’O.

Combining (2.5.7) and (2.5.12) with the fact that the right-hand side of (2.5.14)
has entries in F[[u], one sees that for j =0, 1,2,...,1, there is map pl C!é@]i}%o
sending 0 to y;—1 and 1 to y;. Hence x1 = yo and y; = x3 lie on the same
component of 4Ry, ,

Now we return to the case of arbitrary v. We distinguish two cases. Suppose
first that either i < 0 or that v, (v) > 0. In this case v, (u=?~'d —a¢p(v)v) > 0,
implies that vy, (u™"?~d) > 0, and vy(ap(v)v) > 0.

Hence, if we set Mg 3 = (”;' 1?1) -9, , and consider the basis of I 3
induced by the chosen basis for 9if 1 then (2.5.14) shows that 2f 3 is stable by ¢
and corresponds to a point x3 € (Qgt‘{,[F’O. By the case v = 0, considered above, x3
lies on the same component of ‘Q%‘{,[F’O as xi.
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Replacing, x; by x3, we may assume that A = ( pl(lrl ”_p(i)_id ), and B =
(L v). If N = (9w V), then we compute that <;S(N)AN‘1d (o _“¢0(”)” ), and
as we saw above, vy, (a¢ (v)v) > 0. Hence x; and x5 lie on the same component of
C@@i‘{,[F’O by (2.5.7).

It remains to treat the case when i > 0, and v, (v) < 0. In this case, we have
vy (d —au'PTi¢(v)v) >ip+i > 0. In particular this implies that vy (au'? T ¢(v)v)
is non-negative.

Set ME,3 = ((1) u;" )S)JT[F,I. As usual, the chosen basis of M ; induces a basis

au ”¢(v) d— au”""’zﬁ(v)v)
—au'v
seen from the computation (2.5.14), by replacing ul by 1 and v by u’v). This matrix

is easily seen to have entries in M5 (F[[u]) since the right-hand side of (2.5.14) does,
and because we have i > 0 and vy, (v) < 0. Hence 9M1F 3 corresponds to a point x3
of 4Ry, . Moreover, if N = (0 u V) then ¢p(N)AN = (0 —au”’+’ (V)v) lies
in Mz([F[[u]]) Hence x3 and x; lie on the same component of %%V by (2.5.7).

Now for j =0,1,2....,i,setNg,; = (¥ 70 ) -, 3,w1ththebas1smduced

0 u’/

by the chosen basis of 91 3. Then ¢ is given by

of M3, in which the Frobenius is given by ( (this can be

(auip—pj_‘"j‘qb(v) u=P/ I (d—au'P T (v)v) )
auP+J —quitri—Jiy

in this basis. Since M ; = M 2 and Nf o = M 3, when j =0 or 7, this matrix has

integral entries, and is true for all j. Hence f ; corresponds to a point y; € %%}F’O.

To check that y; and y; 41 lie on the same component of ‘597{¥,[F’O for j €[0,i —1],

it suffices by (2.5.7) and (2.5.12) to show that

vu(au' PP () = p, v (P (d — au'P T g (v)v)) = 0 and vy (au'v) > 1.

We have already seen the second of these inequalities, while the third follows
from the fact that vy, (au’¢(v)) > 0 using (2.5.14) and v, (v) < 0. If the first
inequality does not hold, then we must have v, (au’¢(v)) = 0. In particular
vy (auPTip(v)v) = vy, ('Pv) <ip <ip+i. This implies that

vu(d) = vu(au'? p(v)v),

whence p + 1 | v, (d) — vy, (a), which contradicts our assumptions. This completes
the proof of (2.5.6). O

v,ord

PROPOSITION (2.5.15). We no longer assume that Ko = Q. Let ‘Q%V 0C
(Qgt‘{, (o denote the union of compolnei;ts corresponding to the ordinary points of
GRY, o (ThlS was denoted by 9% with d = {1, 1} in the notation of (2 4.15).)
If (QQRV 0 is non-empty then it consists of a single point, unless Vi ~ ( 0 1o ) where
x1 and yo are unramified characters of Gg. In the latter case:
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(1) If x1 # x2, then C@%;ﬁrg consists of two points corresponding to its finite flat
models D(@Xrlw) @ Yy, and D((gxglw) ® Yy, , where w denotes the mod p
cyclotomic character, and for an unramified mod p character y, 4y denotes
the unique extension of x to a finite étale group scheme.

(2) If x1 = y2 then ‘g%;’frg = P! and all the finite flat models of Vi are isomor-
phic to D(‘erlw) DYy,

Proof. Let F'/F be a finite extension, and A a local Artin ring with residue
field [, and such that p- A = {0}. Keeping our previous notation, let V4 = Vi ®f 4,
and My = My ®f A. Consider a point of CQ%;’;S‘(A), and let 9ty C M4 be the
corresponding element of (Mod FI/&) 4. Thus 9y is free of rank 2 over G 4, and
spans the G4[1/u]-module M4. By the discussion in (2.4.13) 9,4 is an extension

0— MY — My — M — 0

of an étale object of (Mod FI/&)y4 of G 4-rank 1, by a multiplicative one. Compos-
ing the functors (1.1.3) and (1.1.11), we see that this corresponds to an extension
of finite flat group schemes equipped with an action of A

0—9F — 94— G —0

with ¢} multiplicative and Cﬁf} étale by (1.1.15). Finally L4 = 4% (K) C V4 gives
rise to a G -stable A-line in V4, such that the action of Gg on V4 /L 4 is unramified.
(Here by an A-line we mean a free A-submodule of rank 1, with A-free quotient).

Conversely, given such an A-line, L4 C V4, consider an ordinary finite flat
group scheme %4 equipped with an isomorphism %4 (K) —> V4, under which
EA (K) is mapped onto L,4. Since ¢} is multiplicative while ‘fo is étale, they
are uniquely determined by L4 and V4 /L4 respectively, and an argument as in
[BCDT, 4.1.2] shows that 44 is uniquely determined by L 4. There is more than one
possibility for L4 only if Vi is decomposable, with unramified diagonal characters
x1 and y». The possibilities for L 4 are then the two A-lines in V4 corresponding
to 1 and y» in (1) and to any A-line in (2).

This establishes the proposition except possibly in (2), when we have only

shown a functorial isomorphism ‘Q%;ﬁrg (A) — P(VE)(A). However this implies

that ‘597{;’;”3 is smooth, and that its zeta function is (1 — 7)~!(1 —|F|T)~!. This

implies that CQ%‘{,’:rg is connected, 1-dimensional of genus 0, and has a rational
point, and so Cg%‘{,’frg =5 pl, O

COROLLARY (2.5.16). Let R = R?,’[FD ®w(r) OF. As above assume that d =2,
and that all the vy, are equal to 1, but drop the assumption that Ko=Qj.

(1) The complete local ring R" is flat over Z, of pure relative dimension 4 + [K :
Qp], and RY[1/ p] is formally smooth over F.
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(2) Let E/F be a finite extension and x1,xs € (Spec RY)(E). If (the images
of) x1 and x3 lie on the same irreducible component of Spec RY then the
corresponding E-representations of Gk, Vx, and Vyx, are both ordinary or
both non-ordinary. The converse holds in the following two cases:

(i) Vx, and Vy, are both non-ordinary and Ko = Q.

(1) Vx, and Vy, are both ordinary. If L1 C Vy, and Ly C Vy, denote the
(unique) E-lines on which Ik acts via the cyclotomic character, then Gg
acts on L1 and L, via @E -valued characters with the same reduction
modulo .

If Endg[G 1 VF = [ then the same results hold for R = R?,[F ®w () OF, except that
the dimension in (1) is 1 + [K : Qp].

Proof. RY is flat over Z,, by construction, and the claims concerning dimensions
and formal smoothness follow from (2.3.11).

The second part of the corollary follows from (2.5.6), (2.5.15) and (2.4.10).
Note that since Spec R¥[1/ p] is formally smooth over F, its connected components
coincide with its irreducible components, and since R" is flat over Z,, these are in
bijection with the irreducible components of Spec R".

Finally the last claim is easily deduced using the formal smoothness of the
map R?,[F — R?,’[FD. |

(2.6) The case of residue characteristic | # p. In this section we will apply
the techniques developed above to study deformation rings of Galois representations
of local fields of residue characteristic / # p. Since this case is significantly simpler
than that considered above, we will develop the theory only as far as it is needed in
this paper.

(2.6.1) Suppose that / # p is a prime, and that L is a finite extension of Q;.
We fix an algebraic closure L of L, and write Gy, = Gal(L/L). We write I;, C G,
for the inertia subgroup. As above, we denote by [ a finite extension of [,, and we

consider a two dimensional F-vector space Vr equipped with a continuous action of
G, and a fixed choice of basis. We make two assumptions:

(1) det Vf is equal to the cyclotomic character y : Gy, — Z; (modulo p).

@) VE(=1)%* # {0}.

We define a groupoid D% on ARw ) by declaring the objects of D% (A)
to be finite free A-modules V4 equipped with a continuous action of G such
that detq V4 = x, and an isomorphism of F[G]-modules V4 ®4 A/my —> Vf.
Similarly we define D%ﬁ;u by declaring an object of Dé[;m (A) to consist of an
object V4 of D%(A) together with a choice of A-basis lifting the chosen basis on
VF. We denote by Dy, and D%'F the groupoids defined in the same way, except that
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we drop the condition on the determinant. As in (2.1.1), we extend each of these
functors to 2Augy ).

Finally we define a groupoid LX (resp. LX’ ) on 2lugw ) by declaring
LX[F(A I) (resp. L [FD (A, I)) to consist of pairs (VA, L 4) where V4 is an object of
Dy (A, 1) (resp. DI)ZD (A, 1)), and L4 C Vy is an A-line on which G, acts via
(that is a projective A-submodule of rank 1, such that V4 /L4 is projective over A4,
with a trivial action of Gy,).

LEMMA (2.6.2). (1) The functors |D|:| | and |DX | are pro-representable
by complete local W (F)-algebras RE and RX’ respectzvely

(2) The morphism |LX |:|| — |DX’ | given by sending (V4, L4) to V4 is repre-
sented by a projective morphism Oy, : SEX’ — Spec RX’EI

Proof. (1) is clear. For (2), we note that |LX’ | is pro-representable by a
closed subspace of P— Spec RX’E| where P denotes the projectivization of the
universal rank 2 RXI’FEI -module, and P denotes its completion along the maximal
ideal of RX H . By formal GAGA this subspace corresponds to a unique projective
RX’D—scheme O

LEMMA (2.6.3). .EEX’ is formally smooth over W(F). The W(F)[1/ p]-scheme
§BX ®w) W(F)[1/ p] is connected.

Proof. To begin with we observe that for any finite group M of p-power order
the natural map

HY(GL,Z,(1)) ®2, M — H (G, Z,(1) ®2, M)

is an isomorphism. To see this is suffices to consider the case M =7/ p" 7, in which
case the above map is injective with cokernel equal to H?(Gr,,Z,(1))[p"]. Since
H?(Gp,Zy(1)) is Pontryagin dual to @, /Z,, it is a free Z,-module of rank 1, and
has no p-torsion. In particular we see that for any finite, Artinian Z,-algebra A,
the composite

Ex 16,1Zp: Zp(1)) ®2, A—> H'(GL, Zp(1)) ®z, A
— H' (G, A(1)) => Extyg, (4, A(1))

is an isomorphism.

Now let A — A’ be a surjection of local Artin rings with residue field
[, a finite extension of F. For the first claim it suffices to show that the map
|L)I(/L;|(A) — |L)I(,F|(A’) is a surjection. Suppose that (V4/, L4/) is an object of

L){,[F (A’). Then the discussion of the previous paragraph shows that V4, corresponds
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to a class in Eth 6,11 1) ®z, A’. Lifting this class to Ext} 7,06, ](1 1) ®z, A
produces an Ob]CCt V4= V4, Ly) of LX (A) such that V4 ®4 A S VA/

For the second claim, the smoothness implies, in partlcular that 58 ®W([F) F
is reduced, so as in (2.4.10), it suffices to show that 3 ® Ry ofFis connected
However, exactly as in (2.5.15) one sees that this scheme is 1somorphlc to PL if
F—>[F(1) and VE is split (i.e. if the action of Gz, on V is trivial), and a reduced
point otherwise. O

LEMMA (2.6.4). Let E/@p be a finite extension, and & € L (@E). We again
denote by & the image of € in D (@ E).

