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Convergence of the parabolic

Ginzburg-Landau equation to motion by
mean curvature

By F. BETHUEL, G. ORLANDI, and D. SMETS*

Abstract

For the complex parabolic Ginzburg-Landau equation, we prove that,
asymptotically, vorticity evolves according to motion by mean curvature in
Brakke’s weak formulation. The only assumption is a natural energy bound
on the initial data. In some cases, we also prove convergence to enhanced
motion in the sense of Ilmanen.

Introduction

In this paper we study the asymptotic analysis, as the parameter € goes to
zero, of the complex-valued parabolic Ginzburg-Landau equation for functions
ue : RV x Rt — C in space dimension N > 3,

Oug

1
— Aue = Su(1— |uel? RY x (0
(PGL). 5 U 52u ( lue|®)  on x (0, +00),
us(z,0) = ud(z) for z € RV,

This corresponds to the heat-flow for the Ginzburg-Landau energy

2
where V. denotes the nonconvex potential
22

V() = Ll
This energy plays an important role in physics, and has been studied exten-
sively from the mathematical point of view in the last decades. It is well known
that (PGL). is well-posed for initial data in H,._ with finite Ginzburg-Landau
energy E.(ul). Moreover, we have the energy identity

(1) Eg(us(-,Tz))+/:F1T2 /RN 2

(l‘,t)d:ﬂdt:gg(ug(-,Tl)) V0 STl STQ
* This work was partially supported by European RTN Grant HPRN-CT-2002-00274
“Front, Singularities”.

2
E(u) :/ ec(u) dx :/ [|Vu| + Ve(u)| dx for u : RY — C,
RN RW

Oue
ot
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We assume that the initial condition u? verifies the bound, natural in this
context,
(Ho) E-(u?) < Molloge],

where My is a fixed positive constant. Therefore, in view of (I) we have
(IT) E(uc(-,T)) < E(ud) < Mylloge|  for all T > 0.

The main emphasis of this paper is placed on the asymptotic limits of the
Radon measures j. defined on RY x Rt by

ee(ue(xa t))

dx dt,
|log e

pre(x,t) =

and of their time slices ul defined on RY x {t} by

ee(us(z,t))

d
llog £ “

pt(x) =

so that p. = pldt. In view of assumption (Hp) and (II), we may assume, up
to a subsequence ¢, — 0, that there exists a Radon measure u, defined on
RN x R* such that

e, — [ as measures.

Actually, passing possibly to a further subsequence, we may also assume’ that
ph = pl as measures on RY x {t}, for all t > 0.

Our main results describe the properties of the measures yi!.. We first have :

THEOREM A. There exist a subset ¥, in RN x R}, and a smooth real-
valued function @, defined on RN x RY such that the following properties hold.

i) 3, is closed in RN x RY and for any compact subset K C RN x R\ Xy
lue, (x,t)| — 1 uniformly on K as n — +o0.
ii) Foranyt >0, =%,N RN x {t} satisfies
HN2 (%) < K M.
iii) The function @, satisfies the heat equation on RY x RF.

iv) For each t > 0, the measure il can be exactly decomposed as

o [V

(I11) T4 5 HY + O4(z, tyHN 2 LY,

where O, (-, t) is a bounded function.

1See Lemma 1.
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v) There exists a positive function n defined on R} such that, for almost
every t > 0, the set X, is (N — 2)-rectifiable and

pe(B(x,r)) (o),

O.(x,t) = On_a(,z) = 1i
(z,t) N—2(Hs @) 7}_{% WN_or VN2

for HN=2 ae. x € ¥

Remark 1. Theorem A remains valid also for N = 2. In that case EZ is
therefore a finite set.

In view of the decomposition (III), u% can be split into two parts. A diffuse
part |V®,|?/2, and a concentrated part

vl =0, (z, t)yHN 2 I_ZZ.

By iii), the diffuse part is governed by the heat equation. Our next theorem
focuses on the evolution of the concentrated part v! as time varies.

THEOREM B. The family (Vi)
of Brakke [15].

>0 8 @ mean curvature flow in the sense

Comment. We recall that there exists a classical notion of mean curvature
flow for smooth compact embedded manifolds. In this case, the motion corre-
sponds basically to the gradient flow for the area functional. It is well known
that such a flow exists for small times (and is unique), but develops singularities
in finite time. Asymptotic behavior (for convex bodies) and formation of sin-
gularities have been extensively studied in particular by Huisken (see [29], [30]
and the references therein). Brakke [15] introduced a weak formulation which
allows us to encompass singularities and makes sense for (rectifiable) measures.
Whereas it allows to handle a large class of objects, an important and essential
flaw of Brakke’s formulation is that there is never uniqueness. Even though
nonuniqueness is presumably an intrinsic property of mean curvature flow when
singularities appear, a major part of nonuniqueness in Brakke’s formulation is
not intrinsic, and therefore allows for weird solutions. A stronger notion of
solution will be discussed in Theorem D.

More precise definitions of the above concepts will be provided in the
introduction of Part II.

The proof of Theorem B relies both on the measure theoretic analysis of
Ambrosio and Soner [4], and on the analysis of the structure of j,, in particular
the statements in Theorem A. In [4], Ambrosio and Soner proved the result in
Theorem B under the additional assumption

t
: P (B(z, T
(AS) hr:lj(l)lp % >, for pl-a.e z,
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for some constant n > 0. In view of the decomposition (III), assumption (AS)
holds if and only if |[V®,|? vanishes; i.e., there is no diffuse energy. If |V, |?
vanishes, it follows therefore that Theorem B can be directly deduced from [4]
Theorem 5.1 and statements iv) and v) in Theorem A.

In the general case where |V®,|? does not vanish, their argument has to
be adapted, however without major changes. Indeed, one of the important
consequences of our analysis is that the concentrated and diffuse energies do
not interfere.

In view of the previous discussion, one may wonder if some conditions on
the initial data will guarantee that there is no diffuse part. In this direction,
we introduce the conditions

(Hy) w=1 inRY\ B(Ry)
for some R; > 0, and

(Hz) HUSHH%(B(Rl)) < M.

THEOREM C. Assume that u® satisfies (Hp), (Hy) and (Hy). Then |V®,|?
vanishes, and the family (,ufk)
Brakke.

>0 s a mean curvature flow in the sense of

In stating conditions (H;) and (Hg) we have not tried to be exhaustive,
and there are many ways to generalize them.

We now come back to the already mentioned difficulty related to Brakke’s
weak formulation, namely the strong nonuniqueness. To overcome this diffi-
culty, Ilmanen [33] introduced the stronger notion of enhanced motion, which
applies to a slightly smaller class of objects, but has much better uniqueness
properties (see [33]). In this direction we prove the following.

THEOREM D. Let My be any given integer multiplicity (N-2)-current wi-
thout boundary, with bounded support and finite mass. There exists a sequence
(u)eso and an integer multiplicity (N-1)-current M in RN x R* such that

i) OM = Moy, if) pd = m Mo,
and the pair (/\/l, %ui) is an enhanced motion in the sense of Ilmanen [33].

Remark 2. Our result is actually a little stronger than the statement of
Theorem D. Indeed, we will show that any sequence u? satisfying Ju? — 7. M
and pd = | Mo| gives rise to an Ilmanen motion.?

2 Ju? denotes the Jacobian of ul (see the introduction of Part IT).
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The equation (PGL). has already been considered in recent years. In par-
ticular, the dynamics of vortices has been described in the two dimensional case
(see [34], [38]). Concerning higher dimensions N > 3, under the assumption
that the initial measure is concentrated on a smooth manifold, a conclusion
similar to ours was obtained first on a formal level by Pismen and Rubinstein
[46], and then rigorously by Jerrard and Soner [35] and Lin [39], in the time
interval where the classical solution exists, that is, only before the appear-
ance of singularities. As already mentioned, a first convergence result past
the singularities was obtained by Ambrosio and Soner [4], under the crucial
density assumption (AS) for the measures pl discussed above. Some impor-
tant asymptotic properties for solutions of (PGL). were also considered in [42],
[55], [9].

Beside these works, we had at least two important sources of inspiration
in our study. The first one was the corresponding theory for the elliptic case,
developed in the last decade, in particular in [7], [53], [12], [48], [40], [41], [8],
[36], [13], [10]. The second one was the corresponding theory for the scalar
case (i.e. the Allen-Cahn equation) developed in particular in [19], [23], [20],
[24], [32], [51]. The outline of our paper bears some voluntary resemblance
to the work of Ilmanen [32] (and Brakke [15]): to stress this analogy, we will
try to adopt their terminology as far as this is possible. In particular, the
Clearing-Out Lemma is a stepping-stone in the proofs of Theorems A to D.

