Abstract
For the complex parabolic Ginzburg-Landau equation, we prove that, asymptotically, vorticity evolves according to motion by mean curvature in Brakke’s weak formulation. The only assumption is a natural energy bound on the initial data. In some cases, we also prove convergence to enhanced motion in the sense of Ilmanen.
Authors
Fabrice Bethuel
Laboratoire J.-L. Lions, Université Pierre et Marie Curie, 75013 Paris, France and Institut Universitaire de France, 75005 Paris, France
Giandomenico Orlandi
Dipartimento di Informatica, Università di Verona, 37129 Verona, Italy
Didier Smets
Laboratoire J.-L. Lions, Université Pierre et Marie Curie, 75013 Paris, France