The morphism of groupozds on ARE, VD(S) — DV @) is fully faithful. If
the E-representation Vg of G corresponding to & is indecomposable, then this

morphism is an equivalence.

Proof. Suppose that B is in AR g, and let V3 be an object of DV @) As
in (2.3.5) Vp corresponds to a deformation of Vg to B together with a choice of
basis. To prove the first assertion we have to show that if Vp admits a B-line
Lp C Vp such that Lp(—1) is G -invariant, then L p is the unique such line. Since
detg Vp = x, we have Homp[g,(B(1), Vp/Lp) = {0}, so that

Homp[g,(B(1), V) = Hompg, 1(B(1), Lp).

and the uniqueness of L g follows.

Suppose that V¢ is indecomposable. We have to show that Vp admits a unique
B-line L C Vp on which Gy, acts via y. It suffices to show that Vp is isomorphic
to the trivial deformation Vg ® g B. This follows by induction on the length of B,
and the fact that, by local Tate duality, we have

dimg H'(Gr,ad°V;) = dimg H°(G,ad’V;) + dimg H%(GL, ad’ Ve (1)) = 0.
O

(2.6.5) For § as above, we define a groupoid Dy, (resp. DI)ZD) on ARE by

declaring DIZ (B) (resp. D{%D(B)) to consist of deformations of Vg to B with
determinant y (resp. determinant y and a lift of the given basis on V).

PROPOSITION (2.6.6). Let Spec R)IZI’D denote the scheme theoretic image of
the morphism Oy, of (2.6.2). Then

(1) R)‘f-;l’m is a domain of dimension 4, and R{Zl":' [1/ p] is formally smooth over
W(F).

(2) If E/Qy is a finite extension, then a morphism & : RX DLk factors through
RX Lo if and only if the corresponding two dlmenswnal E-representation V¢

is an extension of E by E(1).
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Proof. That R{ZI’D is a domain follows from (2.6.3). Let £ be as in (2.6.4).
An argument as in (2.3.3) together with (2.6.4) shows that the map between the
complete local rings at the image of & on Spec R{%’FD and 58{,;‘3 is a surjection, and
is an isomorphism if Vg is indecomposable. Hence we see that ®y, becomes a
closed immersion after inverting p. In particular (2.6.3) implies that Ré[’Fl’D[l /Pl
is formally smooth over W([F)[1/ p]. To compute its dimension, suppose that V is

indecomposable. Then the dimension of Ré[’Fl’D[l / p] is equal to

dimE|D§;f|(E[e]) = dimg| D, |(E[€]) + 4 — dimg (adV) -
= dimg H'(Gr,adV;) +3 = 3.

Finally for (2), by what we have seen, £ factors through Ré[’FI’D if and only if
it lifts to a (necessarily unique) point of if)f,[’FD, that is, if and only if Vg admits an
E-line Lg C Vg such that L g(—1) is G -invariant. O

COROLLARY (2.6.7). Let O be the ring of integers in a finite extension of
W(F)[1/p], and y : G;, — O a continuous unramified character. Write RE[F 0=
RE[F ®w(r) 0. Then there exists a quotient R%’g’m of RIE:F,@ with the following
properties.

(D R%’g’u is a domain of dimension 4, and R%’g’u[l/p] is formally smooth

over 0.

(2) If E/O[1/ p] is a finite extension, a map & : R%’@ — E factors through Rf,;/”g’u
if and only if V is an extension of y by y(1).

Proof. We may replace F by the residue field of 0. Then twisting by y~! in-
duces an isomorphism R E[F o — RIE['F ®y—1.0° and the quotient Ré;’g = corresponds
tO RX717D ? ’

Vegy—1 ®w(r) 0 under this isomorphism. The corollary follows from (2.6.6). [

3. Modularity

(3.1) Quaternionic forms. We continue to assume p > 2. We need some
results on automorphic forms on definite quaternion algebras, following [Tay1]. In
that paper there is a standing assumption that p is unramified in the totally real
number field over which one works, and that p > 3. We will use certain results from
[Tay1] without assuming this; however the reader will easily check that when we do
this the proofs of loc. cit. go over unchanged, though they do sometimes rely on the
hypothesis (3.1.2) made below (in the situation of [Tay1] this hypothesis is always
satisfied). Another difference with [Tay1] is that Taylor considers only totally
definite quaternion algebras which are unramified at all finite primes, whereas we
allow ramification at finite primes. This makes no difference to the proofs, and so
we make no further mention of it.
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There are three types of result we will establish in this section: raising the level
at primes dividing p, raising the level at primes not dividing p, and a result on the
freeness of the space of quaternionic forms over the ring of diamond operators. We
work in greater generality than needed for the applications of this paper, because
this entails relatively little extra work, and may prove useful in future papers.

(3.1.1) We recall the definitions of [Tayl, §1], or rather a slight variant of
them.

Let F be a totally real field, and D a quaternion algebra with center F' which
is ramified at all the infinite places of F' and at a set of finite places X, which does
not contain any primes dividing p. We fix a maximal order Op of D, and for each
finite place v ¢ X, an isomorphism of Fy-algebras (Op), —> M>(OF,). We will
denote by N(v) the order of the residue field at v.

LetU =[[,U, C(D®F AIJ,:)X be a compact open subgroup contained in
[1,(©p);. We assume that if v € X, then U, = (Op);,, and that U, = GL(0F,)
for v|p.

Let A be a topological Z,-algebra. For each v|p, we fix a continuous repre-
sentation 1, : U, — Aut(Wz,) on a finite A-module. (In applications this will
usually be a free A-module). We write Wr = ®y|p,4Wr, and we denote by
T ]_[v| p Uv = Aut(W;) the corresponding representation. We regard t as being a
representation of U by letting U, act trivially if v } p.

Finally, we fix a continuous character v : (Ag)x /F* — A such that for any
place v of F, t on U, ﬂ@}v is given by multiplication by ¥ ~!. We think of (Ag)x
as acting on Wy via ¥, so that W, becomes a U (A{,)X—module. Note that, given
7 and U, such a ¥ need not exist. A necessary condition for the existence of i is
that 7 be trivial on U N 0.

Let S7,y (U, A) denote the set of functions

f:D*\(D ®F ALY > W,

such that for g € (D QF A{,)X we have f(gu) = t(u)~! f(g) for u € U, and
f(g2) =V (2) f(g) for z € (AL)*. T we write (D® ALY = [,¢; DXt UBL)>
for some #; € (D ® p A)™ and some finite index set /, then

~ UAL*nt 1 D*t;)/ F>
S;w(U, A) —> W, LA .
m )fl—>{f(t,-)} ,-EGBI ‘

We make the following assumption:

(3.12) Forallr € (D ®F AL)* the group (UAL)* Nt~ D*1)/ F*

has prime to p-order.
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Note that the calculations of [Tayl, 1.1] show that (U(AIJ:)X Nt=IDXt)/F* is
automatically finite, and that if U is sufficiently small then it is a 2-group. Thus
(3.1.2) holds for U sufficiently small.

(3.1.3) Let S be a set of primes containing %, the primes dividing p, and
the primes v of F such that U, C D) is not maximal compact. Let T}“’X =
A[Ty, Svlvgs, be a commutative polynomial ring in the indicated formal variables.
For each finite prime v of F' we fix a uniformiser m, of F,. We consider the
left action of (D ®F A;)X on W;-valued functions on (D ® A{,)X given by
the formula (gf)(z) = f(zg). As explained in [Tayl, §1], Sm/,(U, A) has a
natural action of T‘_lgmji, with Sy acting via the double coset U ( )U and T, via
U ( o 1 )U These operators do not depend on the choice of ;.

Let m be a maximal ideal of T‘;‘:‘X with residue field a finite field of character-
istic p. Also, m is in the support of (7, ) if S¢ y (U, A)n is non-zero. Also, m is
Eisenstein if T, —2 € m for all but finitely many primes which split in some fixed
abelian extension of F.

If A is alocal ring with maximal ideal my, and f € S7 4 (U, A) is an eigen-
function (that is, a function such that for each T € Tg‘“}l, Tf = ar f for some
ar € A) whose image f in Sty (U, A) ®4 A/my is non-zero, then the kernel of
Tg.‘jlfvl acting on f is a maximal ideal m of TT‘_JSI:‘A’ We call m the maximal ideal
associated to f.

We will need a variant of the results of [Kh] for totally real fields, and these
are relatively easy to deduce using definite quaternion algebras.

LEMMA (3.1.4). Let I C A be an ideal, and write \ for the composite of ¥
with the projection A — A/ 1. For v|p fix a representation t,, of Uy on a finite free
A/I-module Wy, . Denote by v’ the ]_[v|p Uy-representation Wy = Qy|p, a/1 Wy »
and assume that, on Uy N @;U, v’ is given by 1}_1.

Suppose that Wy occurs as a ]_[v| » Uy-module subquotient of Wz := W, Q4
A/I. If m is in the support of (t', V), then wm is in the support of (T, V).

Proof. The hypothesis (3.1.2) implies that Sty (U, A) — @), ies W %7 for
some index set J and a group G; which is of prime to p order, and does not depend
on 7. Hence the functor Wy — Sz y (U, A) is exact. Applying this with A/ in place
of A, we find that S, 7 (U, A/I)m # {0} implies S; 7 (U, A/I)m # {0}. Similarly,
we see that the surjection We y — W3 A induces a surjection Sty (U, A)m —
Siﬂz,(U,A/I)m, so that St 4 (U, A)m;é {0}. O

LEMMA (3.1.5). Let K be a finite extension of Q, with ring of integers Og
and residue field Fy4, and E a finite extension of Qp with ring of integers O, and
residue field F. Denote by B C GLy(Fy) the subgroup of upper triangular matrices.
Let 1 denote the trivial representation of B on an F-vector space of dimension
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1, write Wy C IndgLZ([Fq)l for the subspace of constant functions, and set W1 =
md5 > 1w,

If E is sufficiently large, then for i = 0,1 there exists a representation of
GL3(Ok) on a finite free O-module W with the following properties.

(1) W ®q F has a subquotient isomorphic to W;.

(2) W is a smooth representation (i.e. it has locally constant orbit maps) and
is a cuspidal K-type. That is, there exists a cuspidal representation o of
GL2(K) such that a|gy,(0x) contains W ®z, Qp as a subrepresentation. If
o' is any irreducible admissible representation with the same property then o’
is obtained from a by twisting by an unramified character.

(3) Wlogx is trivial.

Proof. Let H be the quadratic unramified extension of K, and write Oz for its
ring of integers, and pg for its maximal ideal. We fix an embedding O C M5 (0Og),
and we denote by 0 € M»(0Og) an element of order 2 which induces the non-trivial
Galois automorphism of Oy over Ok.

Let6:0 I); — 0 be a character which has even conductor 2m > 0, and such
that for any character y : O — 0>, 0 - (y " to N/ k) has conductor > 2m. Here
Np/kx : H* — K> denotes the norm. Such a 6 exists if E is sufficiently large.
(One could for example take m = 1, and 6 of order dp, where d is any divisor
of ¢ +1.) By [GK, 3.4] 05 (1 + o(p7;)) C GL2(Ok) is a subgroup, and we may
extend 6 to a character of this group (again denoted 6) by requiring the extension
to be trivial on 1+ o (pFp)- 5

Let 6 be any extension of 6 to a character 6 : Ko = H*(1 +0(py)) — E™.
By loc. cit. o = Indg;Z(K)é is an irreducible, admissible cuspidal representation of
GL;(K). Hence

W' =Indg 204
is also irreducible. Moreover by using [Cas, 2.1] one sees that the K*GL;(0k)-
representation W' is not contained in any other admissible irreducible representation
of GL(K) (cf. [Kh, 3.2]). Hence W = Indg’xL 2((1@412 @ 0 is an O-lattice in W', and
. H 7))
satisfies (2) of the lemma.
We have to check that 8 can be chosen so that W satisfies (1). Let

90 : [F;z — >

denote the character induced by 6. If i = 0, then we choose 8 so that 6y is trivial.
In this case

_ GL2(0k)
W QclF = Ind@;}(l—i—o(p%))l’

and in particular it contains a copy of the trivial representation.
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If i =1, we choose 0 so that 6y is a non-trivial character whose kernel contains

F;. Then W ®¢ F admits Ind?xL 2([Fq)90 as a subquotient, where the inclusion
q2

P, C GLa(Fy)

is induced by Oy, C GL»(Ok). The restriction of Wy to F* 22 is a direct sum over
the non-trivial characters of [FX2 / [FX Hence there exists a non Zero map

Wy — IndGL2 (Fq) 6o

which is an injection as W is irreducible [CDT, 3.1.1].