We divide the paper into two distinct parts. The first and longest one deals
with the analysis of the functions wu., for fixed . This part involves mainly PDE
techniques. The second part is devoted to the analysis of the limiting measures,
and borrows some arguments of Geometric Measure Theory. The last step of
the argument there will be taken directly from Ambrosio and Soner’s work [4].
The transition between the two parts is realized through delicate pointwise
energy bounds which allow to translate a clearing-out lemma for functions
into one for measures.

Acknowledgements. When preparing this work, we benefited from enthu-
siastic discussions with our colleagues and friends Raphaél Danchin, Thierry
De Pauw and Olivier Glass. We wish also to thank warmly one of the referees
for his judicious remarks and his very careful reading of the manuscript.
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Part I: PDE Analysis of (PGL),

Introduction

In this part, we derive a number of properties of solutions u. of (PGL).,
which enter directly in the proof of the Clearing-Out Lemma (the proof of
which will be completed at the beginning of Part II). We believe however
that the techniques and results in this part have also an independent interest.
Throughout this part, we will assume that 0 < € < 1. Unless explicitly stated,
all the results here also hold in the two dimensional case N = 2. In our analysis,
the sets

V. = {(a:,t) € RY x (0, +00), |uc(z, )| < %}

as well as their time slices V! = V. N (RY x {t}) will play a central role. We
will loosely refer to V. as the vorticity set.

The two main ingredients in the proof of the Clearing-Out Lemma are a
clearing-out theorem for vorticity, as well as some precise pointwise (renormal-
ized) energy bounds.

1. Clearing-out and annihilation for vorticity
The main result here is the following.

THEOREM 1. Let 0 < ¢ < 1, u. be a solution of (PGL). with E.(u?) <
+o00, and o > 0 given. There exists n1 = (o) > 0 depending only on the
dimension N and on o such that if

2
(1) / eg(ug) exp(—%) dx < nllogel,
RN
then
(2) lue(0,1)] >1—o0.

Note that here we do not need assumption (Hp). This kind of result was
obtained for N = 3 in [42], and for N = 4 in [55]. The corresponding result
for the stationary case was established in [12], [53], [48], [40], [41], [8]. The
restrictions on the dimension in [42], [55] seem essentially due to the fact
that the term % in (PGL), is treated there as a perturbation of the elliptic
equation. Instead, our approach will be more parabolic in nature. Finally, let

us mention that a result similar to Theorem 1 also holds in the scalar case,

3In the scalar case, such a set is often referred to as the “interfaces” or “jump set”.
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and enters in Ilmanen’s framework (see [32, p. 436]): the proof there is fairly
direct and elementary.

Our (rather lengthy) proof of Theorem 1 involves a number of tools, some
of which were already used in a similar context. In particular:

e A monotonicity formula which in our case was derived first by Struwe ([52],
see also [21]), in his study of the heat-flow for harmonic maps. Similar mono-
tonicity formulas were derived by Huisken [30] for the mean curvature flow,
and Ilmanen [32] for the Allen-Cahn equation.

e A localization property for the energy (see Proposition 2.4) following a result
of Lin and Riviere [42] (see also [39]).

e Refined Jacobian estimates due to Jerrard and Soner [36],

and many of the techniques and ideas that were introduced for the stationary
equation.

Equation (PGL). has standard scaling properties. If w. is a solution to
(PGL)., then for R > 0 the function

ve(z,t) = u.(Rx, R*t)

is a solution to (PGL)g-1.. We may then apply Theorem 1 to v.. For this
purpose, define, for z, = (z4,t.) € RV x (0, +00) the scaled weighted energy,
taken at time t = t,,

- - 1
Ewete, 24, R) = Ep (24, R) = N2 /RN ec(ue(x, ty)) exp(—

| — 2.

m M

We have the following

PROPOSITION 1. Let T > 0, 7 € RN, and set zp = (zp,T). Assume u.
is a solution to (PGL). on RN x [0,T) and let R > /2e.* Assume moreover

(3) Ewel(zr, R) < mi(o)llogel;
then
(4) lus(zp, T+ R*)|>1—0.

The condition in (3) involves an integral on the whole of RY. In some
situations, it will be convenient to integrate on finite domains. From this
point of view, assuming (Hp) we have the following (in the spirit of Brakke’s
original Clearing-Out [15, Lemma 6.3], but for vorticity here, not yet for the

energy!).

“The choice v/2¢ is somewhat arbitrary, the main purpose is that |log | is comparable to
[log(e/R)|. It can be omitted at first reading.
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PROPOSITION 2. Let u. be a solution of (PGL). wverifying assumption
(Ho) and o > 0 be given. Let 7 € RN, T > 0 and R > \/2c. There ex-
ists a positive continuous function \ defined on R} such that, if

v , m (o)
T.R) = sy—=r—
i(xr, T, R) RN=2|log ¢ /B(:cT,/\(T)R) ?

ec(us(,T)) <

then
R
lue(z,t)| >1—0 forte [T+ Ty, T+ T andeB(azT,?).
Here Ty and Ty are defined by
21)
m(o)

Remark 1. It follows from the proof that A(7") diverges as 17" — 0. More
precisely,

TO = maX(QE, < > o R2), Tl = R2.

N -2
2
if N > 3. A slightly improved version will be proved and used in Section 4.1.

XNT) ~ llogT| asT — 0,

Theorem 1 and Propositions 1 and 2 have many consequences. Some
are of independent interest. For instance, the simplest one is the complete
annihilation of vorticity for N > 3.

PROPOSITION 3. Assume that N > 3. Let u. be a solution of (PGL).
verifying assumption (Hy). Then

1 M,
(5) |ue(z,t)] > 3 for anyt > Ty = <—O> and for all z € RY,
m
where n1 = 771(%).

In particular, there exists a function ¢ defined on RY x [Ty, +00) such
that

ue = pexp(ip) p = |ug|.
The equation for the phase ¢ is then the linear parabolic equation
dp
(6) PP — div(p?Ve) = 0.

From this equation (and the equation for p) one may prove that, for fixed ¢,
(7) E(us(+,t)) — 0 as t — 400,
and moreover,

(8) ue(+,t) = C ast — 400.
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Remark 2. The result of Proposition 3 does not hold in dimension 2. This
fact is related to the so-called “slow motion of vortices” as established in [38]:
vortices essentially move with a speed of order [loge|~!. Therefore, a time
of order |loge| is necessary to annihilate vorticity (compared with the time
T = O(1) in Proposition 3). On the other hand, long-time estimates, similar
to (7) and (8) were established, for N = 2, in [5].

2. Improved pointwise energy bounds

Assume for a moment that |us| = 1 on RY x [0, +0c) (and in particular
V. = (). Then, we may write u. = exp(i¢.) and @, is determined, up to an
integer multiple of 27, by the linear parabolic statement

3_f_A(p:0 on RV x (0, +00)
(9) { (’2(3770) = p:(7,0) on RY x {0}.

By standard regularization properties of the heat equation, we deduce that for
any compact K C RV x (0, 00),

‘V(P6|2 0
Ve|7(x) < C(K) 2 ——(2,0)dz = C(K)&(u),
so that
1 2
lim—N/ Ve < MoC(t), VxRN, vt>0.
=01 Jparxiy logel ~

In particular, going back to the discussion of the main introduction of this
paper, it means that the measures pl are absolutely continuous with respect
to the Lebesgue measure LV (RY), i.e. ul = g(x, t)HY for some diffuse density
g. Since (9) is linear, one cannot expect that g vanishes without additional
assumptions, for instance compactness assumptions on the initial data u? (see
[17] for related remarks in the elliptic case).

In the general situation, it is of course impossible to impose |us| = 1.
However, on the complement of V., |uc| > % and the situation is similar. More
precisely, we have

THEOREM 2. Let B(xg, R) be a ball in RY and T > 0, AT > 0 be given.
Consider the cylinder

Zo, ) [T7T+AT]

B(
There exists a constant 0 < o < % and 8 > 0 depending only on N, such that
of
(10) lus| >1—0o on A,
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then

(1) ec(u)@,t) < C) [ exfue)

for any (x,t) € As = B(xo, &) x [T + &L, T + AT]. Moreover,

(12) clu) =YL L in s,

where the functions @. and k. are defined on A% and verify

(13) a;? — AP, =0 in A,

(14) HHaHLOC(A%) < C(M)E, \\V@H%w(/\%) < C(A)Mo|logel.

Remark 3. Since |uc| > % on A, we may write u. = p. exp(ip:) where p. =
|ue| and where @, is a smooth real-valued function. The proof of Theorem 2
shows actually that

(15) Ve — VB || pea,) < C(A)ER.

