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Convergence of the parabolic

Ginzburg-Landau equation to motion by
mean curvature

By F. Bethuel, G. Orlandi, and D. Smets*

Abstract

For the complex parabolic Ginzburg-Landau equation, we prove that,
asymptotically, vorticity evolves according to motion by mean curvature in
Brakke’s weak formulation. The only assumption is a natural energy bound
on the initial data. In some cases, we also prove convergence to enhanced
motion in the sense of Ilmanen.

Introduction

In this paper we study the asymptotic analysis, as the parameter ε goes to
zero, of the complex-valued parabolic Ginzburg-Landau equation for functions
uε : RN × R+ → C in space dimension N ≥ 3,

(PGL)ε


∂uε

∂t
− ∆uε =

1
ε2

uε(1 − |uε|2) on RN × (0,+∞),

uε(x, 0) = u0
ε(x) for x ∈ RN .

This corresponds to the heat-flow for the Ginzburg-Landau energy

Eε(u) =
∫

RN

eε(u) dx =
∫

RN

[ |∇u|2
2

+ Vε(u)
]
dx for u : RN → C,

where Vε denotes the nonconvex potential

Vε(u) =
(1 − |u|2)2

4ε2
.

This energy plays an important role in physics, and has been studied exten-
sively from the mathematical point of view in the last decades. It is well known
that (PGL)ε is well-posed for initial data in H1

loc with finite Ginzburg-Landau
energy Eε(u0

ε). Moreover, we have the energy identity

Eε(uε(·, T2)) +
∫ T2

T1

∫
RN

∣∣∣∣∂uε

∂t

∣∣∣∣2 (x, t)dx dt = Eε(uε(·, T1)) ∀ 0 ≤ T1 ≤ T2 .(I)

* This work was partially supported by European RTN Grant HPRN-CT-2002-00274
“Front, Singularities”.
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We assume that the initial condition u0
ε verifies the bound, natural in this

context,

(H0) Eε(u0
ε) ≤ M0|log ε|,

where M0 is a fixed positive constant. Therefore, in view of (I) we have

Eε(uε(·, T )) ≤ Eε(u0
ε) ≤ M0|log ε| for all T ≥ 0.(II)

The main emphasis of this paper is placed on the asymptotic limits of the
Radon measures µε defined on RN × R+ by

µε(x, t) =
eε(uε(x, t))

|log ε| dx dt,

and of their time slices µt
ε defined on RN × {t} by

µt
ε(x) =

eε(uε(x, t))
|log ε| dx,

so that µε = µt
ε dt. In view of assumption (H0) and (II), we may assume, up

to a subsequence εn → 0, that there exists a Radon measure µ∗ defined on
RN × R+ such that

µεn
⇀ µ∗ as measures.

Actually, passing possibly to a further subsequence, we may also assume1 that

µt
εn

⇀ µt
∗ as measures on RN × {t}, for all t ≥ 0.

Our main results describe the properties of the measures µt
∗. We first have :

Theorem A. There exist a subset Σµ in RN × R+
∗ , and a smooth real-

valued function Φ∗ defined on RN ×R+
∗ such that the following properties hold.

i) Σµ is closed in RN ×R+
∗ and for any compact subset K ⊂ RN ×R+

∗ \Σµ

|uεn
(x, t)| → 1 uniformly on K as n → +∞.

ii) For any t > 0, Σt
µ ≡ Σµ ∩ RN × {t} satisfies

HN−2(Σt
µ) ≤ KM0.

iii) The function Φ∗ satisfies the heat equation on RN × R+
∗ .

iv) For each t > 0, the measure µt
∗ can be exactly decomposed as

µt
∗ =

|∇Φ∗|2
2

HN + Θ∗(x, t)HN−2 Σt
µ,(III)

where Θ∗(·, t) is a bounded function.

1See Lemma 1.
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v) There exists a positive function η defined on R+
∗ such that, for almost

every t > 0, the set Σt
µ is (N − 2)-rectifiable and

Θ∗(x, t) = ΘN−2(µt
∗, x) = lim

r→0

µt
∗(B(x, r))

ωN−2rN−2
≥ η(t),

for HN−2 a.e. x ∈ Σt
µ.

Remark 1. Theorem A remains valid also for N = 2. In that case Σt
µ is

therefore a finite set.

In view of the decomposition (III), µt
∗ can be split into two parts. A diffuse

part |∇Φ∗|2/2, and a concentrated part

νt
∗ = Θ∗(x, t)HN−2 Σt

µ.

By iii), the diffuse part is governed by the heat equation. Our next theorem
focuses on the evolution of the concentrated part νt

∗ as time varies.

Theorem B. The family
(
νt
∗
)
t>0

is a mean curvature flow in the sense
of Brakke [15].

Comment. We recall that there exists a classical notion of mean curvature
flow for smooth compact embedded manifolds. In this case, the motion corre-
sponds basically to the gradient flow for the area functional. It is well known
that such a flow exists for small times (and is unique), but develops singularities
in finite time. Asymptotic behavior (for convex bodies) and formation of sin-
gularities have been extensively studied in particular by Huisken (see [29], [30]
and the references therein). Brakke [15] introduced a weak formulation which
allows us to encompass singularities and makes sense for (rectifiable) measures.
Whereas it allows to handle a large class of objects, an important and essential
flaw of Brakke’s formulation is that there is never uniqueness. Even though
nonuniqueness is presumably an intrinsic property of mean curvature flow when
singularities appear, a major part of nonuniqueness in Brakke’s formulation is
not intrinsic, and therefore allows for weird solutions. A stronger notion of
solution will be discussed in Theorem D.

More precise definitions of the above concepts will be provided in the
introduction of Part II.

The proof of Theorem B relies both on the measure theoretic analysis of
Ambrosio and Soner [4], and on the analysis of the structure of µ∗, in particular
the statements in Theorem A. In [4], Ambrosio and Soner proved the result in
Theorem B under the additional assumption

(AS) lim sup
r→0

µt
∗(B(x, r))

ωN−2rN−2
≥ η, for µt

∗-a.e x,
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for some constant η > 0. In view of the decomposition (III), assumption (AS)
holds if and only if |∇Φ∗|2 vanishes; i.e., there is no diffuse energy. If |∇Φ∗|2
vanishes, it follows therefore that Theorem B can be directly deduced from [4]
Theorem 5.1 and statements iv) and v) in Theorem A.

In the general case where |∇Φ∗|2 does not vanish, their argument has to
be adapted, however without major changes. Indeed, one of the important
consequences of our analysis is that the concentrated and diffuse energies do
not interfere.

In view of the previous discussion, one may wonder if some conditions on
the initial data will guarantee that there is no diffuse part. In this direction,
we introduce the conditions

(H1) u0
ε ≡ 1 in RN \ B(R1)

for some R1 > 0, and

(H2)
∥∥u0

ε

∥∥
H

1
2 (B(R1))

≤ M2.

Theorem C. Assume that u0
ε satisfies (H0), (H1) and (H2). Then |∇Φ∗|2

vanishes, and the family
(
µt
∗
)
t>0

is a mean curvature flow in the sense of
Brakke.

In stating conditions (H1) and (H2) we have not tried to be exhaustive,
and there are many ways to generalize them.

We now come back to the already mentioned difficulty related to Brakke’s
weak formulation, namely the strong nonuniqueness. To overcome this diffi-
culty, Ilmanen [33] introduced the stronger notion of enhanced motion, which
applies to a slightly smaller class of objects, but has much better uniqueness
properties (see [33]). In this direction we prove the following.

Theorem D. Let M0 be any given integer multiplicity (N-2)-current wi-
thout boundary, with bounded support and finite mass. There exists a sequence
(u0

ε)ε>0 and an integer multiplicity (N -1)-current M in RN × R+ such that

i) ∂M = M0 , ii) µ0
∗ = π|M0| ,

and the pair
(
M, 1

πµt
∗
)

is an enhanced motion in the sense of Ilmanen [33].

Remark 2. Our result is actually a little stronger than the statement of
Theorem D. Indeed, we will show that any sequence u0

ε satisfying Ju0
ε ⇀ πM0

and µ0
∗ = π|M0| gives rise to an Ilmanen motion.2

2Ju0
ε denotes the Jacobian of u0

ε (see the introduction of Part II).
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The equation (PGL)ε has already been considered in recent years. In par-
ticular, the dynamics of vortices has been described in the two dimensional case
(see [34], [38]). Concerning higher dimensions N ≥ 3, under the assumption
that the initial measure is concentrated on a smooth manifold, a conclusion
similar to ours was obtained first on a formal level by Pismen and Rubinstein
[46], and then rigorously by Jerrard and Soner [35] and Lin [39], in the time
interval where the classical solution exists, that is, only before the appear-
ance of singularities. As already mentioned, a first convergence result past
the singularities was obtained by Ambrosio and Soner [4], under the crucial
density assumption (AS) for the measures µt

∗ discussed above. Some impor-
tant asymptotic properties for solutions of (PGL)ε were also considered in [42],
[55], [9].

Beside these works, we had at least two important sources of inspiration
in our study. The first one was the corresponding theory for the elliptic case,
developed in the last decade, in particular in [7], [53], [12], [48], [40], [41], [8],
[36], [13], [10]. The second one was the corresponding theory for the scalar
case (i.e. the Allen-Cahn equation) developed in particular in [19], [23], [20],
[24], [32], [51]. The outline of our paper bears some voluntary resemblance
to the work of Ilmanen [32] (and Brakke [15]): to stress this analogy, we will
try to adopt their terminology as far as this is possible. In particular, the
Clearing-Out Lemma is a stepping-stone in the proofs of Theorems A to D.

We divide the paper into two distinct parts. The first and longest one deals
with the analysis of the functions uε, for fixed ε. This part involves mainly PDE
techniques. The second part is devoted to the analysis of the limiting measures,
and borrows some arguments of Geometric Measure Theory. The last step of
the argument there will be taken directly from Ambrosio and Soner’s work [4].
The transition between the two parts is realized through delicate pointwise
energy bounds which allow to translate a clearing-out lemma for functions
into one for measures.

Acknowledgements. When preparing this work, we benefited from enthu-
siastic discussions with our colleagues and friends Raphaël Danchin, Thierry
De Pauw and Olivier Glass. We wish also to thank warmly one of the referees
for his judicious remarks and his very careful reading of the manuscript.
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Part I: PDE Analysis of (PGL)ε

Introduction

In this part, we derive a number of properties of solutions uε of (PGL)ε,

which enter directly in the proof of the Clearing-Out Lemma (the proof of
which will be completed at the beginning of Part II). We believe however
that the techniques and results in this part have also an independent interest.
Throughout this part, we will assume that 0 < ε < 1. Unless explicitly stated,
all the results here also hold in the two dimensional case N = 2. In our analysis,
the sets

Vε =
{

(x, t) ∈ RN × (0,+∞), |uε(x, t)| ≤ 1
2

}
,

as well as their time slices Vt
ε = Vε ∩ (RN × {t}) will play a central role. We

will loosely refer to Vε as the vorticity set.3

The two main ingredients in the proof of the Clearing-Out Lemma are a
clearing-out theorem for vorticity, as well as some precise pointwise (renormal-
ized) energy bounds.

1. Clearing-out and annihilation for vorticity

The main result here is the following.

Theorem 1. Let 0 < ε < 1, uε be a solution of (PGL)ε with Eε(u0
ε) <

+∞, and σ > 0 given. There exists η1 = η1(σ) > 0 depending only on the
dimension N and on σ such that if∫

RN

eε(u0
ε) exp(−|x|2

4
) dx ≤ η1|log ε| ,(1)

then

|uε(0, 1)| ≥ 1 − σ .(2)

Note that here we do not need assumption (H0). This kind of result was
obtained for N = 3 in [42], and for N = 4 in [55]. The corresponding result
for the stationary case was established in [12], [53], [48], [40], [41], [8]. The
restrictions on the dimension in [42], [55] seem essentially due to the fact
that the term ∂u

∂t in (PGL)ε is treated there as a perturbation of the elliptic
equation. Instead, our approach will be more parabolic in nature. Finally, let
us mention that a result similar to Theorem 1 also holds in the scalar case,

3In the scalar case, such a set is often referred to as the “interfaces” or “jump set”.
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and enters in Ilmanen’s framework (see [32, p. 436]): the proof there is fairly
direct and elementary.

Our (rather lengthy) proof of Theorem 1 involves a number of tools, some
of which were already used in a similar context. In particular:

• A monotonicity formula which in our case was derived first by Struwe ([52],
see also [21]), in his study of the heat-flow for harmonic maps. Similar mono-
tonicity formulas were derived by Huisken [30] for the mean curvature flow,
and Ilmanen [32] for the Allen-Cahn equation.

• A localization property for the energy (see Proposition 2.4) following a result
of Lin and Rivière [42] (see also [39]).

• Refined Jacobian estimates due to Jerrard and Soner [36],

and many of the techniques and ideas that were introduced for the stationary
equation.

Equation (PGL)ε has standard scaling properties. If uε is a solution to
(PGL)ε, then for R > 0 the function

vε(x, t) ≡ uε(Rx, R2t)

is a solution to (PGL)R−1ε. We may then apply Theorem 1 to vε. For this
purpose, define, for z∗ = (x∗, t∗) ∈ RN × (0,+∞) the scaled weighted energy,
taken at time t = t∗,

Ẽw,ε(uε, z∗, R) ≡ Ẽw,ε(z∗, R) =
1

RN−2

∫
RN

eε(uε(x, t∗)) exp(−|x − x∗|2
4R2

)dx .

We have the following

Proposition 1. Let T > 0, xT ∈ RN , and set zT = (xT , T ). Assume uε

is a solution to (PGL)ε on RN × [0, T ) and let R >
√

2ε.4 Assume moreover

Ẽw,ε(zT , R) ≤ η1(σ)|log ε| ;(3)

then

|uε(xT , T + R2)| ≥ 1 − σ .(4)

The condition in (3) involves an integral on the whole of RN . In some
situations, it will be convenient to integrate on finite domains. From this
point of view, assuming (H0) we have the following (in the spirit of Brakke’s
original Clearing-Out [15, Lemma 6.3], but for vorticity here, not yet for the
energy!).

4The choice
√

2ε is somewhat arbitrary, the main purpose is that |log ε| is comparable to
|log(ε/R)|. It can be omitted at first reading.
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Proposition 2. Let uε be a solution of (PGL)ε verifying assumption
(H0) and σ > 0 be given. Let xT ∈ RN , T > 0 and R ≥

√
2ε. There ex-

ists a positive continuous function λ defined on R+
∗ such that, if

η̌(xT , T, R) ≡ 1
RN−2|log ε|

∫
B(xT ,λ(T )R)

eε(uε(·, T )) ≤ η1(σ)
2

then

|uε(x, t)| ≥ 1 − σ for t ∈ [T + T0, T + T1] and x ∈ B(xT ,
R

2
) .

Here T0 and T1 are defined by

T0 = max(2ε,

(
2η̌

η1(σ)

) 2
N−2

R2), T1 = R2.

Remark 1. It follows from the proof that λ(T ) diverges as T → 0. More
precisely,

λ(T ) ∼
√

N − 2
2

|log T | as T → 0,

if N ≥ 3. A slightly improved version will be proved and used in Section 4.1.

Theorem 1 and Propositions 1 and 2 have many consequences. Some
are of independent interest. For instance, the simplest one is the complete
annihilation of vorticity for N ≥ 3.

Proposition 3. Assume that N ≥ 3. Let uε be a solution of (PGL)ε

verifying assumption (H0). Then

|uε(x, t)| ≥ 1
2

for any t ≥ Tf ≡
(

M0

η1

) 2
N−2

and for all x ∈ RN ,(5)

where η1 = η1(1
2).

In particular, there exists a function ϕ defined on RN × [T0,+∞) such
that

uε = ρ exp(iϕ) , ρ = |uε|.
The equation for the phase ϕ is then the linear parabolic equation

ρ2 ∂ϕ

∂t
− div(ρ2∇ϕ) = 0.(6)

From this equation (and the equation for ρ) one may prove that, for fixed ε,

Eε(uε(·, t)) → 0 as t → +∞ ,(7)

and moreover,

uε(·, t) → C as t → +∞ .(8)
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Remark 2. The result of Proposition 3 does not hold in dimension 2. This
fact is related to the so-called “slow motion of vortices” as established in [38]:
vortices essentially move with a speed of order |log ε|−1. Therefore, a time
of order |log ε| is necessary to annihilate vorticity (compared with the time
T = O(1) in Proposition 3). On the other hand, long-time estimates, similar
to (7) and (8) were established, for N = 2, in [5].

2. Improved pointwise energy bounds

Assume for a moment that |uε| = 1 on RN × [0,+∞) (and in particular
Vε = ∅). Then, we may write uε = exp(iϕε) and ϕε is determined, up to an
integer multiple of 2π, by the linear parabolic statement{ ∂ϕ

∂t − ∆ϕ = 0 on RN × (0,+∞)
ϕ(x, 0) = ϕε(x, 0) on RN × {0}.(9)

By standard regularization properties of the heat equation, we deduce that for
any compact K ⊂ RN × (0,∞),

|∇ϕε|2L∞(K) ≤ C(K)
∫

RN

|∇ϕε|2
2

(x, 0) dx = C(K)Eε(u0
ε),

so that

lim
r→0

1
rN

∫
B(x,r)×{t}

|∇ϕε|2
|log ε| ≤ M0C(t), ∀x ∈ RN , ∀t > 0.

In particular, going back to the discussion of the main introduction of this
paper, it means that the measures µt

∗ are absolutely continuous with respect
to the Lebesgue measure LN (RN ), i.e. µt

∗ = g(x, t)HN for some diffuse density
g. Since (9) is linear, one cannot expect that g vanishes without additional
assumptions, for instance compactness assumptions on the initial data u0

ε (see
[17] for related remarks in the elliptic case).

In the general situation, it is of course impossible to impose |uε| = 1.

However, on the complement of Vε, |uε| ≥ 1
2 and the situation is similar. More

precisely, we have

Theorem 2. Let B(x0, R) be a ball in RN and T > 0, ∆T > 0 be given.
Consider the cylinder

Λ = B(x0, R) × [T, T + ∆T ].

There exists a constant 0 < σ ≤ 1
2 , and β > 0 depending only on N, such that

if

|uε| ≥ 1 − σ on Λ,(10)
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then

eε(uε)(x, t) ≤ C(Λ)
∫

Λ
eε(uε),(11)

for any (x, t) ∈ Λ 1
2

= B(x0,
R
2 ) × [T + ∆T

4 , T + ∆T ]. Moreover,

eε(uε) =
|∇Φε|2

2
+ κε in Λ 1

2
,(12)

where the functions Φε and κε are defined on Λ 1
2

and verify

∂Φε

∂t
− ∆Φε = 0 in Λ 1

2
,(13)

‖κε‖L∞(Λ 1
2
) ≤ C(Λ)εβ, ‖∇Φε‖2

L∞(Λ 1
2
) ≤ C(Λ)M0|log ε|.(14)

Remark 3. Since |uε| ≥ 1
2 on Λ, we may write uε = ρε exp(iϕε) where ρε =

|uε| and where ϕε is a smooth real-valued function. The proof of Theorem 2
shows actually that

‖∇ϕε −∇Φε‖L∞(Λ 1
2
) ≤ C(Λ)εβ.(15)

The result of Theorem 2 is reminiscent of a result by Chen and Struwe
[21] (see also [53], [35]) developed in the context of the heat flow for harmonic
maps. This technique is based on an earlier idea of Schoen [49] developed in
the elliptic case. Note however that a smallness assumption on the energy is
needed there. This is not the case for Theorem 2, where even a divergence of
the energy (as |log ε|) is allowed. We would like also to emphasize that the
proofs of Theorems 1 and 2 are completely disconnected.

Combining Theorem 1 and Theorem 2, we obtain the following immediate
consequence.

Proposition 4. There exist an absolute constant η2 > 05 and a positive
function λ defined on R+

∗ such that if, for x ∈ RN , t > 0 and r >
√

2ε,∫
B(x,λ(t)r)

eε(uε) ≤ η2r
N−2|log ε|,

then

eε(uε) =
|∇Φε|2

2
+ κε

in Λ 1
4
(x, t, r) ≡ B(x, r

4)×[t+ 15
16r2, t+r2], where Φε and κε are as in Theorem 2.

In particular,

µε =
eε(uε)
|log ε| ≤ C(t, r) on Λ 1

4
(x, t, r).

5The constant η2 is actually defined as η2 = η1(σ), where σ is the constant in Theorem 2
and η1 is the function defined in Proposition 2.
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3. Identifying sources of noncompactness

In the previous discussion, we identified one possible source of noncom-
pactness, namely oscillations in the phase. However, the analysis was carried
out on the complement of Vε, i.e., away from vorticity. On the vorticity set
on the other hand, uε may vanish, and this introduces some new contribution
to the energy. Nevertheless, we will show that this new contribution is not a
source of noncompactness (at least for some weaker norm). More precisely,

Theorem 3. Let K ⊂ RN × (0,+∞) be any compact set. There exist a
real -valued function φε and a complex -valued function wε, both defined on a
neighborhood of K, such that

1. uε = wε exp(iφε) on K,

2. φε verifies the heat equation on K,

3. |∇φε(x, t)| ≤ C(K)
√

M0|log ε| for all (x, t) ∈ K,

4. ‖∇wε‖Lp(K) ≤ C(p,K), for any 1 ≤ p < N+1
N .

Here, C(K) and C(p,K) are constants depending only on K, and K, p (and
M0) respectively.

The proof extends an argument of [9] (see also [6] for the elliptic case),
and relies once more on the refined Jacobian estimates of [36].

We would like to emphasize once more that Theorem 3 provides an exact
splitting of the energy in two different modes:

- The topological mode, i.e. the energy related to wε,

- The linear mode, i.e. the energy of φε.

More precisely, it follows easily from Theorem 3 that for any set K′ ⊂⊂ K, we
have ∫

K′
eε(uε) =

∫
K′

eε(wε) +
∫
K′

|∇φε|2
2

+ O(
√
|log ε|).

We would like to stress that a new and important feature of Theorem 3 is that
φε is defined and smooth even across the singular set, and verifies globally
(on K) the heat flow. By Theorem A, this fact will be determinant to define
the function Φ∗ globally. For Theorem B, it will allow us to prove that the
linear mode does not perturb the topological mode, which undergoes its own
(Brakke) motion.

One possible way to remove the linear mode is to impose additional com-
pactness on the initial data. We will not try to find the most general as-
sumptions in that direction, but instead give simple conditions which keep,
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however, the essential features of the problem. Assume next that u0
ε verifies

the additional conditions

(H1) u0
ε ≡ 1 in RN \ B(R1)

for some R1 > 0, and

(H2)
∥∥u0

ε

∥∥
H

1
2 (B(R1))

≤ M2.

Then a stronger conclusion holds.

Theorem 4. Assume that u0
ε verifies (H0), (H1) and (H2). Then for any

1 ≤ p < N+1
N and any compact set K ⊂ RN × (0,+∞),

‖∇uε‖Lp(K) ≤ C(p,K),

where C(p,K) is a constant depending only on p, K, M0 and M2.

Theorem 4 is of course of particular interest if one is interested in the
asymptotic behavior of the function uε itself. We will not carry out this analysis
here (see [9] for a related discussion for boundary value problems on compact
domains).

Combining Theorem 1, Theorem 2 and Theorem 4 we finally derive the
following, in the same spirit as Proposition 4.

Proposition 5. Assume that (H0), (H1) and (H2) hold. There exist an
absolute constant η2 > 06 and a positive function λ defined on R+

∗ such that if,
for x ∈ RN , t > 0 and r >

√
2ε,∫

B(x,λ(t)r)
eε(uε) ≤ η2r

N−2|log ε|,(16)

then
eε(uε) ≤ C(M0, M2)r−2

in Λ 1
8
(x, t, r) ≡ B(x, r

8) × [t + 63
64r2, t + r2].

1. Pointwise estimates

In this section we recall (standard) pointwise parabolic estimates. Al-
though these estimates are presumably well known to the experts, we are
not aware of precise statements in the (Ginzburg-Landau) literature. For the
reader’s convenience, we therefore provide complete proofs.

6Here η2 = η1(σ) is the same constant as in Proposition 4.
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Proposition 1.1. Let uε be a solution of (PGL)ε with Eε(u0
ε) < +∞.

Then there exists a constant K > 0 depending only on N such that, for t ≥ ε2

and x ∈ RN ,7

|uε(x, t)| ≤ 3, |∇uε(x, t)| ≤ K

ε
, |∂uε

∂t
(x, t)| ≤ K

ε2
.

Proof. It is convenient to make the following change of variable, with

U(x, t) = uε(εx, ε2t) ,

so that the function U verifies
∂U

∂t
− ∆U = U(1 − |U |2) on RN × [0,+∞) .(1.1)

It is therefore sufficient to prove that for t ≥ 1 and x ∈ RN ,

|U(x, t)| ≤ 3, |∇U(x, t)| ≤ K, |∂U

∂t
(x, t)| ≤ K.

We begin with the L∞ estimate for U. Set

σ(x, t) := |U(x, t)|2 − 1.

Multiplying equation (1.1) by U we are led to the equation for σ,

∂σ

∂t
− ∆σ + 2|∇U |2 + 2(σ + 1)σ = 0.(1.2)

Consider next the ODE

y′(t) + 2(y(t) + 1)y(t) = 0 ,(1.3)

and notice that (1.3) possesses an explicit solution y0 which blows-up as t tends
to zero, namely

y0(t) :=
exp(−2t)

1 − exp(−2t)
for t > 0 .

We claim that

σ(t, x) ≤ y0(t), for all t > 0 and x ∈ RN ,(1.4)

so that, in particular,

|U(x, t)|2 = σ(x, t) + 1 ≤ 9 for all t ≥ 1
4

and x ∈ RN .

Indeed, set σ̃(x, t) = y0(t). Then,

∂σ̃

∂t
− ∆σ̃ + 2(σ̃ + 1)σ̃ = 0,

7Note in particular that K is independent of the initial data.
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and therefore by (1.2),

∂

∂t
(σ̃ − σ) − ∆(σ̃ − σ) + 2(σ̃ − σ)(1 + σ̃ + σ) ≥ 0.

Note that 1 + σ + σ̃ = |U |2 + σ̃ ≥ 0. The maximum principle implies that

σ̃(x, t) − σ(x, t) ≥ 0 for all t > 0 and x ∈ RN ,

which proves the claim (1.4).
We next turn to the space and time derivatives. Since |U(x, t)| ≤ 3 for

t ≥ 1/4, we have ∣∣U(1 − |U |2)
∣∣ ≤ 24 for t ≥ 1

4
.

Let p > N + 1 be fixed. It follows from the standard regularity theory for
the linear heat equation (see e.g. [37]) that for each compact set F ⊂ RN ×
[1/4,+∞) we have

‖∂tU‖Lp(F) ≤ K(F) and ‖D2U‖Lp(F) ≤ K(F).

In particular, by the Sobolev embedding and the L∞ bound for U we obtain

‖U‖C0,α(RN×[1/2,+∞)) ≤ K,(1.5)

where α = (1 − N/p)/2. It follows from (1.5) that moreover

‖U(1 − |U |2)‖C0,α(RN×[1/2,+∞)) ≤ K.

Invoking the C0,α regularity theory (see e.g. [26]), we obtain

‖U‖C1,α/2(RN×[1,+∞)) ≤ K,

and the proof is complete.

Remark 1.1. It follows from the proof of Proposition 1.1 that the bound

|uε(x, t)|2 ≤ 1 + C exp(−2t

ε2
)

holds for t ≥ ε2.

We have the following variant of Proposition 1.1.

Proposition 1.2. Assume uε is a solution of (PGL)ε such that Eε(u0
ε) <

+∞ and that for some constants C0 ≥ 1, C1 ≥ 0 and C2 ≥ 0,

|u0
ε(x)| ≤ C0 , |∇u0

ε(x)| ≤ C1

ε
, |D2u0

ε(x)| ≤ C2

ε2
∀x ∈ RN .

Then, for any x ∈ RN and any t > 0,

|uε(x, t)| ≤ C0, |∇uε(x, t)| ≤ K

ε
, |∂uε

∂t
(x, t)| ≤ K

ε2
,

where K depends only on C0, C1 and C2.
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Proof. As in the proof of Proposition 1.1, we work with the rescaled
function U . It follows from (1.2) and the maximum principle that

|U(x, t)| ≤ sup
x∈RN

|U(0, x)| ≤ C0.

It remains to prove the bounds on the space and time derivatives. Since these
estimates are already known for t ≥ 1 by Proposition 1.1, we only need to
consider the case t ∈ (0, 1]. For the space derivative, we use the following
Bochner type inequality

∂

∂t
(|∇U |2) − ∆(|∇U |2) ≤ K|∇U |2 ,(1.6)

so that
∂

∂t
(exp(Kt)|∇U |2) − ∆(exp(Kt)|∇U |2) ≤ 0.

The conclusion then follows from the maximum principle.
For the time derivative, one argues similarly, using the inequality

∂

∂t
(|∂U

∂t
|2) − ∆(|∂U

∂t
|2) ≤ K|∂U

∂t
|2

and the fact that, for t = 0, we have by assumption∣∣∣∣∂U

∂t

∣∣∣∣2 =
∣∣∆U + U(1 − |U |2)

∣∣2 ≤ K .

Proposition 1.1 above provides an upper bound for |uε|. Our next lemma
provides a local lower bound on |uε|, when we know it is away from zero on
some region.

Since we have to deal with parabolic problems, it is natural to consider
parabolic cylinders of the type

Λα(x0, T, R, ∆T ) = B(x0, αR) × [T + (1 − α2)∆T, T + ∆T ].

Sometimes, it will be convenient to choose ∆T = R and write Λα(x0, T, R).
Finally if this is not misleading we will simply write Λα, and Λ if α = 1.

Lemma 1.1. Let uε be a solution of (PGL)ε verifying Eε(u0
ε) < +∞. Let

x0 ∈ RN , R > 0, T ≥ 0 and ∆T > 0 be given. Assume that

|uε| ≥
1
2

on Λ(x0, T, R, ∆T );

then
1 − |uε| ≤ C(α,Λ)ε2

(
‖∇ϕε‖2

L∞(Λ) + |log ε|
)

on Λα,

where ϕε is defined on Λ, up to a multiple of 2π, by uε = |uε| exp(iϕε).
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Proof. We may always assume that T ≥ ε; otherwise we consider a smaller
cylinder. Set ρ = |uε| and θ = 1 − ρ. The function θ verifies the equation

∂θ

∂t
− ∆θ +

θ

ε2
= (1 − θ)|∇ϕε|2 −

1
ε2

θ(θ − 1)2.

On the other hand, by Proposition 1.1, we already know that θ ≥ − exp(−1
ε ),

so that
∂θ

∂t
− ∆θ +

θ

ε2
≤ 2|∇ϕε|2 + Cε−2 exp(−1

ε
).(1.7)

We next construct an upper solution for (1.7). Let χ be a smooth cut-off
function defined on RN such that 0 ≤ χ ≤ 1 and

χ ≡ 1 on B(x0, αR), χ ≡ 0 on RN \ B(x0,
1 + α

2
R).

Consider the function τ defined on [T, T + ∆T ] by

τ(t) =
1
2
− 1

2
exp

(
t − T

(1 − α2)∆T
log ε2

)
,

and set
σ0(x, t) =

1
2
− τ(t)χ(x).

We have σ0 ≥ 0 and

|∂tσ0| = |τ ′(t)|χ(x) ≤ 1
(1 − α2)∆T

|log ε|, |∆σ0| ≤ τ(t)|∆χ(x)| ≤ C(Λ),

so that
∂σ0

∂t
− ∆σ0 +

σ0

ε2
≥ −C(Λ)|log ε| on Λ.

Finally, set
σ = σ0 + 2ε2

(
‖∇ϕε‖2

L∞(Λ) + C(Λ)|log ε|
)

.

By construction,
∂σ

∂t
− ∆σ +

σ

ε2
≥ 2‖∇ϕε‖2

L∞(Λ) + C(Λ)|log ε| ≥ ∂θ

∂t
− ∆θ +

θ

ε2

on Λ. On the other hand,

σ ≥ 1
2
≥ θ on B(x0, R) × {T} ∪ ∂B(x0, R) × [T, T + ∆T ],

so that by the maximum principle θ ≤ σ on Λ. Since χ ≡ 1 on B(x0, αR), we
have on Λα

σ(x, t) =
1
2

exp
(

t − T

(1 − α2)∆T
log ε2

)
+ 2ε2

(
‖∇ϕε‖2

L∞(Λ) + C(Λ)|log ε|
)

≤ 1
2
ε2

(
‖∇ϕε‖2

L∞(Λ) + C(Λ)|log ε|
)

and the proof is complete.
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2. Toolbox

The purpose of this section is to present a number of tools, which will enter
directly into the proof of Theorem 1. As mentioned earlier, some of them are
already available in the literature. We will adapt their statements to our needs.
Note that all the results in this section remain valid for vector-valued maps
uε : RN × R+ → Rk, for every k ≥ 1, uε solution to (PGL)ε.

2.1. Evolution of localized energies. Identity (I) of the introduction states
a global decrease in time of the energy. In this section, we recall some classical
results, describing the behavior of localized integrals of energy.

Lemma 2.1. Let χ be a bounded Lipschitz function on RN . Then, for any
T ≥ 0, at t = T ,

d

dt

∫
RN×{t}

eε(uε)χ(x) dx = −
∫

RN×{T}
|∂tuε|2χ(x) dx −

∫
RN×{T}

∂tuε∇uε · ∇χ dx.

(2.1)

In particular, for any 0 ≤ T1 ≤ T2,

(2.2)
∫

RN×{T2}
eε(uε)χ(x) dx −

∫
RN×{T1}

eε(uε)χ(x) dx

= −
∫

RN×[T1,T2]
|∂tuε|2χ(x) dx dt −

∫
RN×[T1,T2]

∂tuε∇uε · ∇χ dx dt.

Proof. We have

d

dt

(
[
|∇uε|2

2
+ Vε(uε)]χ

)
= ∇uε · ∇(∂tuε)χ + V ′

ε (uε)∂tuε χ.

Integrating by parts on RN × {T} we thus have

d

dt

∫
RN×{T}

eε(uε)χ(x) dx = −
∫

RN×{T}

(
−∆uε + V ′

ε (uε)
)
∂tuεχ(x) dx

−
∫

RN×{T}
∂tuε∇uε · ∇χ dx

and the conclusion follows since uε verifies (PGL)ε.

As a straightforward consequence we obtain the following semi-decreasing
property.

Corollary 2.1. Let χ be as above; then

1
2

∫
RN×{t}

|∂tuε|2χ2 +
d

dt

∫
RN×{t}

eε(uε)χ2 ≤ 4‖∇χ‖2
L∞

∫
suppχ

eε(uε).(2.3)
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In particular,

d

dt

∫
RN×{t}

eε(uε)χ2(x) dx ≤ 4 ‖∇χ‖2
L∞ Eε(u0

ε).