Finally, since p > 2, we may choose 6 so that 9|@IxK is trivial (as well as
satisfying the condition involving conductors imposed above). With such a choice
of 0, W satisfies (3). O

COROLLARY (3.1.6). Suppose that E/Q), is as above, and that A=0. For
each v|p let Wy be a representation of GL»(OF ) on a finite free O-module
which is either trlvzal of rank 1 or isomorphic to IndG "0 modulo the constant
Sfunctions, where I C GL,(OF, ) denotes the subgroup of matrices which are upper
triangular modulo .

Let fglg be an algebraic representation of Hvl » Gl (OF,) on a finite free
O-module Walg, and let Wy, = Walg R0 Wsm where Wsm = ®v|pWsm. We
suppose that ]gor v|p, the restriction of 7o to Uv No% F, is glven by ¢! Suppose
that f € Sy,4 (U, 0) is an eigenfunction for the action of T‘&“‘g, whose image in
Sz,9 (U, 0) ®q F is non-zero, and let m C T‘g“‘OY be the associated maximal ideal.

Then after increasing E, there exists a T as in (3.1.1), such that T = 1, a2 & s,
with Wysm = @y, Weem and each Wigm a cuspidal K-type, and a non-zero T”n“’-
eigenfunction g € St y (U, O) .

Proof. For v|p let Wyzm = W be the representation constructed in (3.1.5)
corresponding to the case i = 0 if Wysm is trivial and i = 1 otherwise. Set

W-Esm = ®U|p W‘L'ls)m and W‘E =W alg ®@ W-Esm.

Note that, since @}é acts trivially on W am for v| p, the condition (3.1.5)(3) implies
that 0% acts via v~! on W,.

Since m is in the support of S,y (U,0) it is in the support of S W(U F),
where 7o and 1// denote the reductions of 7p and ¥ modulo the radical of O (cf. the
proof of (3.1.4)). Hence by (3.1.4) and (3.1.5)(1), m is in the support of S¢ y (U, 0).
Since Sz,y (U, O)y, is a non-zero finitely generated O-module, after enlarging E
if necessary, we may assume it contains a non-zero T‘g‘:i@V—eigenfunction g. By
(3.1.5)(2) the automorphic representation generated by g is cuspidal at all places
v|p. More precisely, for each v the corresponding local factor 7, is a twist of the
representation « of (3.1.5) by an unramified character. O
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(3.1.7) Let A { p be a finite place of F, such that Uy = GL3(OF, ). Define a
compact open subgroup U’ of [],(Op); by U, = Uy if v # A, and

Uy =1{g €GL2(0F): g=(§3) (T}
As in [DT, §2], we define a map

in:Sey(U. A2 = Sey (U A (f1. )~ it (6m) S2

We will assume from now on that A € S; however, note that since Uy =
GL>(OF, ), there is a well defined operator T on S¢ (U, A).

LEMMA (3.1.8). Let m be a non-Eisenstein maximal ideal of T‘g“g, and sup-
pose that A = . Then the map i, above is injective after localizing at m.

Proof. By dévissage it suffices to consider the case when W7 is irreducible.
The irreducible case follows from the argument given in the second part of the
proof of [Tayl, 3.1]. O

(3.1.9) Let Q, be a fixed algebraic closure of @,, and E C Q, a finite
extension of Q, with integer ring 0. We will assume that £ contains the image
of every embedding o : F' — @p. Let k > 2 be an integer. The same argument
as in [CDT, 3.1.1] shows that, after possibly replacing E by a larger field, there
exists an O-lattice Ly C Symk ~2 E? which is stable under the natural action of
M>(0) on Symk_zE 2. and is equipped with a perfect pairing (-,-) such that for
any g € M>(0) and x,y € Ly,

(gx,gy) = (detg)* 2 (x, y).

Now let (k4 , Wo ) o be a collection of pairs of integers, where o runs over embeddings
F— E ks >2,and w = ks + 2wy — 1 is independent of .

Suppose that t has the form

We= @ Lg, ®det®o.
0:F—E

For each v|p, Wy, corresponds to the product of the factors for which o induces
a continuous embedding F,, — E, and M5 (OF, ) acts on the factor corresponding
to o via the induced map M>(OF,) — M>(0). The perfect pairings on each of the
Ly, induce a perfect pairing (-,-) on Wz.

Now fix a character ¥ as in (3.1.1). Such a character exists provided that
Nfp/U N @jf,)wJrl = 1, which we assume from now on, this condition being
automatic if w is odd. Then for g € U (AI{:)X,

(gf1.8/2) =¥~ (detg)( f1. fo).

In particular, forany t € (D ® A{,)X, the pairing (-, -) is invariant under the action
of U (A{,)X Nt~1 D>t/ F*, since the determinant of an element in this group lies in
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: iy UAL) Nt~ D>t/ F*
F*. Hence (-, -) restricts to a perfect pairing on W, ) / . We define
a perfect pairing on Sz, (U, O) by

h.g\u = _
. glu > (h(0), gy [detr) [UBLY* N e~ D>t/ FX[ 7.
[t]eD*\(D®AL)*/U(Af)*

Similarly, if A is as in (3.1.7), we can define a perfect pairing (-, -)yy» on S¢ 4 (U’, 0).

For each v| p, there is a natural action of the semigroup GLy (F,)NM>2(OF,) on
W¢-valued functions on (D ® g AI{:)X, which is smooth on functions in S,y (U’, 0)
for any compact open subgroup U’ of (D ® r AI{:)X. It is given by u*™(f)(g) =
7(u) f(gu), where T denotes the natural representation of ]_[v| p GLa(Fy) on Wy ®¢
E. Under this action Sz y (U, 0) is invariant under Uy, and hence for g € GL, (F,)N
M>(OF,) there is a well defined Hecke operator Uy gU, on Sty (U, 0). We extend
the action of TT‘g‘mOY on Sty (U, A) to T‘g“,i,‘j@ = T‘é‘:g[Tv, Svlv|p» by requiring that T
and Sy act by the Hecke operators corresponding to (75” (1) ) and (76” 72} ) respectively.
As before Ty, and S, are formal variables.

We call a maximal ideal of T‘_lgnpi‘i@ Eisenstein if it induces an Eisenstein maximal
ideal of T, As in (3.1.3), if f € Sty (U, 0) is a T§}' -eigenfunction, whose
image f in Sz y (U, 0) ®g F is non-zero, we call the kernel of the action of Tg“,‘,v,@

on f the maximal ideal associated to f.

LEMMA (3.1.10). Let iI denote the adjoint of the map i, of (3.1.7) with respect

to the pairings (-, -y and {-,-)ys. The maps i, and i; are compatible with the action
of Tgnpiv@, and then

4 . _ (N +1 T; . 2 2
zkou_( T W(nk)(N(/\)+1))' Sty (U,0)" =S¢y (U, 0)".

Proof. The compatibility of i) with the action of T'g%' is clear. A calculation
shows Ty is self-adjoint for the above pairing, and S, is obviously self-adjoint,
since it acts via the scalar ¥ (7). It follows that il is also compatible with the

: univ
action of Tsr o

Finally the formula for i:{ o is proved just as in [Tay2, Lemma 2]. Note that,
by definition, S acts on S y (U, O) by ¥ (). O

COROLLARY (3.1.11). Let m C T‘é“,i,"@ be a non-Eisenstein maximal ideal.
Suppose that S,y (U, O)q # {0} and that

(T7 = (N(V) + 1) (1)) (Se,y (U, 0)) C mSz 4 (U, 0).
Then the quotient Sy (U, 0)m/i3(Sz.y (U, 0)2) is a non-zero free 0-module.
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Proof. That the quotient is torsion-free follows from (3.1.8). If it were zero
then the localization of i) at m would be an isomorphism, and hence so would

those of il and iI o1i,. This contradicts the fact that the determinant of the matrix

in (3.1.10), giving i;[ oiy, annihilates Sz y (U, 0)/mSz (U, 0)

To see this, denote this matrix by A, and let O[T};] denote the O-algebra of
endomorphisms of Sty (U, 0), generated by T} . Note that the localization of i; oiy
is obtained by applying ®¢[7,]S7,4 (0, U ) to the endomorphism of O[T]? given
by A. Since Sty (U, O)y is a finite faithful O[T ]-module, if the localization of i:{oi 2
is invertible then Nakayama’s lemma implies that A € M, (O[T}]) is invertible. But
then det A induces an automorphism of S¢ y (U, 0), which contradicts (3.1.10). O

(3.1.12) Keeping the above assumptions (so in particular W; is as above), let
0 be a finite set of finite primes of F, such that for v € Q, D is unramified at v
and v } p. Suppose that for each v € Q,

Uy ={g €GLx2(0F,): g= (5 %) (m)}.

For each v € Q fix a quotient A, of (Of, /m,0F,)™ of p-power order, and write
A= ]_[vGQ Ay. Define a compact open subgroup Ua = [[,(Ua)y C U by setting
(Ua)y = Uy ifv ¢ Q, and (Up)y the set of g = (9 5) € U, such that ad ~! maps

to 1 in Ay. The group A acts on Sty (Ua,0). For h € A we denote by (&) the
corresponding endomorphism of S¢ 4 (Ua, 0).

LEMMA (3.1.13). (1) The operator ) ,ca(h) on Sty (Ua,O) induces an
isomorphism

> (k) Sy (U, 0)a —> ey (U, 0).
heA

(2) Sty (Ua,0) is a free O[A]-module.
Proof. This is proved as in [Tay1, 2.3]. The proof uses (3.1.2). O

(3.1.14) We end this section by explaining the relationship between the spaces
Sz,4 (U, 0) and classical automorphic forms on D*.

Suppose A = E in (3.1.1) and that W; has the form W, ® g Wysm where
Wesm is a smooth irreducible E-representation of [, ,(0p)y,

Wee = ® SymFo 2E?® detVe
0:F—FE

is an irreducible algebraic representation of D = (D ®q @)™, and (we assume)
E contains the image of all embeddings of F into @1,. The existence of i satisfying
the conditions of (3.1.1) implies that w = ks + 2w — 1 is independent of o.

Fix an isomorphism @p — C. In particular, this induces an embedding E —
C, and we may view W_Eélg := W ® g C as a representation of DX = (D ®¢q R)™
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(and even of (D ®g C)* — (D Qg @p)x). Similarly we set Wysm = Weem @ g C
and regard this as a representation of ]_[U| p(@D)if, sothat We, = W, ®Eg Cisa
representation of [ [, «(Op)y-

Choose U" =[], U, so that U] = U, if v } p, and U}, acts trivially on Wesm if
v|p, and denote by C*°(D*\ D(Af)*/U’) the space of smooth C-valued functions
on D*\D(AF)* which are invariant by U’. Then the map

A: Se,y (U, E) — Hompx (W, C(D*\D(AF)™/U")

which sends f € S; (U, E) tow — (g — w(fglg(goo)_lralg(gp)f(goo))) iden-
tifies Sty (U, E) ® g C with a space of automorphic forms on D* with central
character ¢ given by Yc(g) = Nr/a(g00) ™" Nrja(gp) "~ " (g%°). Here W
denotes the C-linear dual of Wr..

If 7 = ®,my is an irreducible automorphic representation of D*, then 7 is
generated by a function in 2L( /) (W) for some f € Sy (U, E) (with U sufficiently

small and E sufficiently large) if and only if 7o is isomorphic to W*

-[ulg’C and

Tp = ®q|p7y contains Wi ¢ as a [, ,(0p); -representation.

(3.2) Galois cohomology calculations. In this section we explain how to
control the number of generators necessary to present certain deformation rings
using Galois cohomology.

(3.2.1) Fix a finite extension E/Q,, with ring of integers O, uniformiser 7 g,
and residue field F. Let S be a finite set of primes of F containing the primes
dividing p, and the infinite primes. We denote by G s the Galois group of the
maximal extension of F unramified outside S, and for each v € S, we fix a choice
of decomposition group Gr, C GF,s. We also fix a subset £ C S consisting of
finite primes not dividing p, and we write X, = X U {p},,. Although in most of
this section the primes of X and those dividing p will play a rather similar role, in
applications this will not be the case, and this is the reason we have distinguished
them in the notation.