[N

The result of Theorem 2 is reminiscent of a result by Chen and Struwe
[21] (see also [53], [35]) developed in the context of the heat flow for harmonic
maps. This technique is based on an earlier idea of Schoen [49] developed in
the elliptic case. Note however that a smallness assumption on the energy is
needed there. This is not the case for Theorem 2, where even a divergence of
the energy (as |loge|) is allowed. We would like also to emphasize that the
proofs of Theorems 1 and 2 are completely disconnected.

Combining Theorem 1 and Theorem 2, we obtain the following immediate
consequence.

PROPOSITION 4. There exist an absolute constant 1o > 0° and a positive
function X defined on RY such that if, for x € RN, t >0 and r > \/2¢,

/ e-(us) < mor™2|logel,
B(z,A(t)r)

then | 2
Vo
ec(ue) = 26 + ke
in Ai(:v,t,r) = B(z, §)x[t+ 212, t+r?], where D. and k. are as in Theorem 2.

In particular,

es(u
e = |180(gj < C(t,r) on Ai(x,t,r).

®The constant 72 is actually defined as 72 = 11 (), where o is the constant in Theorem 2
and 7 is the function defined in Proposition 2.
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3. Identifying sources of noncompactness

In the previous discussion, we identified one possible source of noncom-
pactness, namely oscillations in the phase. However, the analysis was carried
out on the complement of V., i.e., away from vorticity. On the vorticity set
on the other hand, u. may vanish, and this introduces some new contribution
to the energy. Nevertheless, we will show that this new contribution is not a
source of noncompactness (at least for some weaker norm). More precisely,

THEOREM 3. Let K C RY x (0,+00) be any compact set. There exist a
real-valued function ¢. and a complex-valued function we, both defined on a
neighborhood of K, such that

1. ue = we exp(ig:) on K,
2. ¢ verifies the heat equation on IC,

| Ve(z,t)] < C(K)\/ Mplloge|  for all (z,t) € K,

4. HVw6||Lp <C(p, K), forcmy1<p<NJr1

w

Here, C(K) and C(p,K) are constants depending only on K, and K, p (and
My) respectively.

The proof extends an argument of [9] (see also [6] for the elliptic case),
and relies once more on the refined Jacobian estimates of [36].

We would like to emphasize once more that Theorem 3 provides an exact
splitting of the energy in two different modes:

- The topological mode, i.e. the energy related to we,
- The linear mode, i.e. the energy of ¢..

More precisely, it follows easily from Theorem 3 that for any set K’ cC K, we

have //eg(ug)://eg(%H//|V<§€|2+o<\/@).

We would like to stress that a new and important feature of Theorem 3 is that
¢, is defined and smooth even across the singular set, and verifies globally
(on K) the heat flow. By Theorem A, this fact will be determinant to define
the function @, globally. For Theorem B, it will allow us to prove that the
linear mode does not perturb the topological mode, which undergoes its own
(Brakke) motion.

One possible way to remove the linear mode is to impose additional com-
pactness on the initial data. We will not try to find the most general as-
sumptions in that direction, but instead give simple conditions which keep,
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however, the essential features of the problem. Assume next that ul verifies
the additional conditions

(Hy) wW=1 inRY\ B(Ry)
for some R; > 0, and

0
(Hz) HUeHH%(B(Rl)) < Mp.
Then a stronger conclusion holds.

THEOREM 4. Assume that ul verifies (Hy), (H1) and (Hs). Then for any
1<p< % and any compact set I C RN x (0, 400),

Vel Loy < Clp, K),
where C(p,K) is a constant depending only on p, IC, My and M.

Theorem 4 is of course of particular interest if one is interested in the
asymptotic behavior of the function u. itself. We will not carry out this analysis
here (see [9] for a related discussion for boundary value problems on compact
domains).

Combining Theorem 1, Theorem 2 and Theorem 4 we finally derive the
following, in the same spirit as Proposition 4.

PROPOSITION 5. Assume that (Hp),(Hy) and (Hz) hold. There exist an
absolute constant ny > 0% and a positive function \ defined on Ry such that if,
fora:eRN, t>0 andr>\/%,

(16) / ee(uz) < mar[loge],
B(z,\(t)r)

then
ee(ue) < C(Mo, Mg)r*2

) = T 63,.2 2
in A%(x,t,r) = B(x,g) x [t+ ggre t+1r7].

1. Pointwise estimates

In this section we recall (standard) pointwise parabolic estimates. Al-
though these estimates are presumably well known to the experts, we are
not aware of precise statements in the (Ginzburg-Landau) literature. For the
reader’s convenience, we therefore provide complete proofs.

SHere n2 = n1(0) is the same constant as in Proposition 4.
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PROPOSITION 1.1. Let u. be a solution of (PGL). with E-(u) < +oo.
Then there exists a constant K > 0 depending only on N such that, for t > 2
and x € RN 7

|U5(£L‘,t)| 337 ‘VU€($>t)| < ’ ‘—
Proof. It is convenient to make the following change of variable, with
Uz, t) = ue(ex, %),

so that the function U verifies
oU

(1.1) o ~AU=U( - U%) on RN x [0, +00).
It is therefore sufficient to prove that for t > 1 and = € RV,
ou

We begin with the L estimate for U. Set
o(z,t) = |U(z,t)]* — 1.

Multiplying equation (1.1) by U we are led to the equation for o,

(1.2) aa—j — Ao +2|VU|? +2(0 + 1)o = 0.
Consider next the ODE
(1.3) y'(t) +2(y(t) + y(t) =0,

and notice that (1.3) possesses an explicit solution yo which blows-up as ¢ tends
to zero, namely

exp(—2t)
t) = ——— fort > 0.
yo(®) 1 — exp(—2t) ort =
We claim that
(1.4) o(t,x) < yo(t), for all t > 0 and = € RY,

so that, in particular,
1
U(z,t)]? = o(x,t) +1<9 forall t > 2 and z € RY.

Indeed, set 6(z,t) = yo(t). Then,

06 N . -
E—AO"FQ(O’-{-l)O’—O?

"Note in particular that K is independent of the initial data.



CONVERGENCE OF THE PARABOLIC GL-EQUATION 51

and therefore by (1.2),
0
ot

Note that 1+ ¢ + & = |U|?> + & > 0. The maximum principle implies that

(6—0)—A(G—0)+2(6—0)(1+5+0)>0.

o(x,t) —o(x,t) >0 for all t > 0 and z € RY,

which proves the claim (1.4).

We next turn to the space and time derivatives. Since |U(z,t)| < 3 for
t > 1/4, we have
1
U1 —|U?)| < 24 for ¢ > .
Let p > N + 1 be fixed. It follows from the standard regularity theory for
the linear heat equation (see e.g. [37]) that for each compact set F C RV x
[1/4,400) we have

10:U | o7y < K(F)  and | D*U||or) < K(F).
In particular, by the Sobolev embedding and the L bound for U we obtain

(1.5) [Ullco.o e x[1/2,400)) < K,
where o = (1 — N/p)/2. It follows from (1.5) that moreover

JU(L = UP)lleo.e @y x[1/2,400)) < K.
Invoking the C%“ regularity theory (see e.g. [26]), we obtain

||U||Clv°‘/2(RN><[1,+oo)) <K,

and the proof is complete. O
Remark 1.1. It follows from the proof of Proposition 1.1 that the bound
hMLﬂF§1+CmM—§)
holds for ¢ > £2.
We have the following variant of Proposition 1.1.

PROPOSITION 1.2. Assume u. is a solution of (PGL). such that E.(u?) <
+ oo and that for some constants Co > 1, C1 > 0 and Co > 0,

Cq

C
@] <Co. VW@ <=, D) <5 VeeRY.
Then, for any x € RN and any t > 0,
K ou K
|u5(x,t)] S COv ‘VUE(.’L',t)‘ S ?7 |a—te(xat)’ S ?7

where K depends only on Cy, C1 and Cs.
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Proof. As in the proof of Proposition 1.1, we work with the rescaled
function U. It follows from (1.2) and the maximum principle that

|U(z,t)| < sup |U(0, )| < Co.
z€ERN

It remains to prove the bounds on the space and time derivatives. Since these
estimates are already known for ¢ > 1 by Proposition 1.1, we only need to
consider the case ¢t € (0,1]. For the space derivative, we use the following
Bochner type inequality

(1.6 S (VU ~ AGVUP) < KIVUP,

so that

%(exp(Kt)yVUP) — Alexp(Kt)|VU?) < 0.

The conclusion then follows from the maximum principle.
For the time derivative, one argues similarly, using the inequality

(LI Nl
ot ot ot

and the fact that, for ¢ = 0, we have by assumption

oU
) — A( Q)SK\a—

‘ 2
t

2

ou — AU+U(1 - UP)| < K. O

ot

Proposition 1.1 above provides an upper bound for |u.|. Our next lemma
provides a local lower bound on |u.|, when we know it is away from zero on
some region.