2.2. The monotonicity formula. Let u ≡ uε be a solution to (PGL)ε

verifying (H1). For simplicity, we will drop the subscripts ε when this is not
misleading. For (x∗, t∗) ∈ RN × R+ we set

z∗ = (x∗, t∗) .

For 0 < R ≤ √
t∗ we define the weighted energy

Ew(z∗, R) ≡ Ew,ε(u; z∗, R) ≡ Ew,ε(u, x∗, t∗ − R2, R) ;(2.4)

that is,

Ew(z∗, R) =
∫

RN

eε(u(x, t∗ − R2)) exp(− |x−x∗|2
4R2 )dx ,(2.5)

and the corresponding scaled energy

Ẽw(z∗, R) =
1

RN−2
Ew(z∗, R) =

1
RN−2

∫
RN

eε(u(x, t∗ − R2)) exp(− |x−x∗|2
4R2 )dx.

(2.6)

We emphasize the fact that the above integral is computed at the time t =
t∗ − R2, and not at time t = t∗, as is the case for Eε, i.e. a shift in time
δt = −R2 has been introduced. Note also that in (2.5) and (2.6) the weight
becomes small outside the ball B(x∗, R). Moreover, the following inequality
holds

exp(
1
4
)Ẽw(z∗, R) ≥ 1

RN−2

∫
B(x∗,R)

eε(u(x, t∗ − R2))dx .(2.7)

The right-hand side of (2.7) arises naturally in the stationary equation, where
its monotonicity properties (with respect to the radius R) play an important
role. In our parabolic setting, we recall once more that the time t at which Ew

and Ẽw are computed is related to R by

t = t∗ − R2 .

This is consistent with the usual parabolic scaling (for λ > 0){
x → λx

t → λ2t,

which leaves the linear heat equation invariant.
In this context, the following monotonicity formula for Ẽw was derived

first by Struwe [52] for the heat-flow of harmonic maps (see also [21], [30]). In
a different context Giga and Kohn [28] used related ideas.
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Proposition 2.1. At R = r,

(2.8)
d

dR
Ẽw(z∗, R) =

1
rN−1

∫
RN×{t∗−r2}

1
2r2

[(x − x∗) · ∇u − 2r2∂tu]2 exp(−|x − x∗|2
4r2

)dx

+
1

rN−1

∫
RN×{t∗−r2}

2Vε(u) exp(−|x − x∗|2
4r2

)dx

=
1
2r

∫
RN×{t∗−r2}

[(x − x∗) · ∇u + 2(t − t∗)∂tu]2G(x − x∗, t − t∗)dx

+ r

∫
RN×{t∗−r2}

2Vε(u(x, t))G(x − x∗, t − t∗)dx,

where G(x, t) denotes, up to a multiplicative factor π−N/2, the heat kernel{
G(x, t) = 1

tN/2 exp(− |x|2
4t ) for t > 0

G(x, t) = 0 for t ≤ 0.

In particular,

d

dR
Ẽw(z∗, R) ≥ 0 ,(2.9)

i.e. Ẽw(z∗, R) is a nondecreasing function of R.

Proof. Set Ẽw(R) ≡ Ẽw(z∗, R). Due to translation invariance, it is suf-
ficient to consider the case z∗ = (x∗, t∗) = (0, 0), so that u is defined on
RN × [−t∗,+∞). In order to keep the integration domain fixed with re-
spect to R, we consider the following change of variables, for z = (x, y) ∈
RN × [−t∗,+∞):

z = (x, t) = (Ry, R2τ) = ΦR(y, τ) = ΦR(z′) .(2.10)

Set uR(z′) = u ◦ΦR(z′) = u(z), i.e. uR(y, τ) = u(Ry, R2τ) = u(x, t), so that in
particular

∇uR(z′) = R∇uR(z) ,
∂uR

∂τ
(z′) = R2 ∂u

∂t
(z) , ∆uR(z′) = R2∆u(z) .

(2.11)

It follows that
∂uR

∂τ
− ∆uR =

R2

ε2
uR(1 − |uR|2) = −R2V ′

ε (uR) .(2.12)

Moreover,

d

dR
uR(z′) =

d

dR
u(Ry, R2τ) = y · ∇u(z) + 2Rτ

∂u

∂t
(z) .(2.13)
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From (2.13) and (2.11) we deduce the formula

R
duR

dR
(z′) = x · ∇u(z) + 2t

∂u

∂t
(z) = y · ∇uR(z′) + 2τ

∂uR

∂τ
(z′) .(2.14)

The scaled energy Ẽw(R) (defined by formula (2.6)) can then be expressed as
follows:

Ẽw(R) =
∫

RN×{−1}

[ |∇uR(y,−1)|2
2

+ R2Vε(uR(y,−1))
]

exp(−|y|2
4

)dy .

(2.15)

Taking into account (2.10), (2.12) and (2.14), we compute, at R = r,

dẼw

dR
=

∫
RN×{−1}

[
∇ur · ∇(

duR

dR
) + r2V ′

ε (ur) ·
duR

dR
+ 2rVε(ur)

]
exp(−|y|2

4
)dy

=
∫

RN×{−1}

[
(−∆ur +

y

2
· ∇ur + r2V ′

ε (ur)) ·
duR

dR
+ 2rVε(ur)

]
exp(−|y|2

4
)dy

=
∫

RN×{−1}

[
(
y

2
· ∇ur −

∂ur

∂τ
)(

1
r
(y · ∇ur − 2

∂ur

∂τ
)) + 2rVε(ur)

]
exp(−|y|2

4
)dy

=
∫

RN×{−1}

[
1
2r

(y · ∇ur − 2
∂ur

∂τ
)2 + 2rVε(ur)

]
exp(−|y|2

4
)dy

=
∫

RN×{−r2}

[
1
2r

(x · ∇u − 2r2 ∂u

∂t
)2 + 2rVε(u)

]
r−N exp(−|x|2

4r2
)dx

=
∫

RN×{−r2}

[
1
2r

(x · ∇u + 2t
∂u

∂t
)2 + 2rVε(u)

]
G(x, t)dx.

(2.16)

The last formula in the above computation gives precisely (2.8) in the particular
case z∗ = (x∗, t∗) = (0, 0).

2.3. Space-time estimates and auxiliary functions. Let u ≡ uε be a solu-
tion to (PGL)ε verifying Eε(u0

ε) < +∞.

Lemma 2.2. For any z∗ = (x∗, t∗) ∈ RN × R+, the following equality
holds, for R∗ =

√
t∗:

(2.17)
∫

RN×[0,t∗]
(Vε(u) + Ξ(u, z∗))G(x − x∗, t − t∗)dxdt

=
1

t∗
N−2

2

∫
RN×{0}

eε(u(·, 0)) exp(−|x − x∗|2
4t∗

)dx = Ẽw(z∗, R∗),

where

Ξ(u, z∗)(x, t) =
1

4|t − t∗|
[(x − x∗) · ∇u + 2(t − t∗)∂tu]2.(2.18)
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Proof. Integrating equality (2.8) from zero to R∗ we obtain

(2.19)

Ẽw(z∗, R∗) − Ẽw(z∗, 0)

=
∫ R∗

0
2rdr

∫
RN×{t∗−r2}

Vε(u(x, t))G(x − x∗, t − t∗)dx

+
∫ R∗

0
2rdr

∫
RN×{t∗−r2}

1
4r2

[(x − x∗) · ∇u − 2r2∂tu]2G(x − x∗, t − t∗)dx.

Expressing the integral on the right-hand side of (2.19) in the variable t ≡ t∗−r2

(so that dt = −2rdr) yields

(2.20)

Ẽw(z∗, R∗) − Ẽw(z∗, 0)

= −
∫ 0

t∗

dt

∫
RN×{t}

Vε(u(x, t))G(x − x∗, t − t∗)dx

−
∫ 0

t∗

dt

∫
RN×{t}

1
4|t − t∗|

[(x − x∗) · ∇u − 2r2∂tu]2G(x − x∗, t − t∗)dx.

Finally, since u is smooth on RN ×(0,+∞) and with finite energy on each time
slice, we obtain

Ẽw(z∗, 0) = 0 ,

so that the proof is complete.

The following elementary lemma will be useful for further purposes.

Lemma 2.3. Let 0 < t∗ < T , and z∗ = (x∗, t∗). Now,

Ẽw,ε(z∗,
√

t∗) ≤
(

T

t∗

)N

2

exp
( |xT − x∗|2

4(T − t∗)

)
Ẽw,ε((xT , 0),

√
T ) , ∀xT ∈ RN .

(2.21)

Proof. By definition of Ẽw,

Ẽw(z∗,
√

t∗) =
1

t∗N/2

∫
RN

eε(u(x, 0)) exp(−|x − x∗|2
4t∗

)dx

=
(

T

t∗

)N/2 1
TN/2

∫
RN

eε(u(x, 0)) exp(−|x − xT |2
4T

)Q(x)dx ,

(2.22)

where the function Q is defined on RN as

Q(x) = exp
( |x − xT |2

4T
− |x − x∗|2

4t∗

)
∀x ∈ RN .(2.23)
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Clearly Q is positive and bounded on RN . Its maximum is achieved at a point
x0 ∈ RN such that

(x0 − xT )
T

=
(x0 − x∗)

t∗
,

so that

x0 − x∗ =
(x∗ − xT )

T − t∗
t∗ , x0 − xT =

(x∗ − xT )
T − t∗

T .(2.24)

Inserting (2.24) in (2.23), we are led to

sup
x∈RN

Q(x) = Q(x0) = exp(
|x∗ − xT |2
4(T − t∗)

) .(2.25)

Hence, combining (2.25) with (2.22) we obtain

Ẽw(z∗,
√

t∗) ≤
(

T

t∗

)N/2

exp(
|x∗ − xT |2
4(T − t∗)

)
∫

RN

eε(u(x, 0)) exp(−|x − xT |2
4T

)dx ,

(2.26)

and (2.21) follows.

Next, let T > 0 be given and let f ∈ L∞(RN × [0, T ]) be such that

|f(z)| ≤ Vε(|u(z)|) , for any z = (x, t) ∈ RN × [0, T ] .(2.27)

We consider the solution ω of the heat equation with source term f ; i.e., ω

solves {
∂ω
∂t − ∆ω = f on RN × [0, T ],

ω(x, 0) = 0 for x ∈ RN .
(2.28)

The following L∞-estimate, which played a key role in the elliptic setting (see
[8]), will enter similarly in the proof of Theorem 1.

Lemma 2.4. For any z∗ = (x∗, t∗) ∈ RN × [0, T ],

|ω(z∗)| ≤ π−N/2Ẽw(z∗,
√

t∗) .(2.29)

Proof. The function ω is given explicitly by Duhamel’s formula

ω(z∗) = π−N/2

∫
RN×[0,t∗]

f(x, t)G(x − x∗, t − t∗)dxdt ,

so that, by (2.27),

|ω(z∗)| ≤ π−N/2

∫
RN×[0,t∗]

Vε(u(x, t))G(x − x∗, t − t∗)dxdt ,

and the conclusion follows from (2.17).
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Combining Lemma 2.3 and Lemma 2.4 we obtain

Proposition 2.2. Let T > 0, xT ∈ RN . For any z = (x, t) ∈ RN× [0, T ],
the following estimate holds:

|ω(z)| ≤
(

T

t

)N

2

exp
( |xT − x|2

4(T − t)

)
Ẽw,ε((xT , 0),

√
T ) , ∀xT ∈ RN .(2.30)

2.4. Bounds for the scaled weighted energy Ẽw,ε. Our next lemma pro-
vides an upper bound for Ẽw,ε(z, R) in terms of the quantity Ẽw,ε((xT , 0),

√
T )

provided z < T and R is sufficiently small. More precisely, we have

Lemma 2.5. Let T > 0, and z = (x, t) ∈ RN × [0, T ). There exists the
inequality

Ẽw,ε(z, R) ≤
(

T

t + R2

)N

2

exp
( |xT − x|2

4(T − t − R2)

)
Ẽw,ε((xT , 0),

√
T ) ,(2.31)

for any xT ∈ RN , and for 0 < R <
√

T − t.

Proof. In view of the monotonicity formula (2.9), we have the inequality

Ẽw,ε(z, R) = Ẽw((x, t + R2), R) ≤ Ẽw((x, t + R2),
√

t + R2) .(2.32)

By Lemma 2.3 applied to z∗ = (x, t + R2), we obtain

Ẽw((x, t + R2),
√

t + R2) ≤
( T

t + R2

)N

2 exp
( |xT − x|2
4(T − t − R2)

)
Ẽw,ε((xT , 0),

√
T ) ,

(2.33)

for any xT ∈ RN . Combining (2.33) with (2.32) yields the conclusion.

Comment. Note that (2.31) holds in particular for small R. It can there-
fore be understood as a regularizing property of (PGL)ε. Indeed, starting
with an arbitrary initial condition, the gradient of the solution at time t re-
mains bounded in the Morrey space L2,N−2 (so that the solution itself remains
bounded in BMO, locally).

2.5. Localizing the energy. In some of the proofs of the main results, it will
be convenient to work on bounded domains for fixed time slices (in particular in
view of the elliptic estimates needed there). On the other hand, the definition
of Ẽw,ε and Ẽw involves integration on the whole space (even though the weight
has an extremely fast decay at infinity). In order to overcome this difficulty,
we will make use of two kinds of localization methods. The first one is a
fairly elementary consequence of the monotonicity formula and can be stated
as follows.
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Proposition 2.3. Let T > 0, xT ∈ RN and R >
√

2ε. Assume uε is a
solution to (PGL)ε verifying (H0). Then the following inequality holds, for any
λ > 0,∫
RN×{T}

eε(uε) exp
(
− |x−xT |2

4R2

)
dx ≤

∫
B(xT ,λR)×{T}

eε(uε) + (
√

2R√
T+2R2 )

N−2M0 exp(−λ2

8 )|log ε|.

Proof. It suffices obviously to prove that∫
{|x−xT |≥λR}×{T}

eε(uε) exp(− |x−xT |2
4R2 ) dx ≤ (

√
2R√

T+2R2 )
N−2M0 exp(−λ2

8 )|log ε|.(2.34)

First, we write exp(− |x−xT |2
4R2 ) = [exp(− |x−xT |2

8R2 )]2, so that on RN \ B(xT , λR)

exp(− |x−xT |2
4R2 ) ≤ exp(−λ2

8 ) exp(− |x−xT |2
8R2 ).(2.35)

On the other hand, applying the monotonicity formula at the point (xT , T +
2R2), we obtain

1
(
√

2R)N−2

∫
RN×{T}

eε(uε) exp(− |x−xT |2
8R2 ) dx(2.36)

≤ 1
(
√

T + 2R2)N−2

∫
RN×{0}

eε(uε) exp(− |x−xT |2
4(T+2R2)) dx

≤ 1
(
√

T + 2R2)N−2
M0|log ε|.

Combining (2.34), (2.35) and (2.36) gives the conclusion.

The idea of the second localization method originated in [42] and is based
on a Pohozaev type inequality.

Proposition 2.4. Let 0 < t < T . The following inequality holds, for any
xT ∈ RN ,∫

RN×{t}

eε(u) |x−xT |2
4(T−t) exp(− |x−xT |2

4(T−t) ) dx(2.37)

≤ N

2

∫
RN×{t}

eε(u) exp(− |x−xT |2
4(T−t) ) dx

+
∫

RN×{t}

[Vε(u) + 3 Ξ(u, zT )] exp(− |x−xT |2
4(T−t) ) dx.
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As a consequence,∫
RN×{t}

eε(u) exp(− |x−xT |2
4(T−t) )dx(2.38)

≤ 2
∫

B(xT ,rT )×{t}
eε(u) exp(− |x−xT |2

4(T−t) )dx

+
2
N

∫
RN×{t}

[Vε(u) + 3 Ξ(u, zT )] exp(− |x−xT |2
4(T−t) )dx ,

where rT = 2
√

N(T − t).

Note that the radius rT of the ball B(xT , rT ) where the first integral of
the right-hand side of (2.38) is computed is proportional to

√
T − t, which is

the width of the parabolic cone with vertex zT = (xT , T ).
The proof of Proposition 2.4 relies on the following inequality.

Lemma 2.6. Let 0 < T1 ≤ T2 < T , xT ∈ RN , zT = (xT , T ). Now,

(2.39)∫
RN×[T1,T2]

eε(u) |x−xT |2
4(T−t) exp(− |x−xT |2

4(T−t) ) dxdt

≤ (T − T1)N/2Ẽw(zT ,
√

T − T1) − (T − T2)N/2Ẽw(zT ,
√

T − T2)

+
∫

RN×[T1,T2]

1
2(T−t) [(x − xT ) · ∇u − 2(T − t)∂tu]2 exp(− |x−xT |2

4(T−t) )dxdt.

Proof. The idea is to multiply the equation (PGL)ε by the multiplier
2(T − t)∂tu exp(− |x−xT |2

4(T−t) ) and integrate on RN × [T1, T2]. One obtains, after
integration by parts in the space variable,∫ T2

T1

∫
RN

2(T − t)|∂tu|2 exp(− |xT−x|2
4(T−t) ) dx dt

=
∫ T2

T1

∫
RN

2(T − t)∆u ∂tu exp(− |xT−x|2
4(T−t) ) dx dt

−
∫ T2

T1

∫
RN

2(T − t)
∂

∂t
[Vε(u)] exp(− |xT−x|2

4(T−t) ) dx dt

= −
∫ T2

T1

∫
RN

∇u ·
(

2(T − t)
∂

∂t
∇u − (T − t)∂tu

x−xT

T−t

)
exp(− |xT−x|2

4(T−t) ) dx dt

−
∫ T2

T1

∫
RN

2(T − t)
∂

∂t
[Vε(u)] exp(− |xT−x|2

4(T−t) ) dx dt

= −
∫ T2

T1

∫
RN

(T − t)
∂

∂t

[
|∇u|2 + 2Vε(u)

]
exp(− |xT−x|2

4(T−t) ) dx dt

+
∫ T2

T1

∫
RN

((x − xT ) · ∇u)
∂u

∂t
exp(− |xT−x|2

4(T−t) ) dx dt.
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Integration by parts in the time variable now yields∫ T2

T1

∫
RN

2(T − t)|∂tu|2 exp(−|xT − x|2
4(T − t)

) dx dt(2.40)

= −
∫ T2

T1

∫
RN

[
|∇u|2 + 2Vε(u)

]
exp(−|xT − x|2

4(T − t)
) dx dt

−
∫ T2

T1

∫
RN

|xT − x|2
4(T − t)

[
|∇u|2 + 2Vε(u)

]
exp(−|xT − x|2

4(T − t)
) dx dt

+
∫

RN×{T1}
(T − T1)

[
|∇u|2 + 2Vε(u)

]
exp(− |xT − x|2

4(T − T1)
) dx

−
∫

RN×{T2}
(T − T2)

[
|∇u|2 + 2Vε(u)

]
exp(− |xT − x|2

4(T − T2)
) dx

+
∫ T2

T1

∫
RN

((x − xT ) · ∇u)
∂u

∂t
exp(−|xT − x|2

4(T − t)
) dx dt.

Adding the integral∫ T2

T1

∫
RN

1
2(T − t)

|(x − xT ) · ∇u|2 exp(−|xT − x|2
4(T − t)

) dx dt

to equation (2.40) we finally obtain

(2.41)∫ T2

T1

∫
RN

1
2(T−t) |(x − xT ) · ∇u − 2(T − t)∂tu|2 exp(− |xT−x|2

4(T−t) ) dx dt

+
∫ T2

T1

∫
RN

(
1 + |xT−x|2

4(T−t)

) [
|∇u|2 + 2Vε(u)

]
exp(− |xT−x|2

4(T−t) ) dx dt

= +
∫

RN×{T1}
(T − T1)

[
|∇u|2 + 2Vε(u)

]
exp(− |xT−x|2

4(T−T1)
) dx

−
∫

RN×{T2}
(T − T2)

[
|∇u|2 + 2Vε(u)

]
exp(− |xT−x|2

4(T−T2)
) dx

+
∫ T2

T1

∫
RN

(x−xT )·∇u
2(T−t) [(x − xT ) · ∇u − 2(T − t)∂tu] exp(− |xT−x|2

4(T−t) ) dx dt.

We bound the last term in (2.41), using the inequality ab ≤ a2

4 + b2, with the
choice

a =
(x − xT ) · ∇u√

2(T − t)
exp(−|xT − x|2

8(T − t)
)

and

b =
[(x − xT ) · ∇u − 2(T − t)∂tu]√

2(T − t)
exp(−|xT − x|2

8(T − t)
),

and the desired conclusion follows.
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Proof of Proposition 2.4. Let 0 < t < T be given and fixed and apply
Lemma 2.6 with T1 = t, T2 = t + ∆t, for ∆t > 0. We divide by ∆t and let ∆t

tend to zero in (2.39). This yields

(2.42)∫
RN×{t}

eε(u)
|x − xT |2
4(T − t)

exp(−|x − xT |2
4(T − t)

) dx

≤
∫

RN×{t}

1
2(T − t)

[(x − xT ) · ∇u − 2(T − t)∂tu]2 exp(−|x − xT |2
4(T − t)

) dx

+g′(T − t),

where we have set

g(s) := sN/2Ẽw(zT ,
√

s).(2.43)

Since

g′(T − t) =
N

2
(T − t)

N−2
2 Ẽw(zT ,

√
T − t) +

(T − t)
N−1

2

2
d

dR
Ẽw(

√
T − t),

we obtain, using the monotonicity formula in Proposition 2.1 and (2.42),

(2.44)∫
RN×{t}

eε(u) |x−xT |2
4(T−t) exp(− |x−xT |2

4(T−t) ) dx ≤ N
2

∫
RN×{t}

eε(u) exp(− |x−xT |2
4(T−t) ) dx

+
∫

RN×{t}
[Vε(u) + 3 Ξ(u, zT )] exp(− |x−xT |2

4(T−t) ) dx,

which proves (2.37). For (2.38), consider the region

A :=
{

x ∈ RN such that
|x − xT |2
8(T − t)

≤ N

2

}
.

We deduce from (2.44) that∫
RN×{t}

eε(u) |x−xT |2
4(T−t) exp(− |x−xT |2

4(T−t) ) dx(2.45)

≤ N
2

∫
A×{t}

eε(u) exp(− |x−xT |2
4(T−t) ) dx

+
∫

(RN\A)×{t}
eε(u) |x−xT |2

8(T−t) exp(− |x−xT |2
4(T−t) ) dx

+
∫

RN×{t}
[Vε(u) + 3 Ξ(u, zT )] exp(− |x−xT |2

4(T−t) ) dx,
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so that ∫
(RN\A)×{t}

N
2 eε(u) exp(− |x−xT |2

4(T−t) ) dx(2.46)

≤ N

2

∫
A×{t}

eε(u) exp(− |x−xT |2
4(T−t) ) dx

+
∫

RN×{t}
[Vε(u) + 3 Ξ(u, zT )] exp(− |x−xT |2

4(T−t) ) dx,

and finally∫
RN×{t}

eε(u) exp(− |x−xT |2
4(T−t) ) dx(2.47)

≤ 2
∫

A×{t}
eε(u) exp(− |x−xT |2

4(T−t) ) dx

+ 2
N

∫
RN×{t}

[Vε(u) + 3 Ξ(u, zT )] exp(− |x−xT |2
4(T−t) ) dx.

This completes the proof.

2.6. Choice of an appropriate scaling. Let zT = (xT , T ) as above, and set

Ew,ε(R) ≡ Ew,ε(zT , R) ≡ Ew,ε(uε; zT , R) ,

and accordingly

Ẽw,ε(R) ≡ Ẽw,ε(zT , R) ≡ Ẽw,ε(uε; zT , R) .

Let 0 < δ < 1/16 be fixed. We have

Proposition 2.5. There exists a constant ε1 > 0 depending only on T

and δ, such that, for ε ≤ ε1, there exists R1 > 0, with R1 ∈ (ε1/2,
√

T ) such
that

0 ≤ Ẽw,ε(R1) − Ẽw,ε(δR1) ≤ 4|log δ|Ẽw,ε(
√

T )
|log ε| ,(2.48)

and therefore

∫ T−δ2R2
1

T−R2
1

∫
RN

(Vε(u) + Ξ(u, zT )) exp(−|x − xT |2
4δ2R2

1

)dxdt ≤ 4|log δ|Ẽw,ε(
√

T )
|log ε| .

(2.49)

Proof. Set R =
√

T , and for n ∈ N∗, Rn = δn R. Let k0 be the largest
integer such that

δk0−1 R ≥ ε1/2.

We have

k0 =
[
(log ε)/2 − log R

log δ

]
,
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where, for α ∈ R, [α] denotes the largest integer less than or equal to α, so
that, if ε ≤ R4δ−8 then k0 verifies

k0 − 2 ≤ |log ε|
|log δ| .(2.50)

On the other hand, we have the equality

Ẽw(δR) − Ẽw(δk0R) =
k0∑

j=2

(
Ẽw(δj−1R) − Ẽw(δjR)

)
,

and all the terms of the sum of the right-hand side of the equality are nonneg-
ative. Therefore, there exists k1 ∈ {2, . . . , k0} such that

Ẽw(δk1−1R) − Ẽw(δk1R) ≤ Ẽw(R)
k0 − 2

≤ 4|log δ|Ẽw(R)
|log ε| ,

where we have used (2.50) for the last inequality. We therefore set R1 =
δk1−1R. Inequality (2.49) is a direct consequence of the monotonicity formula.

Blowing-up. In view of Proposition 2.5 we perform the following change
of variables

x̃ =
x − xT

R1
t̃ =

t − T

R2
1

+ 1

so that (xT , T ) becomes in new variables (0, 1), and (xT , T − R2
1) becomes

(0, 0). Set
ε =

ε

R1

and define the map vε : RN × (0,+∞) → C by

vε(x̃, t̃) = uε(x, t) ,

so that vε verifies the equation

∂vε

∂t
− ∆vε =

1
ε2

vε(1 − |vε|2) on RN × (0,+∞),(2.51)

i.e. vε is a solution to (PGL)ε. Note that
ε

T
≤ ε ≤ ε1/2;(2.52)

therefore ε → 0 as ε → 0, |log ε| ≥ |log ε|/2 and the asymptotic analysis for
(PGL)ε is also valid for (PGL)ε. In the sequel we skip the tildes on the new
variables for simplicity.

Lemma 2.7. Let

|vε(x)| ≤ 3, |∇vε(x)| ≤ K

ε
, |∂tvε(x)| ≤ K

ε2
(2.53)
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for any (x, t) ∈ RN × (0,+∞). Moreover,

Ẽw,ε(vε, (0, 1), 1) = Ẽw,ε(uε, zT , R1),(2.54)

Ẽw,ε((0, 1), 1) − Ẽw,ε((0, 1), δ) ≤ 4|log δ|Ẽw,ε(zT ,
√

T )
|log ε| ,(2.55)

and

∫
RN×[0,1−δ2]

[Vε(vε) + Ξ(vε, (0, 1))]G(x, t − 1) dx dt ≤ 4|log δ|Ẽw,ε(zT ,
√

T )
|log ε| .

(2.56)

Proof. This is a direct consequence of the scaling invariance of each term.

3. Proof of Theorem 1

3.1. Change of scale and improved energy decay. Let uε be a solution of
(PGL)ε as in Theorem 1, i.e. satisfying the bounds

Eε(u0
ε) ≤ M0|log ε|,(3.1) ∫

RN

eε(u0
ε) exp(−|x|2/4) ≤ η|log ε|.(3.2)

Let 0 < δ < 1
16 be fixed, but to be determined later at the very end of the

proof. Let also T = 1, and zT = (0, 1). Recall that in Section 2.6 we have
constructed a rescaled map vε defined by

vε(x, t) = uε(R1x, R2
1(t − 1) + 1), ε =

ε

R1
, ε ≤ ε ≤ ε1/2,

for some appropriate choice of R1. In particular, the function vε is a solution
of (PGL)ε and it follows from the monotonicity formula that

Ẽw,ε(vε, (0, 1), 1) = Ẽw,ε(uε, (0, 1), 1) = η̌|log ε| ≤ η|log ε| ≤ 2η|log ε|,(3.3)

where we have set

η̌(vε) =
Ẽw,ε(vε)
|log ε| .

In view of Lemma 2.7, we have the estimates

|vε| ≤ 3 on RN × [0,+∞),(3.4)

|∇vε| ≤
K

ε
, |∂tvε| ≤

K

ε2
on RN × [0,+∞),(3.5)

Ẽw,ε(vε, (0, 1), 1) − Ẽw,ε(vε, (0, 1), δ) ≤ 4|log δ|η̌ ≤ 8|log δ|η,(3.6)
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RN×[0,1−δ2]

Vε(vε) 1

(1−t)
N
2

exp(− |x|2
4(1−t)) dx dt ≤ 4| log δ|η̌ ≤ 8| log δ|η,(3.7)

∫
RN×[0,1−δ2]

Ξ(vε, (0, 1)) 1

(1−t)
N
2

exp(− |x|2
4(1−t)) dx dt ≤ 4| log δ|η̌ ≤ 8| log δ|η.(3.8)

Note that vε(0, 1) = uε(0, 1). Thus, in order to prove Theorem 1 it suffices to
establish that vε verifies

|vε(0, 1)| ≥ 1 − σ.(3.9)

Throughout this section, we will work with vε instead of uε. The main
advantage to do so is that we have the additional estimates (3.4,3.6,3.7,3.8)
which provide uniform bounds which are independent of ε. In the definition of
Ẽw,ε, Ew,ε, and the various quantities involved in the proof, we will thus skip
the reference to vε or even ε if this is not misleading.

The main ingredient in the proof of (3.9), i.e. Theorem 1, is the following
δ-energy decay estimate.

Proposition 3.1. There exists constants 0 < δ0 < 1
16 , 0 < ε0 < 1

2 , and
η0 > 0 such that for 0 < η ≤ η0 and 0 < ε < ε0 the following inequality holds:

Ẽw,ε(vε, (0, 1), δ0) ≤
1
2
Ẽw,ε(vε, (0, 1), 1) + R(η),(3.10)

where R(η) tends to zero as η → 0.

We postpone the proof of Proposition 3.1 and show first how it implies
Theorem 1.

3.2. Proposition 3.1 implies Theorem 1. Assume 0 < η ≤ η0 and set
λ(σ) =

√
σ

2K , where σ is the constant appearing in the statement of Theorem 1,
whereas K is the constant appearing in (3.5). Set rε = min(1, λ(σ)ε) and
Tε = max(0, 1 − λ2(σ)ε2) = 1 − r2

ε . We claim that

1
εN

∫
B(ε)

(1 − |vε(x, Tε)|2)2 ≤ R1(η),(3.11)

where R1(η) → 0 as η → 0.

Proof of the claim. Combining (3.6) and (3.10) we are led to

Ẽw,ε(vε, (0, 1), 1) ≤ 16|log δ|η + 2R(η).(3.12)

Assume first that λ(σ)ε ≤ 1, so that Tε = 1 − λ2(σ)ε2. We deduce from the
monotonicity formula that

Ẽw,ε(vε, (0, 1), λ(σ)ε) ≤ Ẽw,ε(vε, (0, 1), 1)(3.13)
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so that, combining (3.12) and (3.13) we obtain

Ẽw,ε(vε, (0, 1), λ(σ)ε) ≤ 8|log δ|η + 2R(η).

If λ(σ)ε ≥ 1, then rε = 1, Tε = 0 so that

Ẽw,ε(vε, (0, 1), rε) ≤ η|log ε| ≤ η|log λ(σ)|.

In both cases the claim (3.11) follows from the inequality

(3.14)
1
εN

∫
B(ε)

(1 − |vε(x, Tε)|2)2 ≤
C(σ)
rN−2
ε

∫
B(ε)

(1 − |vε(x, Tε)|2)2
ε2

exp(−|x|2
r2
ε

)dx

≤C(σ)Ẽw,ε(vε, (0, 1), rε) ,

valid for some constant C(σ) depending only on σ and N.

Arguing as in the proof of Lemma III.2 in [8], we are led to

1 − |vε(0, Tε)| ≤ C

(
1
εN

∫
B(ε)

(1 − |vε(x, Tε)|2)2
) 1

N+2

≤ CR1(η)
1

N+2 .(3.15)

On the other hand, by (3.5),

|vε(0, Tε) − vε(0, 1)| ≤ K

ε2
(1 − Tε) ≤

σ

2
.(3.16)

Combining (3.15) and (3.16), we obtain

|1 − |vε(0, 1)| | ≤ σ

2
+ C R1(η)

1
N+2

so that the conclusion follows if η0 is chosen sufficiently small, since R1(η) → 0
as η → 0.

3.3. Paving the way to Proposition 3.1. As in [8], let us first consider the
ideal situation where

|vε| ≡ 1 on RN × [0, 1].

Then, we may write vε = exp(iϕ) where the phase ϕ : RN × [0, 1] → R is
uniquely defined, up to a constant multiple of 2π. The equation for the phase
ϕ is then the linear heat equation

∂ϕ

∂t
− ∆ϕ = 0 on RN × (0, 1).

Notice that in that situation, |∇vε| = |∇ϕ| so that eε(vε) = |∇ϕ|2/2 and
|∂tvε| = |∂tϕ|. Moreover, |∇ϕ|2 verifies the equation

∂|∇ϕ|2
∂t

− ∆(|∇ϕ|2) = −2|∇ϕ|2 ≤ 0
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so that for any 0 < δ < 1, and any x∗ ∈ RN ,

|∇ϕ(x∗, 1 − δ2)|2 ≤
∫

RN

1

π
N

2 (1 − δ2)
N

2

eε(vε(x, 0)) exp(− |x−x∗|2
4(1−δ2)) dx.(3.17)

For µ ∈ RN and σ > 0, consider the Gaussian N(µ, σ2) = 1

(4πσ2)
N
2

exp(− |x−µ|2
4σ2 ).

We deduce from (3.17) that

(3.18)
1

(4π)N/2δN

∫
RN

|∇ϕ(x∗, 1 − δ2)|2 exp(−|x∗|2
4δ2

) dx∗

≤
∫

RN×RN

N(x, δ2)(x − x∗)N(x, 1 − δ2)(x∗)eε(vε(x, 0)) dx∗dx

=
∫

RN

(
N(0, δ2) ∗ N(0, 1 − δ2)

)
(x)eε(vε(x, 0)) dx

=
∫

RN

N(0, 1)eε(vε(x, 0)) dx;

i.e.,
Ẽw,ε(vε, (0, 1), δ) ≤ δ2Ẽw,ε(vε, (0, 1), 1)

so that (3.10) is verified for δ ≤
√

1/2.