Let ¢ : (A{,)X / F* — 0 be a character which is unramified outside S, and
which we regard as a character of G s via the class field theory map

G g =5 A% FX(F @aR)T [ 0%, — (f)y*/F* [] 05 S ox.
vES VS
Here (F ®g R)™* denotes the totally positive elements of F ®g R and the first
map sends an arithmetic Frobenius at a prime v ¢ S to a uniformiser , at v.

Let p: GF,s — GL4 (F) be a continuous representation on an [F-vector space V,
equipped with a choice of basis. For each prime p of F' lying over p, we consider,
as in (2.3.4), the functor which to A in ARe assigns the set of framed deformations
of p|lg F, O A, and we denote by RE the O-algebra which represents this functor.
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Denote by RD V' the quotient of RE| corresponding to deformations with
determlnant v )(, Where > X denotes the p- adlc cyclotomic character, and set RE|
®y|p Ry and Ry =&y Ry

Similarly, if v € 3 we have the universal framed deformation O-algebras RE
and RD’W of plg, . We set RE = @UegRE (resp. Rg’w = @vegRE’w), and
RY = RE&RD (resp RE‘g RSV RoR;Y).

We denote by S the O- algebra representing the functor which to A in
2ARe assigns the set of (1somorph1sm classes of) deformations of V to a finite free
A-module V4 together with a collection {8y }yes, where each B, is an ordered A-
basis of V4 lifting the chosen basis of V. If Endf(g, oV =T, we denote by R p S
the universal deformation O-algebra of V. Finally we denote by R (resp RY. S)
the quotient of R% F.S (resp. RF,s) corresponding to deformations W1th determlnant

V-
LEMMA (3.2.2). Suppose that p } d, denote by hl ; (GF.s. ad®V) the F-
dimension of

HE;)(GF,S, ad’V) :=ker (0' : H'(GF 5,ad’V) — ]‘[ H'(GF,,ad°V)),

veEX),

and for v € I let §, = diim H*(Gp,,adV) and §p = dimpH®(GF s, adV).
Then RIE'”SW is a quotient of a power series ring over Rg:g in

g= hlz;, (GF,s. ad®V) + Z 8y — O F variables.

vEX,

Proof. Denote the maximal ideal of Ry =4 by my p. An element in the dual
tangent space of RY E; 'S / my , corresponds to a deformation of V to a finite free
F[e]-module Vi[¢ (€2 = 0), together with a collection of bases {fy}ves ,, lifting the
chosen basis of V, such that for each v € X, the pair (Vy¢]lG -, » Bv) is isomorphic
to V ®r Fle] equipped with the basis induced by the chosen basis of V. The space
of such deformations V] is given by

Hé;) (Gr.s,ad’V).

(Here we use the fact that p } d, which implies that ad®V is a direct summand
of adV as a G s-representation.) Given such a deformation V[ the space of
possible choices for the basis By is given by H%(G,,adV). Finally, two such sets
of choices {By}vex, and {B,}vex , are equivalent if there is an automorphism of
Vi[e) respecting the action of G s, reducing to the identity on V', and taking B, to
B,- The lemma follows. O

(3.2.3) We now specialize to the case where dimpV = 2, and we will make
the following assumptions.
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(1) p is unramified outside the primes of F' dividing p, and has odd determinant.
(2) The restriction of p to G (¢, is absolutely irreducible.

(3) If p =5, and p has projective image isomorphic to PGL;([F5), then the kernel
of proj p does not fix F(¢s).3 This condition holds if [F(¢5) : F]=4.

4) Ifve S\ X,, then
(3.2.4)  (1=N())((1 4 N(v))? det 5(Frob,) — (N(v))(trp(Froby))?) € F*.
Here, Frob, denotes an arithmetic Frobenius at v.

Note that (2) is equivalent to asking that p remain absolutely irreducible when
restricted to the unique quadratic extension of F contained in F({,). When F
is linearly disjoint from Q({,) - for example if p is unramified in F - then this
extension is equal to F(y/(—1)?=1/2p) and (2) agrees with the familiar condition
found in [Wi, Thm 3.1] and [TW].

PROPOSITION (3.2.5). Set g =dim H'(GF,s5,ad’p(1))—[F : Q]+ |Z,|— L.
For each positive integer n, there exists a finite set of primes Qp of F, which is
disjoint from S, and such that

(1) If v € Oy, then N(v) = 1(p™) and p(Froby) has distinct eigenvalues.

(2) |Qn| =dimeH(GF,5.2d°5(1)). If Sg,, = S U Q. then as an Ry"Y -algebra

RE:;#Q" is topologically generated by g elements.

Proof. Given a set of primes Q, of F,let Sg, =SUQ,. Forve Sy, givena
subspace [, C HI(GFv,adO,E), denote by L* ¢ HY(GF,, ad®p(1)) the annihilator
of L, under Tate local duality. Fixing an L, for each v € Sgp,,, we write Lg,
(resp. I]_“é”) for the subspace of HI(GF,SQn ad®p) (resp. Hl(Gp,SQn ,ad’p(1)))
consisting of classes which map to L,, (resp. ;) for each v € Sp,,. We will apply
this with L, = {0} if v € X, and L, = Hl(Gpv,adoﬁ) otherwise.

Now an argument as in [DDT, 2.49] shows that we may choose a set of finite
primes Q, of F satisfying (1) and the first condition of (2), and such that [L*én ={0}.
This uses the conditions (2) and (3) introduced in (3.2.3) above, the latter condition
being needed only to apply [DDT, 2.47].

It remains to show that the final condition of (2) is satisfied. By [DDT, 2.19]
we have

|H%(GF,s,ad%p)| I Ly

(3.2.6) |L n|= - —,
C T HO(Gr.s.ad’3(1)] |HO(GF,,ad%p)]

vESQ,

3We thank the referee for pointing out that an assumption on F (¢ '») is needed only in this special
case.
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Now (3.2.3)(2) implies that the global terms on the right-hand side of (3.2.6) are
equal to 1, while (3.2.4) implies that the terms corresponding to the finite places
of S\ X, are 1. Our assumption that L, = {0} if v € X, implies the terms
corresponding to such v are |F| 1=6v where we use the notation of (3.2.2).

Finally we compute the contribution of the terms coming from infinite primes
and primes in Q,. Keeping in mind that p has odd determinant at every infinite

prime, and that the primes in O, satisfy (1) of the proposition, we find |Lg,| =
|[F||Qn|_[F:@]+|Ep|_ZUEEp 51;’ so that

(32.7) hsy (GF.s,,.2d°)
= dimglg, = dimH ' (GF,5,ad’p(1)) —[F : Q]+ |Zp| — 3 6».

vVEX,

The proposition now follows from (3.2.2). |

(3.2.8) For each positive integer n fix a set of primes Q, satisfying the condi-
tions of (3.2.5). Let ng, C Of denote the product of the primes in Oy, write Ag,
for the maximal p-quotient of (Of /ng,0F)>, and ag, for the augmentation ideal
of O[Ag,]. After replacing [ by a quadratic extension, we may and do assume that
elements in the image of p have their eigenvalues contained in [F.

As in [Tayl, 2.1], we make R} 5o, (and hence also RY )intoa 0[Ag,]-
algebra as follows: If v € Q,, let &y, By € F denote the distinct eigenvalues of
p(Froby). The restriction of the universal representation

to a decomposition group G, at v is (equivalent to) a direct sum of two characters
_ . ¥x ¥x
Xaw ® 2p, - OF, > Rps, ®Rps,, -

where yg, composed with the projection Rﬁ)fSQ — [* is an unramified character
> n

which takes Frob,, to &. By local class field theory (normalized to take uniformisers

to the arithmetic Frobenii) yg, induces a map

(3.2.9) [T xa: [] 0% = R¥s,, -

veEQ, veQ,

This map factors though A g, , and induces an O[A g, ]-algebra structure on R}{f, So,"

For v € Qp, denote by &, € Agp, the image of some fixed generator of
(OF,/my)*. Let h! = |Qn| = dimg H (G F s, ad®p(1)), and order the elements of
On as v1,...vp1. Then we can write O[A g, ] as a quotient of Oy1, ..., y,1] by
sending y; to &, — 1.
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(3.3) The patching criterion. In this section we explain a criterion for a map
of O-algebras to be an isomorphism up to p-torsion. This will be applied to establish
that certain Galois deformation rings and Hecke rings are isomorphic up to p-torsion.
The argument is analogous to that of Taylor-Wiles [TW], as modified by Diamond
[Di2] and Fujiwara [Fu], however one of the differences with the approach of loc. cit.
is that the same criterion will be used to treat the minimal and non-minimal cases.

PROPOSITION (3.3.1). Let B be a complete local, flat O-algebra, which is
a domain of dimension d + 1, and such that B[1/ p] is formally smooth over E.
Suppose that R is a B-algebra and M is a non-zero R-module, and that there are
non-negative integers h and j such that for each non-negative integer n, there are
maps of O-algebras

(3.3.2) @[[yl,...,yh_,_j]] —> Rn — R
and a map of Ry-modules M,, — M satisfying the following conditions:

(1) The maps R, — R and M,, — M are surjective, and the first is a map of
B-algebras.

2) »y1,.-->Yn)Ry =ker (R, - R) and (y1, ..., yp) My =ker (M, —> M).
(3) If by CO[y1. ..., Yht . is the annihilator of My, then

bnC((1+y1)pn_1’--"(1+yh)pn_1)’

and My, is finite free over O[y1, ..., Yp4 ;11/bn. (So, in particular, M is finite
free over Olyp41.-... Yht ;1)
(4) Ry is a quotient of B[x1,...,Xpy gl

Then R is a finite O[yp 41, - ... Y+ jll-algebra, and M ®q E is a finite projec-
tive and faithful R[1/ p]-module.

Proof. For a complete local ring A, we will denote by my4 its maximal ideal.
For a non-negative integer n, we denote by mg') C my the ideal generated by the
elements of my which are n-th powers.

Let s denote the O[[yp41, ..., Yp4j]l-rank of M. This is equal to the rank
of My as an O[[y1, ..., yp+;]l/bp-module. For a non-negative integer m, write
Fm =smp™(h+ j), and
Cm = (ﬂ}?’()’l + l)pm —L....On+ l)pm - 1’y5+1""’y]f+j) C ©[[y1,---,J’h+j]]-
For m > 1 a patching datum (D, L) of level m consists of

(1) A sequence of maps of complete local O-algebras
(33.3) Oly1.-- > Yii;1/em = D = R/(cmR +mlm)

where the second map is a surjective map of B-algebras and mgm) =0.
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(2) A surjection of B-algebras B[[x1,...,Xp4;—q]l = D.

(3) A D-module L which is finite free over O[[y1, ..., yp4;[l/cm of rank s, and a
surjection of B[[x1,...,Xp4 j—gll-modules L — M /¢y M.

A morphism of patching data (D1, L1) — (D2, L) is a pair of morphisms
Dy — Dy and Ly — L3, where D1 — D3 isamap of B[[x1, ..., x4 j_g]-algebras
which is compatible with the morphisms in (3.3.3), and L1 — L, is a surjection of
D1-modules which is compatible with the surjections of L1 and L, onto M /¢, M.
Since the number of elements of D is bounded by

(rm)

|B[[x17""xh+j—d]]/mB|le _____ xh+_/—d]]|’

there are only finitely many isomorphism classes of patching data of level m.

Given positive integers, n > m, we define a patching datum (D, n, Linn)
of level m, by taking Dy n = Ry/cm Ry + m%;”) and L, n = Mp/cuM,. To
check that L, ,, is a Dy, , module we have to show that mg;”)Mn C ecuM,. To
see this, let a € mg,. Then a induces a nilpotent F-linear endomorphism of
M/(TE, Yh+1s---+Yh+;)M, so that a® induces the zero endomorphism. Hence
a*My € (Tg, Y1, ., Yh+;) My, and

&P DM (g P ,,y}fj:’.)Mn

J
=g, +D? —1,....(p+1D? —1,y,{’+1,...,y,§’+j)Mn.

Finally a’m M,, = a*P" "+Dmpp  ¢n M.