Since we have to deal with parabolic problems, it is natural to consider
parabolic cylinders of the type

Ao (20, T, R, AT) = B(xg,aR) x [T + (1 — o®)AT, T + AT].

Sometimes, it will be convenient to choose AT = R and write Ay (zo,T, R).
Finally if this is not misleading we will simply write A, and A if o = 1.

LEMMA 1.1. Let u. be a solution of (PGL). verifying E-(u?) < 4+o0. Let
2o € RN, R>0, T >0 and AT > 0 be given. Assume that

1
lue| > 3 on A(zo, T, R, AT);

then
1 - Jue| < O(a, A)e? (HV%HQMA) + |10g5|) on Aa,

where @ is defined on A, up to a multiple of 27, by ue = |uc| exp(ipe).
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Proof. We may always assume that T' > ¢; otherwise we consider a smaller
cylinder. Set p = |u.| and § = 1 — p. The function 6 verifies the equation

06 9 , 1 )
5~ B0+ 5 = (1= 0)|Veel? - 66— 1)2

On the other hand, by Proposition 1.1, we already know that 6 > — exp(—%),
so that

00

1.7

(L.7) o

We next construct an upper solutlon for (1.7). Let x be a smooth cut-off
function defined on RY such that 0 < x <1 and

0 1
— A0+ 5 < 2|V |* + Ce™ exp(—g).

1
X =1 on B(xg,aR), x =0 on RN\B(Q:O,¥R).

Consider the function 7 defined on [T, T + AT] by
1 1 t—-T
= - _Z . logée?
T(t) 5 2eXp<(1—a2)AT ogs),
and set ]
o0(a, 1) = 5~ T{t)x().
We have og > 0 and

1
|00l = [7'(1) [ x(2) < A= ad)AT aQ)ATIIOgel, [Aoo| < 7(8)]Ax(z)| < C(A),
so that 9
%—A o+—> —C(A)|loge] on A.

Finally, set
o = og + 2¢* (||V905H2L00(A) + C’(A)|log5\> .

By construction,

) 0 0
a—‘z - Aa—l— 2 2| Vielf ) + C(A)llogel = 5 — AG +
on A. On the other hand,
1

02529 on B(xg,R) x {T'} U9B(zo, R) x [T, T + AT],
so that by the maximum principle § < o on A. Since x = 1 on B(zp,«R), we

have on A,

t—1T

— 1 - 2 2 2
o(x.1) = 5 exp <(1 At o8 ) + 222 (|IVellfmay + C(W)llog o]

1 2 2
< 56 (IVelliw(ay + C(W)llogel)

and the proof is complete. O
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2. Toolbox

The purpose of this section is to present a number of tools, which will enter
directly into the proof of Theorem 1. As mentioned earlier, some of them are
already available in the literature. We will adapt their statements to our needs.
Note that all the results in this section remain valid for vector-valued maps
ue : RY x RT — R¥, for every k > 1, u. solution to (PGL)..

2.1. Ewvolution of localized energies. Identity (I) of the introduction states
a global decrease in time of the energy. In this section, we recall some classical
results, describing the behavior of localized integrals of energy.

LEMMA 2.1. Let x be a bounded Lipschitz function on RN . Then, for any
T>0,att="T,

(2.1)
i ee(ue)X(x) dr = _/ |atU€|2X(l') dr — / OpueVue - Vy dz.
dt Jry sty RN x {T'} RN x {T'}

In particular, for any 0 < Ty < Th,

(2.2) /R ee(ue)x(x) dx — /]R ee(ue)x(z) dx

Nx{T>} Nx{T1}

=— / |Opue |*x () da dt — / OrusVug - Vx dz dt.
RNX[T17T2} RNX[T17T2}

Proof. We have

i [‘VUEP
dt 2

+ Vg(ua)]x> = Vu. - V(0pue) x + VI (us)Opue x.

Integrating by parts on R x {T'} we thus have

d
— ee(ue)x(z) de = —/ (—Aue + V. (ue)) Qpuex(z) do
dt Jryx (T} RN x{T}
— / OrueVue - Vy dx
RN x{T}
and the conclusion follows since u. verifies (PGL).. O

As a straightforward consequence we obtain the following semi-decreasing
property.
COROLLARY 2.1. Let x be as above; then
1

d
(2.3) _/ ‘815“6‘29(2 + = es(ué‘)X2 < 4‘VXH%°°/ ee(ue).
2 Jr~ 1) dt Jr~x () suppx
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In particular,
d

G et de < 4Vl £ D).
RN x{t}

2.2.  The monotonicity formula. Let u = u. be a solution to (PGL).
verifying (Hp). For simplicity, we will drop the subscripts ¢ when this is not
misleading. For (z4,t.) € RY x Rt we set

Ze = (Tu, ty) .

For 0 < R < /t, we define the weighted energy

(2.4) Ey(24, R) = By e (u; 24, R) = Eyp e (U, T, tye — R% R);
that is,
(2.5) Ey(2,R) = /RN ee(u(w, te — R%)exp(—%)dw,

and the corresponding scaled energy

(2.6)

- 1 1 z—x.|?
Bu(eos B) = =g Bulza, R) = W/RN ec(u(z,t. — R?)) exp(— 222 )z

We emphasize the fact that the above integral is computed at the time ¢t =
t. — R%, and not at time t = t,, as is the case for &, i.e. a shift in time
5t = —R? has been introduced. Note also that in (2.5) and (2.6) the weight
becomes small outside the ball B(x,, R). Moreover, the following inequality
holds

27 expl !

Ew Zs, R 2—/ e u:c,t*—R2 dz .
)Ew (24, R) 2 Joo e (u( )

| =

The right-hand side of (2.7) arises naturally in the stationary equation, where
its monotonicity properties (with respect to the radius R) play an important
role. In our parabolic setting, we recall once more that the time ¢ at which E,,
and E,, are computed is related to R by

t=t,— R%.

This is consistent with the usual parabolic scaling (for A > 0)

x — Ar
t — N\t
which leaves the linear heat equation invariant.
In this context, the following monotonicity formula for E,, was derived

first by Struwe [52] for the heat-flow of harmonic maps (see also [21], [30]). In
a different context Giga and Kohn [28] used related ideas.
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PROPOSITION 2.1. At R=,

(2.8)
dREw(Z*’ R)= N / 5,3 [(z — z4) - Vu — 2r°0su]” exp( 2 )dx
RN x{t.—r?}
1 |z — @ |2
+ N1 2V (u) exp(—T)dx
RN x{t,—r2}
1
= / (2 — 22) - Y+ 20t — £.)0u2G (@ — 30t — £.)d2

RN x{t.—r?}

+r / 2V (u(x,t))G(x — my, t — ty)dz,
RN x{t.—r2}

where G(z,t) denotes, up to a multiplicative factor 7 N2 the heat kernel

{ G(x,t) = tf\}/z exp(—%) fort>0

G(z,t)= 0 fort <O0.

In particular,

d
_Ew *9 Z 3
1R (z4, R) >0

i.e. Ey(2s, R) is a nondecreasing function of R.

(2.9)

Proof. Set Ey(R) = Eyu(2, R). Due to translation invariance, it is suf-
ficient to consider the case z, = (x4, ts) = (0,0), so that u is defined on
RN x [~t,,+00). In order to keep the integration domain fixed with re-
spect to R, we consider the following change of variables, for z = (x,y) €
RN x [y, +00):

(2.10) z = (x,t) = (Ry,RQT) =®r(y,7) = Pr(7).

Set up(z') = uo®g(z') = u(z), i.e. ur(y, 7) = u(Ry, R?>7) = u(x,t), so that in
particular

(2.11)

0 B

Vur(z') = RVug(z), %(z') - Rga—?(z) . Aup(?) = R*Au(z).
It follows that

ou R?
(2.12) a—TR — Aup = —up(l - lugl?) = —R*V/(ug).
Moreover,
d d

(2.13) —up(?) = —=u(Ry, R*7) =y - Vu(z) + 2R7’8—u(z) .

"~ dR ot
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From (2.13) and (2.11) we deduce the formula
duR no_ ou 8UR /
(2.14) RdR( )—x-Vu()—FQtat()—y-VuR( )—I—27’87_ (2.