In the general case vε may vanish, so that it is not possible to find a phase
ϕ which is globally defined. However, if locally we may write vε = ρ exp(iϕ),
then

vε ×∇vε = ρ2∇ϕ

so that when ρ is close to 1, vε ×∇vε represents essentially the gradient of the
phase. The quantity vε ×∇vε is always globally defined, in contrast with the
phase. The following decomposition formula is then the starting point of the
analysis of |∇vε|2

4|vε|2|∇vε|2 = 4|vε ×∇vε|2 + |∇|vε|2| = 4|vε ×∇vε|2 + 4ρ2|∇ρ|2,(3.19)

where ρ = |vε| is the modulus.
In order to establish (3.10), it suffices to prove a similar inequality when

δ0 is replaced by some δ ∈ [δ0, 2δ0]. That is, we will show that there exist
δ ∈ [δ0, 2δ0] such that

Ẽw,ε(vε, (0, 1), δ) ≤ 1
2
Ẽw,ε(vε, (0, 1), 1) + R(η).(3.20)

We will determine δ using averaging arguments, for quantities which will be
integrated on constant time slices (and bounded thanks to (3.6,3.7,3.8)). For
that purpose, we introduce first some notation. Set, for t ∈ [0, 1],

A(t) =
1

(1 − t)N/2

∫
RN×{t}

Vε(vε) exp(− |x|2
4(1 − t)

) dx,
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B(t) =
1

(1 − t)N/2

∫
RN×{t}

Ξ(vε, (0, 1), (x, t)) exp(− |x|2
4(1 − t)

) dx.

By (3.7) and (3.8) we have therefore∫ 1−δ2

0
A(t) dt ≤ 4|log δ0|η(3.21)

and ∫ 1−δ2

0
B(t) dt ≤ 4|log δ0|η.(3.22)

We first observe that the left-hand side of (3.20), i.e. Ẽw,ε(vε, (0, 1), δ),
involves an integral on the whole RN . However, for “many” choices of δ, we
may localize this integral.

3.4. Localizing the energy on appropriate time slices. Consider the set Θ1

defined by

Θ1 =
{

t ∈ [1 − 4δ2
0 , 1 − δ2

0 ] such that A(t) + B(t) ≤ 32|log δ0|η
δ2
0

}
.(3.23)

Lemma 3.1.

meas (Θ1) ≥
3
4
meas

(
[1 − 4δ2

0 , 1 − δ2
0 ]

)
.

Proof. The proof is an easy consequence of (3.21) and (3.22).

Lemma 3.2. The following inequality holds for any t ∈ Θ1:

Ẽw,ε(vε, (0, 1), δ) ≤ 1
δN−2

∫
B(2

√
Nδ)×{t}

eε(vε) + K|log δ|η,

where δ =
√

1 − t.

Proof. The proof is an immediate consequence of Proposition 2.4 and the
definition of Θ1.

3.5. Improved energy decay estimate for the modulus. Set σε = 1 − |vε|2.
Recall that vε verifies the equation

∂tσε − ∆σε = 2|∇vε|2 −
2
ε2

σε(1 − σε) on RN × (0,+∞).(3.24)

Let δ ∈ [δ0, 2δ0] be given. Our first aim is to bound
∫
B(1)×{t} |∇σε|2, where

t = 1 − δ2.
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Lemma 3.3. The following inequality holds:

(3.25)∫
B(1)×{t}

|∇σε|2 ≤C(δ0)

(∫
RN×{t}

Vε(vε) exp(−|x|2
4δ2

)

)1/2

·
(∫

RN×{t}
(|∇vε|2 + | x

2δ2
· ∇vε − ∂tvε|2) exp(−|x|2

4δ2
)

)1/2

,

where C(δ0) = Kδ−2
0 exp( 1

δ2
0
).

Proof. Letting r1 ∈ [1, 2], multiplying (3.24) by σε and integrating by
parts on B(r1) we obtain∫

B(r1)
|∇σε|2 = 2

∫
B(r1)

|∇vε|2σε −
∫

B(r1)
∂tσε · σε(3.26)

·
∫

∂B(r1)
∂rσε · σε −

2
ε2

∫
B(r1)

σ2
ε (1 − σε)

≤ 2
∫

B(r1)
|∇vε|2 +

∫
B(r1)

|∂tσε · σε| +
∫

∂B(r1)
|∂rσε · σε|.

Here we have used for the last inequality the fact that (1−σε)σ2
ε ≥ 0. In order

to bound the last term of the right-hand side of the previous inequality, we
choose r1 ∈ [1, 2] so that∫

∂B(r1)×{t}
|∇vε|2 exp(− |x|2

4δ2 ) ≤
∫

RN×{t}
|∇vε|2 exp(− |x|2

4δ2 )

and ∫
∂B(r1)×{t}

Vε(vε) exp(− |x|2
4δ2 ) ≤

∫
RN×{t}

Vε(vε) exp(− |x|2
4δ2 ).

For this choice of r1, we have therefore∫
∂B(r1)×{t}

|∂rσε · σε| ≤ Kε(
∫

∂B(r1)×{t}
|∇vε| · |1−|vε|2

ε |)(3.27)

≤ Kε exp(
1
δ2
0

)
( ∫

∂B(r1)×{t}

|∇vε|2 exp(− |x|2
4δ2 )

) 1
2
( ∫

∂B(r1)×{t}

Vε(vε) exp(− |x|2
4δ2 )

) 1
2

≤ Kε exp(
1
δ2
0

)
( ∫

RN×{t}

|∇vε|2 exp(− |x|2
4δ2 )

) 1
2
( ∫

RN×{t}

Vε(vε) exp(− |x|2
4δ2 )

) 1
2
.

Finally, we estimate the remaining two terms on the right-hand side of (3.26).
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First, we have by (3.5)∫
B(r1)×{t}

|∇vε|2σε(3.28)

≤ K

∫
B(r1)×{t}

|∇vε| · |
1 − |vε|2

ε
|

≤ K exp(
1
δ2
0

)
(∫

RN×{t}
|∇vε|2 exp(− |x|2

4δ2 )
) 1

2
(∫

RN×{t}
Vε(vε) exp(− |x|2

4δ2 )
) 1

2
.

Similarly,∫
B(r1)×{t}

|∂tσε · σε|(3.29)

≤ Kε

∫
B(r1)×{t}

|∂tvε||1−|vε|2
ε |

≤ Kε exp( 1
δ2
0
)
( ∫

B(r1)×{t}

|∂tvε|2 exp(− |x|2
4δ2 )

) 1
2
( ∫

B(r1)×{t}

Vε(vε) exp(− |x|2
4δ2 )

) 1
2

≤ Kε exp( 1
δ2
0
)
( ∫

B(r1)×{t}

Vε(vε) exp(− |x|2
4δ2 )

) 1
2

×
( ∫

B(r1)×{t}

(| x
2δ2 · ∇vε|2 + | x

2δ2 · ∇vε − ∂tvε|2) exp(− |x|2
4δ2 )

) 1
2
.

Combining (3.27), (3.28) and (3.29) we derive the conclusion.

The previous lemma allows us to estimate the contribution of the modulus
to the energy on appropriate time slices. More precisely,

Proposition 3.2. For any t ∈ Θ1,∫
B(1)×{t}

1
2
|∇|vε|2|2 + (1−|vε|2)2

4ε2 ≤ C1(δ0)
[
η1/2(Ẽw,ε(vε, (0, 1), 1) + 1)

]
,

where C1(δ0) = KδN−4
0 exp( 1

δ2
0
)|log δ0|.

Proof. By (3.25), we have

∫
B(1)×{t}

1
2 |∇|vε|2|2 ≤ C(δ0)[δNA(t)]

1
2

[
δ

N−2
2 Ẽ

1
2
w,ε(vε, (0, 1), δ) + δ

N−2
2 B(t)

1
2

]
≤ C(δ0)δN−1A(t)

1
2

[
Ẽ

1
2
w,ε(vε, (0, 1), 1) + B(t)

1
2

]
,

and we have made use of the monotonicity formula for the last inequality.
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For t ∈ Θ1, A(t) + B(t) ≤ 32 |log δ0|δ−2
0 η, so that

∫
B(1)×{t}

1
2
|∇|vε|2|2 ≤ K C(δ0)δN−2

0 |log δ0|η
1
2

(
Ẽ

1
2
w,ε(vε, (0, 1), 1) + η

1
2

)
≤ K C(δ0)δN−2

0 |log δ0|
[
η

1
2 (Ẽw,ε(vε, (0, 1), 1) + 1)

]
.

Finally, we have for the potential and for t ∈ Θ1,

1
4ε2

∫
B(1)×{t}

(1 − |vε|2)2 ≤ δN exp(
1
δ2
0

)A(t) ≤ KδN−2
0 |log δ0| exp(

1
δ2
0

)η

and the conclusion follows.

3.6. Hodge-de Rham decomposition of vε × dvε. In view of (3.19) and
the previous subsection, it remains to provide an improved decay estimate
for |vε × dvε|2. For that purpose, we will introduce as for the elliptic case
an appropriate Hodge-de Rham decomposition of vε × dvε. We would like to
emphasize the fact that the estimates obtained so far work equally well if we
consider instead vector-valued maps uε : RN×R+ → Rk, k ≥ 1. The techniques
of the present subsection however heavily rely on the fact that k = 2; i.e., uε

is complex-valued.
Let χ ∈ C∞

c (RN ) be such that 0 ≤ χ ≤ 1, χ ≡ 1 on B(2) and χ ≡ 0
on RN \ B(4). We assume moreover that ‖∇χ‖∞ ≤ 1. Consider for t > 0 the
two-form ψt defined on RN × {t} by

ψt = −GN ∗ d(vε × dvε)χ on RN × {t}(3.30)

where GN denotes the Green’s function of the Laplace operator in dimension N,

GN (x) = − ωN−1

|x|N−2
for N > 2 and G2(x) =

1
2π

log |x|.

Note in particular that

−∆ψt = d(vε × dvε)χ on RN × {t}(3.31)

and that, for N ≥ 3,

|ψt|(x) → 0 as |x| → +∞.

Since −∆ = dd∗ + d∗d and since χ ≡ 1 on B(2) it follows that

d(vε × dvε − d∗ψt) = d∗dψt ≡ ζt on B(2) × {t}.(3.32)

We observe that

∆(dψt) = 0 on B(2) × {t}.(3.33)

Indeed, we have

∆(dψt) = d(∆ψt) = d (d(vε × dvε)) = 0.
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It follows that the two-form ζt = d∗dψt is closed, since

dζt = d(d∗dψt) = dd∗(dψt) = −∆(dψt) − d∗d(dψt) = −∆(dψt) = 0.(3.34)

By the Poincaré lemma, there exists therefore a 1-form ξt
8 defined on B(3/2)×

{t} such that {
dξt = ζt on B(3/2) × {t}
d∗ξt = 0 on B(3/2) × {t},(3.35)

and

‖ξt‖L2(B(3/2)×{t}) ≤ K‖ζt‖L2(B(7/4)×{t}).(3.36)

Going back to (3.32), we may write

d(vε × dvε − d∗ψt − ξt) = 0 on B(3/2) × {t}.

Invoking once more the Poincaré lemma, we deduce that there exists some
function ϕt uniquely determined on B(3/2)×{t} (up to an additive constant)
such that

vε × dvε = dϕt + d∗ψt + ξt on B(3/2) × {t}.(3.37)

This is precisely the Hodge-de Rham decomposition of vε × dvε which best fits
our needs. We are going to estimate the L2 norm of each of the three terms
on the right-hand side of (3.37) successively. As we will see, the most delicate
estimate is for ψt. Although it will enter in the final estimates for ξt and ϕt,

we will treat these last two terms first.

3.7. Estimate for ξt. Since dψt is harmonic on B(2) by (3.32), we have
for any k ∈ N,

‖dψt‖Ck(B(3/2)×{t}) ≤ Kk‖dψt‖L2(B(2)×{t}) ≤ Kk‖∇ψt‖L2(B(2)×{t}).(3.38)

On the other hand, since ζt = d∗dψt, it follows that

‖ζt‖Ck(B(7/4)×{t}) ≤ Kk‖∇ψt‖L2(B(2)×{t})

and going back to (3.36) we obtain the estimate:

Lemma 3.4.

‖ξt‖L2(B(3/2)×{t}) ≤ K‖∇ψt‖L2(B(2)×{t}).

3.8. Estimate for ϕt. The first step is to derive an elliptic equation for ϕt.

This equation involves a linear elliptic operator (with a first order term) which
appears naturally in the context of parabolic equations (see [28]). In a second

8Note that such a form ξt is not uniquely defined.
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step we provide some simple linear estimates for this operator. We finally use
them to complete the estimates for ϕt.

The equation for ϕt. Taking the external product of (PGL)ε for vε with
vε, we obtain9

vε × ∂tvε + d∗(vε × dvε) = 0 on RN × (0,+∞).(3.39)

The term d∗(vε × dvε) can be computed using the Hodge-de Rham decompo-
sition (3.37). We have, since d∗ξt = 0,

d∗(vε × dvε) = −∆ϕt on B(3/2) × {t}.

On the other hand, we may write

vε × ∂tvε = −vε ×
( x

2δ2
· ∇vε − ∂tvε

)
+

x

2δ2
· (vε ×∇vε)

and
x

2δ2
· (vε ×∇vε) =

x

2δ2
(∇ϕt + d∗ψt + ξt).

Going back to (3.39) we thus obtain

−∆ϕt +
x

2δ2
· ∇ϕt = vε ×

( x

2δ2
· ∇vε − ∂tvε

)
(3.40)

−(d∗ψt + ξt) ·
x

2δ2
on B(3/2) × {t}.

In view of (3.40), we are led to consider the linear elliptic operator

Lδ ≡ −∆ +
x

2δ2
· ∇ = − exp(

|x|2
4δ2

)div
(
exp(− |x|2

4δ2 )∇
)

.

Linear estimates for Lδ. Let r > 0 and consider functions v and f on
B(r) such that

Lδv = f on B(r).(3.41)

The next lemma corresponds to Pohozaev’s identity for the operator Lδ.

Lemma 3.5. Let v and f satisfy (3.41); then the following equality holds:

(3.42)
∫

B(r)

[
(
N − 2

2
− |x|2

4δ2
)|∇v|2 exp(− |x|2

4δ2 )
]

+
∫

B(r)
x · ∇vf exp(− |x|2

4δ2 )

=
r

2

∫
∂B(r)

|∇v|2 exp(− |x|2
4δ2 ) − r

∫
∂B(r)

|∂rv|2 exp(− |x|2
4δ2 ).

9Note that if vε = ρ exp(iφ) then (3.39) is equivalent to (6).
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Proof. We multiply ∆v by x · ∇v exp(− |x|2
4δ2 ) and integrate by parts on

B(r). This yields,∫
B(r)

∆v (
∑

i

xi∂iv) exp(− |x|2
4δ2 )

=−
∫

B(r)
∇v · ∇(

∑
i

xi∂iv) exp(− |x|2
4δ2 ) +

∫
B(r)

x

2δ2
· ∇v(

∑
i

xi∂iv) exp(− |x|2
4δ2 )

+
∫

∂B(r)
∂rv(

∑
i

xi∂iv) exp(− |x|2
4δ2 )

=−
∫

B(r)

∑
j

|∂jv|2 exp(− |x|2
4δ2 ) −

∫
B(r)

∑
i,j

xi

2
∂i(|∂jv|2) exp(− |x|2

4δ2 )

+
∫

B(r)

x

2δ2
· ∇v(

∑
i

xi∂iv) exp(− |x|2
4δ2 ) +

∫
∂B(r)

∂rv(
∑

i

xi∂iv) exp(− |x|2
4δ2 )

=−
∫

B(r)

∑
j

|∂jv|2 exp(− |x|2
4δ2 ) +

∫
B(r)

∑
i,j

1
2
|∂jv|2 exp(− |x|2

4δ2 )

−
∫

B(r)

|x|2
4δ2

|∇v|2 exp(− |x|2
4δ2 ) +

∫
B(r)

x

2δ2
· ∇v(

∑
i

xi∂iv) exp(− |x|2
4δ2 )

−
∫

∂B(r)

∑
j

r

2
|∂jv|2 exp(− |x|2

4δ2 ) +
∫

∂B(r)
∂rv(

∑
i

xi∂iv) exp(− |x|2
4δ2 )

=
∫

B(r)
(N−2

2 − |x|2
4δ2 )|∇v|2 exp(− |x|2

4δ2 ) +
∫

B(r)

x

2δ2
· ∇v(

∑
i

xi∂iv) exp(− |x|2
4δ2 )

−r

2

∫
∂B(r)

|∇v|2 exp(− |x|2
4δ2 ) + r

∫
∂B(r)

|∂rv|2 exp(− |x|2
4δ2 ).

The conclusion then follows from (3.41).

Corollary 3.1. If v and f satisfy (3.41), then∫
∂B(r)

|∇	v|2 exp(− |x|2
4δ2 )≤ N−2

r

∫
B(r)

|∇v|2 exp(− |x|2
4δ2 )(3.43)

+
1
r

∫
B(r)

f2 exp(− |x|2
4δ2 ) +

∫
∂B(r)

|∂rv|2 exp(− |x|2
4δ2 ).

Proof. It suffices to note that∫
B(r)

x · ∇vf exp(− |x|2
4δ2 ) −

∫
B(r)

|x|2
4δ2

|∇v|2 exp(− |x|2
4δ2 )

≤
(∫

B(r)
|x|2|∇v|2 exp(− |x|2

4δ2 )
) 1

2
(∫

B(r)
f2 exp(− |x|2

4δ2 )
) 1

2 −
∫

B(r)

|x|2
4δ2

|∇v|2 exp(− |x|2
4δ2 )

≤ 1
2

∫
B(r)

f2 exp(− |x|2
4δ2 ),

since 4δ2 ≤ 1.
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Next, we consider the boundary value problem{
Lδv = f on B(r)
∂v
∂r = g on ∂B(r).

(3.44)

Lemma 3.6. There exist some constants C(δ, r) depending only and con-
tinuously on δ and r, such that if v, f, g verify (3.44) then

(3.45)∫
B(r)

|∇v|2 exp(− |x|2
4δ2 )≤C(δ, r)

[∫
B(r)

f2 exp(− |x|2
4δ2 ) +

(∫
B(r)

f2 exp(− |x|2
4δ2 )

)1/2

·
(∫

∂B(r)
g2 exp(− |x|2

4δ2 )
) 1

2
]

+ Kr

∫
∂B(r)

g2 exp(− |x|2
4δ2 ),

where K depends only possibly on N but not on δ or r.

Proof. Note that (3.45) involves only the gradient of v, whereas if v is a
solution to (3.44) so is v + c for every c ∈ R. Therefore we may assume that∫

∂B(r)
v = 0.(3.46)

It is convenient to use the divergence form of the equation, namely

−div
(
exp(− |x|2

4δ2 )∇v
)

= exp(− |x|2
4δ2 )f.(3.47)

We multiply (3.47) by v and integrate by parts on B(r) to obtain

(3.48)∫
B(r)

|∇v|2 exp(− |x|2
4δ2 ) =

∫
B(r)

fv exp(− |x|2
4δ2 ) −

∫
B(r)

∂rv · v exp(− |x|2
4δ2 )

≤
(∫

B(r)
f2 exp(− |x|2

4δ2 )
)1/2(∫

B(r)
v2 exp(− |x|2

4δ2 )
)1/2

+
(∫

∂B(r)
g2 exp(− |x|2

4δ2 )
)1/2(∫

∂B(r)
v2 exp(− |x|2

4δ2 )
)1/2

.

In view of (3.46), we have by the Poincaré-Wirtinger inequality∫
∂B(r)

v2 ≤ r2

N − 1

∫
∂B(r)

|∇	v|2.(3.49)

By (3.43) we thus have

(3.50)∫
∂B(r)

v2 exp(− |x|2
4δ2 )≤ r

∫
B(r)

|∇v|2 exp(− |x|2
4δ2 ) +

r

N − 1

∫
B(r)

f2 exp(− |x|2
4δ2 )

+
r2

N − 1

∫
∂B(r)

g2 exp(− |x|2
4δ2 ).
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On the other hand, standard elliptic estimates yield∫
B(r)

v2 exp(− |x|2
4δ2 ) ≤ C(δ, r)

[∫
B(r)

f2 exp(− |x|2
4δ2 ) +

∫
∂B(r)

g2 exp(− |x|2
4δ2 )

]
(3.51)

where the constant C(δ, r) may depend (strongly) on δ and r. Going back to
(3.48) we bound the second term on the right-hand side by(∫

∂B(r)
g2 exp(− |x|2

4δ2 )
) 1

2
(∫

∂B(r)
v2 exp(− |x|2

4δ2 )
) 1

2

≤ r

2

∫
∂B(r)

g2 exp(− |x|2
4δ2 ) +

1
2r

∫
∂B(r)

v2 exp(− |x|2
4δ2 )

≤ r

∫
∂B(r)

g2 exp(− |x|2
4δ2 ) +

1
2

∫
B(r)

|∇v|2 exp(− |x|2
4δ2 ) +

1
2

∫
B(r)

f2 exp(− |x|2
4δ2 ).

The first term on the right-hand side of (3.48) is estimated as follows(∫
B(r)

f2 exp(− |x|2
4δ2 )

) 1
2
(∫

B(r)
v2 exp(− |x|2

4δ2 )
) 1

2 ≤ C(δ, r)
[∫

B(r)
f2 exp(− |x|2

4δ2 )

+
(∫

B(r)
f2 exp(− |x|2

4δ2 )
) 1

2
(∫

∂B(r)
g2 exp(− |x|2

4δ2 )
) 1

2
]

and the conclusion follows.

We are now in position to complete the estimates for ϕt.

Estimates for ϕt. Recall that for every 0 < r < 3/2, ϕt verifies the
equations {

Lδϕt = f on B(r) × {t}
∂ϕt

∂r = g on ∂B(r) × {t}
where f and g are defined by

f = vε ×
( x

2δ2
· ∇vε − ∂tvε

)
− (d∗ψt + ξt) ·

x

2δ2
on B(3/2) × {t}(3.52)

and

g = vε ×
∂vε

∂r
− (d∗ψt + ξt)N on ∂B(r) × {t}.(3.53)

In view of Lemma 3.6 we choose r ∈ [1, 3/2] such that∫
∂B(r)×{t}

|∇vε|2 exp(− |x|2
4δ2 )≤ 12

∫
(B(3/2)\B(1))×{t}

|∇vε|2(3.54) ∫
∂B(r)×{t}

|∇ψt|2 exp(− |x|2
4δ2 )≤ 12

∫
(B(3/2)\B(1))×{t}

|∇ψt|2(3.55) ∫
∂B(r)×{t}

|ξt|2 exp(− |x|2
4δ2 )≤ 12

∫
(B(3/2)\B(1))×{t}

|ξt|2(3.56)
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so that

∫
∂B(r)

g2 exp(− |x|2
4δ2 ) ≤ K

∫
(B(3/2)\B(1))×{t}

(
|∇vε|2 + |∇ψt|2 + |ξt|2

)
exp(− |x|2

4δ2 ).

(3.57)

Our main estimate for ϕt is the following proposition:

Proposition 3.3.∫
B(1)

|∇ϕt|2 exp(− |x|2
4δ2 )≤KδN Ẽw,ε(vε, (0, 1), δ)(3.58)

+C(δ0)
[
R(t) + R(t)

1
2 Ẽw,ε(vε, (0, 1), δ)

1
2

]
,

where C(δ0) is a constant depending only on δ0, and R(t) is defined as

R(t) =
∫

RN×{t}

[
Ξ(vε, (0, 1)) + Vε(vε) + (|∇ψt|2 + |ξt|2)1B(3/2)

]
exp(− |x|2

4δ2 ) dx.

Proof. We apply Lemma 3.6 to ϕt. Clearly, in view of the definition (3.52)
of f, ∫

B(r)
f2 exp(− |x|2

4δ2 ) ≤ C(δ)R(t).(3.59)

On the other hand, by (3.57),∫
B(r)

g2 exp(− |x|2
4δ2 ) ≤ K

∫
(B(3/2)\B(1))×{t}

|∇vε|2 exp(− |x|2
4δ2 ) + K R(t).(3.60)

The important observation is that

∫
(B(3/2)\B(1))×{t}

|∇vε|2 exp(− |x|2
4δ2 ) ≤ 4δ2

∫
(B(3/2)\B(1))×{t}

|x|2
4δ2

|∇vε|2 exp(− |x|2
4δ2 )

≤ 2NδnẼw,ε(vε, (0, 1), δ) + 3R(t),

where we have used (2.44) for the last inequality. The conclusion then follows
from Lemma 3.6.

The following is a direct consequence of Proposition 3.3 and the definition
of Θ1.

Corollary 3.2. For t ∈ Θ1,∫
B(2

√
Nδ)

|∇ϕt|2 ≤ KδN
0 Ẽw,ε(vε, (0, 1), 1)+C(δ0)

[
η + η

1
2 Ẽ

1
2
w,ε(vε, (0, 1), 1) + R2(t)

]
,
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where

R2(t) = C(δ0)
[ ∫
B(3/2)

(|∇ψt|2 + |ξt|2) + (
∫

B(3/2)

|∇ψt|2 + |ξt|2)
1
2 E

1
2
w,ε(vε, (0, 1), 1)

]
,

and C(δ0) = K exp(− 4
δ2
0
).

3.9. Splitting ψt. We turn next to the estimate for ψt. As already an-
nounced, this is the key part, and our main contribution in the proof of The-
orem 1.

Recall that ψt verifies the equation

−∆ψt = d(vε × dvε) χ on RN × {t},(3.61)

where t = 1 − δ2, δ ∈ [δ0, 2δ0] is fixed but to be determined later, and the
cut-off function χ depends only on x, verifies 0 ≤ χ ≤ 1, χ ≡ 1 on B(2), χ ≡ 0
on RN \ B(4), and |∇χ| ≤ 1.

First, as in [8], we define a reprojection of vε in the following way. Let τ

be the real-valued function defined on RN × (0,+∞) by

τ(x, t) = p(|vε(x, t)|)
where p(·) is a function: [0, 3] → [13 , 2] verifying the properties

p(s) = 1
s if 1

2 ≤ s

p(s) = 1 if 0 ≤ s ≤ 1
4

|p′(s)| ≤ 4 for all s.

(3.62)

By construction, τ verifies the inequality∣∣1 − τ2(x)
∣∣ ≤ K

∣∣1 − |vε(x)|2
∣∣ .(3.63)

Set ṽε = τvε, so that {
ṽε = vε if |vε| ≤ 1

4

|ṽε| = 1 if |vε| ≥ 1
2 .

The main motivation for the previous construction is the following observation.

Lemma 3.7.

d(ṽε × dṽε)(x) = 2
∑
i<j

(∂iṽε × ∂j ṽε) dxi ∧ dxj .(3.64)

In particular,

d(ṽε × dṽε)(x) = 0 if |vε(x)| ≥ 1
2

(3.65)

and therefore

|d(ṽε × dṽε)| ≤ K
(1 − |vε|2)2

4ε2
= K Vε(vε) on RN × (0,+∞).(3.66)
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Proof. The identity (3.64) follows easily from the definition of d and the
identity d2 ≡ 0. For (3.65), we notice that if |vε(x)| ≥ 1

2 then |ṽε(x)| = 1 so
that ∂iṽε and ∂j ṽε are collinear on the set

O =
{

x ∈ RN such that |vε(x)| ≥ 1
2

}
.

Finally (3.66) follows from (3.65) and the bound (3.5).

We decompose ψt as

ψt = ψ1,t + ψ2,t on RN × {t}
where {

ψ1,t = −GN ∗ d(ṽε × dṽε)χ on RN × {t}
ψ2,t = −GN ∗ d((1 − τ2)vε × dvε)χ on RN × {t}

so that {
−∆ψ1,t = d(ṽε × dṽε)χ on RN × {t}
−∆ψ2,t = d((1 − τ2)vε × dvε)χ on RN × {t}.(3.67)

In view of its definition, ψ2,t is an error term arising from the projection ṽε

of vε. This term can be handled easily as we see next.

3.10. L2 estimate for ∇ψ2,t. The following inequality holds for ψ2,t.

Lemma 3.8. For N ≥ 3,10∫
RN×{t}

|∇ψ2,t|2 ≤ C(δ0)
∫

RN×{t}
Vε(vε) exp(− |x|2

4δ2 ) dx(3.68)

where C(δ0) = K exp(4/δ2
0) and K is a constant depending only on N.

Proof. We multiply the second equation of (3.67) by ψ2,t and integrate by
parts on RN . This yields

∫
RN×{t}

|∇ψ2,t|2 ≤
∫

RN×{t}
|1 − τ2| |vε × dvε| (χ|∇ψ2,t| + |∇χ| |ψ2,t|)

≤ K
(∫

B(4)×{t}
Vε(vε)

) 1
2
[(∫

RN×{t}
|∇ψ2,t|2

) 1
2 +

(∫
RN×{t}

|∇χ|N
) 1

N
(∫

RN×{t}
|ψ2,t|2

∗
) 1

2∗
]

≤ K
(∫

B(4)×{t}
Vε(vε)

) 1
2
(∫

RN×{t}
|∇ψ2,t|2

) 1
2

where we have used (3.5), (3.63) and the Sobolev inequality. It follows that∫
RN×{t}

|∇ψ2,t|2 ≤ K exp(
4
δ2
0

)
∫

RN×{t}
Vε(vε) exp(− |x|2

4δ2 ) dx

and the proof is complete.

10For N = 2, a similar estimate holds replacing RN by any compact set.
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We next turn to the estimate for ψ1,t. We will first present a simple proof
in dimension two, and then give the proof for N ≥ 3. Although this proof
might be adapted for the case N = 2, we believe that the simple arguments in
case N = 2 will shed some insight for the general case.

3.11. L2 estimate for ∇ψ1,t when N = 2. The following estimate holds.

Lemma 3.9. For every t ∈ [1 − 4δ2
0 , 1 − δ2

0 ],∫
B(2)×{t}

|∇ψ1,t|2 ≤ C(δ0)
[∫

R2×{t}
Vε(vε) exp(−|x|2

4δ2
) dx

]2
|log ε|.

Proof. In view of Lemma 3.7,

‖∆ψ1,t‖L1(R2) ≤ K

∫
B(4)×{t}

Vε(vε)

and by standard elliptic estimates

‖ψ1,t‖W 1,p(B(4)) ≤ Kp

∫
B(4)×{t}

Vε(vε)

for any 1 ≤ p < 2. On the other hand,

∆(ψ1,tχ) = (∆ψ1,t)χ + 2∇ψ1,t∇χ + ψ1,t∆χ

so that

‖∆(ψ1,tχ)‖L1(R2) ≤ K

∫
B(4)×{t}

Vε(vε).(3.69)

To complete the proof, we present an unpublished argument of a preliminary
version of [8], which relies on the following inequality, due to [16] (see also [18]
and [56]).

Lemma 3.10. For any u ∈ H2(R2),

‖u‖L∞(R2) ≤ K‖u‖H1(R2)

[
1 + log

1
2 (1 + ‖u‖H2(R2))

]
.

We apply Lemma 3.10 to ψ1,tχ. Since

‖∆(ψ1,tχ)‖L∞(R2) ≤
K

ε2

by (3.5), we deduce that

‖ψ1,tχ‖H2(R2) ≤
K

ε2

and therefore

‖ψ1,tχ‖L∞(R2) ≤ K‖ψ1,t‖H1(R2) |log ε| 12 .(3.70)
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On the other hand, from standard elliptic estimates and using (3.70) we obtain

‖ψ1,tχ‖2
H1(R2) ≤K‖∆(ψ1,tχ)‖L1(R2) ‖ψ1,tχ‖L∞(R2)(3.71)

≤K‖∆(ψ1,tχ)‖L1(R2) ‖ψ1,tχ‖H1(R2)|log ε| 12 .

The conclusion then follows from (3.69).

Remark 3.1. i) The main point here is the L∞ estimate for ψ1,t. The only
property of the equation which is used is the pointwise L∞ bound on ∇vε

in (3.5). A similar type of L∞ estimate is also used in an essential way for
the elliptic case in [8]. The proof there uses, besides (3.5), the monotonicity
formula.

ii) Recall that Hs(R2) ↪→ L∞
loc(R2) for s > 1. This is however not true

for s = 1, which is therefore critical for the previous embedding. Lemma 3.10
can thus be interpreted as an interpolation inequality in the critical dimension.
There are generalizations of Lemma 3.10 for higher dimension (see [16], [18],
[56]); nevertheless they involve critical Sobolev spaces for the corresponding
dimension, which require more regularity than H1.

iii) The proof of Lemma 3.10 can be obtained in the Fourier variable by
a decomposition in high and low frequencies. This idea will be used also in
our estimate of ψ1,t in the next section; however we have to use additional
ingredients related to the nonlinear parabolic nature of (PGL)ε.

3.12. L2 estimate for ψ1,t when N ≥ 3. The analog of Lemma 3.9 in
higher dimension is the following.

Proposition 3.4. There exists a subset Θ2 ⊆ [1 − 4δ2
0 , 1 − δ2

0 ] such that

meas (Θ2) ≥
3
4
meas

(
[1 − 4δ2

0 , 1 − δ2
0 ]

)
(3.72)

and for each t ∈ Θ2,

(3.73)
∫

RN×{t}
|∇ψ1,t|2 ≤ C(δ0)ε

1
6 Ẽw,ε(vε, (0, 1), 1)

+ C(δ0)
∫

RN×{t}
Vε(vε) exp(− |x|2

4δ2 ) dx
(
Ẽw,ε(vε, (0, 1), 1) + 1

)
,

where C(δ0) = K exp(342

δ2
0

) and K is a constant depending only on N.

Comment. In contrast to Lemma 3.9, we are only able to establish
inequality (3.73) for appropriate time slices.

The proof of Proposition 3.4 is rather involved. We divide it therefore in
several steps.
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Step 1: Splitting ψ1. In view of the proof for the elliptic case in [8], as well
as in view of Lemma 3.9, it is tempting to believe that a similar L∞ bound for
ψ1,t can be derived for N ≥ 3. Nevertheless, this may not be true (see however
[55] for N = 4). To overcome this difficulty, we perform a splitting of ψ1,t in
high and low frequencies,

ψ1,t = ψi
1,t + ψe

1,t on RN × {t}.(3.74)

We will derive an L∞ estimate for the low frequency part ψe
1,t and a smallness

property for the (weaker) L2 norm of ψi
1,t. For the sake of simplicity, we write

ψ1 instead of ψ1,t and similarly ψi
1 and ψe

1, whenever this does not lead to a
confusion. The high frequencies are essentially contained in ψi

1, whereas ψe
1

stands for the low frequency range. Since

ψ1 = GN ∗ d(vε × dvε)χ,

we define the splitting (3.74) introducing an appropriate splitting of the kernel
GN . More precisely, we write

GN = Gi
N + Ge

N ≡ m(|x|) GN + (1 − m(|x|))GN

where m is some nonnegative function with compact support which we define
now. Choose α ∈ (2

3 , 3
4) and consider the nonnegative function l defined on R+

by

l(s) =



0 if s ≤ εα

((
s

εα
)N−1 − 1)(2N−1 − 1)−1 if εα ≤ s ≤ 2εα

1 if 2εα ≤ s ≤ 16
(2N−1 − (

s

16
)N−1)(2N−1 − 1)−1 if 16 ≤ s ≤ 32

0 if s ≥ 32.