Since there are only finitely many isomorphism classes of patching data of
level m, after replacing the sequence (R, My) by a subsequence, we may assume
that for each m > 1, and n > m, the datum (D, 1, L ») is equal to (D m, Lin,m)-
Denoting this common value by (Dy,, L;,), we have in particular an isomorphism
of patching data

(Dm+1/(cm Dm+1 +ngll), Lm+1/¢mLm+1) — (Dm, Lm).

Now set Roo = LiLan,m and My = l(glem By construction we have a
surjection

Blx1,... ,xh+j_d]] — Reo,
and maps of complete local O-algebras
Oy1.---.yn+jl > Roo > R

where the second map is a map of B-algebras, and identifies

Roo/(y1,- -+, Yn) Roo
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with R. We also have that M is a finite free Oy, ..., yp4 ;]-module of rank
s > 0, and that the R-module M /(y1, ..., Y1) Moo is isomorphic to M. Note that

dimO[[y1,...,yp4jl=h+j+1=d+1+h+j—d =dimB[x1, ..., xp4;—4].

By (3.3.4) below, B[[x1,...,Xp4j—q]l is a finite O[y1, ..., yp4;]l-module, and
Moo ®¢ E is a finite projective, faithful B[[xq,...,xp4,;_4]l[1/p]-module. In
particular we see that B[[x1, ..., Xp4 j—q]] —> Roo, s0 that

M@ E=(Mx®cE)/(y1,..., Y1) (Mo Q¢ E)

is a finite projective, faithful R[1/p] = Roo[l/pl/(¥1,-.., Yr)Roo[l/ p]-module,
and R is finite over O[yp41,.... Yrt/]l O

LEMMA (3.3.4). Let A % Dbea map of Noetherian domains of the same
finite dimension d, and L a non-zero D-module which is finite and projective over

A. Then ¢ is a finite map. If A and D are regular then L is a finite projective,
faithful D-module.

Proof. Let D’ be the image of D in End4 L. Then D’ is finite over A, since L
is finite over A. Since L is a faithful A-module, so is D’. It follows that dimD’ > d,
sothat D = D’.

To show the second statement, we first remark that since A is a domain, L has
the same rank s > 0 at all points of A. Similarly if L is finite projective over D it
is a faithful D-module. Now let p be a prime of A, and q a prime of D lying over
p, and write /fp and D for the completions of A and D at p and q respectively. It
suffices to show that L ® D D is a finite free D -module. Thus we may replace A,
D and L by Ap, D and L ®p D respectlvely (note that D is finite over Ap, and
L®p D is an Ap dlrect summand in L ®y A p)» and we may assume that A and
D are complete local regular rings.

Now the A-depth of L is d, since L is A-free, hence the D-depth of L is > d,
and therefore equal to d. The Auslander-Buchsbaum theorem now implies that L
is D-free (cf. [Di2, Thm. 2.1]). O

(3.4) Deformation rings and Hecke algebras. We keep the notation of Section
(3.1). In particular, D is a totally definite quaternion algebra with center F' ramified
at a set of finite primes X, none of which lie over p, Op is a maximal order of D,
and U =[], Uy is a compact open subgroup of [, (Op);;. We assume that U is
maximal at primes in ¥ and at primes dividing p, and satisfies the condition (3.1.2).

We will assume from now on that W; =0 is the trivial representation. Although
this hypothesis is not needed immediately, it is necessary for most of what we do
in this section. We fix a character i satisfying the conditions explained in Section
(3.1) with respect to this choice of 7. Thus, in our situation, ¥ has finite order and
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is unramified outside S\ X, and at primes dividing p. We will write S y (U, O) for
Sr’w (U, @) .

(3.4.1) As in Section (3.2), we write ¥, = X U {p},,. We denote by
TF;,, o(U) (resp. Ty, o(U)) the image of Tgﬂi@v (resp. Tg“}v@) in the endomorphisms
of §2,4 (U, 0).

Let m’ be a non-Eisenstein maximal ideal of T‘énig which is induced by a
maximal ideal of Tip@(U ). Then S5 (U, O)y contains no non-zero functions

which factor through the reduced normon (D ® g A£ )*. Write [F for the residue field
of T‘&n‘g at m’. By [Tay2], and the Jacquet-Langlands correspondence (see [Tayl,
1.3]), there exists a continuous representation

pw :GF.s — GLz(Tip,@(U)m’)

such that for v ¢ S, the characteristic polynomial of p.y (Frob,) is X2 — T, X +
N(v)Sy. Here Frob, denotes an arithmetic Frobenius at v. We denote by pny :
GF,s — GLy(F) the representation obtained by reducing pny modulo m’. Since m’
is non-Eisenstein, p,y is an absolutely irreducible representation.

As in Section (3.2), for each finite prime v of F, we fix a decomposition group
GF, C GF,s at v. We denote by Vi the underlying F-vector space of puy, and by
Ly o the underlying O-module of pny. We set Vyy.0 = Luy 0[1/p], and write Vm*,’@
for the E-dual of Vi g.

LEMMA (3.4.2). Ifp is a prime of F lying over p, then

(1) Vv ole o is a Barsotti-Tate representation. If I, C G F, denotes the inertia
subgroup, then the determinant of Vi ol1, is equal to the cyclotomic character.

(2) The Hecke operator Ty € (Ty,g(U))wy lies in T@,@(U)m/[l/p], and

(3.4.3) Ty =y, W)l P12, W) @ P Deris (Vi o)),
where k(p) denotes the residue field of F at p, and tr denotes the indicated
trace.

Proof. The first statement in (2) follows from the strong multiplicity one
theorem, and the fact that Tiﬁ,@(U ) is semi-simple, being generated by self-adjoint
operators for the pairing in (3.1.9).

Let RS’D denote the quotient of RE corresponding to flat deformations, and
write RY = (RE’D)V for the quotient of RE’D defined in (2.4.1), where v is given
by setting all vy = 1. Let #, € R¥[1/ p] denote —1 times the coefficient of 7" in the
polynomial P‘V,m/ (T) introduced in (2.4.17). Fix a positive integer r > 1 such that
p'ty € RY.

Consider the composite 9 : RE — T:p’@(U )av —> Ty,0(U)w, where the first
map is induced by pyy. It suffices to show that if 0’ is the ring of integers in a finite
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extension of E, and « : Ty, ¢(U)n — 0’ is a map of O-algebras, then « o 6 factors
through RY, and the induced map RY — 0’ sends p”t, to k (p" T}).

If F has odd degree over Q, or the Hilbert modular form corresponding
to « is cuspidal or special at some place v of F, then the Galois representation
corresponding to k is as constructed by Carayol in the Tate module of a Jacobian
of a Shimura curve with good reduction at p [Ca, §2] (here we use that k = 2).
The statements in the previous paragraph follow easily from the Eichler-Shimura
relation.

Suppose that neither of these conditions holds. If A ¢ X, is a prime where U
is maximal, we define Uy = [[,(Uy)y C (D ®F A}f,)x by setting (U), equal to
the subgroup of matrices in GL, (0, ) whose reduction mod A is upper triangular,
and (Uj )y = Uy if v # A. We denote by Ty, ¢(U, ) the O-algebra of endomorphisms
of S v (Uy, 0) generated by the image of Tg"&v{”’@ and T}, for p|p. We set m, =
w AT

Taylor [Tay2] constructs the Galois representation corresponding to « by
showing that for each s > 1 there exists A, as above, such that the composite

Ty WU, = Tyo(U)w = 0' >0/ p°0'

factors through the quotient Ty, o(Uj

)il}“ew corresponding to forms in S» y (Uy, 0)
which are new at A (see Theorem 1, and the final part of the proof of Theorem
2 in [Tay2]).* The cases of the lemma covered by Carayol’s construction imply

that the map RE — Ty o(U, A)i}new factors through RY and that the induced map
A

RY — Ty 0(U, A)ﬁi}“ew maps p"t, to p”Tp. In particular, we see that the composite
A
RE — —U—I/,,@(Uk)m/k — —U—I/,’@(UA)/;{/:ew =0/ psd

factors through R" and the induced map sends p"t, € R to the reduction of
ko 0(p"T,) modulo p*. O

(3.4.4) Let m be a maximal ideal of T}“})’O which lies over m’, and arises from
a maximal ideal of Ty, ¢(U). If ¢’ is a subset of the set of primes p of F dividing
p, then we call m o”-ordinary, if T}, € m for a prime p of F dividing p, if and only
ifpéo’

For each p € 0’ let x, denote an unramified character of G F,» Which gives
the action of G, on a one dimensional quotient of VarlG £y, - BY (3.4.2) xp exists
provided that there is a o’-ordinary ideal m lying over m’. The choice of y, is unique
if ﬁm’|GFp is indecomposable. We set 0 = (07, { xp}peo’). We call m o-ordinary

4In fact the level structure used in [Tay2] is more specific than the one used here. This makes no
difference to the proofs. Moreover the statement of the lemma for more general level structure follows
from the case considered by Taylor.
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if it is o’-ordinary, and for each p € o’, the image of T}, in Ty, ¢(U)m is equal to
xp(Froby) modulo m. By (3.4.2), if pw|G r, 18 indecomposable, then the second
condition is automatic.

In general, given a maximal ideal m there is always a choice of o such that m
is o-ordinary. The corresponding set o’ is always unique, and o is unique unless for
some p € o’ we have V|G By ™ ()E)l on) with y1, y2 distinct unramified characters
of GF,. In the latter case the two choices for the character y,, are y; and 2.

(3.4.5) Suppose now that p,y satisfies the conditions (1)-(3) of (3.2.3), and
fix for each positive integer n, a set of primes Q, satisfying the conclusion of
(3.2.5), with p = pny. We will use the notation of Section (3.2). Define compact
open subgroups Ug,, and U ~of [1,(©p), by setting (Ug,)v = (Ug, v ="Uy
if v ¢ Oy, and defining

(Ug,)v=1{g €GL2(OF,): g = (33) ()}
and
Uo,)v =18 = ( )e (UQ Yo:ad l>1e Ag,}.

Finally, after replacing [ by a quadratic extension, we may and do assume that
eigenvalues of elements in the image of p,y are contained in F.

As before, we may define Hecke algebras T/ o(Ug,) and Ty ¢(Up, ) and
similarly for U, 0, These are quotients of TT““‘V 0 and TT““‘V ¢ respectively, where

So, =S UQn.

We denote by TT://,@(U 0,) and TTW,@(U 0, ), respectively, the rings of endomorphisms
of S2 4 (Ug,,. 0) generated by T’ O(UQn) and Ty, @(UQn) and the endomorphisms
induced by the Hecke operators Ur, = UQn( )UQn for v € O,. We de-
fine analogously subrings T @(U n) and TL/,,@(U n) of the 0-endomorphisms

of S 4 (U, 0, ,0). We will again denote by m the ideal m N T‘é“}," o of T‘é“},v o

LEMMA (3.4.6). The localization Tw @(U )m has 2|Q”| distinct maximal
ideals corresponding to the 21Qnl ways of choosmg one of the two eigenvalues o
and ﬂv of puy (Froby) for v e Qp. If my, o denotes the maximal ideal corresponding
to {Qy : v € Qp} and mg, denotes the induced maximal ideal of Tw 0(Ug, ), then
forv € Qy, Uy, reduces to a, modulo mg, , and moreover:

(1) There is a natural isomorphism Sy y (U, O)p —> Sz,l/,(Uén , @)mén'
(2) S2,4(Ug,,0) is a free O[A g, |-module, and there is a natural isomorphism

S2,4 U0, Omg, /00, —> S2,4(Ug, . Omg, .

where ag,, denotes the augmentation ideal of O[Ag,,].
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Proof. The description of the maximal ideals of Ty,¢(Ug, )m follows from
[Tayl, 1.6, 1.8]. Part (1) follows from [Tay1, 2.2] and (2) from (3.1.13). O

(3.4.7) Set m = an N —ﬂ—wO(UQ ). Write T, T’, TQ and TF’ for the
localizations T, @(U)m, 1// o> Ty0(Ug, )my, » and Tw @(UQn)m ,, fespec-
tively. As in (3.4.1), we have a representation G s,, — GL2 (T ) and hence
a map RY. F.So, TT’Q , which is a surjective map of O[Ag,,]- algebras by [Tayl,
1.8]. Here we regard Y as a character of G s as explained in Section (3.2). In
particular, TTQ is reduced belng a localization of T’ @(UQn)

For each p|p let R D denote the quotient of RD, which parametrizes flat
deformations of Py |G Fp 1O finite, local, Artlman O-algebras. In the notation of
(2.4.1), we have the quotient Rﬂ Oy — (R )v of Rﬂ - , where v = (1), and ¢
runs through embeddings Fj, — @p. Leto = (o’ ,{p}peg/) be as in (3.4.4), and

suppose that m is o-ordinary. By (2.4.10), and the discussion of (2.4.13), if p ¢ o’
,0,v

ﬂl:|v

(resp. p € o”) there exists a collection of connected components of Spec R’
such that for any finite extension E’ of E, an E’-valued point x of Spec R’
lies on one of these components if and only if the corresponding E’-representation
Vxr of GF, is non-ordinary (resp. ordinary). We denote by R" the quotient of
Spec Rﬂ O

We now define a quotient Ry of R‘p’/. If p & o/, we set Ry = R" Suppose
that p € o’. By (2.5.16) Spec R"/[l/p] is connected unless Vm’|Gp ~ (Xp y )

0 Xp
with y, and )(p distinct unramified characters of G, . In the former case, we set

corresponding to the union of these components.