The scaled energy E,(R) (defined by formula (2.6)) can then be expressed as
follows:

(2.15)

Vug(y, —1)|? 2
[—‘ uR(g ) +R2Vs(u3(y,—1))] exp(——“?ﬁ )dy .
RN x{-1}

Taking into account (2.10), (2.12) and (2.14), we compute, at R = r,
(2.16)

dE, dug - dur 7|y|2
= [T T v G 2| -y

Ey(R) =

4
RN x{—1}
i du 2
= [ s LV 2 ) S )| sy
RN x{-1} L dR 4
[ Yy 8UT aur ‘y|2
- g Vur— - 2 _ "
/RNX{ 1} _(2 VUT aT )( (y vu’r‘ 87_ )) + T‘/;(ur)] eXp( 1 )dy
_ 1 Oy o ly[?
— /RNX _2T (y VUT 2 87—) +27"V;:(UT):| exp( 1 )dy
‘/RNX{ L [W V-2 + 2Vl >] exp(— gz

:/ [1 (- Vu+ 26252 £ 20Vi(u )] G(a, t)da.
RN x{—r2} 2r ot

The last formula in the above computation gives precisely (2.8) in the particular
case z, = (x4, ts) = (0,0). O

2.3. Space-time estimates and auziliary functions. Let u = u. be a solu-
tion to (PGL). verifying & (u?) < +o0.

LEMMA 2.2. For any z, = (x4, t.) € RNV x R, the following equality
holds, for Ry, = \/t,:

(2.17) / oy V) + 20 2) Gl — st — )

1 T _
== [ et 0)en- T = B R,
ti 2z JRVx{0} 4t
where
(2.18) S, 2) (2,8) = ———[(& — 22) - Vi + 2(t — £.)0pu]?.
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Proof. Integrating equality (2.8) from zero to R, we obtain
(2.19)
Ew(z, Ry) — Ew(2:,0)
R,
= / 2rdr / Ve(u(z,t))G(x — x4, t — ty)dx
0

RN x{t,—r2}

R. 1
+/ 2rdr / m[(aj — ) - Vu — 2r%0u)* Gz — x4, t — t,)dx.
0

RN x{t,—r2}

Expressing the integral on the right-hand side of (2.19) in the variable t = t,—r?
(so that dt = —2rdr) yields

(2.20)
Ew(z*, R, IR 0)

) — B
0
= dt Ve(u(z,t)G(x — x4, t — ty)dx
/t* /wam (ulz, £))G( )

0
—/ dt/ ! [(x — x4) - Vu — 2r20;u)*G(x — z4, t — t,)d2.
. JrN gy 4T — L

Finally, since u is smooth on R x (0, 4-00) and with finite energy on each time
slice, we obtain

Eu(2:,0) =0,
so that the proof is complete. O

The following elementary lemma will be useful for further purposes.

LEMMA 2.3. Let 0 < t, < T, and z, = (x4, t+). Now,
(2.21)

Eupelze Vi) < Z%ex lor — 2"\ & ((z7,0), VT) Vo € RY
W,E\~*y *) = t* p 4(T—t*) w,e T, 9 ) T .

Proof. By definition of E,,,

(2.22)

Bulen Vi) = 1 | eclua.0)) expl(— s

T\NV2 — zr|?
- <Z> m/]RN eg(u(x,O))exp(—%)Q(x)d%

where the function Q is defined on R as

_ e A A 2 N
(2.23) Q(z) = exp < AT 1. VzeR".
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Clearly @ is positive and bounded on RY. Its maximum is achieved at a point
zo € RN such that
(zo — a7) _ (0 — 24)

T ot
so that
(24 — 27) (T4 — 27)
2.24 g, = I, gy = T
( ) To— 1. To — TT -
Inserting (2.24) in (2.23), we are led to
|z — ar|?
2.25 su r)=Q(x0) = exp(———+) -
(225) sup Qlz) = Qlao) = exp( o —0)
Hence, combining (2.25) with (2.22) we obtain
(2.26)
~ T\ N2 T, — a7|? z — xr|?
Bu(en Vi) < <r) exp(r ) [ ectute. 0 exp(- 7y,
and (2.21) follows. O

Next, let 7' > 0 be given and let f € L>(RY x [0,T]) be such that

(2.27) [f)] < Ve(lu(2)]),  for any z = (x,t) € RY x [0, 7).
We consider the solution w of the heat equation with source term f; i.e., w
solves
Qo _Ap= f on RV x [0, 7]
2.2 ot T
(2.28) { w(xz,0)= 0 for z € RV,

The following L*-estimate, which played a key role in the elliptic setting (see
[8]), will enter similarly in the proof of Theorem 1.

LEMMA 2.4. For any z, = (74, t,) € RN x [0, 77,
(2.29) w(z)| < 7N 2By (20, V1) -
Proof. The function w is given explicitly by Duhamel’s formula
w(zy) = TI'_N/2/ flx,t)G(x — x4, t — ty)dzdt,
RN x[0,t.]
so that, by (2.27),
w(z)| < 72 / Va(u(z, 1)G(@ - t — t)dadt,

RN x[0,t.]

and the conclusion follows from (2.17). O
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Combining Lemma 2.3 and Lemma 2.4 we obtain

PROPOSITION 2.2. LetT >0, 7 € RN, For any z = (z,t) € RV x [0,T],
the following estimate holds:

B zr — 2\ =
(2.30) |w(z)| < (%) exp (ﬁ) Ewe((z7,0),VT), Vaor e RY.

2.4. Bounds for the scaled weighted energy c‘fmg. Our next lemma pro-
vides an upper bound for &, (2, R) in terms of the quantity &, «((z7,0),vT)
provided z < T and R is sufficiently small. More precisely, we have

LEMMA 2.5. Let T > 0, and z = (z,t) € RN x [0,T). There exists the
inequality

~ T % |$T _ $|2 _
(231) 5w75(z, R) S (m) exp <m gw,g((xT, O), ﬁ) s
for any x7 € RN, and for 0 < R < /T —t.
Proof. In view of the monotonicity formula (2.9), we have the inequality

(2.32) Ewe(2,R) = Ey((z,t + R?),R) < Ey((2,t + R?),Vt + R?).

By Lemma 2.3 applied to z, = (z,t + R?), we obtain

(2.33)

Bul(e,t+ B VIT ) < (s ) exp( e, (ar,0), V)
w 9 9 —= t+R2 4(T—t o R2) w,e T, 9 9

for any z7 € R, Combining (2.33) with (2.32) yields the conclusion. O

Comment. Note that (2.31) holds in particular for small R. It can there-
fore be understood as a regularizing property of (PGL).. Indeed, starting
with an arbitrary initial condition, the gradient of the solution at time t re-
mains bounded in the Morrey space £%V~2 (so that the solution itself remains
bounded in BMO, locally).

2.5. Localizing the energy. In some of the proofs of the main results, it will
be convenient to work on bounded domains for fixed time slices (in particular in
view of the elliptic estimates needed there). On the other hand, the definition
of gw,g and E,, involves integration on the whole space (even though the weight
has an extremely fast decay at infinity). In order to overcome this difficulty,
we will make use of two kinds of localization methods. The first one is a
fairly elementary consequence of the monotonicity formula and can be stated
as follows.
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PROPOSITION 2.3. Let T > 0, z7 € RN and R > /2. Assume u. is a
solution to (PGL). verifying (Ho). Then the following inequality holds, for any
A >0,

/es(us) eXP(—mﬂglz)de < / ee(ue) + (\/%)N_QMO exp(—§)|logs|.
RN X {T} B(er NR)x{T}

Proof. It suffices obviously to prove that

(2.34) / ee(uz) exp(— Il do < (A2E N0 exp(— ) [loge].
{fe—wr|2AR}x (T} = VIR ®

First, we write exp(— |x2§§|2) = [exp(—'xg]§§|2)]2, so that on RN \ B(z7, AR)

(2.35) exp(— ) < exp(— ) exp(—EEE).

On the other hand, applying the monotonicity formula at the point (z7,T +
2R?), we obtain

1 2
2.36 7/ e-(us) exp f|$_x§| dx
30 s [ g cee) en- Il
1 / |lz—z7|?
< ec(ue) exp(—grrrapey) dT
(VT + 2R2%)N=2 Jgvyq0) (ue) e~ arzre)
1
< Mp|loge].
S Tz hlee
Combining (2.34), (2.35) and (2.36) gives the conclusion. O

The idea of the second localization method originated in [42] and is based
on a Pohozaev type inequality.

PROPOSITION 2.4. Let 0 <t < T. The following inequality holds, for any
TT € RN,

(2.37) / eg(u)'j(}xft') exp(—'f(}mft'ﬂdm

RN x{t}

<

N z—xr|?
5} / es(u) exp(— ‘4(T7t‘) ) dx
RN x{t}

+ / [V(u) + 35 (u, 27)] exp(~ 2220 dee
RN x{t}



62 F. BETHUEL, G. ORLANDI, AND D. SMETS

As a consequence,

(2.38) /R o ec(u) exp(— 7l da

< 2/ e (u) exp(— 2221 g
B(xr,rr)x{t} a( ) ( “r t))

2 —_ z—zr|?
— Ve(u) + 3Z(u, 27)] exp(— ‘4(T7t|) )Ydz,

N Jry i)

where rp = 2,/ N (T —t).