We set

m(s) =
{

1 − l(s) if 0 ≤ s ≤ 16
0 if s ≥ 16.

In particular, m is Lipschitz with compact support, and
m(s) ≡ 1 for s ∈ (0, εα)
m(s) ≡ 0 for s ∈ (2εα,+∞)
|m′(s)| ≤ Kε−α.

Finally, we define

ψi
1 = Gi

N ∗ d(ṽε × dṽε)χ on RN × {t},

and
ψe

1 = Ge
N ∗ d(ṽε × dṽε)χ on RN × {t}.

The following properties of the kernel Gi
N will be useful. The proofs are

elementary and left to the reader.
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Lemma 3.11.

‖∇Gi
N‖L1(RN ) ≤ Kεα,

and
‖∆Gi

N‖M(RN ) ≤ K,

where M denotes the set of finite Radon measures on RN and K is a constant
depending only on N.

We first begin with the L∞ estimate for ψe
1.

Step 2: L∞ estimate for ψe
1. First, notice that Ge

N (x) = GN (x) for
|x| ≥ 2εα. In particular, since χ has compact support in B(4), it follows that

ψe
1 = GN ∗ d(ṽε × dṽε)χ on

(
RN \ B(4 + 2εα)

)
× {t}.(3.75)

Therefore, ψe
1 is harmonic on (RN \ B(5)) (provided ε is sufficiently small).

Hence, by the maximum principle,

‖ψe
1‖L∞(RN×{t}) ≤ ‖ψe

1‖L∞(B(5)×{t}) .(3.76)

On the other hand, on the larger ball B(12), one has by the definition of m,

and in view of the support of χ,

ψe
1 = l(|x|)GN ∗ d(ṽε × dṽε) χ on B(12) × {t}.(3.77)

Recall also that supp(l) ⊆ B(32) so that l(|x|)GN ∗ d(ṽε × dṽε)χ has compact
support in B(36). Combining (3.76) and (3.77), we obtain

‖ψe
1‖L∞(RN×{t}) ≤ ‖l(|x|)GN ∗ d(ṽε × dṽε) χ‖L∞(RN×{t}) .(3.78)

In order to estimate the right-hand side of (3.78), we invoke the following
lemma, which motivated the precise definition of l. A similar construction was
already used in our previous work on the NLS equation [10].

Lemma 3.12. Let f ∈ L1(RN ). The following equality holds for any y ∈
RN :

(l(|x|)GN ∗ f) (y) =
∫ 16

εα

r−1[
1

rN−2

∫
B(y,2r)×{t}

f(x)h(|x − y|, r) dx] dr(3.79)

+

[
r2−N

N − 2

∫
B(y,2r)×{t}

f(x)h(|x − y|, r) dx

]16

εα

,

where the Lipschitz cut-off function h is defined on R+ × R+ by

h(s, r) = ωN−1
(N − 1)(N − 2)

2N−1 − 1
·


1 if 0 ≤ s ≤ r,

2r−s
r if r ≤ s ≤ 2r,

0 if s ≥ 2r.
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Proof. We start with the right-hand side of the equality. Integrating by
parts in the variable r, we obtain∫ 16

εα

r−1[
1

rN−2

∫
B(y,2r)×{t}

f(x)h(|x − y|, r) dx] dr(3.80)

+

[
r2−N

N − 2

∫
B(y,2r)×{t}

f(x)h(|x − y|, r) dx

]16

εα

=
∫ 16

εα

r2−N

N − 2

∫
B(y,2r)×{t}

f(x)
∂h

∂r
(|x − y|, r) dx] dr.

Here, we have used the fact that h(2r, r) = 0 for each r > 0. Notice that

∂h

∂r
(|x − y|, r) = ωN−1

(N − 1)(N − 2)
2N−1 − 1

|x − y|
r2

for x ∈ B(y, 2r) \ B(y, r)

and is equal to zero elsewhere. The last term in (3.80) can thus be rewritten
as ∫ 16

εα

r−NωN−1
N − 1
2N−1

∫
(B(y,2r)\B(y,r))×{t}

f(x)|x − y| dx] dr,(3.81)

and therefore also as

ωN−1
N − 1

2N−1 − 1

∫ 16

εα

r−N

∫ 2r

r
s[

∫
∂B(y,s)×{t}

f(x) dx] ds dr ≡ I(y).(3.82)

Using Fubini’s theorem, we obtain

I(y) = ωN−1
N − 1

2N−1 − 1

∫ 32

εα

s[
∫

∂B(y,s)×{t}
f(x) dx]

∫ min(s,16)

max(s/2,εα)
r−N dr ds.

(3.83)

Note that by construction, l verifies

N − 1
2N−1 − 1

∫ min(s,16)

max(s/2,εα)
r−N dr ≡ l(s)s1−N .

Therefore, since supp(l) ⊆ [εα, 32] we can rewrite

I(y) =
∫ 32

εα

ωN−1s
2−N [

∫
∂B(y,s)×{t}

f(x) dx]l(s) ds

=
∫

RN×{t}

ωN−1

|y − x|N−2
l(|y − x|)f(x) dx,

and the proof is complete.

In view of the previous lemma, we have, for any y ∈ RN ,

(l(|x|)GN ∗ d(ṽε × dṽε)χ) (y) =
∫ 16

εα

1
r
Jr(y) dr +

1
N − 2

[J16(y) − Jεα(y)],
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where we set

Jr(y) =
1

rN−2

∫
B(y,2r)×{t}

d(ṽε × dṽε)h(|x − y|, r) χ(x) dx.

In particular, for any y ∈ RN ,

|(l(|x|)GN ∗ d(ṽε × dṽε)χ)(y)| ≤ K sup
r∈[εα,16]

[∫ 16

εα

dr

r
+

2
N − 2

]
≤ K sup

r∈[εα,16]
|Jr(y)| [|log ε| + 1] .

(3.84)

Using (3.64) and the monotonicity formula, one may derive the bound

|Jr(y)| ≤ KẼw,ε(0, (0, 1), 1).

This bound however is far from being satisfactory for our purposes. To proceed
further, we argue as in [10], and use a refined estimate due to Jerrard and Soner
[36] which relies on the special structure of the Jacobian

J ṽε =
1
2
d(ṽε × dṽε).

More precisely, we have

Lemma 3.13 (Jerrard & Soner). Assume that w ∈ H1
loc(RN , C), ϕ ∈

C0,1
c (RN ,Λ2RN ), and set K = supp(ϕ). Then there exist some constants K > 0

and 0 < β < 1 depending only on N such that

∣∣∣∣∫
RN

〈Jw, ϕ〉
∣∣∣∣ ≤ K

|log ε|‖ϕ‖L∞

∫
K

eε(w) + Kεβ‖ϕ‖C0,1(1 +
∫
K

eε(w))(1 + |K|2).

(3.85)

With the help of the previous lemma and of the analysis in Section 2.4,
we obtain the following.

Lemma 3.14. Let β > 0 be as given in Lemma 3.13. For any y ∈ B(36),

sup
r∈[εα,16]

|Jr(y)| ≤ K exp(
342

δ2
0

)
(Ẽw,ε(vε, (0, 1), 1)

|log ε| + ε
β

4

)
.

Proof. Define the rescaled functions ṽε,y,r and χy,r by

ṽε,y,r(x) = ṽε(rx + y) and χy,r = χ(rx + y).

Define also εr = ε
r , and notice that for r ∈ [εα, 16] we have

|log εr| ≥ (1 − α)|log ε| ≥ 1
4
|log ε|.(3.86)
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By scaling and the definition of h, we obtain

Jr(y)≡ 1
rN−2

∫
B(y,2r)×{t}

d(ṽε × dṽε)h(|x − y|, r)χ(x) dx(3.87)

=
∫

B(2)×{t}
2J ṽε,y,r(x)h(x, 1) χy,r(x) dx.

Note that since χ has compact support and r ≤ 16,

‖2 h(·, 1)χy,r(·)‖C0,1(B(2)) ≤ K

where the constant K depends only on N. We apply Jerrard-Soner estimate
(3.85) to w = ṽε,y,r and ϕ = 2h(·, 1)χy,r. In view of (3.86), this yields∣∣∣∫

B(2)×{t}
2J ṽε,y,r(x)h(x, 1)χy,r(x) dx

∣∣∣≤K
(∫

B(2)×{t} eεr
(ṽε,y,r)

|log εr|
+ εr

β
)

(3.88)

≤K
(∫

B(2)×{t} eεr
(ṽε,y,r)

|log ε| + εβ/4
)
.

On the one hand, for εα ≤ r ≤ δ
2 ,

(3.89)∫
B(2)×{t}

eεr
(ṽε,y,r) =

1
rN−2

∫
B(y,2r)×{t}

eε(ṽε)

≤K
1

rN−2

∫
RN×{t}

eε(vε) exp(− |x−y|2
4r2 ) dx

= KẼw,ε(vε, (y, 1 − δ2), r) ≤ K exp(
1
12

)Ẽw,ε(vε, (0, 1), 1),

where we have used Lemma 2.5 for the last inequality. On the other hand, for
δ
2 ≤ r ≤ 16,∫

B(2)×{t}
eεr

(ṽε,y,r) =
1

rN−2

∫
B(y,2r)×{t}

eε(ṽε)(3.90)

≤K exp( (|y|+32)2

4δ2
0

)
1

δN−2

∫
RN×{t}

eε(ṽε) exp(− |x|2
4δ2 ) dx

≤K exp(
342

δ2
0

)Ẽw,ε(vε, (0, 1), 1),

where we have used the monotonicity formula for the last inequality. The
conclusion then follows from (3.87), (3.88), (3.89) and (3.90).

We are now in position to derive our L∞ estimate for ψe
1.

Lemma 3.15. There exists a constant K depending only on N such that

‖ψe
1‖L∞(RN×{t}) ≤ C(δ0)

(
Ẽw,ε(vε, (0, 1), 1) + 1

)
,(3.91)

where C(δ0) = K exp(342

δ2
0

).
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Proof. Recall that by (3.78) we have

‖ψe
1‖L∞(RN×{t}) ≤ ‖l(|x|)GN ∗ d(ṽε × dṽε)χ‖L∞(RN×{t}) .

Since supp(l) ⊆ B(32) and supp(χ) ⊆ B(4), we also have(
l(|x|)GN ∗ d(ṽε × dṽε)χ

)
(y) = 0 for y ∈ RN \ B(36).

Therefore we only need to consider the case y ∈ B(36), and the conclusion
follows by (3.84) and Lemma 3.14.

We next turn to the estimates for the high frequency part of ψ1, i.e. ψi
1.

Step 3: L2 estimate for ψi
1. Since ψi

1 = Gi
n ∗ d(ṽε × dṽε)χ and since

‖∇Gi
N‖L1 ≤ Kεα, a few computations yield the following lemma.

Lemma 3.16. There exists a constant K depending only on N such that∫
RN×{t}

|ψi
1|2 ≤ C(δ0)ε2αẼw,ε(vε, (0, 1), 1),(3.92)

where C(δ0) = K exp( 4
δ2
0
).

Proof. We have

ψi
1 = m(|x|) ωN−1

|x|N−2
∗ d(ṽε × dṽε)χ(3.93)

= m(|x|) ωN−1

|x|N−2
∗ d(ṽε × dṽε χ) − m(|x|) ωN−1

|x|N−2
∗ (ṽε × dṽε · dχ)

= d
(
m(|x|) ωN−1

|x|N−2

)
∗ (ṽε × dṽε χ) − m(|x|) ωN−1

|x|N−2
∗ (ṽε × dṽε · dχ).

Note that by Lemma 3.11,∥∥∥∥d
(
m(|x|) ωN−1

|x|N−2

)∥∥∥∥
L1(RN )

≤ Kεα,(3.94)

and that ∥∥∥∥m(|x|) ωN−1

|x|N−2

∥∥∥∥
L1(RN )

≤ Kε2α ≤ Kεα.(3.95)

From (3.93) we thus infer that

∥∥ψi
1

∥∥
L2(RN×{t}) ≤ Kεα

(∫
B(4)×{t}

|∇ṽε|2
) 1

2

≤ K exp(
2
δ2
0

)εαẼw,ε(vε, (0, 1), δ)
1
2

(3.96)

and the conclusion follows by the monotonicity formula.

Step 4: Introducing an auxiliary parabolic problem. Recall that

−∆ψ1 = d(ṽε × dṽε)χ on RN × {t}.(3.97)
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In view of the result of Section 2.3, it is tempting to compare ψ1 with the
solution ψ∗

1 of the parabolic problem{
∂tψ

∗
1 − ∆ψ∗

1 = d(ṽε × dṽε)χ on RN × [0,+∞)
ψ∗

1(., 0) = 0 on RN × {0}.(3.98)

In view of Lemma 3.7, we have

|d(ṽε × dṽε)χ| ≤ K
(1 − |vε|2)2

4ε2
χ on RN × [0,∞),(3.99)

where the constant K depends only on N, and the results of Section 2.3 apply
directly to ψ∗

1. This yields

Lemma 3.17. For any δ ∈ [1 − 4δ2
0 , 1 − δ2],∥∥ψ∗

1(., 1 − δ2)
∥∥

L∞(RN )
≤ C(δ0)Ẽw,ε(vε, (0, 1), 1),(3.100)

and ∫
RN×[0,1−δ2

0 ]
|∇ψ∗

1|2 ≤ C(δ0)Ẽw,ε(vε, (0, 1), 1),(3.101)

where C(δ0) = K exp(4/δ2
0) and the constant K depends only on N.

Proof. For (3.100), consider the function f defined by

f(x, t) =
(1 − |vε(x, t)|2)2

4ε2
χ(x) on RN × [0,∞)

and let ω be the solution of{
∂ω
∂t − ∆ω = f on RN × [0,∞),

ω(x, 0) = 0 for x ∈ RN .

It follows from the maximum principle and (3.99) that

|ψ∗
1(x, 1 − δ2)| ≤ Kω(x, 1 − δ2) ∀ x ∈ RN .(3.102)

We deduce from Proposition 2.2 with T = 1 and zT = (0, 1) that

ω(x, 1 − δ2) ≤ K

(
1

1 − δ2

)N/2

exp(
|x|2
4δ2

) Ẽw,ε(vε, (0, 1), 1).

On the other hand, since χ is supported in B(4), we deduce from Duhamel’s
representation formula for ω that

sup
x∈RN

ω(x, 1 − δ2) = sup
x∈B(4)

ω(x, 1 − δ2),

and therefore

sup
x∈RN

ω(x, 1 − δ2) ≤ K exp(
4
δ2
0

) Ẽw,ε(vε, (0, 1), 1).

The estimate (3.100) then follows from (3.102).
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We next turn to (3.101). Multiplying (3.98) by ψ∗
1 and integrating by

parts we obtain

1
2

∫
RN×[1−δ2

0 ]
|ψ∗

1|2 +
∫

RN×[0,1−δ2
0 ]
|∇ψ∗

1|2 =
∫

RN×[0,1−δ2
0 ]
〈d(ṽε × dṽε)χ, ψ∗

1〉.(3.103)

Therefore,

∫
RN×[0,1−δ2

0 ]
|∇ψ∗

1|2 ≤
∫

RN×[0,1−δ2
0 ]
|ṽε × dṽε| (|∇χ| · |ψ∗

1| + χ|∇ψ∗
1|)

≤ K exp(
2
δ2
0

)
(∫

RN×[0,1−δ2
0 ]
|∇ψ∗

1|2
) 1

2
Ẽw,ε(vε, (0, 1), 1)

1
2

≤ 1
2

∫
RN×[0,1−δ2

0 ]
|∇ψ∗

1|2 + K exp(
4
δ2
0

)Ẽw,ε(vε, (0, 1), 1).

(3.104)

Here, we have used the Sobolev inequality and the monotonicity of the function
Ẽw,ε(vε, (0, 1), ·). Estimate (3.101) follows and the proof is complete.

Comment. Estimate (3.101) seems a little disappointing, since it does
not offer any improvement for the energy (in the spirit of Proposition 3.4).
However, a few more computations show, by (3.100), that

∫
RN

1−δ2
0∫

1−4δ2
0

|∇ψ∗
1|2 ≤ C(δ0)

(∫
RN

1−δ2
0∫

1−4δ2
0

Vε(vε) exp(− |x|2
4(1−t)) dx

)
(Ẽw,ε(vε, (0, 1), 1)+1).

Notice that this inequality involves only integration on RN × [1 − 4δ2
0 , 1 − δ2

0 ]
whereas (3.101) involves integration on RN × [0, 1− δ2

0 ]. We will not make use
of the previous bound.

Step 5: L2 estimate for ∂tψ
∗
1 on appropriate time slices. In order to

compare ψ∗
1 with ψ1, it seems natural to try to derive some bound on the time

derivative ∂tψ
∗
1. In this direction, we have the following estimate.

Lemma 3.18.∫
RN×[0,1−δ2

0 ]
|∂tψ

∗
1|2 ≤ C(δ0)ε−1Ẽw,ε(vε, (0, 1), 1),(3.105)

where C(δ0) = Kδ−1
0 exp( 4

δ2
0
) and K is a constant depending only on N.

A straightforward corollary is the following.

Corollary 3.3. There exists a set Θ2 ⊆ [1 − 4δ2
0 , 1 − δ2

0 ] such that

meas (Θ2) ≥
3
4
meas

(
[1 − 4δ2

0 , 1 − δ2
0 ]

)
(3.106)



CONVERGENCE OF THE PARABOLIC GL-EQUATION 93

and for each t ∈ Θ2,∫
RN×{t}

|∂tψ
∗
1|2 ≤ C(δ0)ε−1Ẽw,ε(vε, (0, 1), 1),(3.107)

where C(δ0) = Kδ−3
0 exp( 4

δ2
0
) and K is a constant depending only on N.

Comment. At first sight, this estimate seems rather poor, since the
right-hand side diverges as |log ε|ε−1, whereas for vε we already know that∫

RN×[0,1−δ2
0 ]
|∂tvε|2 ≤

∫
RN×{0}

eε(vε).(3.108)

If one assumes (H1) then the right-hand side of the previous inequality behaves
as |log ε|. However, estimate (3.108) is deeply related to the fact that (PGL)ε is
the heat flow for the Ginzburg-Landau energy. Linear estimates based on the
pointwise bound |∇ṽε| ≤ Kε−1 would lead only to estimates of order ε−2. In
this respect, (3.107) presents a substantial improvement which is again related
to the divergence structure of the term d(ṽε × dṽε). This improvement will be
crucial for estimate (3.133).

In order to prove Lemma 3.18, we begin with the following estimate for
the time derivative ∂tvε.

Lemma 3.19.∫
RN×[0,1−δ2

0 ]
|∂tvε|2 exp(− |x|2

4(1−t)) dx dt ≤ Kδ−2
0 Ẽw,ε(vε, (0, 1), 1).(3.109)

Proof. By definition of Ξ, we have

∫
RN×[0,1−δ2

0 ]
|∂tvε|2 exp(− |x|2

4(1−t)) dx dt

≤
∫

RN×[0,1−δ2
0 ]

1
1−t

(
Ξ(vε, (0, 1)) + |x|2

4(1−t) |∇vε|2
)

exp(− |x|2
4(1−t)) dx dt.

The conclusion follows, by (2.37), (3.7), (3.8) and the monotonicity formula.

Proof of Lemma 3.18. We multiply the equation for ψ∗
1, namely

∂tψ
∗
1 − ∆ψ∗

1 = d(ṽε × dṽε) χ on RN × [0,∞) ,(3.110)
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by ∂tψ
∗
1 and integrate by parts on RN × [0, 1 − δ2

0 ]. We obtain

∫
RN×[0,1−δ2

0 ]

|∂tψ
∗
1|2 ≤ −1

2

1−δ2
0∫

0

d

dt
(
∫

RN

|∇ψ∗
1|2 dx) dt +

∫
RN×[0,1−δ2

0 ]

〈d(ṽε × dṽε)χ, ∂tψ
∗
1〉

= −1
2

∫
RN×{1−δ2

0}

|∇ψ∗
1|2 +

∫
RN×[0,1−δ2

0 ]

〈d(ṽε × dṽε)χ, ∂tψ
∗
1〉.

(3.111)

Since the first term on the right-hand side of (3.111) is nonpositive, we only
need to concentrate on the term∫

RN×[0,1−δ2
0 ]
〈d(ṽε × dṽε)χ, ∂tψ

∗
1〉.

The main idea is to exchange space and time derivatives of ṽε and ψ∗
1, and

for that purpose we proceed by two successive integrations by parts. Set U =
RN × [0, 1 − δ2

0 ]. We first have11∫
U
〈d(ṽε × dṽε)χ, ∂tψ

∗
1〉(3.112)

=
∑
i<j

∫
U

(∂i(ṽε × ∂j ṽε) − ∂j(ṽε × ∂iṽε))χ∂tψ
∗
1,ij

=
∑
i<j

∫
U
−ṽε × ∂j ṽε

(
∂t(∂iψ

∗
1,ij)χ + ∂iχ ∂tψ

∗
1,ij

)
+

∑
i<j

∫
U

ṽε × ∂iṽε

(
∂t(∂jψ

∗
1,ij) χ + ∂jχ∂tψ

∗
1,ij

)
=

∑
i<j

∫
U

∂t(ṽε × ∂j ṽε) χ ∂iψ
∗
1,ij − ∂t(ṽε × ∂iṽε)χ ∂jψ

∗
1,ij

+
∑
i<j

∫
U
−(ṽε × ∂j ṽε) ∂iχ ∂tψ

∗
1,ij + (ṽε × ∂iṽε) ∂jχ ∂tψ

∗
1,ij

−
∑
i<j

∫
RN×{1−δ2

0}
(ṽε × ∂j ṽε) ∂iψ

∗
1,ij χ − (ṽε × ∂iṽε) ∂jψ

∗
1,ij χ.

Notice that

(3.113)∫
U
∂j (ṽε × ∂tṽε) ∂iψ

∗
1,ij χ = −

∫
U
(ṽε × ∂tṽε) ∂ijψ

∗
1,ij χ +

∫
U
(ṽε × ∂tṽε) ∂iψ

∗
1,ij ∂jχ

=
∫
U
∂i (ṽε × ∂tṽε) ∂jψ

∗
1,ij χ +

∫
U
(ṽε × ∂tṽε)

(
∂jψ

∗
1,ij ∂iχ − ∂iψ

∗
1,ij ∂jχ

)
.

11Here, we write ψ∗
1 =

∑
i<j ψ∗

1,ij dxi ∧ dxj .
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Combining (3.112) and (3.113) we obtain, after some easy algebra,∫
U
〈d(ṽε × dṽε)χ, ∂tψ

∗
1〉 = T1 + T2 + T3 + T4,(3.114)

where

T1 =
∑
i<j

∫
U

(∂tṽε × ∂j ṽε) ∂iψ
∗
1,ij χ + (∂iṽε × ∂tṽε) ∂jψ

∗
1,ij χ,

T2 =
∑
i<j

∫
U
(ṽε × ∂tṽε) ∂jψ

∗
1,ij ∂iχ − (ṽε × ∂tṽε) ∂iψ

∗
1,ij ∂jχ,

T3 =
∑
i<j

∫
U
−(ṽε × ∂j ṽε) ∂tψ

∗
1,ij ∂iχ + (ṽε × ∂iṽε) ∂tψ

∗
1,ij ∂jχ,

and
T4 =−

∑
i<j

∫
RN×{1−δ2

0}
(ṽε × ∂j ṽε) ∂iψ

∗
1,ij χ − (ṽε × ∂iṽε) ∂jψ

∗
1,ij χ.

We first estimate T1. By (3.5) we obtain,

T1 ≤ K

ε

(∫
U
|∂tṽε|2χ2

) 1
2
(∫

U
|∇ψ∗

1|2
) 1

2

.(3.115)

It follows from (3.109) and the definition of ṽε that∫
U
|∂tṽε|2χ2 ≤K exp( 4

δ2
0
)
∫
U
|∂tvε|2 exp(− |x|2

4(1−t))(3.116)

≤Kδ−2
0 exp( 4

δ2
0
)Ẽw,ε(vε, (0, 1), 1),

and from (3.101) that∫
RN×[0,1−δ2

0 ]
|∇ψ∗

1|2 ≤ K exp(
4
δ2
0

)Ẽw,ε(vε, (0, 1), 1).(3.117)

Combining (3.115), (3.116) and (3.117), we see that the estimate for T1 can be
completed as

T1 ≤ Kδ−1
0 exp(

4
δ2
0

)ε−1Ẽw,ε(vε, (0, 1), 1).(3.118)

We turn next to T2, which is estimated exactly as T1 except that we do
not need to invoke estimate (3.5). This yields

T2 ≤K

(∫
U
|∂tṽε|2|∇χ|2

) 1
2
(∫

U
|∇ψ∗

1|2
) 1

2

(3.119)

≤Kδ−1
0 exp(

4
δ2
0

)Ẽw,ε(vε, (0, 1), 1).
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For T3 we obtain, using the monotonicity formula,12

T3 ≤K

(∫
U
|∇ṽε|2|∇χ|2

) 1
2
(∫

U
|∂tψ

∗
1|2

) 1
2

(3.120)

≤K exp(
4
δ2
0

)Ẽw,ε(vε, (0, 1), 1) +
1
2

∫
U
|∂tψ

∗
1|2.

Finally, for T4, we obtain, using once more the monotonicity formula,13

T4 ≤K

(∫
RN×{1−δ2

0}
|∇ṽε|2|χ|2

) 1
2
(∫

RN×{1−δ2
0}
|∇ψ∗

1|2
) 1

2

(3.121)

≤K exp(
4
δ2
0

)Ẽw,ε(vε, (0, 1), 1) +
1
4

∫
RN×{1−δ2

0}
|∇ψ∗

1|2.

Combining (3.111) and (3.114) with the estimates (3.118), (3.119), (3.120)
and (3.121), we finally obtain∫

RN×[0,1−δ2
0 ]
|∂tψ

∗
1|2 ≤ Kδ−1

0 exp(
4
δ2
0

)ε−1Ẽw,ε(vε, (0, 1), 1),(3.122)

and the proof is completed.

Step 6: Proof of Proposition 3.4 completed. Let us recall the estimates
that we have obtained so far for ψ1 = ψi

1 + ψe
1 and ψ∗

1.

For t ∈ Θ2 (Θ2 given by Lemma 3.3), we have

‖ψe
1‖L∞(RN×{t}) ≤C(δ0)

(
Ẽw,ε(vε, (0, 1), 1) + 1

)
,(3.123) ∫

RN×{t}
|ψi

1|2 ≤C(δ0)ε2αẼw,ε(vε, (0, 1), 1),(3.124)

‖ψ∗
1(., t)‖L∞(RN ) ≤C(δ0)Ẽw,ε(vε, (0, 1), 1),(3.125) ∫
RN×{t}

|∂tψ
∗
1|2 ≤C(δ0)ε−1Ẽw,ε(vε, (0, 1), 1),(3.126)

and

|d(ṽε × dṽε)χ| ≤ K
(1 − |vε|2)2

4ε2
χ on RN × [0,∞),(3.127)

where C(δ0) ≤ K exp(342

δ2
0

) and K is a constant depending only on N. We also
recall that ψ1 and ψ∗

1 verify the equations

−∆ψ1 = d(ṽε × dṽε) χ on RN × {t},(3.128)

12Notice that the factor 1/2 in front of the last term on the right-hand side of (3.120) will
allow us to absorb it in the left-hand side of (3.111).

13Here again, the presence of the factor 1/4 in front of the last term in (3.121), will allow
us to absorb it in the left-hand side of (3.111).
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∂tψ
∗
1 − ∆ψ∗

1 = d(ṽε × dṽε) χ on RN × [0,∞).(3.129)

In order to complete the estimate for |∇ψ1|2, we write

|∇ψ1|2 = ∇ψ1 · ∇ψe
1 + ∇ψ1 · ∇ψi

1

and integrate each of the terms of the right-hand side separately. Multiplying
(3.128) by ψe

1 we obtain:∣∣∣∣∣
∫

RN×{t}
∇ψ1 · ∇ψe

1

∣∣∣∣∣≤C(δ0)
∫

RN×{t}
Vε(vε) exp(− |x|2

4δ2 ) dx(3.130)

×
(
Ẽw,ε(vε, (0, 1), 1) + 1

)
where we have used the L∞ estimate (3.123) and the L1 estimate (3.127).
Similarly, multiplying (3.128) by ψi

1 we are led to∣∣∣∣∣
∫

RN×{t}
∇ψ1 · ∇ψi

1

∣∣∣∣∣ ≤ K

∣∣∣∣∣
∫

RN×{t}
〈d(ṽε × dṽε) χ, ψi

1〉
∣∣∣∣∣ .(3.131)

We bound the right-hand side of (3.131) using the equation for ψ∗
1. We obtain,

multiplying (3.129) by ψi
1 and integrating by parts on RN × {t}, the equality∫

RN×{t}
〈d(ṽε × dṽε)χ, ψi

1〉 =
∫

RN×{t}
∂tψ

∗
1 · ψi

1 +
∫

RN×{t}
∇ψ∗

1 · ψi
1.(3.132)

For the first term of (3.132) we invoke Lemma 3.18 (i.e. estimate (3.126)) and
Lemma 3.16 (i.e. estimate (3.124)). By the Cauchy-Schwarz inequality, we
therefore obtain

∣∣∣∣∣
∫

RN×{t}
〈∂tψ

∗
1, ψ

i
1〉

∣∣∣∣∣ ≤ C(δ0)εα− 1
2 Ẽw,ε(vε, (0, 1), 1) ≤ C(δ0)ε

1
6 Ẽw,ε(vε, (0, 1), 1).

(3.133)

Finally, we turn to the last term in (3.132), that is∫
RN×{t}

∇ψ∗
1 · ∇ψi

1 = −
∫

RN×{t}
∆ψi

1 · ψ∗
1.(3.134)

Notice that
−∆ψi

1 = ∆Gi
N ∗ d(ṽε × dṽε)χ.

By standard estimates for convolutions we have

∥∥∆Gi
N ∗ d(ṽε × dṽε)χ

∥∥
L1(RN×{t}) ≤

∥∥∆Gi
N

∥∥
M(RN )

· ‖d(ṽε × dṽε)χ‖L1(RN×{t})

≤ C(δ0)
∫

RN×{t}
Vε(vε) exp(− |x|2

4δ2 ) dx,
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where we have used Lemma 3.11 and (3.128). Going back to (3.134) we obtain,
by (3.125),

∣∣∣∣∣
∫

RN×{t}
∇ψ∗

1 · ∇ψi
1

∣∣∣∣∣ ≤ C(δ0)
∫

RN×{t}
Vε(vε) exp(− |x|2

4δ2 ) dx Ẽw,ε(vε, (0, 1), 1).

(3.135)

Combining (3.131), (3.132), (3.133) and (3.135) we obtain

(3.136)∣∣∣∣∣
∫

RN×{t}
∇ψ1 · ∇ψi

1

∣∣∣∣∣≤C(δ0)ε
1
6 Ẽw,ε(vε, (0, 1), 1)

+C(δ0)
∫

RN×{t}
Vε(vε) exp(− |x|2

4δ2 ) dx Ẽw,ε(vε, (0, 1), 1).

Finally, adding (3.130) to (3.136) we obtain the estimate for ∇ψ1,∫
RN×{t}

|∇ψ1|2 ≤C(δ0)ε
1
6 Ẽw,ε(vε, (0, 1), 1)

+C(δ0)
∫

RN×{t}
Vε(vε) exp(− |x|2

4δ2 ) dx
(
Ẽw,ε(vε, (0, 1), 1) + 1

)
,

which ends the proof.

3.13. Proof of Proposition 3.1 completed. Recall that

vε × dvε = dϕt + dψ1,t + dψ2,t + ξt on B(1) × {t},
and that by (3.19),

4|vε|2|∇vε|2 = 4|vε ×∇vε|2 + |∇|vε|2| = 4|vε ×∇vε|2 + 4ρ2|∇ρ|2,
where ρ = |vε| denotes the modulus. Using the fact that

4|(1 − |vε|2)| · |∇vε|2 ≤ K
|1 − |vε|2|

ε
|∇vε| ≤ 2|∇vε|2 + KVε(vε),

we therefore obtain, using the Hodge-de Rham decomposition (3.37),

eε(vε) ≤ K
[
|∇ϕt|2 + |∇ρ|2 + |∇ψ1,t|2 + |∇ψ2,t|2 + |ξt|2 + Vε(vε)

]
(3.137)

on B(1) × {t}. On the other hand, we have by Lemma 3.2, for t ∈ Θ1,

Ẽw,ε(vε, (0, 1), δ) ≤ 1
δN−2

∫
B(2

√
Nδ)×{t}

eε(vε) + K|log δ|η,(3.138)

where δ =
√

1 − t ∈ [δ0, 2δ0].
We emphasize the fact that at this stage δ0 has not been determined yet.

In order to use (3.137), we first impose the condition

4
√

Nδ0 ≤ 1,(3.139)
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so that, if (3.139) is verified, we have, for t ∈ Θ1,

∫
B(2

√
Nδ)×{t}

eε(vε) ≤ K

∫
B(2

√
Nδ)×{t}

|∇ϕt|2 + |∇ρ|2 + |∇ψ1,t|2 + |∇ψ2,t|2 + |ξt|2 + Vε(vε).

For each of the terms on the right-hand side , we may safely replace the small
ball B(2

√
Nδ) by the larger ball B(1), except for the term involving ϕt for

which it is crucial to integrate on a ball of radius of order δ (see Corollary 3.2).
Notice that Θ1 ∩ Θ2 �= ∅. Indeed

meas(Θ1 ∩ Θ2) ≥
3
2
δ2
0 ,

by Lemma 3.1 and Corollary 3.3. Therefore, combining the estimates in Propo-
sition 3.2, Lemma 3.4, Corollary 3.2, Lemma 3.8 and Proposition 3.4, we ob-
tain, for t ∈ Θ1 ∩ Θ2,∫

B(2
√

Nδ)×{t}

eε(vε) ≤ K(δN
0 + C(δ0)η

1
2 )Ẽw,ε(vε, (0, 1), 1) + C(δ0)η

1
2 .

Hence,

1
δN−2

∫
B(2

√
Nδ)×{t}

eε(vε) ≤ K(δ2
0 + C(δ0)η

1
2 )Ẽw,ε(vε, (0, 1), 1) + C(δ0)η

1
2 ,

(3.140)

where C(δ0) depends only on δ0 and K depends only on N.

We fix δ0 such that (3.139) holds and such that

Kδ2
0 ≤ 1

4
.