Ry = R" . In the latter case Spec R" [1/p] has two components Cy, and C L
Where C x, has the property that for any finite extension £ " of E, (the image of)
a point x € Spec Rg/[l/p](E’) lies on Cy, if and only if Gk acts on the (unique)
unramified, one dimensional quotient of Vy via an O%,-valued character which
reduces to xp. In this case, we denote by Rg the quotient of Rg/ corresponding to
Cy, -

We denote by Rg’w the quotient of Ry corresponding to deformations with
determinant equal to i times the cyclotomic character. (Here we have dropped
the OJ from the notation, but the reader should remember that we are working with
framed deformations.)

Applying (2.4.17) with R = R , we also obtain a finite R = V-algebra
Rﬁ Oy Rﬁ = v[l/p] We denote by R %Y the i image of R f,0.v in R(”/’[l/p]
Finally we set R = @,JRU ¥ and RU W = ®pR i , where the completed tensor
products are taken over O.

(3.4.8) Let v € X. There is a unique unramified character y : G, — 0%,
such that y2 = v¥|g r,» and such that py |G, is an extension of y by y(1). This
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follows from the compatibility between the global and local Langlands and Jacquet-
Langlands correspondences (cf. [Tayl, 1.7]).

By (2.6.7) there is a O-flat quotient R:)p of RE‘, such that for any finite extension
E'/E,amap £ : RS — E’ factors through RY if and only if the induced G F,
representation Vg is an extension of y by y(1).

Write RY = &yexRY , and set R = Ry & RY and RE", = RyV & RY.

LEMMA (3.4.9). (1) The composite map
Os O O O
Ry ®oRy — RE s, — RFE 55, ®Rr.sy, 100
factors through R%}'Iz)
(2) The image of the induced map

®RD RF Sop, - RE,SQH ®RF,SQn—I]—Qn [l/p]

is equal to —”—Qn = RF,SQn ®RF.SQn—|]—Qn' The analogous statements with S
in place of S, also hold.

Proof. Since m is o-ordinary, so is mgp,. Hence (3.4.2) and the fact that
det py = ¥y imply that the map RD — RE So, ®Rr.s,, To, factors through
Ry ¥ To see that the map RE| — RI,‘:,I So, ®Rr.s,, 10, factors through RY,, note
that, since T, is reduced, it suffices to check that for any finite extension E’/E,
and any map & : Tg, — E’, the composite of the above map with 1 ® § factors
through Rg. This follows from the compatibility of the local and global Langlands
correspondence. This proves (1).

From the construction in (2.4.17), R,"~"" is generated as an R," " -algebra
by the coefficients of a quadratic polynomlal Pv (X )= X2 —1,X + dp. To show
(2), it suffices to prove that under the map

Si,0,
Ry —ﬂTQn[l/p]

the element ¢, is mapped to 7, while d}, is mapped to an element of 0. Since

S,00,v . f,0,v

To,[1/p] is reduced, it suffices to check that this is true after composing with
amap Tg,[1/p] = E’ where E'/E is a finite extension. But this follows from
(3.4.2) and the description in (2.4.17) of the pull-back of PV (T) by an E’-valued

point of Rﬂ Dy O

(3.4.10) We set 1%""” - R‘”” ® R0 RY SQ and similarly with S in
place of Sg,. Again, the reader should note lt)hat we are suppressing [ from the

notation, but that R F"/g is a deformation ring for framed representations (in fact
the functor defined in (3 2.1) involves a choice of frame for each v € X,). As
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in (3.4.9) we set TH := R%‘!S ®Rp s . We can now state the main result of this
section.

THEOREM (3.4.11). With the above notation and assumptions, suppose also
that if p is a prime of F dividing p, and p ¢ o’ then p has residue field Fp,. Then the

map Ié‘;f{; — T induced by the map of (3.4.9)(2) has p-power torsion kernel.

Proof. We apply (3.3.1) with B = RG" R = R3's, Ry = RE, . and with

M =S54 U.0)n@r T and My = 2.4 (Ug,. O)mp, @70, T3, -

We write i = |Qp|, and fix a surjection Of[y1, ..., yp]] = O[Ag, ], asin (3.2.8). The
morphism R s — R%‘ g is formally smooth of relative dimension j = 4|%,| —1.
Thus we may identify RE g With a power series ring Rp s[[wy, ..., w;], so that
RIEV‘,S becomes an Of[y1, ..., yp4 ;]-algebra via

Olvi,- . yn+j1 = Olyn+1s - yu+;] —  REg.

Similarly, for any n > 1, RE,SQn isan O[A g, ]-algebra, and hence an Of[y1, ..., yz]l-

algebra. We may extend this to an O[[y1, ..., y54 ;]-algebra structure, such that

the projection RII_T“‘,SQ,, — RIE«",S becomes a map of O[y1, ..., ys+ j]-algebras.
The maps in (3.3.2) then correspond to the induced maps

Oy1,---s ynt il — R;’fvgn - 1?‘;”‘{;.

We now check the conditions in (3.3.1). The conditions on R;, — R in (1) and (2)
follow from the description of the O[A g, ]-algebra structure on Rp s, given in
(3.2.8). The conditions on M}, in (1), (2) and (3) follow from (3.4.6).

To check the conditions on B, we remark that if p|p, then Ry — Rg’w X1,
where the isomorphism depends only on a choice of topological generator for the
maximal unramified quotient G f,. Hence (2.5.16) applied with R = RIﬂ;S implies

that Rg’w is a domain which is flat over O of relative dimension 3 + [F}, : Qp], and
that Rgnﬁ [1/p] is formally smooth over E. More precisely, since E is an arbitrary
sufficiently large finite extension of Q, Rg’w[l / p] is geometrically integral in the
sense that it remains a domain after any finite extension of scalars £ — E’. The
same statements hold with ﬁg’w in place of Rg"/’, because Rg”/’ — Iég"/’ is a finite
map of flat O-algebras, which becomes an isomorphism after inverting p.

By (2.6.7), if v € X, then R:)p is an O-flat domain of relative dimension 3 over
0, and va [1/p] is geometrically integral and formally smooth over 0. It follows

from (3.4.12) below that R%"/; is a domain which is flat over O of relative dimension

d=> ([Fp:Qpl+3)+3|Z| =[F : Q] +3|Z,.
plp
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and that R%’ﬁ[l/p] = I?g’ﬁ[l/p] is formally smooth over E. In particular, Ié%’}/l’,
is a domain of dimension d + 1, and

Bt j—d =1Qul + 45| —1—[F :Q] =3[Zy| = |Qul ~ [F : Q] + 5| ~ 1,

so that condition (3.3.1)(4) follows from (3.2.5).

We conclude that M ®¢ E is a faithful Ié;‘g ®@ E-module. Since the action

of Ié(}’ s on M factors through TH, the theorem follows. O

LEMMA (3.4.12). Let Ry, R, be complete, local, flat O-algebras with residue
field F, and suppose that R;[1/p] is geometrically integral for i = 1,2. Then
R = R{®¢R> is O-flat and R[1/p] is geometrically integral. If Ri[1/p] and
R»[1/ p] are formally smooth over E, then so is R[1/ p].

Proof. Let m; and m; denote the radicals of Ry and R, respectively. For
n>1, R/m{R = R;/m}| ®q Ry is a flat Ry/m/ R-algebra. Hence R is a flat
Rj-algebra by [GrD, 0777 10.2.1], and hence a flat O-algebra.

To show the two other statements, we remark that if S is any quotient of a
power series ring O[xy, ..., x;] for some r > 0, then S[1/p] is a Jacobson ring
[GrD, IV 10.5.7] and the residue field at any maximal ideal of S[1/p] is a finite
extension of E [de], p. 78-79].

Let X1, X5 and X denote the spectra of R1[1/p], R2[1/p] and R[1/ p] respec-
tively. To show that X is irreducible we have to show that if Uy, U, C X are disjoint
open subsets, then one of U; and U, is empty. Suppose that both are non-empty.
After replacing O by the ring of integers 0’ in a finite extension of E, and R; and
Ry by R; ®¢ 0" and R, ®¢ 0’ respectively, we may assume that both Uy and U,
admit O[1/ p]-valued points and, in particular, that for i = 1,2 there is a section
si X1 — X, such that s; (X1) meets U;. Then sl._l(U,') C X are non-empty open
subsets of X1 and hence they intersect as X is irreducible. Let y € X be a closed
point in the intersection. Then both U; and U, meet X,,, the fiber over y of the
projection X — X;. This is a contradiction because X3 is geometrically integral,
so X, is irreducible.

Next we remark that if x; € X; and x, € X, are closed points at which X3
and X, are formally smooth over E, then the formal smoothness of X at (x1, x2)
is a simple exercise using (2.3.3). This proves the final statement of the lemma, and
shows that, in general, X is generically reduced.

To show that X is integral, it remains to show that it is reduced. If X; and X>»
are both 0-dimensional (so that Ry and R, are finite extensions of 0) then this is
clear. Thus we may assume that dimX; > 1. Now X is reduced if and only if it is
generically reduced and satisfies Serre’s condition S; [GrD, IV 5.8.5]. Since X is
reduced, it satisfies S7, and therefore has depth > 1 at every point. Since X is a
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flat X1-scheme, it follows that X has depth > 1 at every point [GrD, IV 6.3.5], and
hence satisfies 5.

This shows that R[1/ p] is integral, and since the extension O’ was the ring of
integers in an arbitrary extension, that R[1/p] is geometrically integral. O

(3.5) Applications to modularity. In this section we use (3.4.11) to prove
modularity of certain two-dimensional Galois representations.

(3.5.1) We keep the notation of previous sections. It will be convenient to fix
algebraic closures Q and Q, of Q and Q) respectively, and embeddings Q — C,

and Q CL @p. We denote by ip the ring of integers of @p, and by [_Fp its residue
field.

Given a cuspidal Hilbert modular eigenform f over F (thought of as a complex
valued function) we denote by E; the A-adic completion of its coefficient field, by
Oy, the ring of integers of Ey 3, and by 77,3 a uniformiser of Oy, . Attached to f is
a continuous representation of G g 5 on a two-dimensional Ey j-vector space Vy,,
where S is a set of primes containing the infinite primes, the primes dividing p,
and the primes at which f is ramified. Choosing a G f s-stable Oy, -lattice in Vy 3,
we obtain a representation py; : Gr,s — GL2(0f ) (defined up to conjugation).
We denote by ps, — GL2(0f,,/7r,,) the corresponding residual representation.
The semi-simplification of oz, does not depend on the choice of lattice.

As in (3.1.3), we can associate a maximal ideal of Tg‘:iivp to f. If fis

unramified at primes dividing p, we can associate a maximal ideal of Tg“li,v’zp to
f,asin (3.1.9). Given two such eigenforms f and g, which are both unramified
at primes dividing p, we will write f ~ g, if f and g have the same associated
maximal ideal of T‘é“;vip. In particular, this implies that ps 3 ~ pg 1. (That is, the
semi-simplifications of the two representations are isomorphic after an extension of
scalars, and the set S is taken so as to contain the primes of ramification of f and

g)-

LEMMA (3.5.2). Let f be a cuspidal Hilbert modular eigenform over F of
parallel weight 2, which is unramified at primes dividing p. Let T be any finite set
of finite primes at which f is unramified. There exists a finite, solvable, totally real
extension F' of F, and a cuspidal Hilbert modular eigenform g over F' of parallel
weight 2, such that:

(1) Each prime v € T is totally split in F’'.