Note that the radius rp of the ball B(zp,rr) where the first integral of
the right-hand side of (2.38) is computed is proportional to /T — ¢, which is
the width of the parabolic cone with vertex zp = (xp,T).

The proof of Proposition 2.4 relies on the following inequality.

LEMMA 2.6. Let 0 < Ty <Tp < T, xr € RN, 20 = (27, T). Now,

(2.39)
|lz—zr|? |lz—zr|®
es(u L1 exp dxdt
/RNX[TMTQ] (u) =y exP(— =y
< (T = TN 2Ey(20, /T —T1) — (T — To)N?Ey (27, /T — Tp)

+/ —g(Tl_t) [(x — z7) - Vu — 2(T — t)dpu]? exp(— lx( le) )dxdt.
RN X[T1,T>]

Proof. The idea is to multiply the equation (PGL). by the multiplier
2(T — t)Oyu exp(— |x(Tth|) ) and integrate on R x [Ty, Ty]. One obtains, after
integration by parts in the space variable,

/ /RN T — t)|0yul? exp(— ‘Z@f_ﬁ‘;) dx dt

/ / — t)Au dyu exp(— ‘Z(TT xt‘) ) dx dt
RN

//R T — 0) Ve w)) exp(~ 220 du d

:_/T [ vu. (( )gtVu—( 1)0yu s

>exp( ‘ﬁ(T x‘) ) dx dt

2(T — ) [Ve(w)] exp(— =2k ) duv it

ou rr—x|?
((x —a7) - Vu)— exp(— | (Tit‘) ) dx: dt.

I
:_/Tl /RN(T 1) o [V + 2V )] expl(— 2220 da
L. a
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Integration by parts in the time variable now yields

240/ /RN (T — )[0u]? exp(— ‘4<TT7|))d dt

— zl?
/ /RN [[Vul? + 2V (u)] exp(— 4(TT7|))d dt

/T2/ |Vu|2+2V( )] eXp(—M)dm‘dt
RN 4(T_t)
- 2 exp(_ T =l o
+ [ NX%}(T 7)) Uw +2Viw)] exp(—yTE—7s) d
2 |z — af?
_/]RNX{T2 (T —T3) [|Vul|® + 2V(u)] exp(—4(T_T2))dw

ou lor — 2|2
— — ————)dxdt.
/ /RN T —x7) Vu)at exp(— 0T )) d
Adding the integral

|z — a|?

/ /]RNQ _t)|(x—xT) Vul? exp(— W)d x dt

to equation (2.40) we finally obtain

(2.41)

/ /RN 5= | (& = 1) - Vu = 2T — 1)y’ exp(— 5755 ) da dt

T
/ /RN (1+ 5528 ) [Vul? + 2V (w)] exp(— 2k daat

_ / (T~ 1) [IVul + 2Va(w)] exp(~ 22225 de
RNX{Tl}

_/wam (T = To) [|Vuf? + 2V (w)] exp(— 2222 do

/ /RN EGHT (o — wr) - V= 2(T — £)dpu] exp(— 525 da dt.

We bound the last term in (2.41), using the inequality ab < %2 + b?, with the
choice
(x —z7) - Vu |z — z|?
= o) V-
2(T —t) 8(T —t)

and

@ —27) - Vu—2(T —t)0u] DS — z|?
b= 2(T — 1) =l 8(T'—1)

and the desired conclusion follows. O

),
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Proof of Proposition 2.4. Let 0 < t < T be given and fixed and apply
Lemma 2.6 with Ty = t, T5, =t + At, for At > 0. We divide by At and let At
tend to zero in (2.39). This yields

(2.42)
/ e (U)Mex (—M)dm’
vy AT =) TPV 4T =

< / #[(ac —a7) - Vu —2(T — t)0pu? exp(—w) dx
= vy 2(T - t) 4T —1)

+4¢'(T —t),

where we have set

(2.43) g(s) := N2 By (21, V/5).

Since
gy = N 2 — T d o
g(T t)_ 2(T t) Ew(ZTa T t)+ 2 dREw( T t),

we obtain, using the monotonicity formula in Proposition 2.1 and (2.42),

(2.44)
|z—zr|? |lz—xr|? N lz—z7|?
es(u L exp(— e dxg—/ e-(u) exp(— 5755 ) dx
/RNx{t} a( )4(T t) ( AT t)) 2 BN (1) a( ) ( AT t))

+ / [Va(u) + 3Z(u, 2r)] exp(— 7225 da,
RN x{t}

which proves (2.37). For (2.38), consider the region

= _— < _ .
A {x € R such that ST—1) = 2 }

We deduce from (2.44) that

(2,45) /RNX{t} ea(u) |I(:fw_Tt|) eXP(—|Z(ZFm_Tt|) ) dx
lz—ar|?
exp dx
/Ax{t} Hr=n )
—"”7‘”‘ exp(—Z=2zly g
— P z
/]RN\A x{t} S(T R . = )

) + 32 (u, 27)] exp(— 72k da,

NIZ

X{t}
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so that
2.46 / Ne.(u)exp _zmarlPy g,
( ) (]RN\A)x{t} 2 E( ) ( 4(T—t) )

N jo—ar|?

< — ec(u) exp(— 525 ) dx
9 Ax{t} s( ) ( 4(T t))
[ Velu) + 35z expl(- 2k
RN x{t}

and finally

(2.47) /R . e-(u) exp(— 7255 ) da

§2/ e-(u) exp —|xfx_T|2 dx
A><{t} 6( ) ( 4(T t))

—l—% / [Ve(u) + 3E(u, 27)] exp(— |§&fft‘) ) d.
RN x{t}
This completes the proof. O

2.6. Choice of an appropriate scaling. Let zp = (xp,T) as above, and set
Ew,a(R) = Ew,a(ZTa R) = Ew,e(ue; 2T, R) s

and accordingly

Ew,s(R) = Ew,s(ZTa R) = Ew,e(uz-:; 2T, R) .
Let 0 < § < 1/16 be fixed. We have
PROPOSITION 2.5. There exists a constant €1 > 0 depending only on T

and 0, such that, for ¢ < g1, there exists Ry > 0, with Ry € (61/2, \/T) such
that

- - By (VT
(2.48) 0 < B o(R) — Buo(5R1) < 4|log 5|M ,
’ ’ log €|
and therefore
(2.49)
T—6*Ri |z — z7]? Euw.(VT)
Vo(u) + S(u, _ =TV vt < 4flog 6|2V )
/ o (R0 S exp T e < aoga e

Proof. Set R = /T, and for n € N*, R, = 6" R. Let ko be the largest
integer such that
gkl R > £1/2,

We have
(loge)/2 —log R

log ¢

ko =

)
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where, for @ € R, [a] denotes the largest integer less than or equal to «a, so
that, if ¢ < R*6~8 then kg verifies

log |
2.50 ko —2< .
( ) 0 ~ |log 4|

On the other hand, we have the equality
~ ~ kU ~ . ~ .
Bu(0R) = B0 R) = Y (Bu(@™'R) — Eu(9'R)) ,
j=2
and all the terms of the sum of the right-hand side of the equality are nonneg-
ative. Therefore, there exists k1 € {2, ..., ko} such that

(09 1R) - By(oh R) < 20
ho—2

Ey(R)

‘ )

< 4[log d|

[log e
where we have used (2.50) for the last inequality. We therefore set R; =
6k~ R. Inequality (2.49) is a direct consequence of the monotonicity formula.
O

Blowing-up. In view of Proposition 2.5 we perform the following change

of variables
T —xT - t—T

R R2

so that (z7,T) becomes in new variables (0,1), and (z7,T — R?) becomes

(0,0). Set
5

TR
and define the map v, : R x (0, +00) — C by

€

Ve(Z, 1) = us(x,t),

so that v, verifies the equation

Ove
ot
i.e. v, is a solution to (PGL).. Note that

1
(2.51) —Ave = (1 - [vel?) on RV x (0, +00),
€

(2.52) % <e<el/%

therefore € — 0 as ¢ — 0, |loge| > |loge|/2 and the asymptotic analysis for
(PGL), is also valid for (PGL).. In the sequel we skip the tildes on the new
variables for simplicity.