From now on, δ0 is completely determined. So is C(δ0) in (3.140). Therefore,
choosing η0 such that

C(δ0)η
1
2
0 ≤ 1

4
,

we have for 0 ≤ η ≤ η0, combining (3.140) with (3.138),

Ẽw,ε(vε, (0, 1), δ) ≤ 1
2
Ẽw,ε(vε, (0, 1), 1) + R(η),

where
R(η) = C(δ0)η

1
2 + K|log δ0|η.

This finishes the proof of Proposition 3.1, and hence the proof of Theorem 1
is completed.
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4. Consequences of Theorem 1

In this section, we prove some consequences of Theorem 1 which were
announced in the introduction. Proposition 1 is immediate and we leave the
proof to the reader. We present the proofs of Propositions 2 and 3, and we
add another consequence, which allows us to localize vorticity under some
additional compactness properties of the initial data u0

ε.

4.1. Proof of Proposition 2. Let x0 be any given point in B(xT , R
2 ). We

claim that we can find 0 < λ(T ) such that

Ẽw,ε((x0, T ), r) ≤ η1|log ε|, for every
√

T0 < r <
√

T1 = R,(4.1)

provided η̌ ≤ η1

2 .14

Proof of the claim. We invoke Proposition 2.3. Letting λ > 0 and√
T0 < r <

√
T1 = R, we have

Ẽw,ε((x0, T ), r) ≤ 1
rN−2

∫
B(x0,λr)×{T}

eε(uε) + (
√

2√
T+2r2 )

N−2M0 exp(−λ2

8
)|log ε|.(4.2)

First we choose λ0(T ) such that

(
2
T

)
N−2

2 M0 exp(−λ2

8
) ≤ η1

2
.(4.3)

Set
λ(T ) = max(2, 2λ0(T )).

Since x0 belongs to B(xT , R
2 ) and r < R, it follows that

B(x0, λ0(T )r) ⊂ B(xT , λ(T )R).

Therefore,
1

rN−2

∫
B(x0,λ0(T )r)×{T}

eε(uε) ≤ (
R

r
)N−2 1

RN−2

∫
B(xT ,λ(T )R))×{T}

eε(uε)

= (
R

r
)N−2η̌|log ε| ≤ (

R√
T0

)N−2η̌|log ε|.

Choosing T0 of the form T0 = Kη̌
2

N−2 R2, we obtain
1

rN−2

∫
B(x0,λ0(T )r)×{T}

eε(uε) ≤ K−N−2
2 |log ε|.(4.4)

It suffices then to fix the constant K as

K = (
η1

2
)

N−2
2 ,

so that combining (4.2),(4.3) and (4.4) we obtain (4.1) and the claim is proved.
The conclusion then follows from Proposition 1.

14Recall that λ enters in the definition of η̌.
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In the next section, we will make use of the following easy variant of
Proposition 2.

Proposition 4.1. Let uε be a solution of (PGL)ε verifying assumption
(H0). Let xT ∈ RN , T ≥ 0 and R ≥

√
2ε. There exists a positive continuous

function λ defined on (R+
∗ )2 such that, if

η̌(xT , T, R) ≡ 1
RN−2|log ε|

∫
B(xT ,λ(T,R)R)

eε(uε(·, T )) ≤ η1

2

then

|uε(x, t)| ≥ 1
2

for t ∈ [T + T0, T + T1] and x ∈ B(xT , i
R

2
) .

The function λ(T, R) verifies

λ(T, R) ∼
√

N − 2
2

|log(T + R2)|, for (T, R) → (0, 0),

and in particular λ(T, R)R remains bounded as R → 0, for any T.

4.2. Proof of Proposition 3. We have, for any x0 ∈ RN and t ≥ Tf ,

Ẽw,ε(x0, 0),
√

t)
1

√
t
N−2

∫
RN

eε(u0
ε) exp(−|y − x|2

4t
) dy

≤ 1
√

t
N−2

M0|log ε| ≤ T
−N−2

2
f M0|log ε|

≤ η1|log ε|,

in view of the definition of Tf . The conclusion follows from Proposition 1.

4.3. Localizing vorticity. In this section, we assume that u0
ε is localized in

some large ball B(R1). More precisely, we will assume that there exists R1 > 0
such that

(H1) u0
ε ≡ 1 on RN \ B(R1).

In particular, there is no vorticity outside B(R1) at time zero. In this situation,
we will show that Vε ∩ {t ≥ 2ε} remains confined in a bounded region of
RN × (0,+∞). In view of Proposition 3, we already know that

Vε ⊂ RN × [0, Tf ], where Tf = (
M0

η1
)

2
N−2 .

We thus need to prove that, under assumption (H1), horizontal spreading is
excluded. More precisely, we have
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Proposition 4.2. Assume u0
ε verifies (H0) and (H1). Then there exists

R̄ > 0 depending on M0 and R1, but not on ε, such that

|uε(x, t)| ≥ 1
2

for all x ∈ RN \ B(R̄) and t ≥ 2ε.(4.5)

Proof. In view of Proposition 3, (4.5) is already established for T ≥ Tf .

We therefore assume t ≤ Tf . Set

τ = max
0<R≤

√
Tf

λ(0, R)R,

where λ is the function defined in Proposition 4.1. Note that τ is finite in
view of the last remark in Proposition 4.1. Let x0 ∈ RN \ B(R1 + τ), and√

2ε < R <
√

Tf . We have

η̌(x0, 0, R) ≤ 1
RN−2|log ε|

∫
B(x0,τ)

eε(u0
ε) = 0,

where we have used (H1). Applying Proposition 4.1 for T = 0, xT = x0 and R

we obtain the desired conclusion setting R̄ = R1 + τ.

5. Improved pointwise bounds and compactness

The aim of this section is to provide proofs to Theorems 2, 3 and 4.

5.1. Proof of Theorem 2. Since by assumption (10), |uε| ≥ 1 − σ ≥ 1
2 on

Λ, there is some real-value function ϕε defined on Λ such that

uε = ρε exp(iϕε) in Λ,(5.1)

where ρε = |uε|. Changing uε possibly by a constant phase, we may impose
the additional condition

1
|Λ|

∫
Λ

ϕε = 0.(5.2)

We split as previously the estimates for the phase ϕε and for the modulus ρε,

and we begin with the phase. Inserting (5.1) into (PGL)ε we are led to the
parabolic equation

ρ2
ε

∂ϕε

∂t
− div(ρ2

ε∇ϕε) = 0 in Λ.(5.3)

In contrast with the equation for the modulus, (5.3) has the advantage that
the explicit dependence on ε has been removed. We will handle (5.3) as a
linear equation for the function ϕε, ρε being considered as a coefficient. In the
sequel, we write ϕ = ϕε and ρ = ρε when this is not misleading. In order
to work on a finite domain, we consider the truncated function ϕ̃ defined on
RN × [T, T + ∆T ] by

ϕ̃(x, t) = ϕ(x, t)χ(x),
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where χ is a smooth cut-off function such that

χ ≡ 1 on B(
4
5
R) and χ ≡ 0 on RN \ B(

5
6
R).

The function ϕ̃ then verifies the equation

ρ2 ∂ϕ̃

∂t
− div(ρ2∇ϕ̃) = div(ρ2ϕ∇χ) + ρ2∇χ · ∇ϕ in Λ.(5.4)

Moreover, by construction

supp(ϕ̃) ⊂ B(
4
5
R) × [T, T + ∆T ],

and in particular ϕ̃ = 0 on the vertical part of the boundary of Λ. By a mean
value argument, we may choose some t0 ∈ [T, T + ∆T

4 ] such that∫
B(R)×{t0}

eε(uε) ≤
4

∆T

∫
Λ

eε(uε)(5.5)

and we set

Λ0 = B(R) × [t0, T + ∆T ] ⊃ Λ 3
4

= B(
3
4
R) × [T +

∆T

4
, T + ∆T ].

Since by assumption ρ is close to 1, it is natural to treat the left-hand side of
(5.4) as a perturbation of a heat operator, and to rewrite (5.4) as follows:

∂ϕ̃

∂t
−∆ϕ̃ = div((ρ2−1)∇ϕ̃)+(1−ρ2)

∂ϕ̃

∂t
+div(ρ2ϕ∇χ)+ρ2∇χ ·∇ϕ in Λ.

We introduce the function ϕ0 defined on Λ0 as the solution of


∂ϕ0

∂t − ∆ϕ0 = div(ρ2ϕ∇χ) + ρ2∇χ · ∇ϕ in Λ0,

ϕ0(x, t0) = ϕ̃(x, t0) on B(R) × {t0},
ϕ0(x, t) = 0 ∀x ∈ ∂B(R), ∀t ≥ t0.

(5.6)

In particular, since χ ≡ 1 on B(4
5R),

∂ϕ0

∂t
− ∆ϕ0 = 0 in B(

4
5
R) × [t0, T + ∆T ].(5.7)

Setting ϕ1 = ϕ̃ − ϕ0, i.e.
ϕ̃ = ϕ0 + ϕ1,

we will show that ϕ1 is essentially a perturbation term.
At this stage, we divide the estimates into several steps starting with linear

estimates for ϕ0.

Step 1: Estimates for ϕ0. We claim that

‖∇ϕ0‖2
L2L2∗ (Λ0)

≤ C1(Λ)
[∫

Λ
eε(uε)

]
(5.8)
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and

‖∇ϕ0‖2
L∞(Λ 3

4
) ≤ C2(Λ)

[∫
Λ

eε(uε)
]

,(5.9)

where 2∗ = 2N
N−2 is the Sobolev exponent in dimension N, and, for 1 < p, q <

+∞,

LpLq(Λ0) = {f measurable on Λ0 such that
∫ T+∆T

t0

[∫
B(R)

|f |q
] p

q

< +∞}.15

Proof. We write ϕ0 = ϕ0
0 + ϕ1

0, where ϕ0
0 is defined by

∂ϕ0
0

∂t − ∆ϕ0
0 = 0 in Λ,

ϕ0
0(x, t0) = ϕ̃(x, t0) on B(R) × {t0},
ϕ0

0(x, t) = 0 ∀x ∈ ∂B(R), ∀t ≥ t0.

By standard estimates for the heat equation, we have

‖∇2ϕ0
0‖L2(Λ0) ≤ C(Λ)‖∇ϕ̃‖L2(B(R)×{t0}) ≤ C(Λ)‖eε(uε)‖L1(Λ),

and therefore by Sobolev embedding

‖∇ϕ0
0‖L2L2∗ (Λ0) ≤ C(Λ)‖eε(uε)‖L1(Λ).(5.10)

We turn next to ϕ1
0. Let T be the linear mapping which, to any function f

defined on Λ0, associates the unique solution v = T f of the problem
∂v
∂t − ∆v = f in Λ,

v = 0 on B(R) × {t0},
v = 0 ∀x ∈ ∂B(R), ∀t ≥ t0.

It is well known that the operators f �→ ∇2(T f), f �→ ∂
∂t(T f) and g �→

∇(T (div g)) are linear continuous on LpLq(Λ0) (see e.g. [37]). With this
notation, we may write

ϕ1
0 = T f + T (div g)

where
f = ρ2∇χ · ∇ϕ, g = ρ2ϕ∇χ.

We have the easy estimate

‖f‖L2(Λ0) ≤ C(Λ)‖∇ϕ‖L2(Λ0) ≤ C(Λ)‖eε(uε)‖L1(Λ),

and in view of (5.2), Sobolev embedding in dimension N + 1, (2.3) and (5.5),

‖g‖L2� (Λ0) ≤ C‖ϕ‖L2� (Λ0) ≤ C(Λ)‖∇x,tϕ‖L2(Λ0) ≤ C(Λ)‖eε(uε)‖L1(Λ),

15We recall the obvious identity LpLp(Λ0) = Lp(Λ0).
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where 2� = 2N+2
N−1 is the Sobolev exponent in dimension N + 1. Therefore, by

the linear theory for T mentioned above,

‖∇ϕ1
0‖L2L2� (Λ0) ≤ ‖∇(T f)‖L2L2� (Λ0) + ‖∇(T (div g))‖L2L2� (Λ0)

≤ C(Λ)
[
‖(∇2 + I)T f‖L2L2(Λ0) + ‖∇(T (div g))‖L2L2� (Λ0)

]
≤ C(Λ)

[
‖f‖L2L2(Λ0) + ‖g‖L2L2� (Λ0)

]
≤ C(Λ)‖eε(uε)‖L1(Λ).

(5.11)

Combining (5.10) and (5.11) we obtain (5.8). Finally, (5.9) follows from (5.7),
(5.8) and standard estimates for the homogeneous heat equation.

Step 2: The equation for ϕ1. The function ϕ1 verifies the evolution
problem


∂ϕ1

∂t − ∆ϕ1 = div((ρ2 − 1)∇ϕ̃) + (1 − ρ2)∂ϕ̃
∂t in Λ,

ϕ1(x, t0) = 0 on B(R) × {t0},
ϕ1(x, t) = 0 ∀x ∈ ∂B(R), ∀t ≥ t0.

(5.12)

It is convenient to rewrite equation (5.12) as

∂ϕ1

∂t
− ∆ϕ1 = div((ρ2 − 1)∇ϕ1) + f0 + div (g0),(5.13)

where we have set

f0 = (1 − ρ2)
∂ϕ̃

∂t
and g0 = (ρ2 − 1)∇ϕ0.

We have, for any 1 ≤ p < 2,

‖f0‖p
L2Lp(Λ0)

≤ C(Λ)M0ε
2−p|log ε|.(5.14)

Indeed, for any t ∈ [t0, T + ∆T ]∫
B(R)×{t}

|f0|p =
∫

B(R)×{t}

|1 − ρ2|p|∂ϕ̃

∂t
|p ≤

( ∫
B(R)×{t}

|∂ϕ̃

∂t
|2

) p

2
( ∫
B(R)×{t}

(1 − ρ2)
2p

2−p

) 2−p

2

≤C(Λ)
( ∫
B(R)×{t}

|∂ϕ̃

∂t
|2

) p

2
ε2−p(M0|log ε|) 2−p

2 .

Hence,∫ T+∆T

t0

(∫
B(R)×{t}

|f0|p
) 2

p

≤C(Λ)
[∫

Λ0

|∂ϕ̃

∂t
|2

]
ε

2
p
(2−p)(M0|log ε|)

2−p

p

≤C(Λ)ε
2
p
(2−p)(M0|log ε|)

2
p ,
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and (5.14) follows. Similarly using (5.8), we obtain, for any 2 ≤ q < 2∗, the
estimate for g0

‖g0‖q
L2Lq(Λ0)

≤ C(Λ)M0ε
2∗−q|log ε|.(5.15)

We now estimate ϕ1 from (5.13) through a fixed point argument.

Step 3: The fixed point argument. Equation (5.13) may be rewritten as

ϕ1 = T (div((ρ2 − 1)∇ϕ1)) + T (f0 + div g0),

which is of the form
(Id − A)ϕ1 = b

where A is the linear operator v �→ T (div((ρ2−1)∇v)) and b = T (f0 +div g0).
To go further we need to specify the function space on which we consider
this operator. Set I = [t0, T + ∆T ]. Fix p and q such that they verify the
conditions16

1 < p < 2, q = p∗ =
Np

N − p
, and 2 < q < 2� < 2∗.

Consider the Banach space

Xq =
{
v ∈ W 1,2(I, W−1,q(B(R))) ∩ L2(I, W 1,q(B(R))) such that v(0) = 0

}
.

It follows from the linear theory for T mentioned earlier that A : Xq → Xq is
linear continuous and that

‖A‖L(Xq) ≤ C(q)‖1 − ρ‖L∞(Λ0).

In particular, we may fix σ > 0 such that

C(q)‖1 − ρ‖L∞(Λ0) ≤ C(q)σ <
1
2
.

With this choice of σ, we deduce that I − A is invertible on Xq and

‖ϕ1‖Xq
≤ C‖b‖Xq

.(5.16)

Finally, by (5.14), (5.15) and Sobolev embedding we obtain

‖b‖Xq
≤‖T f0‖Xq

+ ‖T (div g0)‖Xq

≤‖∇T f0‖L2Lq=p∗ + ‖∂tT f0‖L2W−1,q + ‖g0‖L2Lq

≤C(Λ)
[
‖(∇2 + Id)T f0‖L2Lp + ‖∂tT f0‖L2Lp + ‖g0‖L2Lq

]
≤C(Λ) [‖f0‖L2Lp + ‖g0‖L2Lq ]

≤C(Λ)(ε
2−p

p + ε
2∗−q

q )
√

(M0 + 1)|log ε|.

16Although the choice of possible p and q verifying the previous conditions shrinks as N
increases, it never becomes void!
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For the third inequality, we have used the fact that Lp ↪→ W−1,q (recall our
choice q = p∗). This, in turn, is a consequence of the Sobolev embedding
W 1,q′

↪→ Lp′
which follows from the identity (q′)∗ = ((p∗)′)∗ = p′, where stars

and primes refer to Hölder and Sobolev conjugates in dimension N.

The following estimate for ϕ1 then follows from (5.16):

‖∇ϕ1‖2
L2Lq(Λ0)

≤ C(Λ)(ε
2−p

p + ε
2∗−q

q )(M0 + 1)|log ε|.(5.17)

We now combine the estimates for ϕ0 and ϕ1.

Step 4: Improved integrability of ∇ϕ̃. Combining (5.8) and (5.17) we
obtain

‖∇ϕ̃‖2
L2Lq(Λ0)

≤ C(Λ)(M0 + 1)|log ε|.(5.18)

Comment. Since q > 2, the previous estimate presents a substantial
improvement over the corresponding inequality with q replaced by 2, which
follows directly from (H0). This improvement is crucial in order to prove the
smallness of both the modulus and potential terms in the energy, which we
derive now.

Step 5: Estimates for the modulus and potential terms. The function ρ

satisfies the equation

∂ρ

∂t
− ∆ρ + ρ|∇ϕ|2 = ρ

(1 − ρ2)
ε2

.(5.19)

Since χ ≡ 1 on B(4
5R), we have ϕ = ϕ̃ on B(4

5R). Let ξ be a nonnegative cut-
off function such that ξ ≡ 1 on B(3

4R) and ξ ≡ 0 outside B(4
5R). Multiplying

(5.19) by (1− ρ2)ξ and integrating by parts with respect to space variables we
obtain∫

Λ0

2ρ|∇ρ|2ξ +
∫

Λ0

ρ
(1 − ρ2)2

ε2
ξ

=
∫

Λ0

∂ρ

∂t
(1 − ρ2)ξ +

∫
Λ0

∇ρ · ∇ξ(1 − ρ2) +
∫

Λ0

ρ(1 − ρ2)|∇ϕ̃|2ξ.

Hence, since ρ ≥ 1
2 on Λ we obtain

∫
Λ 3

4

|∇ρ|2 + Vε(uε) ≤ Kε

(∫
Λ0

|∇x,tρ|2
) 1

2
(∫

Λ0

Vε(uε)
) 1

2

+ K

∫ T+∆T

t0

(∫
B( 4

5
R)×{t}

|∇ϕ̃|q
) 2

q
(∫

B( 4
5
R)×{t}

(1 − ρ2)
q

q−2

) q−2
q

dt
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so that using (5.18) and Remark 1.1 we finally infer that∫
Λ 3

4

[
∣∣∇|uε|

∣∣2 + Vε(uε)] ≤ C(Λ)(M0 + 1)(ε
2
q
(q−2) + ε)|log ε|2.(5.20)

To summarize, we have proved at this stage that

eε(uε) ≤
|∇ϕ0|2

2
+ rε,(5.21)

for some rε ≥ 0 which verifies∫
Λ 3

4

rε ≤ C(Λ)M0ε
α,(5.22)

for some small α > 0 depending only on N. Therefore, we set

Φε = ϕ0.

Step 6: Proof of the L∞ bound (11) for the energy. This step relies on a
result by Chen and Struwe [21] (see also [53] and [49]), which provides an L∞

bound for the Ginzburg-Landau energy on a cylinder, provided the L1 norm
of the energy on a larger cylinder is small. More precisely we have

Proposition 5.1 (see [21]). Let 0 < ε < 1 and let vε be a solution of
(PGL)ε on the cylinder Λ0

R = B(R)× [0, R2] for some R > 0. Then there exists
a constant γ0 > 0, depending only on N such that if R >

√
ε and

1
RN

∫
ΛR

eε(vε) ≤ γ0(5.23)

then

eε(vε)(x, t) ≤ K
1

RN+2

∫
ΛR

eε(vε)(5.24)

for any (x, t) ∈ B(R
2 ) × [34R, R].

In our situation, (5.23) is not meant, in general, for the function uε itself.
However, we will use Proposition 5.2 for a suitably scaled version of uε, for
which (5.23) applies.

Let
√

ε < r0 < 1
8R, to be determined later, set ε = ε

r0
and let (x0, t0) ∈ Λ 5

8

be fixed. Consider the map vε defined on Λ0
1 = B(1) × [0, 1] by

vε(x, t) = uε

(
x − x0

r0
,
(t − t0) + r2

0

r2
0

)
so that

uε(x0, t0) = vε(0, 1).
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By scaling, we have ∫
Λ0

1

eε(vε) =
1

rN
0

∫
Λr0 (x0,t0)

eε(uε)(5.25)

where Λr0(x0, t0) = B(x0, r0) × [t0 − r2
0, t0]. Note in particular, since r0 < 1

8R,

that
Λr0(x0, t0) ⊂ Λ 3

4
;

we may apply the decomposition (5.21) and estimate (5.9) to assert that∫
Λr0 (x0,t0)

eε(uε)≤meas(Λr0(x0, t0) ) · ‖∇Φε‖2
L∞ +

∫
Λ 3

4

rε

≤ωNC2(Λ)rN+2
0 ‖eε(uε)‖L1(Λ) + C(Λ)M0ε

α.

Hence, going back to (5.25), we have∫
Λ0

1

eε(vε) ≤ ωNC2(Λ)r2
0‖eε(uε)‖L1(Λ) + C(Λ)M0r

−N
0 εα.(5.26)

Therefore,

r0 = inf
{

1
8
R, (

2ωNC2(Λ)‖eε(uε)‖L1(Λ)

γ0
)−

1
2

}
.

Note in particular that r−N
0 diverges at most as |log ε|N

2 . Hence, for ε suffi-
ciently small,

C(Λ)M0r
−N
0 εα ≤ γ0

2
.

On the other hand, by construction,

ωNC2(Λ)r2
0‖eε(uε)‖L1(Λ) ≤

γ0

2
.

Applying Proposition 5.2 to vε, together with R = 1, we therefore deduce

r2
0eε(uε)(x0, t0) = eε(vε)(0, 1) ≤ K

∫
Λ0

1

eε(vε)

≤KωNC2(Λ)r2
0‖eε(uε)‖L1(Λ) + C(Λ)M0r

−N
0 εα,

which leads to

eε(uε)(x0, t0) ≤ C(Λ)
∫

Λ
eε(uε) + C(Λ)M0ε

β,

for some constant 0 < β < α. This proves (11) for every (x0, t0) ∈ Λ5/8 if∫
Λ eε(uε) ≥ εβ; otherwise it follows from Proposition 5.1. The remainder of

the proof is devoted to the L∞ estimates for κε. We start with the modulus
and potential terms.
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Step 7: Improved estimates for ∇ρ and Vε(uε). Set θ = 1 − ρ. Applying
Lemma 1.1 to the cylinder Λ 5

8
, we obtain

|θ| ≤ C(Λ)ε2

(
‖∇ϕ‖2

L∞(Λ 5
8
) + |log ε|

)
≤ C(Λ)ε2|log ε| on Λ 9

16
,(5.27)

where we invoke (11) for the last inequality. Going back to (5.19) and using
(11) once more, we infer that

|∂tθ − ∆θ| ≤ C(Λ)|log ε| on Λ 9
16

.(5.28)

Since (5.28) is an L∞ bound, we deduce by standard linear theory that, for
every 1 < q1 < +∞ and 1 < q2 < +∞,

‖θ‖W 1,q1 (I,Lq2 (B)) ≤ C(Λ)|log ε|, ‖θ‖Lq1 (I,W 2,q2 (B)) ≤ C(Λ)|log ε|,

where I = [T + 1
2∆T, T + ∆T ] and B = B(x0,

1
2R). By interpolation (see e.g.

[44], [37]), we obtain

‖θ‖
W

1
3 ,q1 (I,W

4
3 ,q2 (B))

≤ C(Λ)|log ε|.

Choosing q1 and q2 sufficiently large (in particular q1 > 3, q2 > 3N), we obtain
that for every 0 < γ < 1,

‖θ‖C0, 1
4 (I,C1,γ(B))

≤ C(γ,Λ)|log ε|.

On the other hand, from (5.27) we have

‖θ‖L∞(I,L∞(B)) ≤ C(Λ)ε2|log ε|,

and therefore by interpolation again

‖θ‖C0, 1
5 (I,C1,β(B))

≤ C(Λ)εα(5.29)

for some (small) α > 0. In particular, we have

|∇ρ|L∞(Λ 1
2
) = |∇θ|L∞(Λ 1

2
) ≤ C(Λ)εα.(5.30)

Finally, in view of (5.27) once more, we obtain

Vε(uε) ≤ K
θ2

ε2
≤ C(Λ)ε2|log ε|2 on Λ 1

2

so that

|∇ρ| + Vε(uε) ≤ C(Λ)εα on Λ 1
2
.(5.31)

Step 8: Improved L∞ estimates for ∇ϕ1. Going back to (5.13), we
estimate again f0 and g0, but now with the help of the improved estimates
for ρ. First, for g0, we have by (5.29)

‖g0‖C0, 1
5 (I,C1,β(B))

≤ C(Λ)εα|log ε|.
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For f0, first notice that since we work on Λ 1
2
, ϕ = ϕ̃ and therefore f0 =

(1 − ρ2)∂tϕ. From the equation for ϕ,

ρ2 ∂ϕ

∂t
− div(ρ2∇ϕ) = 0,

and from the α-Hölder regularity bound for ρ, we infer α-Hölder regularity
bounds for ∂tϕ, of the order |log ε|. Since on the other hand (5.29) holds, we
deduce that

‖f0‖C0,α(Λ 1
2
) ≤ C(Λ)εα|log ε|2.

Going back to (5.13) and invoking Schauder theory, we obtain

‖∇ϕ1‖C0,α(Λ 1
2
) ≤ C(Λ)εβ,(5.32)

for some β > 0.

Step 9: Estimate (14) completed. We write, on Λ 1
2
,

2eε(uε) = |∇uε|2 + 2Vε(uε)

= |∇ρ|2 + ρ2|∇ϕ|2 + 2Vε(uε)

= |∇ρ|2 + (ρ2 − 1)|∇ϕ|2 + |∇Φε|2 + 2∇Φε · ∇ϕ1 + |∇ϕ1|2 + 2Vε(uε)

≡ |∇Φε|2 + 2κε,

and the conclusion follows directly from our previous estimates. The proof of
Theorem 2 is thus completed.

In order to prove Theorem 3, we turn next to a new Hodge-de Rham
decomposition which is specially tailored for situations where wild oscillations
in the phase are present. This decomposition will later help us to prove that
the linear and topological modes do not interact.

5.2. Hodge-de Rham decomposition without compactness. Let k ∈ N,

k ≥ 3, and consider a smooth bounded domain Ω in Rk, such that π1(∂Ω)
= 0.17 Let δ and δ∗ denote respectively the exterior differentiation operator for
differential forms on Rk, and its formal adjoint18 Let vε be a smooth complex-
valued function defined on Ω̄. We assume that, for some constant M2 > 0, vε

verifies the bounds ∫
Ω

eε(vε)≤M2|log ε|,(5.33) ∫
∂Ω

eε(vε)≤M2|log ε|,(5.34)

17Since k ≥ 3, this is the case for instance if Ω is topologically a ball.
18Since in the sequel we will take k = N + 1, we do not use the notation d and d∗, which

we restrict to RN for the ease of reading.
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and
|vε| ≤ 3.(5.35)

Then we have

Proposition 5.2. Assume that vε verifies (5.33), (5.34), (5.35). Then
there exists a smooth function Φ, a smooth 1-form ζ, and a smooth 2-form Ψ
defined on Ω̄, such that

vε × δvε = δΦ + δ∗Ψ + ζ, δΨ = 0 in Ω, Ψ	 = 0 on ∂Ω,(5.36)

and

‖∇Φ‖L2(Ω) + ‖∇Ψ‖L2(Ω) ≤ C(Ω)M2|log ε|.(5.37)

Moreover, for any 1 ≤ p < k
k−1 ,{
‖∇Ψ‖Lp(Ω) ≤ C(p, Ω)M2,

‖ζ‖Lp(Ω) ≤ C(p,Ω)M2ε
1
2 ,

(5.38)

where C(p, Ω) is a constant depending only on p and Ω.

Comment. The terms Ψ and ζ in the decomposition (5.36) are bounded in
suitable norms. Notice however that it is not possible to find a uniform bound
on Φ in any reasonable norm. In vague terms, one might say that the possible
lack of compactness of vε × δvε has been completely “locked” into Φ.

Proof. We split the proof into two steps. In the first step, we take care
of the boundary Σ = ∂Ω (which is by assumption a smooth (k-1)-dimensional
manifold), and of the Hodge-de Rham decomposition of the restriction (vε ×
δvε)	 to Σ. Then, we “gauge away” the possible lack of compactness.

Step 1: HdR decomposition on Σ. Since by assumption Σ is simply
connected, we may write

(vε × δvε)	 = vε × dΣvε = dΣΦΣ
ε + d∗ΣΨΣ

ε on Σ, with dΣΨΣ
ε = 0 on Σ,

(5.39)

where dΣ denotes the exterior derivative for forms on Σ, and d∗Σ its formal
adjoint. Moreover, by orthogonality, we have

‖∇ΣΦΣ
ε ‖2

L2 + ‖∇ΣΨΣ
ε ‖2

L2 ≤ KM2|log ε|.(5.40)

On the other hand, we claim that for 1 ≤ p < k
k−1 ,

‖∇ΣΨΣ
ε ‖Lp ≤ C(p, Ω)M2.(5.41)

Indeed, applying dΣ to (5.39) we obtain

−∆ΣΨΣ
ε = dΣ(vε × dΣvε) = 2JΣvε on Σ.(5.42)
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By the Jerrard-Soner estimate [36], we know that, for any 0 < α < 1,

‖JΣvε‖[C0,α]∗ ≤ C(α,Ω)
1

|log ε|

∫
∂Ω

eε(vε) ≤ C(α,Ω)M2.(5.43)

By the Sobolev embedding, if q > k − 1 we have W 1,q(Σ) ↪→ C0,α(Σ) for
α = 1 − k−1

q , so that by duality [C0,α(Σ)]∗ ↪→ [W 1,q(Σ)]∗ = W−1,p(Σ) where
1
p + 1

q = 1. By elliptic regularity theory, we therefore deduce from (5.42)
and (5.43) that, for 1 ≤ p < k

k−1 ,

‖ΨΣ
ε ‖W 1,p ≤ C(p, Ω)‖JΣvε‖W−1,p ≤ C(p, Ω)‖JΣvε‖[C0,α(Σ)]∗ ≤ C(p, Ω)M2.

(5.44)

We consider next the harmonic extension Φ0
ε of ΦΣ

ε to Ω, i.e.{
∆Φ0

ε = 0 in Ω,

Φ0
ε = ΦΣ

ε on Σ.

In view of (5.40), we have

‖∇Φ0
ε‖2

L2(Ω) ≤ KM2|log ε|.(5.45)

Step 2: “Gauge transformation” of vε. On Ω we consider the map wε

defined by
wε = vε exp(−iΦ0

ε) in Ω.

Notice that |wε| = |vε|. Moreover, a simple computation shows that

wε × δwε = vε × δvε − |vε|2δΦ0
ε = vε × δvε − δΦ0

ε + (1 − |vε|2)δΦ0
ε.(5.46)

Since by assumption (5.35) |vε| ≤ 3, we have

|∇wε| ≤ |∇vε| + 3|∇Φ0
ε|(5.47)

and hence

‖∇wε‖2
L2(Ω) + ε−2‖(1 − |wε|2)2‖2

L2(Ω) ≤ KM2|log ε|.(5.48)

By Hölder inequality, we have for 1 ≤ p < 2,

‖(1 − |vε|2)δΦ0
ε‖p

Lp(Ω) ≤ KM2ε
2−p|log ε|(5.49)

and similarly

‖(1 − |vε|2)dΣΦΣ
ε ‖p

Lp(Σ) ≤ KM2ε
2−p|log ε|.(5.50)

Next, we apply the Hodge-de Rham decomposition to wε × δwε on Ω so that
wε × δwε = δΦ1

ε + δ∗Ψε in Ω,

δΨε = 0 in Ω,

Φ1
ε = 0, (Ψε)	 = 0 on Σ.
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By orthogonality, we have

‖∇Φ1
ε‖L2(Ω) ≤ KM2|log ε|.(5.51)

Arguing as above, we are led to the elliptic problem
−∆Ψε = ωε ≡ 2Jwε in Ω
(Ψε)	 = 0 on Σ,

(δ∗Ψε)	 = Aε ≡ (wε × δwε)	 = d∗ΣΨΣ
ε + (1 − |vε|2)dΣΦΣ

ε on Σ.

(5.52)

In view of (5.44) and (5.50) we have, for any 1 ≤ p < k
k−1 ,

‖Aε‖Lp(Σ) ≤ C(p, Ω)M2.

On the other hand, by (5.34) we may invoke Proposition II.1 case ii) in [9] to
conclude that for any 0 < α < 1,19

‖ωε‖[C0,α(Ω)]∗ ≤ C(α,Ω)M2.

In order to conclude, we first invoke the following linear estimate20

Lemma 5.1. Let 1 < p < +∞ and 1
p + 1

q = 1. Let l ∈ N, 1 ≤ l ≤ k. Let Ψ

and ω be l-forms on Ω and A be an (l − 1)-form on Σ = ∂Ω. Assume that{
−∆Ψ = ω in Ω
Ψ	 = 0, (δ∗Ψ)	 = A on Σ.

There exists some constant C(p, Ω), depending only on p and Ω such that

‖Ψ‖W 1,p(Ω) ≤ C(p, Ω)
[
‖ω‖[W 1,q(Ω)]∗ + ‖A‖

[W
1− 1

q
,q

(Σ)]∗

]
.

Proof of Proposition 5.2 completed. For any 1 ≤ p < k
k−1 and 1

p + 1
q = 1

we have,

‖Aε‖
[W

1− 1
q

,q
(Σ)]∗

≤ ‖Aε‖[Lq(Σ)]∗ = ‖Aε‖Lp(Σ) ≤ C(p, Ω)M2.

Arguing as for (5.44), we obtain

‖ωε‖[W 1,q(Ω)]∗ ≤ C(p,Ω)‖ωε‖[C0,α(Ω)]∗ ≤ C(α,Ω)M2.

Therefore, we deduce from Lemma 5.1 that

‖Ψε‖W 1,p ≤ C(p, Ω)M2.(5.53)

Set
Ψ = Ψε, Φ = Φ0

ε + Φ1
ε, and ζ(|vε|2 − 1)δΦ0

ε.