(2) If f is unramified at a place v of F, then g is unramified at every place v’ of
F’ lying over v.

(3) If f’ denotes the base change of f to F’,then f' ~ g.
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4) If V' ¥ pis a place of F', and py: j ~ pg.; is unramified at v', then g is
unramified at v’.

Proof. The main theorem of [SW1] produces an extension F’/F and a form
g over F’ which satisfies (1), (2) and (4), and such that P A ~ Pg,i- To ensure
the condition (3) we have to arrange that for p|p a prime of F’, the eigenvalues of
T, acting on g and f” have the same image in [_Fp. This can be achieved by a very
slight modification of the argument in [SW1]. Namely, on p. 21 of that paper (and
with the notation used there), one should define the algebra T as in the ordinary
case (that is, T includes the operators #(p) for p|p), and the maximal ideal m of
T ® O should be defined as the ideal generated by

A5 (@) =@, ), @) = 7 (q) for q + npeep; 1(p) —c(p. f) for p|p}.

The rest of the proof then proceeds unchanged. O

LEMMA (3.5.3). Suppose that [F : Q)] is even. Let f be a cuspidal Hilbert
modular eigenform over F of parallel weight 2 such that f is unramified at primes
dividing p. Let % be a finite set of finite primes of F not containing any primes
dividing p,and F = Fy C Fy C ... Fy a tower of totally real fields satisfying the
following conditions:

i) X={v1,...,v .}, and fori =1,2,...r, F;/Fi_1 is a quadratic extension
such that for any j € {1,2,...r} any prime w of F;_1 over v; is inert in F; if
i # j,and splitsin F; ifi = j.

(ii) Foreachv € X, f is unramified at v, and for v € X, ps 3|, is an extension
of y by y(1) for some unramified character y.

Then for any prime £ ¢ X U{v|p}, there exists a cuspidal Hilbert modular eigenform
g over Fy of parallel weight 2 such that

(1) If v # L is a finite prime of F at which f is unramified and v' a prime of F,
over v, then (the automorphic representation generated by) g is special of
conductor 1 at v’ if v € X, and unramified otherwise.

(2) If f' denotes the base change of f to Fy, then [’ ~ g.

Proof. We prove the lemma by induction on r. Let X,_1 = {vy,...,vr—1},
and let g,—; be a Hilbert modular eigenform on F;_; which satisfies the conclusion
of the lemma with ¥,_; in place of X. Let D be the quaternion algebra with center
Fr—1 which is ramified at the infinite places of F,_1, and at the finite primes lying
over a prime of X,_1. Note that the latter set has cardinality 2(r — 1).

Fix a maximal order Op of D, and let U = [[, U, C (D ®F A{,)X be a
compact open subgroup such that U, = (Op),, if v lies over a prime of X,_j, or
if gr—1 is unramified at v and v 4 £. Note that the set of such primes contains the
primes dividing p, and the primes of X. For the other finite primes v we choose
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Uy small enough that g,_1 corresponds to a Hecke eigenform /1,1 € S (U, 0)
via the Jacquet-Langlands correspondence and U satisfies (3.1.2). This is possible,
since we may choose U, arbitrarily small if v|£. Here the character v is determined
by the central character of g,—1, and O C ip is the ring of integers of a sufficiently
large, finite extension of Q,, £ C @p.

Define U’ =[], U] by U, = U, unless v|v, in which case we set

Ulg ={8€GL2(O(F,_p),) : g = (3 :) (my)}

where we have identified (Op ), with M>(O(f,_ ), ). Note that there is exactly one
prime v, of F,_; dividing v,.

Now let S be the union of the infinite primes of Fy_1, the primes dividing
p or a prime in X, and the primes v such that U, is not maximal compact. Let
mC wrgn,l,vc denote the maximal ideal associated to g,—1. The compatibility between
the local and global Langlands correspondence and the condition (ii) of the lemma
implies that

(T3, — (N(@r) + )¢ (75,)) (S2,4 (U, 0) C mS2,4 (U, 0).

Hence, by (3.1.11), there exists a non-zero eigenform h, € Sz,w(U/, 0)y which is
not in the image of ij, . If g, is the Hilbert modular form over F;,_; associated to
h;, via the Jacquet-Langlands correspondence, then we may take g to be the base
change of g, to F;. O

(3.54) Let E C @p be a finite extension of Q,, with ring of integers 0, and
residue field F. Let p : Gr s — GL2(E) be a continuous representation. After
conjugation by an element of GL,(E), we may assume that p factors through
GL>(0), and we denote by p the composite

p:Gr.s>GLy(0) — GLy(F).

Up to semi-simplification p is independent of the choice of element we used to
conjugate the image of p into GL5(0). In particular, if p is irreducible, then it is
independent of this choice. We assume from now on that this is the case.

As usual, we call p residually modular if there exists a Hilbert modular eigen-
form f over F, such that ps; ~ p.

We call p strongly residually modular if p is potentially Barsotti-Tate at all
primes p of F' over p, with determinant equal to the cyclotomic character times a
finite order character, and f can be chosen so that

(1) psa ~ p,and f has parallel weight 2.

(2) The automorphic representation of GL,(Af) generated by f is not special at
any place dividing p.
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(3) For any p|p, pralc F is potentially ordinary (i.e. ordinary when restricted to
an open subgroup of G,) if and only if p|g Fy is.

THEOREM (3.5.5). Let p: Gf s — GL2(E) be a continuous representation,

which satisfies the following conditions:’

(1) p is strongly residually modular.
) Ifp|p, and plg Fa is not potentially ordinary, then the residue field of p is [p.

(3) The restriction of p to Gz, is absolutely irreducible. If p =5, and p has
projective image isomorphic to PGLy(Fs), then the kernel of proj p does not

fix F(Zs).
Then p is modular. That is, p ~ pg 5 for some Hilbert modular form g.

Proof. Let f be a Hilbert modular eigenform over F satisfying the conditions
(1), (2) and (3) of (3.5.4), and denote by 7¢ the corresponding automorphic repre-
sentation of GL,(AF). Let F’/F be a totally real extension. Suppose that there
exists a tower of fields F = Fy C F; C --- C F, with F;41/F; a finite abelian
extension, and such that F’ C F,. By Langlands base change it suffices to show
that p|g ., is modular. By class field theory we may choose F’ with the following
properties:
(i) The base change of 7¢ to F' is unramified or special at every finite place of
F’.
(i) plg o is Barsotti-Tate for every prime p of F’ dividing p.

(iii) If p|p and p|g 7 is ordinary then p|g # is either indecomposable or has trivial

image. If p|g -, 1s non-ordinary then the residue field at p is [ .
p

(iv) plG ., is unramified outside the primes of F dividing p.

(v) If v } p is a prime of F where p is ramified then the image of the inertia
subgroup I, C GF, under p is unipotent.

(vi) [F’: Q] is even and the images of GF(,) and Gfr(¢,) under p are equal.

That F’ can be chosen to satisfy (i)—(v) and the two conditions in (vi) follows
from [Tay3, 2.2] and its proof (cf. also [JM, §2]), since these properties can be
forced by imposing local conditions on the extension F’/F at a finite set of primes
of F. To see that F’ can be chosen to satisfy the last condition in (vi) note that
in constructing the intermediate field F; 41 from F; we can always choose a finite
set of primes T of F;, which are disjoint from any given finite set of primes, and
such that v € T splits in G, (¢,), and the elements p(Froby) with v € T" generate

5 After the writing of this paper was completed Toby Gee was able to prove (2.5.6) for 5 with
trivial image, without the restriction that Ko = Qp [Ge]. This allows one to remove the condition (2)
below.
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p(GF;(¢,))- Requiring that v € T split in Fj4; then ensures the third condition in
(vi).

After replacing p by p|G,, and 7y by its base change to F’, we may assume
that (i)—(vi) hold with F in place of F’. (We remark that in (iii) we could make
the more brutal assumption that p|g -, 1s trivial for all p|p where p is ordinary, and
this would suffice for the proof which follows.)

By (3.5.2), after making a further base change, we may assume that ¢ is
unramified at all finite places of F. Choose a prime £ } p of F such that

(3.5.6) trp(Froby)?/ det p(Froby) # (1 4+ N(£))? /N(£).

This is possible by [DDT, 4.11], applied with y equal to the cyclotomic character,
because [F({p) : F] is even and p|g Fp) 1S absolutely irreducible. Now (v) implies
that at any place v where p is ramified, p|G , is an extension of y by y (1) for some
unramified character y of Gf,. Hence by (3.5.3), we may assume that (instead
of the previous condition), for each finite prime v of F, 7y is unramified at v if
v| p, is special with conductor 1 if p is ramified at v } p, and is not special at any
v } p where p is unramified. This last condition is guaranteed by (3.5.6) provided
we choose the extension F; in (3.5.3) so that £ splits in F,.. Hence, after a further
base change, we may assume that 7z is also unramified at all v { p where p is
unramified. Moreover we may suppose that the set X, consisting of primes v t p
where p is ramified, has even order. We may also assume that (ii)—(vi) continue
to hold. This is automatic except for (iii) and (vi), and these two conditions can
be preserved, as above, by choosing the extensions F’/F and F,/F in (3.5.2) and
(3.5.3) so that a suitable set of primes splits completely in F" and F,.

Finally, after twisting f by a character, we may assume that pr; and p have
the same determinant.

Let D be the quaternion algebra with center F which is ramified at the infinite
primes and at the primes in 3. Fix a maximal order Op of D, and define a compact
open subgroup U = [, Uy, of (D ®F AI{:)X by setting U, = (Op),. By the
Jacquet-Langlands correspondence (enlarging O if necessary), f corresponds to a
Hecke eigenform fP e S2,4 (U, 0) where ¥ is determined by the central character
of f (see (3.1.14)).

Now let £ ¢ X be a finite prime of F with £ 4 p, N({) # 1(p) and satisfying
(3.5.6). We define U’ =[], U, by U, = U, if v # £, and

Uy ={g €GL2(0F,): g =(§ 7))}

We may assume that £ is sufficiently large that U’ satisfies the condition (3.1.2),
and we regard fP as an element of Sz (U',0).

Let S be the set of primes of F' consisting of the infinite primes, the primes
dividing pf, and the primes contained in ¥. Let m C Tg.”},if@ be the maximal ideal
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associated to f P, so that fP e S2,4(U’, 0) . We can now apply (3.4.11) to m.
To check that the hypotheses of that theorem are satisfied, note that the conditions
(1)-(3) of (3.2.3) hold for pny = p by (iv) and (vi) above, and the fact that p ~ ps 3
has odd determinant, while (3.2.3)(4) holds by the choice of £.

Now let ¢’ be the set of primes of F dividing p at which f? (or equivalently
f) is ordinary. The assumption (iii) and the discussion of (3.4.7) then imply that
there is a unique choice of 0 = {o”, {xp}}, and that Ry = R‘p’/. Now (ii), (v) and the

fact that det p = det py, 5, imply that p arises from a homomorphism k5 R‘;fé — 0,

and this extends uniquely to a map R(Ir,vg. — 0. The required Hilbert modular form
g then corresponds to the kernel of the composite map
TyoU)m=T—>T2 = RE%/RGL[p™°]— 0. O
3411 O ’ Kp
THEOREM (3.5.7). Let p: Gr,s — GL2(E) be a continuous representation,
and suppose that:

(1) det p is equal to the cyclotomic character times a character of finite order.

(2) For all primes p of F dividing p, p|g Fyp 1S potentially Barsotti-Tate and not
potentially ordinary, and the residue field at p is equal to IFp.6

(3) p ~ pga for a Hilbert modular form f over F of parallel weight 2.

@) plg Fiep) IS absolutely irreducible. If p = 5 and p has projective image isomor-
phic to PGL,(F5), then the kernel of proj p does not fix F({p).

Then p ~ pg ; for some Hilbert modular form g.

Proof. Let f be a Hilbert modular form such that p ~ pr. 1. Applying a base
change argument as in the proof of (3.5.5), we may assume that [F : Q] is even and
that at each place p|p of F, f is either unramified or special of conductor 1.