LEMMA 2.7. Let

o) < 2

K
(2.53) ve@)] <3, [Vvelo)] < = =
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for any (x,t) € RN x (0, +00). Moreover,

(2.54) Eue(ve, (0,1),1) = By (ue, 21, Ry),
; 3 Ey, T
(255) E, E(<07 1),1> —Ewe((O, 1),5) < 4‘10g5"5(Z—T’\/—)7
’ ’ log <]
and
(2.56)
Ey, T
/ [Ve(ve) + E(ve, (0,1)] G(,t — 1) dudt < 4|log5|’s(z—T’\/_)'
R x[0,1—62] log &

Proof. This is a direct consequence of the scaling invariance of each term.
O

3. Proof of Theorem 1

3.1. Change of scale and improved energy decay. Let u. be a solution of
(PGL). as in Theorem 1, i.e. satisfying the bounds

(3.1) E-(u?) < Mylloge|,
(3:2) [ ectudyexp(-laf/4) < nlloge]
RN

Let 0 < § < % be fixed, but to be determined later at the very end of the
proof. Let also T' = 1, and zp = (0,1). Recall that in Section 2.6 we have
constructed a rescaled map v, defined by

Ve(z,t) = ue(Riz, R2(t— 1)+ 1), e=—, e<e<e'/?

for some appropriate choice of R;. In particular, the function v, is a solution
of (PGL)¢ and it follows from the monotonicity formula that

(33) Ew,E(VE7 (07 1)7 1) = Ew,é‘(ué‘a (07 1)7 1) = 77|10g6‘ S 77“0g€’ S QU‘IOgE‘a

where we have set

. _ Ew,e(ve)
(ve) = [loge|
In view of Lemma 2.7, we have the estimates
(3.4) [ve] < 3 on RN x [0, +00),
K K
(3.5) IVve| < —, |O0ve| < — on RN x [0, +00),
€ €

(36)  Bue(ve, (0,1),1) = Eue(ve, (0,1),8) < 4flog ] < 8log b,
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(3.7) / Ve(ve)—L exp(—g{ils) da dt < 4|log o5y < 8|log [,
RN x[0,1—62]  (1=8)2
(3.8) / =(ve, (0, 1)) —Ly exp(— 712l) da dt < 4]1og 05 < 8| log dln.
RN x[0,1-42] (1—t)2

Note that v¢(0,1) = u.(0,1). Thus, in order to prove Theorem 1 it suffices to
establish that v, verifies

(3.9) [ve(0,1)] > 1 —o0.

Throughout this section, we will work with v, instead of u.. The main
advantage to do so is that we have the additional estimates (3.4,3.6,3.7,3.8)
which provide uniform bounds which are independent of €. In the definition of
Ew,e, Ew,e, and the various quantities involved in the proof, we will thus skip
the reference to v¢ or even e if this is not misleading.

The main ingredient in the proof of (3.9), i.e. Theorem 1, is the following
0-energy decay estimate.

PROPOSITION 3.1. There exists constants 0 < dy < 1—16, 0<e < %, and
no > 0 such that for 0 < n < ny and 0 < € < €q the following inequality holds:

(3.10) B (e, (0,1),80) < =Ew(ve, (0,1),1) + R(n),

DO | =

where R(n) tends to zero as n — 0.

We postpone the proof of Proposition 3.1 and show first how it implies
Theorem 1.

3.2.  Proposition 3.1 implies Theorem 1. Assume 0 < 1 < 19 and set
Ao) = \/% , where o is the constant appearing in the statement of Theorem 1,
whereas K is the constant appearing in (3.5). Set r. = min(1, \(o)e) and
T, = max(0,1 — A\2(0)e?) = 1 — r2. We claim that

1

(3.11) N (1= |ve(w, T)[*)* < Ra(n),

B(e)

where R1(n) — 0 as n — 0.

Proof of the claim. Combining (3.6) and (3.10) we are led to

(3.12) Euy(ve, (0,1),1) < 16/log é|n + 2R (n).

Assume first that A(o)e < 1, so that T, = 1 — \?(0)e%. We deduce from the
monotonicity formula that

(3.13) Eue(ve, (0,1),X\(0)€) < Eyc(ve, (0,1),1)
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so that, combining (3.12) and (3.13) we obtain

Eu,e(Ve, (0,1), Mo)e) < 8[log d|n + 2R (n).
If A(o)e > 1, then re = 1, T, = 0 so that

Eye(ve, (0,1),7¢) < nlloge| < njlog A(o)|.

In both cases the claim (3.11) follows from the inequality

(3.14)
1 C(o) (1 — |ve(z, T,)|?)? |z|?
— 1— (e, 22 < / exp(—Z )4
N B(e)( |V (l' )| ) > ré]V_Q B0 2 Xp( ""2 ) T

<C(0)Bye(ve, (0,1),7¢),

valid for some constant C'(o) depending only on o and N.
Arguing as in the proof of Lemma II1.2 in [8], we are led to

1

1 N3 e
(3.15) 1—|v(0,T)|<C (W /B ( )(1 - \ve(m,Te>|2>2> < CRy ()75

On the other hand, by (3.5),

(3.16) [Ve(0,Te) —ve(0,1)] <

| =

(1-T) <

ol Q

Combining (3.15) and (3.16), we obtain
o 1
1= [ve(0, )] = 5 + CRa(n)~+=

so that the conclusion follows if g is chosen sufficiently small, since R1(n) — 0
asn — 0.

3.3. Paving the way to Proposition 3.1. As in [8], let us first consider the
ideal situation where
[ve| =1 on RN x [0,1].

Then, we may write v, = exp(i¢) where the phase ¢ : RY x [0,1] — R is
uniquely defined, up to a constant multiple of 2. The equation for the phase
 is then the linear heat equation

dp

5 Q=0 on RN x (0,1).

Notice that in that situation, |Vve| = |V¢| so that e.(ve) = |[Vy|?/2 and
|0sve| = |0sp|. Moreover, |V|? verifies the equation
AVepl*
ot

A(Vel*) = =2|Ve[> <0
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so that for any 0 < 6 < 1, and any z, € RV,
1 el

_ 8522 . _lz—a.]?
(3.17)  |Vp(zs, 1 —5%)] §/RN 7T%(1_52)%ee(ve(x,O))exp( 4(1_52))d1:.

For 1 € RN and o > 0, consider the Gaussian N (u, 0?) = i 12)% exp(— ‘ﬂ;’j'z).
We deduce from (3.17) that
(3.18)

1 2

- 1= 622 _|95* .
v L, [Teten = PP esp(= ) do

< / N(z,6%)(x — z,)N(z,1 — 0%)(2:)ec(ve(x, 0)) droda
RN xRN

_ /RN (N(0,6%)  N(0,1 - 6%)) (2)ec(ve(x,0)) da

= N(0,1)ec(ve(x,0)) da;
]RN
ie., B ~
Eu(ve, (0,1),8) < 6% Eyp (ve, (0,1),1)

so that (3.10) is verified for § < 1/1/2.

In the general case v, may vanish, so that it is not possible to find a phase
¢ which is globally defined. However, if locally we may write v, = pexp(ig),
then

Ve X Vve = p2V<p

so that when p is close to 1, ve X Vv, represents essentially the gradient of the
phase. The quantity ve X Vv, is always globally defined, in contrast with the
phase. The following decomposition formula is then the starting point of the

analysis of |Vv|?

(3.19) AV |?|Vve? = 4ve x Vv 2 4 |V|ve?| = 4]ve x Vve|> 4 40|V ?,

where p = |v¢| is the modulus.

In order to establish (3.10), it suffices to prove a similar inequality when
dp is replaced by some & € [dp,2d0]. That is, we will show that there exist
d € [do, 200] such that

- 1~
(3.20) By e(Ve, (0,1),6) < §Ew,€(Vea (0,1),1) + R(n).

We will determine § using averaging arguments, for quantities which will be
integrated on constant time slices (and bounded thanks to (3.6,3.7,3.8)). For
that purpose, we introduce first some notation. Set, for t € [0, 1],

_ 1 o
AW = g [ Vel )
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1 _ x|?
A=z /RNx{t} E(ve, (0,1), (z,1)) exp(—4(’1 L 7j))da:

By (3.7) and (3.8) we have therefore

B(t) =

1-52
(3.21) / A(t) dt < 4|log do|n
0
and
1—62
(3.22) / B(t) dt < 4]log do|n.
0

We first observe that the left-hand side of (3.20), i.e. Ey (v, (0,1),6),
involves an integral on the whole RY. However, for “many” choices of §, we
may localize this integral.

3.4. Localizing the energy on appropriate time slices. Consider the set Oy
defined by

(3.23) ©1= {t € [1—462,1—63] such that A(t) 4+ B(t) < M} _

3
LEMMA 3.1.

3
meas (01) > meas ([1— 462,1 — 58]) .
Proof. The proof is an easy consequence of (3.21) and (3.22). O

LEMMA 3.2. The following inequality holds for any t € O:

1

Ewe Ve, (0,1 56 < /
(Ve (0,1),9) ON=2 JpavNe)x{t}

ee(ve) + Kllog d|n,

where § = /1 —t.