19The previous inequality does not follow immediately from Jerrard-Soner’s work [36] since
ωε does not have compact support in Ω.

20For a proof see e.g. [8] and the references therein.
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Then,

vε × δvε = wε × δwε + |vε|2δΦ0
ε = δΦ1

ε + δ∗Ψε + δΦ0
ε − (1 − |vε|2)δΦ0

ε

= δΦ + δ∗Ψ + ζ,

and the conclusion follows from (5.45), (5.49), (5.51) and (5.53).

5.3. Evolution of the phase. Let uε be a solution of (PGL)ε verifying (H0).
Let K be any compact subset of RN × (0,+∞). We first choose a parabolic
cylinder Λ which contains K

K ⊂ Λ ≡ B × (T0, T1) ⊂ RN × (0,+∞).

Here B is some open ball in RN and 0 < T0 < T1. Next, let Ω be a smooth
bounded domain with simply connected boundary, such that

K ⊂ Λ ⊂ Ω ⊂ RN × (0,+∞).

Without loss of generality, we may assume that for ε sufficiently small∫
Ω

eε(uε) ≤ M2|log ε|,
∫

∂Ω
eε(uε) ≤ M2|log ε|, and |uε| ≤ 3,

where M2 = C(K)M0 and C(K) depends only on K. We apply Proposition 5.2
to uε. This yields

uε × δuε = δΦ + δ∗Ψ + ζ, δΨ = 0 in Ω, Ψ	 = 0 on ∂Ω,(5.54)

where Φ, Ψ and ζ verify the bounds (5.38). In view of (5.38), we have already
obtained good estimates for Ψ and ζ. In order to handle Φ, we first prove that
it solves an evolution equation.

Lemma 5.2. The function Φ in (5.54) verifies the equation

∂Φ

∂t
− ∆Φ = d∗(δ∗Ψ + ζ − Pt(δ∗Ψ + ζ)dt) − Pt(δ∗Ψ + ζ) in Ω.(5.55)

Here, for a 1-form ω on Λ, Pt(ω) denotes its dt component.

Proof. Taking the exterior product of (PGL)ε with uε, we are led to

uε ×
∂uε

∂t
− div (uε ×∇uε) = 0 in Λ.(5.56)

On the other hand, in view of the decomposition (5.54),{
uε × duε = dΦ + (δ∗Ψ + ζ) − Pt(δ∗Ψ + ζ)dt,

uε ×
∂uε

∂t
=

∂Φ

∂t
+ Pt(δ∗Ψ + ζ).

(5.57)

Combining (5.56) and (5.57) leads to the conclusion.
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5.4. Proof of Theorem 3. Let uε be a solution of (PGL)ε verifying (H0),
and let Λ, K, Ψ, Φ and ζ be as in Section 5.3. Without loss of generality, we
may assume that ∫

∂Λ
|∇x,t Φ|2 ≤ C(K)M0|log ε|,(5.58)

where ∇x,t denotes the gradient with respect to both space and time coordi-
nates. Indeed, since by Proposition 5.2

‖∇x,t Φ‖L2(Ω) ≤ C(Ω)M2|log ε|,

if (5.58) were not verified for our original Λ, we could shrink it to a smaller
cylinder, still containing K and verifying (5.58). Next, we decompose the proof
in two steps.

Step 1: Defining ϕε. We set ∂Λ = O0 ∪ O1, where

O0 = (B × {T0}) ∪ (∂B × [T0, T1]) and O1 = B × {T1}.

Let Φ1 be the unique solution of the parabolic problem

{
∂Φ1
∂t − ∆Φ1 = d∗(δ∗Ψ + ζ − Pt(δ∗Ψ + ζ)dt) − Pt(δ∗Ψ + ζ) in Λ,

Φ1 = 0 on O0.

(5.59)

Since by (5.38) we have

‖δ∗Ψ + ζ − Pt(δ∗Ψ + ζ)dt‖Lp(Λ) + ‖Pt(δ∗Ψ + ζ)‖Lp(Λ) ≤ C(p, K)M0,

it follows from standard estimates for the nonhomogeneous heat equation that

‖∇Φ1‖Lp(Λ) ≤ C(p, K)M0.(5.60)

Finally, we set
ϕε = Φ − Φ1

and
wε = uε exp(−iϕε).

By construction, ϕε verifies the homogeneous heat equation{ ∂ϕε

∂t − ∆ϕε = 0 in Λ,

ϕε = Φ on O1.
(5.61)

From standard regularity theory for the heat equation, we have

‖∇ϕε‖2
L∞(K) ≤ C(K)‖∇x,t Φ‖2

L2(O0)
≤ C(K)M0|log ε|.(5.62)

This establishes the third statement of Theorem 3. We next turn to the fourth
and last one.
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Step 2: W 1,p estimates for wε. First notice that

|wε|2|∇wε|2 = |wε|2|∇|wε||2 + |wε ×∇wε|2,

and hence, since |wε| = |uε|,∫
K∩{|uε|≥ 1

2
}
|∇wε|p ≤ C(p)

[∫
K
|wε × dwε|p +

∫
K
|∇|wε||p

]
.(5.63)

On the other hand, since |∇wε| ≤ |∇uε| + 3|∇ϕε| ≤ C(K)M0ε
−1, we have∫

K∩{|uε|≤ 1
2
}
|∇wε|p ≤ C(K)M0ε

2−p

∫
K

(1 − |uε|2)2
4ε2

≤ C(p, K)M0.(5.64)

By construction, we have

wε × δwε = uε × δuε − |uε|2δϕε = δ∗Ψ + δΦ1 + (1 − |uε|2)δϕε.(5.65)

Since by the Hölder and Cauchy-Schwarz inequalities

‖(1 − |uε|2)δϕε‖Lp(K) ≤C(p, K)‖(1 − |uε|2)‖
L

2p
2−p (K)

‖δϕε‖L2(K)

≤C(p, K)ε2−p|log ε|M0,

it follows from (5.65), (5.38) and (5.60) that∫
K
|wε × dwε|p ≤ C(p, K)(M0 + 1).(5.66)

It remains to bound the Lp norm of the gradient of the modulus. For that
purpose, we use the following lemma.

Lemma 5.3. Set ρ = |uε|. The following bound holds, for any compact
subset K ⊂ RN × (0,+∞), and any 1 ≤ p < 2,∫

K
|∇|uε| |p ≤ C(K) (M0 + 1)ε1− p

2 |log ε|,

where the constant C(K) depends only on K.

Proof. The function ρ satisfies the equation

∂ρ2

∂t
− ∆ρ2 + 2|∇uε|2 =

2
ε2

ρ2(1 − ρ2).(5.67)

Let us introduce the set

A = {(x, t) ∈ Ω, ρ(x, t) > 1 − ε1/2}

and the function
ρ̄ = max{ρ, 1 − ε1/2},

so that ρ̄ = ρ on A and 0 ≤ 1 − ρ̄ ≤ ε1/2 in Ω.
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Next, let χK be a cut-off function in D(Ω) such that 0 ≤ χK ≤ 1 on Ω,
χK ≡ 1 on K, and |∇χK | ≤ C(K).

Multiplying equation (5.67) by χK(ρ̄2 − 1),21 and integrating over Ω we
obtain∫

Ω
∇ρ2∇ρ̄2χK +

∫
Ω

2ρ2(1 − ρ2)(1 − ρ̄2)
ε2

χK

=
∫

Ω
(1 − ρ̄2)|∇uε|2χK +

∫
Ω
∇ρ2∇χK(1 − ρ̄2) −

∫
Ω

∂ρ2

∂t
(ρ̄2 − 1)χK .

It follows that on the set AK = A ∩ K we have∫
AK

|∇ρ2|2 =
∫

AK

∇ρ2∇ρ̄2

≤ 2ε1/2

∫
Ω
|∇uε|2 + C(K)

∫
Ω
|∇ρ||1 − ρ2| + C(K)M0ε

1
2 |log ε|

≤ 2ε1/2

∫
Ω
|∇uε|2 + C(K)ε

[∫
Ω
|∇ρ|2 +

∫
Ω

(1 − ρ2)2

4ε2

]
+C(K)M0ε

1
4 .

Hence, since ρ ≥ 1 − ε1/2 on AK , we have, for ε ≤ 1/4,∫
AK

|∇ρ|2 ≤ 4
∫

AK

|∇ρ2|2 ≤ C(K)M0ε
1
4 .(5.68)

On the other hand, on BK = K \ A we have
∫
BK

(1 − ρ2)2 ≤ C(K)M0ε
2|log ε|

and hence, since (1− ρ) ≥ ε1/2 on BK , it follows that |BK | ≤ C(K)M0ε|log ε|.
Thus ∫

BK

|∇ρ|p ≤
(∫

Ω
|∇ρ|2

)p/2

|BK |1−p/2 ≤ C(K)(M0 + 1)ε1−p/2|log ε|.(5.69)

Adding (5.68) and (5.69) we complete the estimate.

Combining (5.63), (5.64), (5.66) and Lemma 5.3, we have completed the
proof of Theorem 3.

5.5. Hodge-de Rham decomposition with compactness. In this section, we
adapt the strategy of the proof of Section 5.2 using the compactness assump-
tions (H1) and (H2). We are going to work in the domain

Ωε = RN × (2ε, +∞).

Notice that in contrast to the results of Section 5.2 the domain here is not com-
pact (but the initial data possess compactness!). Notice also that for technical
reasons (in particular in view of Proposition 1.1 and Proposition 4.2) we have

21Which is compactly supported in Ω
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removed the boundary layer present in RN × [0, 2ε]. This however introduces
a new difficulty, namely we have to keep track of the compactness across this
boundary layer.

As in the proof of Theorem 1, we begin with a reprojection of uε. Let
p : R+ → R+ verify (3.62), let τ = p(|uε|) and set

ũε = τuε ,

so that |ũε| ≤ 1 on RN × (0,+∞),

ũε = uε if |uε| ≤
1
4
, |ũε| = 1 if |uε| ≥

1
2
,

and
Jũε = 0 on Vε = {(x, t), |uε(x, t)| ≥ 1

2
}.

In particular,
supp (Jũε) ⊂ B(R1) × [0, Tf ].

We have

Proposition 5.3. Assume that uε verifies (PGL)ε, (H0), (H1) and (H2).
Then there exists a smooth function Φ and a smooth 2-form Ψ defined on Ω̄ε

such that

ũε × δũε = δΦ + δ∗Ψ in Ωε,

δΨ = 0 in Ωε,

Φ = 0, Ψ	 = 0 on ∂Ωε = RN × {2ε}.
(5.70)

Moreover,

‖∇x,tΦ‖2
L2(RN×[2ε,T ]) + ‖∇x,tΨ‖2

L2(RN×[2ε,T ]) ≤ CM0|log ε|T, for all T ≥ 2ε,

(5.71)

and for any 1 ≤ p < N+1
N and any compact subset K ⊂ RN × (2ε, +∞),

‖∇x,tΦ‖Lp(K) + ‖∇x,tΨ‖Lp(K) ≤ C(p, K, M0).(5.72)

Proof. The Hodge-de Rham decomposition of the 1-form ũε × δũε on Ωε

leads directly to (5.70) and (5.71). Moreover, applying the δ∗ operator to
(5.70) on Ωε we are led to the elliptic problem{

−∆x,tΨ = 2Jx,tũε in Ωε

Ψ	 = 0, (δ∗Ψ)	 = (ũε × δũε)	 on ∂Ωε.
(5.73)

In the sequel we write simply ∆ instead of ∆x,t and similarly for J, when this is
not misleading. Since Ψ is a 2-form it has N(N+1)

2 different scalar components

Ψ =
∑

1≤i≤j≤N

Ψi,j dxi ∧ dxj +
∑

1≤j≤N

Ψj dt ∧ dxj .
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Going back to (5.73), we see that the boundary conditions on ∂Ωε decouple
into Neumann conditions for the functions Ψj , namely

∂Ψj

∂xN
= ũε ×

∂ũε

∂xj
on ∂Ωε,

whereas for the functions Ψi,j we have homogeneous Dirichlet conditions

Ψi,j = 0 on ∂Ωε.

We divide the proof of (5.72) in several steps.

Step 1: Lp estimate for ∇Ψi,j . We introduce the reflection operator Pε,

which, to any function f defined on Ω̄ε, associates its reflected function Pεf

defined on RN × (−∞, 2ε) by

Pεf(x, t) = f(x,−t + 4ε) ∀x ∈ RN , t < 2ε.

We extend Ψi,j to RN+1 by setting

Ψi,j(x, t) = −PεΨi,j(x, t)

so that

−∆Ψi,j = 2 ũxi
∧ ũxj

− Pε(2 ũxi
∧ ũxj

) in RN+1.(5.74)

Invoking Proposition II.1, case ii) of [9], we deduce that the right-hand side of
(5.74) is bounded in [C0,α(RN+1)]∗, and arguing as in the proof of Proposition
5.2 we deduce that

‖∇Ψi,j‖Lp(K) ≤ C(p, K, M0).(5.75)

The corresponding estimate for Ψj is less direct. The compactness assumption
on the initial data will be determinant in the computation. We are going to
use the following.

Step 2: Compactness at the initial time. Let χ be any function in C1
c (RN ).

We have, for any q > N,

∣∣∣∣∫
RN

u0
ε × (

∂u0
ε

∂xj
)χ

∣∣∣∣ ≤ C(q)
[
‖u0

ε‖2

Ḣ
1
2 (RN )

+ 1 + M0ε|log ε|
]
‖χ‖

W
1− 1

q
,q

(RN )
.

(5.76)

Proof. First notice that since u0
ε is constant outside B(R1), we only need

to consider the case χ ∈ C1
c (B(2R1)). For the same reason, we also have

‖u0
ε‖H

1
2 (B(2R1))

≤ C
(
‖u0

ε‖Ḣ
1
2 (RN )

+ 1
)

.

Consider the function ǔ0
ε defined on RN by ǔ0

ε = u0
ε if |u0

ε| ≤ 1, ǔ0
ε = u0

ε/|u0
ε|
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otherwise. We have ǔ0
ε×dǔ0

ε = u0
ε×du0

ε if |u0
ε| ≤ 1, and ǔ0

ε×dǔ0
ε = 1

|u0
ε|2 u

0
ε×du0

ε,

if |u0
ε| ≥ 1. Next, we use the embedding W 1−i 1

q
,q ↪→ C0 ∩ H

1
2 , and the fact

that H
1
2 ∩ L∞ is an algebra. Since |ǔ0

ε| ≤ 1, χǔ0
ε belongs to H

1
2 ∩ L∞ and

therefore, on B(2R1),

‖χǔ0
ε‖H

1
2
≤ C

(
‖χ‖L∞‖ǔ0

ε‖H
1
2

+ ‖ǔ0
ε‖L∞‖χ‖

H
1
2

)
≤ C(q)

(
‖χ‖

W
1− 1

q
,q‖ǔ0

ε‖H
1
2

+ ‖χ‖
W

1− 1
q

,q

)
≤ C(q)

(
1 + ‖ǔ0

ε‖H
1
2

)
‖χ‖

W
1− 1

q
,q .

Hence, we obtain, on B(2R1),∣∣∣∣∣
∫

B(2R1)
χ(ǔ0

ε × dǔ0
ε)

∣∣∣∣∣≤‖dǔ0
ε‖H− 1

2
‖χǔ0

ε‖H
1
2

(5.77)

≤C(q)‖ǔ0
ε‖H

1
2
‖χ‖

W
1− 1

q
,q

(
1 + ‖ǔ0

ε‖H
1
2

)
.

On the other hand, by construction

|u0
ε × du0

ε − ǔ0
ε × dǔ0

ε| ≤
∣∣|u0

ε|2 − 1
∣∣ · |du0

ε| ≤
√

2ε

(
(1 − |u0

ε|2)2
4ε2

+
|∇u0

ε|2
2

)
.

so that ∣∣∣∣∫
RN

χ(ǔ0
ε × dǔ0

ε − u0
ε × du0

ε)
∣∣∣∣ ≤ C(q)M0 ε|log ε| ‖χ‖

W
1− 1

q
,q

(RN )
.(5.78)

Combining (5.77) with (5.78) we derive the conclusion.

Step 3: Propagating compactness. We claim that

‖uε(·, 2ε) − u0
ε(·)‖L2(RN ) ≤ CM

1
2
0 ε

1
2 |log ε| 12 ,(5.79)

and that for any χ ∈ C1
c (RN ),

∣∣∣ ∫
RN×{2ε}

(uε ×
∂uε

∂xj
) χ −

∫
RN

(u0
ε ×

∂u0
ε

∂xj
)χ

∣∣∣ ≤ CM0ε
1
2 |log ε|

(
‖χ‖Lip + |supp(χ)| 12

)
.

(5.80)

Proof. Define on RN the function uf
ε (x) = uε(x, 2ε). We have, for x ∈ RN ,

|uf
ε (x) − u0

ε(x)|2 ≤ (
∫ 2ε

0

∂uε

∂t
(x, s) ds)2 ≤ 2ε

∫ 2ε

0
|∂uε

∂t
(x, s)|2 ds.

Hence, by integration,

‖uf
ε − u0

ε‖2
L2(RN ) ≤ 2ε

∫
RN×(0,2ε)

|∂uε

∂t
|2 ≤ 2M0ε|log ε|,
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and (5.79) follows. For (5.80) we write

uf
ε × ∂uf

ε

∂xj
− u0

ε ×
∂u0

ε

∂xj
= (uf

ε − u0
ε) ×

∂uf
ε

∂xj
+ u0

ε ×
∂

∂xj
(uf

ε − u0
ε).

For the first term on the right-hand side , we obtain by the Cauchy-Schwarz
inequality∣∣∣∣∣

∫
RN

(uf
ε − u0

ε) ×
∂uf

ε

∂xj
χ

∣∣∣∣∣≤‖uf
ε − u0

ε‖L2(RN )‖
∂uf

ε

∂xj
‖L2(RN )‖χ‖L∞(5.81)

≤C‖χ‖L∞M0ε
1
2 |log ε|.

For the second term, we integrate by parts∣∣∣∣∫
RN

u0
ε ×

∂

∂xj
(uf

ε − u0
ε)χ

∣∣∣∣≤∫
RN

∣∣∣uf
ε − u0

ε

∣∣∣ |∇χ| +
∫

RN

∣∣∣∣∂u0
ε

∂xj
(uf

ε − u0
ε)χ

∣∣∣∣(5.82)

≤‖uf
ε − u0

ε‖L2(RN )‖u0
ε‖L2(supp(χ))‖∇χ‖L∞

+‖∇u0
ε‖L2(RN )‖uf

ε − u0
ε‖L2(RN )‖χ‖L∞

≤CM0ε
1
2 |log ε|

(
‖χ‖W 1,∞ + |supp(χ)| 12

)
,

where we have used the bound

‖u0
ε‖L2(supp(χ)) ≤ C‖(1− |u0

ε|2)‖L2 +C|supp(χ)| 12 ≤ CεEε(u0
ε)

1
2 +C|supp(χ)| 12 .

Combining (5.81) and (5.82) we deduce (5.80).

Combining (5.80) and (5.76) we are led to∣∣∣∫
RN×{2ε}

uε × (
∂uε

∂xj
)χ

∣∣∣ ≤ C
[
‖u0

ε‖2

Ḣ
1
2

+ 1 + M0ε|log ε|
] (

‖χ‖W 1,∞ + |supp(χ)| 12
)

,

and arguing as in Step 2 we conclude that

∣∣∣∫
RN×{2ε}

ũε × (
∂ũε

∂xj
)χ

∣∣∣ ≤ C
[
‖u0

ε‖2

Ḣ
1
2

+ 1 + M0ε|log ε|
] (

‖χ‖W 1,∞ + |supp(χ)| 12
)

.

(5.83)

Step 4: Improving (5.83). Let χ be in C1(RN ) such that

‖∇χ‖L∞(RN ) + ‖χ‖L2(RN ) < +∞.

Then we claim that

∣∣∣∫
RN×{2ε}

ũε × (
∂ũε

∂xj
)χ

∣∣∣ ≤ C
[
‖u0

ε‖2

Ḣ
1
2

+ 1 + M0ε
1
2 |log ε| 12

]
(‖∇χ‖L∞ + ‖χ‖L2) .

(5.84)
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Proof. Let ξ be a smooth nonnegative cut-off function such that ξ ≡ 1 on
B(R1) and ξ ≡ 0 outside B(R2). We write χ = χξ + χ(1 − ξ). By (5.83) we
have∣∣∣∫

RN×{2ε}
ũε × (

∂ũε

∂xj
)χξ

∣∣∣ ≤ C
[
‖u0

ε‖2

Ḣ
1
2

+ 1 + M0ε|log ε|
]
(‖∇χ‖L∞ + ‖χ‖L2 + 1) .

On the other hand,

∣∣∣∫
RN×{2ε}

ũε × (
∂ũε

∂xj
)χ(1 − ξ)

∣∣∣ ≤ C

[∫
RN×{2ε}

eε(uε)(1 − ξ)2
] 1

2

‖χ‖L2(RN ).

By Corollary 2.1 and assumption (H1),

∫
RN×{2ε}

eε(uε)(1 − ξ)2 ≤
∫

RN×{0}
eε(uε)(1 − ξ)2 + 4ε|log ε|M0‖∇ξ‖2

L∞

≤ 4ε|log ε|M0‖∇ξ‖2
L∞ ,

so that the conclusion follows.

Step 5: Lp estimate for ∇Ψj . Let K be any compact set in RN×(2ε, +∞).
Then, for any 1 ≤ p < N+1

N ,

‖∇Ψj‖Lp(K) ≤ C(p, K)M0.(5.85)

Proof. We argue by duality. Let 1
q + 1

p = 1, so that in particular q >

N + 1, and let h be any vector field in Lq(RN ) with compact support in K.

We introduce the solution ζ of the dual problem22{
−∆ζ = div h in RN × {2ε, +∞),
∂ζ

∂xN
= 0 on RN × {2ε}.(5.86)

Extending ζ by reflection on the whole of RN , i.e. setting

ζ = Pε(ζ) on RN × (−∞, 2ε),

we have then ζ solved the equation

−∆ζ = div h + div(Pεh) on RN+1.

It follows by standard elliptic estimates that

‖∇ζ‖Lq(RN ) ≤ C‖h‖Lq(RN ),

and
ζ ∈ C∞(RN+1 \ (K ∪ PεK)),

22Actually, ζ is uniquely defined up to a constant.
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where PεK obviously denotes the reflection of K. Moreover, since ζ is defined
up to an additive constant, we may also assume that

|ζ(x, t)| ≤ C(K)
‖h‖Lq

dist((x, t), K ∪ PεK)N−1

and that

|∇ζ(x, t)| ≤ C(K)
‖h‖Lq

dist((x, t), K ∪ PεK)N
.

We turn back to the system (5.73). Multiplying the equation of (5.73) corre-
sponding to Ψj by ζ and integrating by parts on Ωε we obtain∫

Ωε

∇Ψj∇ζ =
∫

Ωε

2(ũt × ũxj
)ζ +

∫
RN×{2ε}

ũε ×
∂ũε

∂xj
ζ.

On the other hand, multiplying (5.71) by Ψj and integrating by parts, we
obtain similarly ∫

Ωε

∇Ψj∇ζ =
∫

Ωε

h · ∇Ψj .

Hence, combining the previous relations, we have∣∣∣∣∫
Ωε

h · ∇Ψj

∣∣∣∣ ≤ ∣∣∣∣∫
Ωε

2(ũt × ũxj
)ζ

∣∣∣∣ +

∣∣∣∣∣
∫

RN×{2ε}
ũε ×

∂ũε

∂xj
ζ

∣∣∣∣∣ .(5.87)

Arguing as in Step 1, we are led to the inequality∣∣∣∣∫
Ωε

2(ũt × ũxj
)ζ

∣∣∣∣ ≤ CM0‖∇ζ‖q
L(RN ) ≤ CM0‖h‖Lq(RN ).

For the second term on the right-hand side of (5.87) we invoke Step 4. This
yields ∣∣∣∣∣

∫
RN×{2ε}

ũε ×
∂ũε

∂xj
ζ

∣∣∣∣∣ ≤ C (1 + M2 + M0) [‖∇ζ‖L∞ + ‖ζ‖L2 ]

≤ C(K) (1 + M0 + M2)‖h‖Lq .

Going back to (5.87) we thus obtain∣∣∣∣∫
Ωε

h · ∇Ψj

∣∣∣∣ ≤ C(K) (1 + M0 + M2)‖h‖Lq(Ωε),

and since h was arbitrary the conclusion follows.

Step 6: Estimate for ∇Φ. As in Section 5.3 we derive a parabolic equation
for the phase, using (5.56) once more. We have, recalling that τ = p(|uε|),

uε × δuε = τ−2ũε × δũε = τ−2δΦ + τ−2δ∗Ψ.
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Hence,

uε × duε = τ−2dΦ + τ−2 (δ∗Ψ − Pt(δ∗Ψ)dt)

uε ×
∂uε

∂t
= τ−2 ∂Φ

∂t
+ τ−2Pt(δ∗Ψ),

and (5.56) leads to

τ−2 ∂Φ

∂t
− div(τ−2∇Φ) = d∗

(
τ−2δ ∗ Ψ − Pt(δ∗Ψ)dt

)
− τ−2Pt(δ∗Ψ).

We obtain therefore
∂Φ

∂t
− ∆Φ= d∗

(
τ−2δ ∗ Ψ − Pt(δ∗Ψ)dt

)
−τ−2Pt(δ∗Ψ) + (1 − τ−2)

∂Φ

∂t
+ div((1 − τ2)∇Φ).

By (3.63), |1 − τ−2| ≤ C|1 − |uε|2|. Given the Lp estimate for ∇Ψ obtained in
Steps 1 and 5, and arguing as in Step 1 of the proof of Theorem 3, we finally
derive the bound

‖∇Φ‖Lp(K) ≤ C(p, K)

for any 1 ≤ p < N+1
N , and the proof of Proposition 5.3 is complete.

5.6. Proof of Theorem 4. First notice that the same way we obtained
(5.63) and (5.64) we have here∫

K
|∇uε|p ≤ C(p)

[∫
K
|uε × duε|p +

∫
K
|∇|uε||p

]
+ C(p, K)M0.

By Lemma 5.3, ∫
K
|∇|uε||p ≤ C(K) (M0 + 1)ε1− p

2 |log ε|.

On the other hand,

|uε × duε|p = τ−2p|ũε × dũε|p ≤ C(p) (|∇Φ|p + |∇Ψ|p) .

Hence, by Proposition 5.3 ∫
K
|uε × duε|p ≤ C(p, K)

and the conclusion follows.

5.7. Proof of Proposition 5. Since we assume (H1) and (H2), we may apply
Theorem 4 (with p = 1), so that∫

Λ 1
2

|∇uε| ≤ C,(5.88)
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where Λ 1
2

= Λ 1
2
(x, t, r). Since uε verifies (16), we may also apply Proposition 4

so that

eε(uε) =
|∇Φε|2

2
+ κε on Λ 1

4
,(5.89)

where κε is bounded in L∞ and Φε verifies the heat flow on Λ 1
4
. Recall that Φε

was constructed in the proof of Theorem 2 and verifies (5.6). Notice that on
B(r) × {t0} we may impose the additional condition∫

B(r)×{t0}
|∇uε| ≤ C.(5.90)

Going back to (5.6), we verify that all the terms on the right-hand side are
bounded in some suitable norm, say L1. On the other hand, the initial value
is also bounded by (5.90). Since ϕ0 = Φε solves the heat equation on Λ 1

4
, we

therefore deduce that
|∇Φε| ≤ C on Λ 1

8

and the conclusion follows from (5.89).

Part II: Analysis of the measures µt
∗

Introduction

As mentioned in our main introduction, the focus of this paper is on the
asymptotic limits, as ε → 0, of the Radon measures µε defined on RN ×[0,+∞)
by

µε(x, t) =
eε(uε(x, t))

|log ε| dx dt,

where for 0 < ε < 1, the functions uε are solutions of (PGL)ε satisfying
assumption (H0). We are specially interested in the properties of the time
slices µt

ε defined by

µt
ε(x) =

eε(uε(x, t))
|log ε| dx.

In view of assumption (H0) and inequality (II), we may assume that for a
subsequence εn → 0, there exists a Radon measure µ∗ defined on RN × [0,+∞)
such that

µεn
⇀ µ∗ as measures.(1)

Following Brakke [15], we may also assume weak convergence of µt
εn

for all
t > 0, in the sense of measures.
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Lemma 1. There exist a subsequence of εn (still denoted εn) such that

µt
εn

⇀ µt
∗ for all t ≥ 0,

where µt
∗ is a finite Radon measure on RN for all t ≥ 0. Moreover, µ∗ = µt

∗ dt.

The proof in [33] carries over word for word. We fix such a sequence
εn, and we will therefore write ε instead of εn in the sequel, when this is not
misleading. We also identify in some places the measure µt

∗ with a measure on
RN × {t}, and we will even sometimes identify RN and RN × {t}.

Some properties of the functions uε can be translated directly in the lan-
guage of the measure µ∗. Firstly, an easy consequence of the monotonicity
formula (for uε) is,

Lemma 2. For each t > 0 and x ∈ RN , the function Eµ((x, t), ·) defined
on R+

∗ by

r �→ Eµ((x, t), r) ≡ 1
rN−2

∫
RN

exp(−|x − y|2
4r2

) dµt−r2

∗ (y)

is nondecreasing for 0 < r <
√

t.

Secondly, important consequences of the analysis developed in Part I are
given by the following.

Theorem 5. i) There exist an absolute constant η2 > 0, and a positive
continuous function λ defined on R+

∗ such that if, for x ∈ RN , t > 0 and r > 0,
and

µt
∗(B(x, λ(t)r)) < η2r

N−2,(2)

then for every s ∈ [t + 15
16r2, t + r2], µt

∗ is absolutely continuous with respect to
the Lebesgue measure on the ball B(x, 1

4r). More precisely,

µs
∗ =

|∇Φ∗|2
2

dx on B(x,
1
4
r),

where Φ∗ satisfies the heat equation in Λ 1
4

= B(x0,
1
4r) × [t + 15

16r2, t + r2].

ii) If uε verifies the conditions (H1) and (H2) in addition to (2), then for
every s ∈ [t + 15

16r2, t + r2],

µs
∗ ≡ 0 on B(x,

1
4
R).

Remark 1. Note that the constant η2 and the function λ are the same as
in Proposition 4 of Part I. Notice also that µ∗ = 1

2 |∇Φ∗|2 dx dt on Λ 1
4
, and that

|∇Φ∗|2 is a smooth function.
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We briefly sketch the proof of Theorem 5, which is a rather direct con-
sequence of Theorems 1, 2 and 4 of Part I. We begin with case i). If (2) is
verified, then for ε = εn small enough∫

B(x,λ(t)r)
eε(uε) ≤ η2r

N−2|log ε|,

so that we may invoke Proposition 4. This yields

eε(uε) =
|∇Φε|2

2
+ κε in Λ 1

4
,

where Φε verifies the heat equation in Λ 3
8

and

|∇Φε|2 ≤ C(Λ)|log ε|, |κε| ≤ C(Λ)εβ in Λ 1
4
.

Extracting possibly a further subsequence we may assume that

Φε√
|log ε|

→ Φ∗ uniformly on Λ 5
16

.

Since Φε verifies the heat equation, it follows that for every k ∈ N
Φε√
|log ε|

→ Φ∗ in Ck(Λ 1
4
),

and Φ∗ verifies the heat equation on Λ 1
4
. On the other hand,

κε → 0 uniformly on Λ 1
4
,

so that
eε(uε)
|log ε| →

|∇Φ∗|2
2

uniformly on Λ 5
16

.

For case ii), we argue similarly, invoking Proposition 5.

1. Densities and the concentration set

In order to analyse geometric properties of the measures µ∗ and µt
∗, an

important concept is that of densities. For a given Radon measure ν on RN ,

we have the classical definition.

Definition 1. For m ∈ N, the m-dimensional lower density of ν at the
point x is defined by

Θ∗,m(ν, x) = lim inf
r→0

ν(B(x, r))
ωmrm

,

where ωm denotes the volume of the unit ball Bm. Similarly, the m-dimensional
upper density Θ∗

m(νt, x) is given by

Θ∗
m(ν, x) = lim sup

r→0

ν(B(x, r))
ωmrm

.
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When both quantities coincide, ν admits an m-dimensional density Θm(ν, x)
at the point x, defined as the common value.

Since the energy measure is expected to concentrate on (N -2)-dimensional
objects, our efforts will be devoted to the study of the density Θ∗,N−2(µt

∗, ·).
Invoking the monotonicity formula once more, we have

Lemma 3. For all x ∈ RN and for all t > 0,

Θ∗,N−2(µt
∗, x) ≤ Θ∗

N−2(µ
t
∗, x) ≤ KM0t

2−N

2 < +∞.

The previous lemma provides an upper-bound. For regularity properties
(of the concentration set) it is well known that lower bounds play a key role.
However, there are some conceptual difficulties to attack Θ∗,N−2(µt

∗, ·) directly
(since the equation depends on time). Instead, we will first work on the space-
time measure µ∗, and recall the notion of parabolic density, which is natural
in view of Lemma 2.

Definition 2. Let ν be a Radon measure on RN × [0,+∞) such that ν =
νt dt. For t > 0 and m ∈ N, the parabolic m-dimensional lower density of ν at
the point (x, t) is defined by

ΘP
∗,m(ν, (x, t)) = lim inf

r→0

1
rm

∫
RN

exp(−|x − y|2
4r2

) dνt−r2
(y).

The parabolic upper density and parabolic density are defined accordingly, and
denoted respectively by ΘP,∗

m and ΘP
m.

Remark 2. Notice that ΘP is not the classical density, in the spirit of
Definition 1, for the parabolic metric defined by

dP ((x, t), (x′, t′)) = max(|x − x′|, |t − t′| 12 ).

It clearly follows from monotonicity that the limit in Definition 2 is de-
creasing, so that ΘP

N−2(µ
∗, (x, t)) exists everywhere in RN × (0,+∞). Another

consequence, which we will prove later (see Section 6.2) is that

ΘP
N−2(µ

∗, (x, t)) ≥ KΘ∗,N−2(µt
∗, x)(3)

for some explicit constant K. Motivated by this inequality, we set

Σµ =
{
(x, t) ∈ RN × (0,+∞) such that ΘP

N−2(µ∗, (x, t)) > 0
}

,

and for t > 0,

Σt
µ = Σµ ∩

(
RN × {t}

)
.

An obvious consequence of (3) is that

Θ∗,N−2(µt
∗, x) ≡ 0 on RN \ Σt

µ.(4)
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2. First properties of Σµ

As in Brakke’s and Ilmanen’s works ([15], [32]) the main tool in the study
of geometric properties of Σµ is the following.