Applying the Jacquet-Langlands correspondence and the discussion of (3.1.14),
as in the proof of (3.5.5), and using (3.1.6), we find that there exists a Hilbert modular
eigenform f of parallel weight 2 whose corresponding automorphic representation
mys is cuspidal at all primes p|p, and with ps ~ pss 5. Hence the Weil group
representation corresponding to the local factor of ¢/ at p is irreducible. The
main result of [Sa] (or [CDT, B.4.2] together with the main result of [Ca]) imply
that this Weil group representation can be obtained from the potentially crystalline
representation ps/ |G F by Fontaine’s construction. This is only possible if ps/|G F
is not potentially ordinary. This implies that p is strongly residually modular, and
so the theorem follows from (3.5.5). O

COROLLARY (3.5.8). Let p: Gg,s — GL2(E) be a continuous representation.
Suppose that

6 Again, the results of Gee make the last assumption unnecessary.
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(1) p is potentially Barsotti-Tate at p, and det p is the cyclotomic character times
a finite order character.

(2) p is residually modular.

3) ﬁ|@(m) is absolutely irreducible.
Then p is modular.

Proof. It p|G@p is irreducible, then this follows from (3.5.7). So suppose that
p is potentially ordinary at p. By [Dil, 6.4] there exists a modular eigenform f,
such that py is potentially Barsotti-Tate and potentially ordinary at p, and such
that pr; ~ p. It follows that p is strongly residually modular in this case also. [J

Appendix on groupoids

(A.1) The purpose of the appendix is to recall some definitions involving
categories cofibered in groupoids which are needed for the arguments in Section 2.
Most of what we need is contained in [SGAT1, §5] (which uses fibered categories)
and [Ar]. The basic point is that the deformation theory of Galois representations is
usually studied by considering functors whose values are the sets of isomorphism
classes of liftings. In the presence of non-trivial automorphisms this definition can
lead to pathologies, and it is better to consider functors with values in groupoids,
that is, to consider the category of liftings and the isomorphisms between them,
rather than just the set of isomorphism classes. For technical reasons, having to
do with the fact that categories form a 2-category, it is more convenient to deal
with categories cofibered in groupoids rather than functors with values in groupoids.
None of this will come as any surprise to readers familiar with stacks, although
we do not use that language here, since we will make no use of Grothendieck
topologies.

(A.2) Let € be a category. We denote by Ob(%) the objects of €, and Mor(€)
its morphisms. A category over € is a category ¥, together with a functor ® : F — €.
For T € Ob(€) we denote by %(T') the subcategory of % consisting of objects &
with ®(§) = T', and morphisms « with O(«) = id7.

A category & over € can be defined by specifying the objects of each of the
categories F(T'), and the morphisms n — & which cover (i.e. are taken by © to) a
given morphism of € (as well of course as the composition laws for morphisms). It
will often be convenient to define categories & over € in this way. The definition
of the composition law will usually be obvious and left to the reader.

DEFINITION (A.2.1) (cf. [SGAL, 5.1]). Let « : n — & be a morphism in %,
and set T = O(n), S = O(§), and f = O(«). Then « is called co-Cartesian if for
any & € Ob(%(S)), and any morphism u : n — &', with ®(u) = f, there exists a
unique # : § — £ in Mor(%(S)) such that u = it o .
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DEFINITION (A.2.2). F is said to be a groupoid over € (or less succinctly, a
category cofibered in groupoids over €) if

(1) Every morphism in & is co-Cartesian

(2) For any morphism f : T — S in Mor(%), and each 1 € Ob(%(T)), there exists
a morphism « : 7 — £ in Mor(%) with O(x) = f.

As a consequence of the definition one sees that if & is a groupoid over €,
then for any 7" in Ob(€), the category %(T') is a groupoid.

(A.3) The following example is the prototype for situations in which we will
make use of the above definition.

Let [ be a field with the discrete topology, and O a complete local ring with
residue field F. We denote by AR the category of Artinian local O-algebras, A
with maximal ideal m4, such that F —> A/my4. Let G be a topological group, and
VF a finite dimensional F-vector space equipped with a continuous G-action. We
define a groupoid Dy, over AR as follows

(1) For A in 2Re, the objects of Dy, (A) are pairs (Vy4, ¥), where Vy is a finite
free A-module equipped with a continuous action of G, and ¥ : V4 ®4F —> V¢
is an F-linear isomorphism respecting the action of G.

(2) A morphism (Vy4, ¥) — (V4r, ¥') covering a given morphism 4 — A’ of AR,
consists of an equivalence class [«], where a : V4 ® 4 A’ —> V4 is an A’-linear
isomorphism, compatible with the morphisms v and v/, and with the action
of G, and two morphisms are equivalent if they differ by an element of A"*.

(A4) Let ©® : F — € and ©' : F' — € be two categories over €. A morphism
of categories over €, ¥ : ¥ — %', is a functor such that ® o ¥ = ©.

Two such functors W, W’ are said to be equivalent if there is an isomorphism
of functors u : W —> W’ such that for & in Ob(%), ©'(u(§)) = ide(s).-

Let®:F > ¢, 0 :F — € and ©" : F’ — € be categories over ¢, and
suppose we are given morphisms ®' : % — % and ®” : ¥’ — %. The 2-fiber
product F x4 F” is a category defined as follows:

(1) An object of ¥’ x4 F" is a triple (§, ", a) where £’ € Ob(F), £’ € Ob(F"),
and o : @' (§') —> ®”(£”) is an isomorphism in % such that © () is an identity
morphism in é.

(2) A morphism (¢/,&”, ) — (', n”, B) is a pair of morphisms y’ : £’ — " and
y" 1€ — 1", such that B o @'(y’) = ®"(y") o«.

If %, ¥, and ¥ are groupoids over €, then so is F x5 F.
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(A.5) Suppose that © : & — € is a groupoid over €. Let € Ob(%). We define
a category 7 associated to 71 as follows: An object of 7 is a morphism « : n — £

in . A morphism (nié) — (nig’) is a morphism B : £ — €’ in % such that
' = B oa. The morphism 77 — € sending n — £ to ©(€) gives 7 the structure of a
groupoid over €. Note that 7 is equipped with a functor 7 — % given by sending
n — & to £. This a morphisms of groupoids over €. We will sometimes identify n
with its associated category, and write 7 rather than 7.

DEFINITION (A.5.1). A groupoid ® : & — € is called representable if there is
an 1 € Ob(%) such that the canonical functor 7 — % is an equivalence of categories.

We remark that for 7 € Ob(€), two isomorphic objects of /(7T are related
by a unique isomorphism. Hence 7(7') is equivalent to the category whose objects
are morphisms ®(n) — 7', and whose only morphisms are the identity. More
precisely, ® induces an equivalence of categories between 7 and ézﬁ) From this
one sees easily that if % is representable, then the representing object 7 is defined
up to canonical isomorphism. In particular, ®(#) is well defined up to canonical
isomorphism. We say that ®(n) represents %.

If P is a property of objects of € which is stable under isomorphism, we say
that & has property P if it is representable, and the corresponding object 7" of €
has property P.

Suppose that for each 7" in Ob(%) the isomorphism classes of %(7") form a set.
We define a set-valued functor |%| on € by sending T to the set of isomorphism
classes of F(T).

Suppose that & is representable, and let 1 be a corresponding object of Ob(%F).
Write T = ©(n). Then there is an isomorphism of functors Homg (7, ) — |%|,
so that T represents |%| in the usual set theoretic sense. Conversely, if |F| is
representable, and for any 7" in Ob(€) two isomorphic objects of F(T') are related
by a unique isomorphism, then % is representable.

DEFINITION (A.5.2). Suppose that ® : ¥ — % is a morphism of groupoids
over €.

(1) @ is called relatively representable if for each 1 in Ob(%), the 2-fiber product

Ty = 1 x5 F

is representable.

(2) @ is called formally smooth if the associated map of functors |F'| — |F| is
formally smooth. That is, for any morphism 7" — S in ¢, the map

|F'|(T) = |F|(S) xig1(s) |FI(T)

is surjective. This is equivalent to asking that for every n in Ob(%), the
morphism |%,| — [n| is formally smooth.
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As above, write T = O(n). If %, is represented by § € Ob(F), write S for the
image of £ in €. By definition of &, there is a canonical morphism 7" — S. Suppose
now that P is a property of morphisms of ‘€, which is stable under composition with
isomorphisms. We say that a morphism ® as above has property P if it is relatively
representable, and for each 1 in Ob(%), the corresponding morphism 7" — S has
property P.

In fact we will not make much use of this last notion here. On the other hand,
we will sometimes work in a situation where there is a notion of formal smoothness
for morphisms in € (e.g. the category of schemes). In such situations we emphasize
that saying a morphism of groupoids ® : ¥ — F is formally smooth does not
indicate relative representability.

(A.6) The main reason we are forced to introduce the language of groupoids
in this article, is that formation of fiber products is not compatible with the passage
from a groupoid & over €, to its associated functor |%|. This is a serious technical
issue since the definition of relative representability depends on formation of fiber
products. The practical effect is that to construct certain geometric objects it is much
more natural to work with groupoids. We illustrate this with a simple example.

Using the notation of (A.3), we fix an ordered basis of Vf, and we define a
groupoid D over ANRg as follows: An object of DD (A) is a pair (Vy4, B) where
Vg = (Vy, W) is an object of Dy, (A), and B is an ordered A-basis for Vy lifting
the chosen basis of Vg. A morphism (Vy4, ¥, B) — (Var, ¥', B’) is an A’-linear
isomorphism V4 ® 4 A’ — V4 compatible with v, ', and the action of G, and
taking B to B’. There is an obvious morphism @ : D%‘F — Dy,.

Now consider the situation when the group G is trivial. If A4 is in 2Rg, and
n=(Va,¥)isin Dy, (A), then (DIE['F )y is a principal homogeneous space for the
formal group obtained by completing PGL; /¢ along its identity section, where
d = dimg Vg. In other words, for any A — A’ in AR, |(D‘|;[|F)77 |(A’) is a principal
homogeneous space for ker (PGL;(A") — PGL(F)). On the other hand, |D‘|;['F [(A")
consists of a single element, and hence so does its fiber over the isomorphism class
of n.

(A.7) We will need a slight extension of the above notions in a special case.
Suppose that & is a groupoid over €, and that € is a full subcategory of a category €’.
An extension of F to €’ is a fully faithful embedding % — %’ into a groupoid ¥’ over
¢’, such that for T € €, the induced morphism %(T) — %'(T) is an equivalence.

Now, using the notation of (A.3), suppose that ¥ is a groupoid over ARg. We
denote by QISR@ the category of complete local O- algebras with residue field F. We
extend % to a groupoid & over QISRQ as follows. If R in QISR@ has radical mpg, we set
@(R) = l(lndp(R /m R). More formally, if Qlf)%@ C ARg denotes the subcategory,
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whose objects are the quotients R/ m"R, for i > 1, and whose morphisms are the
natural projection maps, then

F(R) = Homgu, ARK, F).

Given amorphism /: (R, mg) — (R’,mp/) in Q@@, we write Ql‘}{g : 2{9%{; — ng’
for the corresponding functor which sends R/ miR to R’/ m’k,. Then a morphism

QARRLg) - @Rk L g

nF covering &, is a natural transformation n — 7’ o Q[,‘Rg covering the natural
morphism id — Qli)‘ig of functors on Qli)%g, induced by 4. (Here we regard id and
2[9‘{8 as taking values in ARg.)

DEFINITION (A.7.1). (1) If & is a groupoid over 2ARg we say that F is
pro-representable if & is representable.

(2) Suppose that ® : F — F is a morphism of groupoids over €. We e say that ® is
relatively pro-representable if the induced morphism ®:F - Fis relatively
representable.

(A.8) Suppose that ® : F — € is a category over €. Fix a £ € Ob(%). We
denote by Fg) the category whose objects consist of pairs (7, «) where 7 is in
Ob(%), and « : n — & is in Mor(%). A morphism (1, @) — (1, &’) is a morphism
B:n—n'in F such that o = o’ 0 B.

Write 7 = ©(§). Then © induces a functor O) : F) — €7 given by
sending (1, @) to (©(n), O(a)). If F is a groupoid over €, then Fg) is a groupoid
over €(ry.

In the situation of (A.3), if A4 is in ANRe, and £ = V4 is an object of Dy, (A),
then ANRg (4 is the category of O-algebras A" in ANRg equipped with a map of
O-algebras A" — A, while Dy, (£)(A" — A) consists of objects V4 in Dy, (A')
equipped with an isomorphism Vg ®4 A" —> V4.
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