Theorem 6 (clearing-out). There exist a positive continuous function η3

defined on R+
∗ , such that for any (x, t) ∈ RN × (0,+∞) and any 0 < r <

√
t, if

Eµ((x, t), r) ≡ 1
rN−2

∫
RN

exp(−|x − y|2
4r2

) dµt−r2

∗ (y) ≤ η3(t − r2)

then
(x, t) /∈ Σµ.

Theorem 6 is a consequence of Theorem 5. An immediate corollary is

Corollary 1. For any (x, t) ∈ Σµ,

ΘP
N−2(µ∗, (x, t)) ≥ η3(t).

At this stage, we are in position to derive the following, without invoking
any further property of the equation (PGL)ε.

Proposition 6. i) The set Σµ is closed in RN × (0,+∞).

ii) For any t > 0,

HN−2(Σt
µ) ≤ KM0 < +∞.

iii) For any t > 0, the measure µt
∗ can be decomposed as

µt
∗ = g(x, t)HN + Θ∗(x, t)HN−2 Σt

µ,

where g is some smooth function defined on RN × (0,+∞) \ Σµ and Θ∗
verifies the bound Θ∗(x, t) ≤ KM0t

2−N

2 .

Comment. a) The function Θ∗ in decomposition iii) is the Radon-Nikodym
derivative of µt

∗ Σt
µ with respect to HN−2; at this stage we may just assert

that it lies between the lower and upper densities.

b) Concerning g, it can be locally defined as |∇Φ∗|2 for some smooth
Φ∗ verifying the heat equation. The function Φ∗ however is not yet globally
defined.

3. Regularity of Σt
µ

As already mentioned, lower bounds for Θ∗,N−2 will play an important
role for regularity issues: however, up to now we have only lower bounds for
ΘP

N−2 (see Corollary 1). The next result provides the reverse inequality to (3).
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Proposition 7. For almost every t > 0, the following inequality holds

Θ∗,N−2(µt
∗, x) ≥ KθP

N−2(µ∗, (x, t))(5)

for HN−2 almost every x ∈ RN .

Combining Corollary 1 and Proposition 7 we are led to

Corollary 2. For almost every t ≥ 0,

Θ∗,N−2(µt
∗, x) ≥ Kη3(t), for HN−2-a.e. x ∈ Σt

µ.(6)

At this point, combining Theorem 5 with Corollary 2 and Ambrosio-Soner’s
work [4], the proof of Theorem C is complete. Indeed, since ∇Φ∗ = 0, there is
no diffuse part and (AS) holds.

To proceed further towards the proofs of Theorems A and B, we have to
deal with the diffuse part, and different kinds of arguments could then lead
to regularity for Σt

µ. One way is to follow the arguments of [4] (as above for
Theorem C), which rely on a curvature equation for µt

∗ and Allard’s first rec-
tifiability theorem (see [50]). Another possible way is to prove the existence of
the density ΘN−2 (HN−2 almost everywhere), and then to invoke Preiss’ reg-
ularity theorem [47]. Even though Preiss’ theorem is notably highly involved,
we choose this last alternative since it will simplify some of the subsequent
arguments. Therefore, we will prove

Proposition 8. For almost every t > 0,

Θ∗,N−2(µt
∗, x) = Θ∗

N−2(µ
t
∗, x) ≥ Kη3(t),

for HN−2 almost every x ∈ Σt
µ. Consequently, for almost every t > 0 the set

Σt
µ is (N − 2)-rectifiable.

We recall that a set Σ ⊂ RN is said to be (N -2)-rectifiable if HN−2 almost
all of Σ can be covered by the union of countably many Lipschitz images of
BN−2.

4. Globalizing Φ∗

In order to complete the proof of Theorem A there is still one point to
clarify: the function Φ∗ which appears in Theorem A is global, whereas up to
now the function Φ∗ constructed in Theorem 5 is only locally defined. Indeed,
using Theorem 5 we may define Φ∗ on every simply connected domain of Ωµ =
RN × (0,+∞) \ Σµ. However, Ωµ is not simply connected in general, and this
raises a difficulty for defining Φ∗ globally. Nevertheless its gradient ∇Φ∗ can
be defined globally on Ωµ (and verifies there the heat equation). In order to
overcome this problem, we will invoke Theorem 3 of Part I.
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For m ∈ N∗, set Km = B(m) × [ 1
m , m], so that ∪mKm = RN × (0,+∞).

We apply Theorem 3 to uε and K = Km, so that we may write

uε = exp(iφm
ε )wm

ε on Km,(7)

where φm
ε solves the heat equation on Km,

‖∇φm
ε ‖L∞(Km) ≤ C(m)

√
M0|log ε|(8)

and

‖∇wm
ε ‖Lp(Km) ≤ C(m, p) for any 1 ≤ p <

N + 1
N

.(9)

Let m ∈ N∗ be fixed for the moment. Extracting possibly a further sub-
sequence of (εn)n∈N, we may assume without loss of generality that

φm
ε√

|log ε|
→ φm

∗ in C2(Km−1).(10)

Moreover, passing to the limit in the equation, we infer that φm
∗ solves the heat

equation on Km−1.

Next, let x0 ∈ Ωµ. Since Ωµ is open, we may find a small cylindrical
neighborhood Λx0 of x0 in Ωµ. There exist m0 ∈ N such that for m ≥ m0,

Λx0 ⊂ Km. For ε sufficiently small,

|uε| ≥ 1 − σ ≥ 1
2

on Λx0(11)

(where σ is the constant in Theorem 2), so that

uε = ρε exp(iϕε)(12)

for some real-valued function ϕε (defined up to an integer multiple of 2π). In
view of (11), we may apply Theorem 2, and assert that there exists a solution
Φε of the heat equation on Λx0 such that

‖∇Φε −∇ϕε‖L∞((Λx0 ) 1
2
) ≤ Cεβ.(13)

(see Remark 3 of the introduction of Part I). On the other hand, we may write
for m ≥ m0

wm
ε = ρε exp(iψm

ε ) on Λx0(14)

where ψm
ε is a real-valued function. Combining (12), (7) and (14) we are led

to

∇ϕε = ∇φm
ε + ∇ψm

ε ,(15)

and invoking (13), we have, for m fixed,∣∣∣∣∣∇φm
ε −∇Φε√
|log ε|

∣∣∣∣∣ ≤
∣∣∣∣∣ ∇ψm

ε√
|log ε|

∣∣∣∣∣ + Cεβ on (Λx0) 1
2
.
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Using (9) we obtain∥∥∥∥∥ ∇φm
ε√

|log ε|
− ∇Φε√

|log ε|

∥∥∥∥∥
Lp((Λx0 ) 1

2
)

−→ 0 as ε → 0.

Since ∇Φε√
|log ε|

→ ∇Φ∗ on (Λx0) 1
2
, by (10) we deduce

∇φm
∗ = ∇Φ∗ on (Λx0) 1

2
.

Since Φ∗ is independent of m, changing possibly φm
∗ by a constant we may

assume that all the φm
∗ coincide on (Λx0) 1

2
. By analyticity, for each n ≥ m0

the functions (φm
∗ )m≥n coincide on Kn. Letting n go to infinity, we define their

common value φ∗ on RN × (0,+∞) and we set

Φ∗ = φ∗.(16)

The proof of Theorem A is now completed , combining (16), Theorem 5,
Proposition 6, Corollary 2 and Proposition 8.

5. Mean curvature flows

In this section we will provide the proof of Theorem B. Since a large part
of this analysis follows the lines of [4], we will only indicate the ingredients,
the necessary adaptations (due to the presence of the diffuse energy) and some
simplifications since rectifiability of Σt

µ is already available. In particular, we
will avoid referring to varifolds (or generalized varifolds) even though these
important objects are hidden.

We first briefly recall both classical and weak notions of mean curvature
flow. Then, following [32], [4], we will underline the relationship between
(PGL)ε and this flow, leading to Theorem B.

5.1. The classical notion. Let Σ be a smooth compact manifold of dimen-
sion k, and γ0 : Σ → RN (N ≥ k) a smooth embedding, so that Σ0 = γ0(Σ)
is a smooth k-dimensional submanifold of RN . The mean curvature vector at
the point x of Σ0 is the vector of the orthogonal space (TxΣ0)⊥ given by

�HΣ0(x) = −
N−k∑
α=1

 k∑
j=1

(τj ·
∂να

∂τj
)να

 = −
N−k∑
α=1

(divTxΣ0να) να,(17)

where (τ1, . . . , τk) is an orthonormal moving frame on TxΣ0, (ν1, . . . , νN−k) is
an orthonormal moving frame on (TxΣ0)⊥, and divTxΣ0 denotes the tangential
divergence at the point x. The integral formulation of (17) is given by∫

Σ0

divTxΣ0 �X dHk = −
∫

Σ0

�HΣ0 · �X dHk,(18)
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for all �X ∈ C∞
c (RN , RN ). The vectors �HΣ0(·) are uniquely determined by (18),

and in particular the definition in (17) does not depend on the choice of or-
thonormal frames.

Next, we introduce a time dependence, and consider a smooth family
{γt}t∈I of smooth embeddings of Σ in RN , where I denotes some open interval
containing 0. We set Σt = γt(Σ). If χ is a smooth complactly supported function
on RN , a standard computation shows that

d

dt

∫
Σt

χ(x) dHk =
∫

Σt

(
−χ(x) �HΣt(x) + P (∇χ(x))

)
· �Y (x) dHk,(19)

where �Y (x) = d
dsγs(γ−1

t (x)) is the velocity vector at the point x, and P denotes
the orthogonal projection on (TxΣt)⊥.

The family (Σt)t∈I is moved by mean curvature in the classical sense if
and only if

d

dt
γt(m) = �HΣt(γt(m)), for all m ∈ Σ and t ∈ I.(20)

In particular, if (Σt)t∈I is moved by mean curvature, (19) becomes

d

dt

∫
Σt

χ(x) dHk = −
∫

Σt

χ(x)| �HΣt(x)|2 dHk +
∫

Σt

∇χ(x) · �HΣt(x) dHk,(21)

and actually (21) is equivalent to (20) if χ is taken to be arbitrary. Notice that
the last term on the right-hand side of (21) corresponds to a transport term,
whereas the first term represents a shrinking of the area. Actually, if χ ≡ 1 in
a neighborhood of Σt, then

d

dt
Hk(Σt) = −

∫
Σt

| �HΣt(x)|2 dHk.

Finally, existence of a classical solution of (20) for small times can be estab-
lished (see e.g. [54], [29]), but singularities develop in finite time.

5.2. Brakke flows. In the attempt to extend (20) or (21) to a larger class
of (less regular) objects, and in particular to extend the flow past singularities,
Brakke [15] relaxed equality in (21), and considered instead sub-solutions, i.e.
verifying the inequality

d

dt

∫
Σt

χ(x) dHk ≤ −
∫

Σt

χ(x)| �HΣt(x)|2 dHk +
∫

Σt

∇χ(x) · �HΣt(x) dHk,(22)

for all nonnegative χ ∈ C∞
c (RN ). Following Brakke [15], we are thus going to

extend (22) to less regular objects than smooth embedded manifolds. Actu-
ally, we adopt the point of view of Ilmanen [33], which is slightly different from
Brakke’s original one (the difference being very tiny, to the authors’ under-
standing at least!).



CONVERGENCE OF THE PARABOLIC GL-EQUATION 135

Recall that a Radon measure ν on RN is said to be k-rectifiable if there
exists a k-rectifiable set Σ, and a density function Θ ∈ L1

loc(Hk Σ) such that

ν = Θ(·)Hk Σ.

Since Σ is rectifiable, for Hk-a.e. x ∈ Σ, there exists a unique tangent space
TxΣ belonging to the Grassmanian GN,k. The distributional first variation of
ν is the vector-valued distribution δν defined by

δν( �X) =
∫

Σ
divTxΣ

�Xdν for all �X ∈ C∞
c (RN , RN ).(23)

In case |δν| is a measure absolutely continuous with respect to ν, we say that
ν has a first variation and we may write

δν = �Hν,

where �H is the Radon-Nikodym derivative of δν with respect to ν. In this case,
formula (23) becomes ∫

Σ
divTxΣ

�Xdν = −
∫

Σ

�H · �X dν.(24)

Remark 3. Notice that in the smooth case, this notion coincides with the
definition (17), in view of (18). Notice also that the component of �H which
is orthogonal to TxΣ is independent of the density Θ. However, if Θ is not
constant, then �H may have a tangential part.

We are now in position to give the precise definition of a Brakke flow. Let
(νt)t≥0 be a family of Radon measures on RN . For χ ∈ C2

c (RN , R+), we define

D̄tν
t
0(χ) = lim sup

t→t0

νt(χ) − νt0(χ)
t − t0

.

If νt {χ > 0} is a k-rectifiable measure which has a first variation verifying
χ| �H|2 ∈ L1(νt), then we set23

B(νt, χ) = −
∫

χ| �H|2 dνt +
∫

∇χ · P ( �H) dνt,

Otherwise, we set
B(νt, χ) = −∞.

Definition 3 (Brakke flow). Let (νt)t≥0 be a family of Radon measures
on RN . We say that (νt)t≥0 is a k-dimensional Brakke flow if and only if

D̄tν
t(χ) ≤ B(νt, χ),(25)

for every χ ∈ C∞
c (RN , R+) and for all t ≥ 0.

23Here P denotes Hk-a.e. the orthogonal projection onto the tangent space to νt.
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5.3. Relating (PGL)ε to mean curvature flow. The starting point of the
analysis is the formal analogy of equality (21), namely

d

dt

∫
Σt

χ(x) dHk = −
∫

Σt

χ(x)| �HΣt(x)|2 dHk +
∫

Σt

∇χ(x) · �HΣt(x) dHk,

with the evolution of local energies for (PGL)ε (see (2.1) in Part I),

d

dt

∫
RN

χ(x) dµt
ε = −

∫
RN×{t}

χ(x)
|∂tuε|2
|log ε| (x) dx +

∫
RN×{t}

∇χ(x) · −∂tuε · ∇uε

|log ε| (x) dx.

(26)

We already know that as ε → 0, µt
ε → µt

∗. Therefore, the comparison of the
two formulas suggests, at least formally, that in the limit

ωt
ε ≡

|∂tuε|2
|log ε| (x) dx → | �H|2 dµt

∗,(27)

and

σt
ε ≡

−∂tuε · ∇uε

|log ε| (x) dx → �H dµt
∗.(28)

Actually, this is a little over optimistic for two reasons. First we have to
deal also with the diffuse part of the energy (this will be handled thanks to
Theorem A). Second, since (27) involves the quadratic term | �H|2, only lower
semi-continuity can be expected at first sight24.

Convergence of σt
ε. Consider the measure σε = σt

ε dt defined on RN ×
[0,+∞). By Cauchy-Schwarz inequality σε is uniformly bounded on RN ×[0, T ]
for every T > 0, so that passing possibly to a further subsequence, we may
assume that σε ⇀ σ∗ as measures. The Radon-Nikodym derivative of |σε| with
respect to µε verifies

d|σε|
dµε

≤
√

2
|∂tuε|√
eε(uε)

.

On the other hand,

‖ |∂tuε|√
eε(uε)

‖2
L2(RN×[0,T ],dµε)

≤
∫

RN×[0,T ]

|∂tuε|2
|log ε| dx dt ≤ KTM0,

so that d|σε|
dµε

is uniformly bounded in L2(RN × [0, T ], dµε). Arguing as in [4,
Remark 2.2] (see also [31]) it follows that σ∗ is absolutly continuous with
respect to µ∗. Therefore, we may write

σ∗ = �h µt
∗ dt,

where �h ∈ L2(RN × [0, T ], µt
∗ dt). In view of the decomposition in Theorem A

and Part I, we infer25

24This is certainly a more serious matter, and would require a much longer discussion!
25Actually, this requires additional estimates on time derivatives. The details are exposed

in [11].
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Lemma 4. The measure σ∗ decomposes as σ∗ = σt
∗dt, where for a.e. t ≥ 0,

σt
∗ = −∂tΦ∗ · ∇Φ∗ dx + �h νt

∗.

The next step will be to identify the restriction of �h on Σt
µ with the mean

curvature defined by (24).26 The starting point is a classical formula involving
the stress-energy tensor. Let �X ∈ C∞

c (RN , RN ). We have, for every t ≥ 0,

1
|log ε|

∫
RN×{t}

(
eε(uε)δij −

∂uε

∂xi
· ∂uε

∂xj

)
∂Xi

∂xj
dx =

∫
RN×{t}

�X · ∂tuε · ∇uε

|log ε| dx

= −
∫

RN×{t}
�X · σt

ε.

(29)

Formula (29) is already very close to (24), in particular the right-hand side. In
order to handle the diffuse energy, as well as to interpret the left-hand side as
a tangential divergence, we need to analyse the weak limit of the stress-energy
tensor

αt
ε =

(
Id − ∇uε ⊗∇uε

eε(uε)

)
dµt

ε.

Clearly, |αt
ε| ≤ KNµt

ε, and we may assume that

αt
ε ⇀ αt

∗ ≡ A · µt
∗,

where A is an N×N symmetric matrix. Since the symmetric matrix ∇uε⊗∇uε

is nonnegative, we have

A ≤ Id.(30)

On the other hand,

Tr(eε(uε) Id −∇uε ⊗∇uε) = (N − 2)eε(uε) + 2Vε(uε).

Therefore, since the trace is a linear operation, passing to the limit we obtain

Tr(A) = (N − 2) + 2
dV∗
dµ∗

,(31)

where the (nonnegative) measure V∗ is the limit (up to possibly a further
subsequence) of Vε(uε)/|log ε|.

Going to the limit in (29), and using the decomposition in Theorem A,
we obtain for a.e. t ≥ 0,

(32)
∫

RN

Aij ∂Xi

∂xj
dνt

∗ +
∫

RN

( |∇Φ∗|2
2

δij −
∂Φ∗
∂xi

∂Φ∗
∂xj

)
∂Xi

∂xj
dx

= −
∫

RN

�X · �h dνt
∗ −

∫
RN

�X · ∇Φ∗∂tΦ∗ dx.

26Notice that we already know by Theorem A that νt
∗ is (N -2)-rectifiable for a.e. t ≥ 0.
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On the other hand, Φ∗ verifies the heat equation

∂Φ∗
∂t

− ∆Φ∗ = 0.(33)

Multiplying (33) by �X · ∇Φ∗, we obtain∫
RN

( |∇Φ∗|2
2

δij −
∂Φ∗
∂xi

∂Φ∗
∂xj

)
∂Xi

∂xj
dx = −

∫
RN

�X · ∇Φ∗∂tΦ∗ dx.(34)

Combining (32) and (34) we have therefore proved

Lemma 5. For a.e. t ≥ 0, and for every �X ∈ C∞
c (RN , RN ),∫

RN

Aij ∂Xi

∂xj
dνt

∗ = −
∫

RN

�X · �h dνt
∗.(35)

Remark 4. The last computations are the precise mathematical expression
of the fact that the linear and the topological modes do not interact.

Recall that we already know that Σt
µ is rectifiable for a.e. t ≥ 0. Com-

paring (35) with (24) in order to identify �h with the mean curvature of νt,

we merely have to prove that the matrix A corresponds to the orthogonal
projection P onto the tangent space TxΣt

µ. We follow closely the argument
of [4]: however, our presentation is more direct, since rectifiability is already
established. We first have

Lemma 6. For a.e. t ≥ 0,

A(x)

[∫
TxΣt

µ

∇χ(y) dHN−2(y)

]
= 0 for HN−2-a.e. x ∈ Σt

µ,(36)

and for all χ ∈ C∞
c (RN , R).

Sketch of the proof. Let x ∈ Σt
µ be such that TxΣt

µ exists and such that x

is a Lebesgue point for Θ∗ (with respect to HN−2) and for A (with respect to
νt
∗). For r > 0, consider the vector field �Xr,l(y) = χ(x−y

r )el. Inserting �Xr,l into
(35) and letting r → 0, we obtain, by difference of homogeneity, that the right-
hand side is negligible with respect to the left-hand side, and the conclusion
follows.

A straightforward consequence is

Corollary 3. For t and x as in Lemma 6,(
TxΣt

µ

)⊥ ⊆ Ker A(x).

With a little more elementary linear algebra, we further deduce
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Corollary 4. For t and x as in Lemma 6, A = P is the orthogonal
projection onto the tangent space TxΣt

µ.

Proof. By (30), A ≤ Id, and therefore all the eigenvalues λ1, . . . , λN of A

are less than or equal to 1. By (31), Tr(A) ≥ N − 2, so that
∑N

i=1 λi ≥ N − 2.

On the other hand, by Corollary 3, A has at least two eigenvalues, say λ1

and λ2, equal to zero. Therefore, λi = 1 for i = 3, . . . , N. In particular A is
an orthogonal projection on an (N − 2)-dimensional space. Since Ker A(x) ⊇
(TxΣt

µ)⊥, and since dim(TxΣt
µ) = N − 2, the conclusion follows.

Remark 5. Corollaries 3 and 4 have many important consequences.
i) Using (31), we deduce that dV∗

dµ∗
= 0, i.e. there is only kinetic energy in

the limit.
ii) Let (τ1, . . . , τN ) be an orthonormal frame such that TxΣt

µ is spanned
by (τ3, . . . , τN ). In view of the expression of the stress-energy tensor in these
coordinates, we infer that the energy concentrates in the (τ1, τ2) plane (i.e.
(TxΣt

µ)⊥) and uniformly with respect to the direction. In particular, since σt
ε

is colinear to ∇uε, this suggests strongly that �h is perpendicular to TxΣµ. Such
an argument is made rigorous in [4, Prop. 6.2]. This remark has presumably
many other important consequences, but we will not discuss them here.

Combining the previous arguments, we have finally proved

Proposition 9. For a.e. t ≥ 0, νt
∗ has a first variation and

δνt
∗ = �h νt

∗;

i.e. �h is the mean curvature of νt
∗.

Semi -continuity of ωt
ε. The purpose of this subsection is to show that for

a.e. t ≥ 0,

lim inf
ε→0

∫
RN×{t}

χ
|∂tuε|2
|log ε| ≥

∫
RN×{t}

χ |�h|2dνt
∗ +

∫
RN×{t}

χ |∂tΦ∗|2 dx.

It is tempting to write, on Σt
µ,

|∂tuε|2
|log ε| ≥ |∂t · uε∇uε|2

|log ε||∇uε|2
≥ 1

2
|∂tuε · ∇uε|2

eε(uε)
µt

ε � 1
2
| �H|2µt

∗.

These formal (but essentially correct) inequalities do not allow us to conclude
the argument, in view of the extra factor 1

2 . Fortunately, the last inequality is
far from being optimal. Indeed, weak convergence does not imply convergence
of the squared quantities!

Remark 6. In the scalar case, i.e. for the Allen-Cahn equation, this diffi-
culty does not arises since |∇uε|2

2 � Vε(uε) there, so that |∇uε|2 � eε(uε). The
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difficulty there however was to establish the balance between the kinetic and
potential terms (see [32, §8.1]).

In order to handle the factor 1
2 , a determining idea of [4] in this context

was to recast the problem in the framework of Young measures, which turn out
to be an appropriate concept for analysing the energies of the oscillations. In
this direction, set pε = ∇uε

|∇uε| , and consider the measure (defined on RN ×R2N )

ω̃t
ε = δpε(x)

|∂tuε · pε|2
|log ε| dx.

Extracting possibly a further subsequence, we may assume that ω̃t
ε dt → ω̃∗ as

measures. We deduce from the analysis of Part I and Theorem A27,

Lemma 7. The measure ω̃∗ decomposes as ω̃∗ = ω̃t
∗ dt, and for a.e. t ≥ 0

ω̃t
∗ = Πt

∗,x(p) |∂tΦ∗|2 dx + Wt
∗,

where Πt
∗,x is a measure on R2N (with support on the unit ball) and Wt

∗ =
ω̃t
∗ Σt

µ. Moreover, Πt
∗,x(R2N ) = 1.28

The main ingredient that we will borrow directly from the analysis of [4,
§6] can be formulated as the following:

Proposition 10 (Ambrosio and Soner). For a.e. t ≥ 0, and every χ ∈
C∞

c (RN ), ∫
RN×R2N

χ(x) Wt
∗(x, p) ≥

∫
RN

χ |�h|2 dνt
∗.

At this stage, we are (finally!) in position to complete the proof of Theo-
rem B.

Proof of Theorem B. In view of Theorem 4.4 in [4], it suffices to establish
the integral version of (25). Let 0 < T0 < T1. We integrate (26) on [T0, T1] and
let ε go to zero. Combining the results of Lemma 4, Proposition 9, Lemma 7,
Remark 5, Proposition 10 and Theorem A, we obtain

νT1
∗ (χ) − νT0

∗ (χ) +
∫

RN×{T1}
χ
|∇Φ∗|2

2
dx −

∫
RN×{T0}

χ
|∇Φ∗|2

2
dx(37)

≤−
∫

RN×[T0,T1]
χ |�h|2 dν∗ +

∫
RN×[T0,T1]

∇χP (�h) dν∗

−
∫

RN×[T0,T1]
χ|∂tΦ∗|2 dx dt +

∫
RN×[T0,T1]

∇χ∇Φ∗∂tΦ∗.

27Actually, this requires additional estimates on time derivatives. The details are exposed
in [11].

28Notice that the measure Πt
∗,x arises from the possible oscillations of the phase Φε of uε,

but is not disturbing since it acts linearly.
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Since Φ∗ verifies the heat equation, we have the identity

(38)
∫

RN×{T1}
χ
|∇Φ∗|2

2
dx −

∫
RN×{T0}

χ
|∇Φ∗|2

2
dx

=
∫

RN×[T0,T1]
χ|∂tΦ∗|2 dx dt +

∫
RN×[T0,T1]

∇χ∇Φ∗∂tΦ∗.

Combining (37) and (38) we obtain

νT1
∗ (χ) − νT0

∗ (χ) ≤ −
∫

RN×[T0,T1]
χ |�h|2 dν∗ +

∫
RN×[T0,T1]

∇χP (�h) dν∗.

As mentioned above, this integral formulation implies (25), under suitable
assumptions which are fullfilled here, namely rectifiability of Σt

µ, lower bounds
on the density Θ∗, and orthogonality of the mean curvature �h with (TxΣt

µ)⊥.

The proof of Theorem B is complete.

6. Ilmanen enhanced motion

The notion of motion by mean curvature in the sense of Brakke has many
interesting properties, in particular the fact that the area functional decreases
along the flow, as expected from the classical motion. Unfortunately, as already
mentioned in the main introduction, this notion strongly lacks uniqueness.
Indeed, if (µt)t≥0 is a Brakke flow, so is also (g(t)µt)t≥0, where g is an arbitrary
nonincreasing function on R+. In particular, the trivial solution given by ν0 =
µ0 and νt ≡ 0 for t > 0 is not excluded a priori. Actually, for (PGL)ε such a
situation may occur (as in the Allen-Cahn equation), at least in three distinct
cases:

Concentrated phase. the initial data is of the form u0
ε = exp(iϕ0

ε

√
|log ε|),

where |∇ϕ0
ε|2 is bounded in L1 and concentrates on a (N -2)-dimensional set Σ0.

Low density. we present an example is dimension 3. In the plane (x1, x3),
consider a standard dipole (i.e. with “least” energy) of two vortices away from
the origin and separated by a length εη (where 0 < η < 1 is fixed), so that the
energy in the plane is of order πη|log ε|. Rotate the dipole along the x3 axis so
that eε(u0

ε) concentrates on a circle with a 1-density proportional to η. If η is
chosen sufficiently small, then µt

∗ ≡ 0 for t > 0 by the clearing-out lemma.

Hidden mean curvature. consider in the (x1, x2) plane the standard
circle S1. Approximate it, weakly in the sense of measures, by a collection
Bi of small circles centered on S1 and of radii ∼ 1

i . By Theorem D, for each
i ∈ N∗ there exist initial data (u0,i

ε ) such that the limiting measures µt,i
∗ evolve

according to the classical motion of the small circles, whose lifetime is on the
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order of i−2. By a diagonal argument, it is therefore possible to construct a
sequence u0

ε such that µ0
∗ = S1 but µt

∗ ≡ 0 for t > 0.

Remark 7. The two first cases are related to specific properties of (PGL)ε,

whereas the third is intrinsically related to motion by mean curvature.

The three cases have a common feature: the Jacobians of u0
ε converge to

zero as ε tends to 0, at least in the sense of distributions. We consider next
the space-time Jacobian of uε,

J uε =
∑

0≤i<j≤N

(∂xi
uε × ∂xj

uε) dxi ∧ dxj ,

with the convention that x0 ≡ t. In view of the space-times bounds on the
Ginzburg-Landau energy, we may invoke the work of Jerrard and Soner [36]
(see also [1]), to assert that

J uε ⇀ J∗ in
(
C0,α

c (RN × R+)
)∗

,

where J∗ is an (N -1)-rectifiable vector-valued measure. Moreover, it is shown
in [36], [1], that 1

πJ∗ can be identified with an integer multiplicity (N -1)-
current, whose boundary is exactly J 0

∗ (the slice at time zero), and

1
π
|J t

∗ | ≤ µt
∗, for t ≥ 0.

Here, J t
∗ denotes the slice of the current J∗ on RN × {t} (which we will prove

to be well defined), and coincides with the limit in the sense of currents of
the space Jacobians Juε(·, t). The (N -1)-rectifiable set ΣJ supporting J∗ rep-
resents the concentration set of vorticity, and has therefore great significance
(presumably for the applications, more than the energy). Obviously, ΣJ ⊆ Σµ,

and it is rather easy to construct examples where they are different (think
of two approaching circles with opposite orientations). Notice also that J∗,
a priori, has more structure than µ∗, since it has an orientation and integer
multiplicity (modulo π).

The previous discussion naturally leads to Ilmanen’s notion of enhanced
(mean curvature) motion, which we recall now.

Let M0 be an integer multiplicity (N -2)-current in RN , without boundary.
We assume for simplicity that M0 is bounded and of finite mass. Let M be
an integer multiplicity (N -1)-current in RN × [0,+∞), and {µt}t≥0 a familly
of nonnegative Radon measures on RN .

Definition 4 (enhanced motion). The pair
{
M, {µt}t≥0

}
is called an en-

hanced motion with initial condition M0 if and only if

i) ∂M = M0.

ii) µ0 = |M0|.
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iii) The measure defined on R+ by T (B) = |M|(RN × B), for any Borel set
B, is absolutly continuous with respect to the Lebesgue measure on R+.

iv) For all t ≥ 0,

µt ≥ |Mt|,

where Mt denotes the slice of M at time t.

v) {µt}t≥0 is a Brakke flow.

Remark 8. Notice in that conditions i) and iii) are closer to what one
would normally expect from a Cauchy problem. In Ilmanen’s terminology, M
is called the under-current, and provides, in view of iv), a lower bound, which
rules out sudden shrinking.

In [33], Ilmanen established the existence of an enhanced motion, for any
initial data as above (actually in any codimension). Theorem D provides an
alternative construction in codimension 2. The two solutions may differ, since
there remains still some possible nonuniqueness for an enhanced motion (see
the discussion on “matching motion” in [33]). Moreover, in the smooth case,
there is uniqueness for an enhanced motion (before singularities appear) and
it coincides with the classical notion.

We are now in position to present the proof of Theorem D.

Proof of Theorem D. The proof essentially relies on a combination of
results proven in [1], [36].

Construction of u0
ε. The existence of a family (u0

ε)ε>0 satisfying (H0) and
assumption ii) follows directly from [1, Th. 1.1, ii]). More precisely, the family
(u0

ε)ε>0 constructed there verifies

1
π

Ju0
ε → M0 in [C0,α

c (RN )]∗ ,(39)

1
π

µ0
∗ = |M0| ≡ M0 ,(40)

and the additional compactness conditions (H1), (H2), as well as the bound
|u0

ε| ≤ 1.

Construction of M. We next consider the solution uε of (PGL)ε with
initial datum u0

ε, verifying (39) and (40) above. In view of (H1) and (H2),
we may apply Theorem C to µ∗, so that µ∗ has no diffuse part, i.e. µ∗ = ν∗.
In particular, by Theorem B, {µt

∗}t≥0 is a Brakke flow, and property v) of
Definition 4 is established.
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In view of (I), the space-time Ginzburg-Landau energy is bounded in RN×
[0, T ] for every T > 0; more precisely,∫

RN×[0,T ]

1
2
|∇x,tuε|2 + Vε(uε) ≤ M0(T + 1)| log ε|.

We deduce from [36], [1] that

J uε → J∗ in [C0,α
c (RN × R+)]∗,

where J∗ is an (N−1) integer multiplicity current. Notice that J∗ has compact
support in RN × [0, Tf + 1] (see Proposition 3 for the definition of Tf ). We set

M =
1
π
J∗ ,

and claim that

∂M = M0 ;(41)

i.e., ii) is verified.
Indeed, for every test form χ ∈ C∞(RN ×R+) we have, by Stokes theorem,∫

RN×R+

J uε ∧ δχ =
1
2

∫
RN×R+

δ(uε × δuε) ∧ δχ(42)

=
1
2

∫
RN×R+

δ(uε × δuε ∧ δχ) =−1
2

∫
RN×{0}

(u0
ε × du0

ε) ∧ dχ

=
1
2

∫
RN×{0}

d(u0
ε × du0

ε) ∧ χ=
∫

RN×{0}
Ju0

ε ∧ χ.

In view of the compactness results in Theorem 4, and (H1), (H2), we may
pass to the limit as ε → 0, so that

M(δχ) = M0(χ) ,

which establishes the claim.
At this stage, we have shown that the pair {M, {µt

∗}t≥0} verifies i), ii), v)
of Definition 4.

Proof of iv). By definition of slicing, and arguing as in (42), we have

Mt = lim
ε→0

Juε(·, t) .

Therefore iv) follows from [36], [1].

Proof of iii). Let I = [a, b] be a bounded interval in R. We claim that

|M|(RN × [a, b]) ≤ C(M0)|b − a|1/2 ,(43)

which clearly implies iii). Recall that

|M|(RN × [a, b]) = sup{M(χ), |χ| ≤ 1, suppχ ⊂ RN × [a, b]} .
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In order to prove (43), we need first to go back to the level ε. Letting χ ∈
C∞

c (RN × [a, b]), we have

M(χ) = lim
ε→0

∫
Juε ∧ χ .

In order to estimate the integral on the right-hand side, we distinguish the
purely spatial components of the Jacobian, and the space-time components.
For the spatial components, we have by Lemma 3.13 (see also [1]),

(44)∣∣∣∣∣
∫

RN×[a,b]
(∗χ)ij

∂uε

∂xi
× ∂uε

∂xj

∣∣∣∣∣≤ K

|log ε|‖χ‖∞
∫

RN×[a,b]
eε(uε)

+Kεβ‖χ‖C1

(
1 +

∫
RN×[a,b]

eε(uε)

)
≤KM0|b − a|

(
‖χ‖∞ + εβ(|log ε| + 1)‖χ‖C1

)
.

In order to handle the space-time component, we rescale the function uε

with respect to the time variable. Consider the interval I ′ = [a, b′], where
b′ = a + |b − a|1/2, and the function wε defined on RN × I ′, by

wε(·, s) = uε(·, (s − a)|b − a|1/2 + a) , s ∈ I ′ ,

so that
∂wε

∂s
(·, s) = |b − a|1/2 ∂uε

∂t
(·, (s − a)|b − a|1/2 + a)

and∫
RN×I′

∣∣∣∣∂wε

∂s

∣∣∣∣2 dxds = |b − a|1/2

∫
RN×[a,b]

∣∣∣∣∂uε

∂t

∣∣∣∣2 dxdt ≤ K|b − a|1/2M0|log ε| .

On the other hand, by the energy inequality (I),∫
RN×I′

|∇wε|2
2

+ Vε(wε) ≤ |b − a|1/2M0|log ε| ,

so that ∫
RN×I′

|∇x,swε|2
2

+ Vε(wε) ≤ K|b − a|1/2M0|log ε| .(45)

We apply the estimate of Lemma 3.13 to the function wε in RN × I ′. This
yields, in view of (45),29

∣∣∣∣∫
RN×I′

(∗χ̃)0j
∂wε

∂s
× ∂wε

∂xj

∣∣∣∣ ≤ KM0|b − a|1/2(‖χ‖∞ + εβ(|log ε| + 1)‖χ‖C1).

(46)

29Here we set χ̃(·, s) = χ(·, (s − a)|b − a|1/2 + a).
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Finally, we have∫
RN×[a,b]

(∗χ)0j
∂uε

∂t
× ∂uε

∂xj
=

∫
RN×I′

(∗χ̃)0j
∂wε

∂s
× ∂wε

∂xj
.(47)

Combining (44), (46) and (47), we are led to∣∣∣∣∣
∫

RN×[a,b]
J uε ∧ χ

∣∣∣∣∣ ≤ KM0(|b − a|1/2 + |b − a|)‖χ‖∞ + o(1) .(48)

Passing to the limit in (48) as ε → 0, we derive (43).

6. Properties of Σµ

The purpose of this section is to provide detailed proofs of some technical
statements, concerning Σµ, in the introduction to Part II. More precisely, we
will prove (3), Lemma 3, Theorem 6 and Propositions 6, 7 and 8. We begin
with a few elementary observations which we will use later in the proofs.

Lemma 6.1. Let (x, t) ∈ Σµ and 0 < r <
√

t. Then,

r2−Nµt−r2

∗ (B(x, λ(t − r2)r)) > η2,

where η2 is the constant in Theorem 5.

Proof. Indeed, assume by contradiction that

r2−Nµt−r2

∗ (B(x, λ(t − r2)r)) ≤ η2.

Then, by Theorem 5, for every τ ∈ [t − 1
16r2, t]

µτ
∗ =

|∇Φ∗|2
2

dx on B(x,
1
4
r),

where Φ∗ is smooth. We are going to show that

s2−N

∫
RN

exp(−|x − y|2
4s2

) dµt−s2

∗ → 0,(6.1)

as s → 0. Next, we write

(6.2)

s2−N

∫
B(x, r

8
)

exp(− |x−y|2
4s2 ) dµt−s2

∗ ≤ s2−N

2
‖∇Φ∗‖2

L∞(B(x, r

8
))

∫
RN

exp(− |x−y|2
4s2 ) dx

≤K‖∇Φ∗‖2
L∞(B(x, r

8
))s

2 → 0,

as s → 0. On the other hand,

s2−N

∫
RN\B(x, r

8
)
exp(−|x − y|2

4s2
) dµt−s2

∗ ≤ s2−N exp(− r2

256s2
)M0 → 0,(6.3)
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as ε → 0. Combining (6.2) and (6.3), we see that (6.1) follows. Hence

ΘP
N−2(µ∗, (x, t)) = 0,

i.e.
(x, t) /∈ Σµ,

a contradiction.

Lemma 6.2. The function (x, t) �→ ΘP
N−2(µ∗, (x, t)) is upper semi-conti-

nuous on the set RN × (0,+∞).

Proof. Let (x, t) ∈ RN × (0,+∞), and let (xn, tn)n∈N be a sequence such
that (xn, tn) → (x, t). We are going to show that

lim sup
n→+∞

ΘP
N−2(µ∗, (xn, tn)) ≤ ΘP

N−2(µ∗, (x, t)).(6.4)

Let 0 < r < 1
2

√
t be fixed for the moment. For n sufficiently large, set rn =√

r2 + tn − t, so that t − r2 = tn − r2
n. By monotonicity we have

ΘP
N−2(µ∗, (xn, tn)) ≤ 1

rN−2
n

∫
RN

exp(− |y−xn|2
4r2

n
) dµ

tn−r2
n∗ (y)

=
1

rN−2
n

∫
RN

exp(− |y−xn|2
4r2

n
) dµt−r2

∗ (y).

Letting n tends to +∞, we obtain

lim sup
n→+∞

ΘP
N−2(µ∗, (xn, tn)) ≤ 1

rN−2

∫
RN

exp(− |x−y|2
4r2 ) dµt−r2

∗ (y).

Next, we let r → 0, and (6.4) follows.

6.1. Proof of Lemma 3. Let x ∈ RN and t > 0. We have, for every
0 < r < 1

2

√
t,

µt
∗(B(x, r))

ωN−2rN−2
≤ exp(

1
4
)

1
ωN−2rN−2

∫
RN

exp(− |x−y|2
4r2 ) dµt

∗(y)

≤ exp(
1
4
)

1

ωN−2(t + r2)
N−2

2

∫
RN

exp(− |x−y|2
4(t+r2)) dµ0

∗(y)

≤ exp(
1
4
)

M0

ωN−2
t

2−N

2 ,

where we have used the monotonicity formula (Lemma 2) for the second in-
equality.

6.2. Proof of inequality (3). Let (x, t) ∈ RN × (0,+∞) be given. Let
0 < r < t be fixed for the moment. We write, for every 0 < s <

√
t,

1
rN−2

µt
∗(B(x, r)) ≤ 1

rN−2
exp(

1
4
)
∫

RN

exp(− |x−y|2
4r2 ) dµt

∗(y)

≤ 1

(r2 + s2)
N−2

2

exp(
1
4
)
∫

RN

exp(− |x−y|2
4(r2+s2)) dµt−s2

∗ (y),
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where we have used the monotonicity (at the point (x, t + r2)) for the last
inequality. Next, we choose s =

√
r. This yields

1
rN−2

µt
∗(B(x, r)) ≤ 1

(r2 + r)
N−2

2

exp(
1
4
)
∫

RN

exp(− |x−y|2
4(r2+r)) dµt−r

∗ (y).(6.5)

In the last integral, we decompose

RN = B(x, 1) ∪ (RN \ B(x, 1)).

On B(x, 1), observe that

exp(− |x−y|2
4(r2+r)) ≤ K exp(− |x−y|2

4r ),

for some absolute constant K. On the other hand, on RN \ B(x, 1), we have∫
RN\B(x,1)

exp(− |x−y|2
4(r2+r)) dµt−r

∗ (y) ≤ exp(− 1
4(r2+r))M0.

Going back to (6.5), we are led to

1
rN−2

µt
∗(B(x, r)) ≤ K

r
N−2

2

∫
RN

exp(− |x−y|2
4r ) dµt−r

∗ +
1

r
N−2

2

exp(− 1
4(r2+r))M0.

When r goes to zero the conclusion follows.

6.3. Proof of Theorem 6. Letting (x, t) ∈ RN × (0,+∞) and 0 < r <
√

t,

we have

r2−Nµt−r2

∗ (B(x, λ(t − r2)r)) ≤ exp(
λ2(t − r2)

4
)Eµ((x, t), r).(6.6)

Consider therefore the function

η3(s) = exp(−λ2(s)/4)η2,

and assume next that, for some 0 < r <
√

t,

Eµ((x, t), r) ≤ η3(t − r2).

Then, by (6.6),
µt−r2

∗ (B(x, λ(t − r2)r)) ≤ η2

and the conclusion follows by Lemma 6.1.

6.4. Proof of Proposition 6.

Proof of i). In view of Corollary 1, we have

Σµ =
{
(x, t) ∈ RN × (0,+∞), ΘP

N−2(µ∗, (x, t)) ≥ η3(t)
}

.

Since η3(·) is continuous, and since ΘP
N−2(µ∗, ·) is upper semi-continuous by

Lemma 6.2, so is ΘP
N−2(µ∗, ·)−η3(·) on RN × (0,+∞). The conclusion follows.
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Proof of ii). We proceed in two steps. Firstly, we establish the estimate
for t = 1 and secondly we argue by scaling.

Step 1: The case t = 1. Let 0 < δ < 1
4 . Consider a standard (say

parallelepipedic) covering of RN such that

RN ⊆ ∪j∈IB(xj , δ), and B(xi,
δ

2
) ∩ B(xj ,

δ

2
) = ∅ for i �= j.

Set
Iδ =

{
i such that B(xi, δ) ∩ Σ1

µ �= ∅
}

.

For i ∈ Iδ, there exists some yi ∈ Σ1
µ ∩ B(xi, δ). Hence, by Lemma 6.1,

µ1−δ2

∗ (B(yi, λ(1 − δ2)δ)) > η2δ
2−N ,

and in particular

µ1−δ2

∗ (B(xi, (λ(1 − δ2) + 1)δ)) > η2δ
2−N .(6.7)

On the other hand, since the balls B(xi,
δ
2) are disjoint, the balls

B(xi, (λ(1 − δ2) + 1)δ)

cover at most K times RN , where K is a constant depending only on N, for
δ < 1

4 . Therefore, ∑
i∈Iδ

µ1−δ2

∗ (B(xi, (λ(1 − δ2) + 1)δ)) ≤ KM0.(6.8)

Combining (6.7) and (6.8) we obtain

�Iδ ≤ KM0δ
2−N .

Since by definition, HN−2(Σ1
µ) ≤ K lim supδ→0(�Iδ)δN−2, the conclusion fol-

lows.

Step 2: Invariance by scaling. For t0 > 0 fixed, consider the function

vε(x, t) = uε(
√

t0 x, t0t)

where ε = ε√
t0

, so that

vε(x, 1) = uε(
√

t0 x, t0),

vε verifies (PGL)ε, and Eε(v0
ε ) = t

2−N

2
0 Eε(u0

ε). When εn → 0, so does εn = εn√
t0

,

and
Σt

µ(u) = t
1
2
0 Σ

t

t0
µ (v)

(with obvious notation); in particular,

Σt0
µ (u) = t

1
2
0 Σ1

µ(v),
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so that
HN−2(Σt0

µ (u)) = t
N−2

2
0 HN−2(Σ1

µ(v)).

By Step 1 applied to vε and the corresponding measure Σµ(v), we obtain

HN−2(Σ1
µ(v)) ≤ K sup

n∈N

(
Eεn

(v0
εn

)
)
≤ Kt

2−N

2
0 M0.

Therefore,
HN−2(Σt0

µ (u)) ≤ KM0,

and the conclusion ii) follows.

Proof of iii). By i), we know that Σt
µ is closed, and hence measurable.

Therefore,

µt
∗ = µt

∗ (RN \ Σt
µ) + µt

∗ Σt
µ.(6.9)

We claim that there exists a smooth function g defined on the open set RN ×
(0,+∞) \ Σµ such that

µt
∗ (RN \ Σt

µ) = g · HN .

Indeed, let x ∈ RN \ Σt
µ. Then by definition

lim
r→0

Eµ((x, t), r) = 0,

so that for some r0 sufficiently small

Eµ((x, t), r0) ≤ η3(t − r2
0).

Therefore, by (6.6),

µ
t−r2

0∗ (B(x, λ(t − r2
0)r0) ≤ η2r

N−2
0 ,

and we infer from Theorem 5 that for all s ∈ [t − 1
16r2

0, t],

µs
∗ ≡ g(·, s)HN on B(x,

1
4
r0),

for some smooth function g. Notice that at this point, we may only locally
write g = |∇Φ∗|2/2, for some smooth Φ∗. We will see later that Φ∗ is global,
whereas g is obviously already globally defined on RN × (0,+∞) \ Σµ.

Since HN−2(Σt
µ) < +∞ we have HN (Σt

µ) = 0, and hence

µt
∗ (RN \ Σt

µ) = g(·, t)HN ,(6.10)

which establishes the claim.
Next, we deduce from Lemma 3 that µt

∗ Σt
µ is absolutely continuous with

respect to the measure HN−2, and by ii) that the measure HN−2 Σt
µ is finite.

We may therefore apply the Radon-Nikodym theorem, which yields

µt
∗ Σt

µ = Θ∗(x, t)HN−2 Σt
µ,(6.11)
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where Θ∗ is the Radon-Nikodym derivative. By Lemma 3, it verifies the bound

Θ∗(x, t) ≤ KM0t
2−N

2 .

When (6.9), (6.10) and (6.11) are combined, conclusion iii) follows and the
proof is complete.

6.5. Proof of Proposition 7. In this section, we shall use some very basic
estimates for the time derivative ∂tuε, namely

1
|log ε|

∫
RN×(0,T ]

∣∣∣∣∂uε

∂t

∣∣∣∣2 ≤ M0, for every T > 0.

Therefore, extracting possibly a further subsequence, we may assume that
there exists some nonnegative Radon measure ω∗ defined on RN × (0,+∞)
such that

1
|log ε|

∣∣∣∣∂uε

∂t

∣∣∣∣2 → ω∗ as measures,

so that
ω∗(RN × (0, T ]) ≤ M0.

Since we already know that Σµ ⊂ RN × (0, Tf + 1), where Tf is the constant
in Proposition 3 (after which vorticity has been wiped out), we restrict our
attention to this portion of space-time. Next, we introduce some subsets of
RN × (0, Tf + 1), which are concentration sets for the time derivative. Set, for
l ∈ N∗ and q ∈ R+∗ to be fixed later,

Al(ω∗) =

{
(x, t) ∈ RN × (0, Tf + 1), lim sup

r→0

1
rq

∫
B(x,lr)×[t−r2,t]

ω∗ ≥ 1

}
.

Concentration sets for bounded measures are classical in the literature, see e.g.
[56]. In a context similar to ours, they have been used in [43] in a related way.
The following shows that Al(ω∗) is small in some appropriate sense.

Lemma 6.3. For each l ∈ N∗,

Hq
P (Al(ω∗)) < + ∞,

where Hq
P denotes the q-dimensional Hausdorff measure with respect to the

parabolic distance dP ((x, t), (x′, t′)) = max(|x − x′|, |t − t′| 12 ).

Proof. Let δ > 0 be given, and fixed for the moment. For (x, t) ∈ Al(ω∗),
there exists r = r(x, t) < δ such that∫

B(x,lr)×[t−r2,t]
ω∗ ≥ rq.(6.12)

Clearly, ∪(x,t)∈Al(ω∗)ΓP
l (x, t, r(x, t)) covers Al(ω∗), where

ΓP
l (x, t, r(x, t)) = B(x, lr(x, t)) × (t − r(x, t)2, t).
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Notice that rP (ΓP
l ) ≤ lr, where rP denotes the radius with respect to dP .

By [25, 2.8.9], we may apply the Besicovitch covering theorem. In particular,
there exists an integer m(l, N) depending only on N and l, and there exists a
sub-covering of the form

Al(ω∗) ⊂
m(l,N)⋃

i=1

 ⋃
j∈Jδ

i

ΓP
l (xj , tj , r(xj , tj))

 ,

where for fixed i, the sets Γj = ΓP
l (xj , tj , r(xj , tj)) are disjoint. Consequently,

it follows from (6.12) that for each i = 1, . . . , m(l, N),∑
j∈Jδ

i

r(xj , tj)q ≤
∑
j∈Jδ

i

∫
Γj

ω∗ ≤
∫

RN×(0,Tf+1]
ω∗ ≤ C(M0).

Therefore,
m(l,N)∑

i=1

∑
j∈Jδ

i

rP (Γj)q ≤ m(l, N)lqC(M0).

Note that the constant on the right-hand side is independent of δ. Hence,
letting δ → 0, we obtain

Hq
P (Al(ω∗)) ≤ lim sup

δ→0

m(l,N)∑
i=1

∑
j∈Jδ

i

rP (Γj)q

 ≤ m(l, N)lqC(M0),

and the proof is complete.

We fix q = N − 3
2 . This choice has no specific geometrical meaning, but is

convenient as the following shows.

Corollary 6.1.

HN−1(∪l∈N∗Al(ω∗)) = 0.(6.13)

Hence, for almost every t > 0

HN−2(∪l∈N∗A
t
l(ω∗)) = 0,(6.14)

where At
l(ω∗) = Al(ω∗) ∩ RN × {t}.

Proof. Since, by the previous lemma, HN− 3
2

P (Al(ω∗)) < +∞, it follows
that

HN−1
P (Al(ω∗)) = 0.

On the other hand, parabolic balls are smaller than euclidian balls of the
same radius, so that the parabolic Hausdorff measure dominates the euclidian
Hausdorff measure. It follows that

HN−1(∪l∈N∗Al(ω∗)) = 0,

and the proof is complete.
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Next, we introduce the set

Ωω =
(
RN × (0, Tf + 1)

)
\

⋃
n∈N∗

Al(ω∗).

Lemma 6.4. Let χ ∈ C∞
0 (RN ). Then, for (x, t) ∈ Ωω,

lim
r→0

(
1

rN−2

∫
RN

χ(
y − x

r
) dµt

∗(y) − 1
rN−2

∫
RN

χ(
y − x

r
) dµt−r2

∗ (y)
)

= 0.

Proof. We need to go back first to the level of the functions uε. For
0 < r <

√
t, by Lemma 2.1 we have∫

RN×{t}

eε(uε)
|log ε|χ(

y − x

r
) dx −

∫
RN×{t−r2}

eε(uε)
|log ε|χ(

y − x

r
) dx

= −
∫

RN×[t−r2,t]

|∂tuε|2
|log ε| χ(y−x

r ) dxdt− 1
r|log ε|

∫
RN×[t−r2,t]

∂tuε∇uε·∇χ(y−x
r ) dxdt.

Let l ∈ N∗ be such that supp(χ) ⊂ B(l). We set Λ = B(x, lr) × [t − r2, t],
and estimate the last term in the previous identity by the Cauchy-Schwarz
inequality,

1
r|log ε|

∣∣∣∣∫
Λ

∂tuε∇uε · ∇χ(
y − x

r
)
∣∣∣∣ ≤ (∫

Λ

|∂tuε|2
|log ε|

) 1
2
(∫

Λ

|∇uε|2
r2|log ε|

) 1
2

‖∇χ‖∞.

We now let ε go to zero, therefore obtaining the inequality for measures

(6.15)
∣∣∣∣ 1
rN−2

∫
RN

χ(
y − x

r
) (dµt

∗ − dµt−r2

∗ )(y)
∣∣∣∣

≤ [
1

rN−2

∫
Λ

ω∗ +
(

1
rN−2

∫
Λ

ω∗

) 1
2
(

1
rN

∫
Λ

dµ∗

) 1
2

] ‖χ‖∞.

Obviously, we have

1
rN−2

∫
Λ

ω∗ ≤ r
1
2

(
1

rN− 3
2

∫
Λ

ω∗

)
.

On the other hand, it follows from the monotonicity that
1

rN

∫
Λ

dµ∗ ≤ C(l)t
2−N

2 M0.

Therefore, the right-hand side of (6.15) can be bounded by

R(r) = C(t, l, M0)‖χ‖C1r
1
4

[
1 +

1

rN− 3
2

∫
Λ

ω∗

]
.

Since by assumption (x, t) ∈ Ωω, letting r go to zero, we obtain

lim
r→0

R(r) ≤ 2C(t, l, M0)‖χ‖C1 lim
r→0

r
1
4 = 0,

and the proof is complete.
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In Lemma 6.4, we have assumed that χ has compact support. The fol-
lowing shows that the result still holds for χ = exp(− |x|2

4 ), which is of special
interest in view of the monotonicity!

Corollary 6.2. For (x, t) ∈ Ωω,

lim
r→0

(
1

rN−2

∫
RN

exp(− |x−y|2
4r2 ) dµt

∗(y) − 1
rN−2

∫
RN

exp(− |x−y|2
4r2 ) dµt−r2

∗ (y)
)

= 0.

(6.16)

In particular, for (x, t) ∈ Σµ ∩ Ωω, the following limit exists and verifies the
inequality

lim
r→0

1
rN−2

∫
RN

exp(−|x − y|2
4r2

) dµt
∗(y) ≥ η3(t).(6.17)

Proof. Let ζ be a smooth cut-off function such that 0 ≤ ζ ≤ 1, ζ ≡ 1 on
B(1) and ζ ≡ 0 outside B(2). For l ∈ N∗, consider the function ζl defined by
ζl(y) = ζ(y

l ), and set

χl(y) = exp(−|y|2
4

)ζl(y) for y ∈ RN .

We apply Lemma 6.4 to χl, so that

lim
r→0

(
1

rN−2

∫
RN

χl(
y − x

r
) dµt

∗(y) − 1
rN−2

∫
RN

χl(
y − x

r
) dµt−r2

∗ (y)
)

= 0.

(6.18)

On the other hand, we claim that, for every s ∈ [t − r2, t],

1
rN−2

∫
RN

[
exp(−|x − y|2

4r2
) − χl(

y − x

r
)
]

dµs
∗(y) ≤ Ks

2−N

2 M0 exp(− l2

8
).

(6.19)

Indeed, notice first that

exp(−|x − y|2
4r2

) − χl(
y − x

r
) exp(−|x − y|2

4r2
)(1 − ζl(

y − x

r
))

≤ exp(−|x − y|2
8r2

) exp(− l2

8
).

Secondly, by the monotonicity formula

1
(
√

2r)N−2

∫
RN

exp(−|x − y|2
8r2

) dµs
∗(y) ≤ 1

(s + 2r2)
N−2

2

M0,

and the claim follows.
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Note that the right-hand side of (6.19) does not depend on r, for r < 1
2

√
t.

Combining (6.18) and (6.17) we are led to

lim sup
r→0

∣∣∣∣ 1
rN−2

∫
RN

exp(−|x − y|2
4r2

) (dµt
∗ − dµt−r2

∗ )(y)
∣∣∣∣ ≤ Kt

2−N

2 M0 exp(− l2

8
).

Since l was arbitrary the conclusion follows.

We are now in position to present the proof of Proposition 7.

Proof of Proposition 7. For (x, t) ∈ Ωω, set

Θ̃N−2(µt
∗, x) = lim

r→0

1
rN−2

∫
RN

exp(−|x − y|2
4r2

) dµt
∗(y).

In view of Corollary 6.2, Θ̃N−2(µt
∗, x) exists on Ωω and

Θ̃(µt
∗, x) = ΘP

N−2(µ∗, (x, t)).(6.20)

If (x, t) /∈ Σµ, then ΘP
N−2(µ∗, (x, t)) = 0 so that (5) is obviously verified.

Therefore, we assume in the sequel that (x, t) ∈ Σµ ∩ Ωω. Arguing as for the
claim in Corollary 6.2, we obtain

1
(lr)N−2

∫
B(x,rl)

dµt
∗ ≥

K

lN−2

1
rN−2

∫
RN

exp(− |x−y|2
4r2 ) dµt

∗ − K exp(− l2

8 )t
2−N

2 M0.

Hence, when r goes to zero, and by (6.20),

Θ∗,N−2(µt
∗, x) ≥ K

lN−2

(
ΘP

N−2(µ∗, (x, t)) − KlN−2 exp(− l2

8
)t

2−N

2 M0

)
.(6.21)

In order to obtain (5), we invoke the fact that on Σµ, ΘP
N−2 ≥ η3(t), and

therefore we choose l sufficiently large so that

KlN−2 exp(− l2

8
)t

2−N

2 M0 ≤ 1
2
η3(t) ≤

1
2
ΘP

N−2(µ∗, (x, t)).

Going back to (6.21), with this choice of l, we obtain

Θ∗,N−2(µt
∗, x) ≥ K

2lN−2
ΘP

N−2(µ∗, (x, t)),

and the proof is complete.

6.6. Proof of Proposition 8. We turn finally to the proof of Proposition 8.
Once more, the starting point is Corollary 6.2. Let (x, t) ∈ Ωω be given and
fixed throughout. We consider the vector-space

F =
{

g ∈ L∞(R+, R) such that I(g) = lim
r→0

Ir(g) exists and is finite
}

,

where for r > 0, Ir(g) = 1
rN−2

∫
RN g( |x−y|

r ) dµt
∗(y). Notice that Ir and I are lin-

ear forms on F. With this notation, the statement of Proposition 8 is precisely
that the characteristic function 1[0,1] of the interval [0, 1] belongs to F. In order
to establish that fact, we derive first some basic properties of F.
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Lemma 6.5. i) For every s > 0, the function es defined on R+ by es(l) =
exp(−l2s) belongs to F.

ii) When A(s) = I(es), then

A(s) = A(1)s
2−N

2 .(6.22)

Proof. The case s = 1
4 follows immediatly from Corollary 6.2. For the

general case, we argue by scaling. Indeed, we have for any s > 0,

I(e 1
4
) = lim

r→0

1
rN−2

∫
RN

exp(−|x − y|2
4r2

) dµt
∗(y)

= lim
r→0

(
2
√

s

r
)N−2

∫
RN

exp(−|x − y|2
r2

s) dµt
∗(y)

= (4s)
N−2

2 lim
r→0

1
rN−2

∫
RN

es(
|x − y|

r
) dµt

∗(y)

= (4s)
N−2

2 I(es),

so that I(es) exists and equals (4s)
2−N

2 I(e 1
4
).

Statement ii) then follows from the previous relation.

Remark 6.1. The argument above shows more generally that if g belongs
to F, the the scaled function gs defined by gs(l) = g(

√
s l) belongs also to F.

Lemma 6.6. For every k ∈ N, the function l �→ l2k exp(−l2) belongs to F.

Proof. The case k = 0 follows from Lemma 6.5, with s = 1. We provide
first a detailed proof for the case k = 1. First note that by (6.22) A is smooth
on R+

∗ . We are going to prove that for s > 0,

A′(s) = lim
r→0

1
rN−2

∫
RN

∂
∂ses(l)dµt

∗(y) = lim
r→0

− 1
rN−2

∫
RN

|x−y|2
r2 exp(− |x−y|2

r2 s)dµt
∗(y),

(6.23)

and in particular that the limit on the right-hand side does exist.
Let s > 0 and ∆s ∈ R so that s + ∆s > 0. We have, for l ∈ R+,

es+∆s(l) − es(l) = − exp(−l2s)(1 − exp(−l2∆s)),

and by Taylor expansion, for any k ∈ R+,

|1 − exp(−k) − k| ≤ k2

2
.

Hence, for any y ∈ RN , we have (when k = |x−y|2
r2 ∆s)

∣∣∣(es+∆s − es)(
|x−y|

r ) + exp(− |x−y|2
r2 s) |x−y|2

r2 ∆s
∣∣∣ ≤ exp(− |x−y|2

r2 s) |x−y|4
r4 (∆s)2

≤ C(s) exp(− |x−y|2
2r2 s)(∆s)2.
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Integrating against the measure µt
∗ on RN , we are led to

1
rN−2

∫
RN

[
es+∆s − es

∆s
(
|x − y|

r
) + exp(−|x − y|2

r2
s)
|x − y|2

r2

]
dµt

∗

≤ K
∆s

rN−2

∫
RN

exp(−|x − y|2
2r2

s)dµt
∗ ≤ C(s)M0∆s.

Note that the right-hand side side does not depend on r; therefore when
∆s → 0, identity (6.23) follows. Applying (6.23) with s = 1, we deduce
that the function l �→ l2 exp(−l2) belongs to F. A similar computation shows
that

dk

dsk
A(s) = lim

r→0

(−1)k

rN−2

∫
RN

|x − y|2k

r2k
exp(−|x − y|2

r2
s)dµt

∗(y),(6.24)

so that the function l �→ l2k exp(−l2) belongs to F.

Lemma 6.7. The set

W =
{
g ∈ C2

c (R+) such that g′(0) = 0
}

is included in F.

Proof. For a function g defined on R+, we consider its extension g̃ to R so
that g̃ is even. In particular, g belongs to W if and only if g̃ belongs to C2

c (R).
Next, for k ∈ N, we consider the subset Vk of L2(R) defined by

Vk = Vect
{
l �→ l2j exp(−l2), j ∈ {0, . . . , k}

}
.

In view of Lemma 6.6 the restriction of elements of Vk to R+ belongs to F. We
are going to show that elements of W can be suitably approximated by elements
of Vk (as k → +∞), so that the conclusion will follow. For that purpose, we
recall some well-known facts concerning Hermite polynomials, and which enter
directly in our argument.

Hermite polynomials. For m ∈ N, the Hermite polynomials Hm can be
expressed by Rodrigues’ formula

Hm(l) = (−1)m exp(l2)
dm

dlm
exp(−l2).

The degree of Hm is exactly m, and Hm is even if m is even, odd if m is odd.
Set, for l ∈ R,

ψm(l) = cmHm(l) exp(− l2

2
), where cm = (

√
π2mn!)−

1
2 .

The function ψm verifies the first order differential relations

(l − d

dl
)ψm =

√
2(m + 1)ψm+1, (l +

d

dl
)ψm =

√
2mψm−1,
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so that for m ≥ 0,

√
2

d

dl
ψm =

√
mψm−1 −

√
m + 1ψm+1,(6.25)

and also,

− d2

dl2
ψm + l2ψm = 2(m + 1)ψm(6.26)

(i.e. the ψm are eigenfunctions of the harmonic oscillator). Moreover, the family
{ψm}m∈N is a Hilbert basis of L2(R). For f ∈ L2(R), set cm(f) = 〈f, ψm〉L2(R).

If f belongs to C2
c (R), then we have, by (6.26),

cm(f) =
1

2(m + 1)
〈− d2

dl2
ψm + l2ψm, f〉 =

1
2(m + 1)

〈ψm,− d2

dl2
f + l2f〉,

(6.27)

and by (6.25), for m ≥ 1

cm(
df

dl
) = 〈ψm,

df

dl
〉 = 〈−dψm

dl
, f〉 =

√
m + 1

2
cm+1(f) −

√
m

2
cm−1(f).(6.28)

Let Pm be the orthogonal projection (for the L2-scalar product) onto the space
Wm = vect0≤j≤m{ψm}. For f ∈ C2

c (R), we have by the Bessel-Parseval identity
and (6.27)

‖f − Pmf‖2
L2 =

∑
j≥m+1

c2
j (f)≤ 1

4(m + 1)2
∑

j≥m+1

c2
j (−f ′′ + l2f)(6.29)

≤ 1
4(m + 1)2

[
‖f ′′‖2

L2 + ‖l2f‖2
L2

]
.

Since, by (6.25), we have

d

dl
(f − Pm(f)) =

∑
j≥m+1

cj(f)
dψm

dl

√
2

∑
j≥m+1

cj(f)
[√

jψj−1 −
√

j + 1ψj+1

]
=

√
2

∑
j≥m

[√
j + 1cj+1(f) −

√
jcj−1(f)

]
ψj −

√
mcm−1(f)ψm,

we deduce similarily that

‖ d

dl
(f − Pm(f))‖2

L2 ≤ K
∑
j≥m

jc2
j (f) ≤ K

m

[
‖f ′′‖L2 + ‖l2f‖L2

]
.(6.30)

Finally combining (6.29) and (6.30),

‖f − Pm(f)‖∞ ≤ K‖f − Pm(f)‖H1 ≤ K√
m

[
‖f ′′‖L2 + ‖l2f‖L2

]
.(6.31)
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Proof of Lemma 6.7 completed. Let g ∈ W be given, and consider the
function f defined for l ∈ R by f(l) = g̃(l) exp( l2

2 ), so that f ∈ C2
c (R) and is

even. For m ∈ N∗, set hm = f −Pm(f) and gm = Pm(f)e 1
2

= Pm(f) exp(− l2

2 ).
Since f is even, Pm(f) is even also, and consequently gn is even, of the form
gm(l) = Qm(l) exp(−l2), where Qm is an even polynomial of degree less than
or equal to m. In view of Lemma 6.6, the restriction of gm to R+ belongs to F.

Since g = gm + hme 1
2
, we may write for 0 < r < 1

Ir(g) = Ir(gm) + Ir(hme 1
2
).(6.32)

By (6.31), we have

‖hm‖∞ ≤ C(g)√
m

,

where C(g) is independent of m, so that for 0 < r < 1∣∣∣Ir(hme 1
2
)
∣∣∣ ≤ C(g)√

m
.(6.33)

On the other hand, since gm belongs to F, Ir(gm) → I(gm), for all m ∈ N.

We claim that the sequence {I(gm)}m∈N converges as m → +∞. Indeed, for
k ≥ m, we have by (6.32) and (6.33), for 0 < r < 1,

|Ir(gk) − Ir(gm)| ≤ C(g)√
m

.

Letting r → 0, we deduce that

|I(gk) − I(gm)| ≤ C(g)√
m

so that (I(gm))m∈N is a Cauchy sequence and hence converges to a limit L.

We finally prove that Ir(g) → L as r → 0. Indeed, let δ > 0 be given. In view
of (6.33) we may choose m0 such that |Ir(hm0e 1

2
)| ≤ δ

4 for 0 < r < 1, and

|I(gm0) − L| ≤ δ
4 . Going back to (6.32) we have therefore, for 0 < r < 1,

|Ir(g) − L| ≤ |Ir(gm0) − I(gm0)| +
δ

2
.

Choosing r0 > 0 such that for 0 < r < r0, |Ir(gm0) − I(gm0)| ≤ δ
2 , we deduce

that for 0 < r < r0,

|Ir(g) − L| ≤ δ

2
.

Since δ was arbitrary, it follows that Ir(g) converges to L as r → 0, and hence
g belongs to F.

Proof of Proposition 8. In view of the above discussion, we only need
to prove that the caracteristic function 1[0,1] of the interval [0, 1] belongs to F.

Let (gn)n∈N be an increasing sequence of functions defined on R+ verifying

gn ∈ C2
c (R+), g′n(0) = 0, gn ≤ 1[0,1], and ǧn ≥ 1[0,1],
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where ǧn(l) = n+1
n gn( nl

n+1). Note that by Lemma 6.7, gn ∈ F and ǧn ∈ F for
all n ∈ N. Let

L = lim
n→+∞

I(gn) = sup
n∈N

I(gn).(6.34)

By Remark 6.1, we also have

lim
n→+∞

I(ǧn) = lim
n→+∞

n + 1
n

(
n

n + 1
)

2−N

2 I(gn) = L.(6.35)

Finally, since gn ≤ 1[0,1] ≤ ǧn, for each 0 < r < 1 and n ∈ N we have

Ir(gn) ≤ Ir(1[0,1]) ≤ Ir(ǧn).(6.36)

Combining (6.34), (6.35) and (6.36) we obtain L = limr→0 Ir(1[0,1]), and the
proof is complete.
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