Proof. The proof is an immediate consequence of Proposition 2.4 and the
definition of ©1. O

3.5. Improved energy decay estimate for the modulus. Set o. = 1 — |v |%.
Recall that v, verifies the equation

2
(3.24) Oyoc — Ao, = 2|VV€|2 - 6—206(1 — o) on RY x (0, +00).

Let § € [do,2dp] be given. Our first aim is to bound fB(l)X{t} |Voe|?, where
t=1-4%
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LEMMA 3.3. The following inequality holds:

(3.25)

| ’2 1/2

X

L/ Vo> < C(60) / Va(ve) exp(— L)
B(1)x{t} RN x {t} 46

1/2
. Vv.|]? + S Vve — Opvel?) ex _ B ,
(4wmu e pvel?) exp(—1)

where C(8y) = K, 2 exp(%).

Proof. Letting m € [1,2], multiplying (3.24) by o, and integrating by
parts on B(r;) we obtain

(3.26) / \VU€\2 = 2/ \Vvelzae — / 0i0¢ - O,
B(ry) B(r1) B(ry)
/ GTJE-UG—%/ 062(1—05)
0B(ry1) € B(r1)
§2/ \vv42+/ ]8t06~06]+/ D0 0.
B(?"l) B(T‘l) 8B(7“1)

Here we have used for the last inequality the fact that (1 —o,)o? > 0. In order
to bound the last term of the right-hand side of the previous inequality, we
choose r1 € [1,2] so that

/ Vvl exp(-lghy < [ v es(- )
OB (r1)x{t} RN > {t}

and

/ Viven(-i) < [ Vi) e 1),
OB (r)x{t} RN x{t}

For this choice of r1, we have therefore

(3.27)/ Oroc 0| < Kf(/ (Vv - |2t
OB(r1)x{t} OB(r1)x{t}

<Keexp /VV€|26Xp |f§|2)) </ V(ve)exp(—%DE

)

8B (r1) x {t} OB (r1)x{t}
< Keexp()( [ 19w es(-50) ([ Viven(-5)"
RNx{t} RN x{t}

Finally, we estimate the remaining two terms on the right-hand side of (3.26).
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First, we have by (3.5)

(3.28) / IVve|?o,

(r)x{t}
2
SRR
T‘l X{t} €
1 2\ 2 2\ 7
< Kexp(— / Vve|? exp 7% / Ve(ve) exp 7% .
G2 (o Tl exe =) ([ Vel (i)
Similarly,

(3.29) / |00c - o]
B(r:)x{t}

< Ke/ 1Opv]| 2l
B(r1)x{t}

SKEGXp(%)(/ |5’tV5]2€XP(—%)>E</ Ve(ve) exp(—
B(ri)x{t} B(r.)x{t}

gKeexp(%)< Ve(ve)exp(—%j))i

&5
)
~—

N———

M

B(r1)x{t}
<( / (1 - V¥el? + | - Ve — Apvel?) exp(—12))
B(r)x{t}
Combining (3.27), (3.28) and (3.29) we derive the conclusion. O

The previous lemma allows us to estimate the contribution of the modulus
to the energy on appropriate time slices. More precisely,

PROPOSITION 3.2. For anyt € O,

[ SVl 4 S < €1 60) [0 Bl (0.2),1) + )]
B(1)x{t}

where C1(8y) = K&~ 4exp(%)]log do|-

Proof. By (3.25), we have

[ U < COo)sY AW [5°5° B 0,1),6) +5°7 B0’
B(1)x{t}

M
[ —

< C)OV AWM B eve, (0.1),1) + B3

and we have made use of the monotonicity formula for the last inequality.
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For t € ©1, A(t)+ B(t) < 32|log do|dy %7, so that

1 _ 1 /=1 1
[ SIVINPE < K @6 gl (Bi (v, (0.1).1) + 1F)
B(1)x{t}

< K C(60)8) 2 log 8ol |0 (Buse(ve, (0,1),1) +1)]

Finally, we have for the potential and for ¢t € O,
1

— 1—|ve|®)? <6V exp
1 o 1) (

1 _ 1
5—2)A(t) < K& 2|10g50]exp(§)n
0 0

and the conclusion follows. O

3.6. Hodge-de Rham decomposition of ve X dv.. In view of (3.19) and
the previous subsection, it remains to provide an improved decay estimate
for |ve x dv|?. For that purpose, we will introduce as for the elliptic case
an appropriate Hodge-de Rham decomposition of v, x dv.. We would like to
emphasize the fact that the estimates obtained so far work equally well if we
consider instead vector-valued maps u. : RY xRt — R¥, k > 1. The techniques
of the present subsection however heavily rely on the fact that k = 2; i.e., u.
is complex-valued.

Let x € C(RY) be such that 0 < x < 1, x = 1 on B(2) and x = 0
on RV \ B(4). We assume moreover that ||Vx||eo < 1. Consider for ¢ > 0 the
two-form 1y defined on RY x {t} by

(3.30) = —Gn xd(ve X dve) X on RN x {t}

where GGy denotes the Green’s function of the Laplace operator in dimension N,

WN-1 1
Gn(x) = — PR for N > 2 and Ga(x) = %10@95’-

Note in particular that
(3.31) =AYy = d(ve X dve) x on RY x {t}

and that, for N > 3,
[e](x) — 0 as |z] — +o0.

Since —A = dd* + d*d and since x =1 on B(2) it follows that

(3.32) d(ve X dve — d* ) = d*dipy = on B(2) x {t}.
We observe that
(3.33) A(dyy) =0 on B(2) x {t}.

Indeed, we have

A(dipy) = d(Ay) = d (d(ve x dve)) = 0.
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It follows that the two-form (; = d*di; is closed, since
(3.34)  dG = d(d*dyy) = dd*(dye) = —A(dyy) — d*d(dvyy) = —A(dyy) = 0.

By the Poincaré lemma, there exists therefore a 1-form &,® defined on B(3/2) x
{t} such that

dé =G on B(3/2) x {t}
(3.35) { d*¢&s =0 on B(3/2) x {t},

and
(3.36) 16l 22 (B3/2) % {3) < KICell 2 (B(7/0) % {13) -
Going back to (3.32), we may write

d(ve X dve —d*tpy — &) =0 on B(3/2) x {t}.

Invoking once more the Poincaré lemma, we deduce that there exists some
function ¢; uniquely determined on B(3/2) x {t} (up to an additive constant)
such that

(337) Ve X dV6 = dgot + d*wt + & on B(3/2) X {t}

This is precisely the Hodge-de Rham decomposition of ve X dv, which best fits
our needs. We are going to estimate the L? norm of each of the three terms
on the right-hand side of (3.37) successively. As we will see, the most delicate
estimate is for ;. Although it will enter in the final estimates for & and ¢y,
we will treat these last two terms first.

3.7. Estimate for &. Since diy is harmonic on B(2) by (3.32), we have
for any k € N,

(3.38) [ d¥tller (3/2)x{1y) < Krlldill L2 (B2)x{1y) < KllVUtll2(B2)x 1))
On the other hand, since {; = d*di/y, it follows that

[CellckBrrayx ey < Bill Vil L2 (B2)x (1)
and going back to (3.36) we obtain the estimate:

LEMMA 3.4.
€ell L2 (B@3/2)x {11) < KNVl L2 (B2)x (1)) -
3.8. Estimate for . The first step is to derive an elliptic equation for (.

This equation involves a linear elliptic operator (with a first order term) which
appears naturally in the context of parabolic equations (see [28]). In a second

8Note that such a form &; is not uniquely defined.
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step we provide some simple linear estimates for this operator. We finally use
them to complete the estimates for ¢;.

The equation for ¢;. Taking the external product of (PGL), for v, with
Ve, we obtain®

(3.39) Ve X Opve + d* (Ve X dve) =0 on RY x (0, +00).

The term d*(ve X dve) can be computed using the Hodge-de Rham decompo-
sition (3.37). We have, since d*& = 0,

d*(ve X dve) = —Ayy on B(3/2) x {t}.

On the other hand, we may write

T T
Ve X Opve = —ve X (W -Vve — 8tve) + 252 (Ve X Vve)

and

T

252 (Ve x Vve) = 252(v§0t +d* P + &)
Going back to (3.39) we thus obtain

T T
(340) —A@t + 2—62 . VgOt =V X (ﬁ . va — 8tV€>

. T
—(d" e + &) - 252 on B(3/2) x {t}.

In view of (3.40), we are led to consider the linear elliptic operator

3 =%, . jo?
=_A+ 2_52 V=—exp(~—— 152 )div (exp(—452 )V> .

Linear estimates for Ls. Let r > 0 and consider functions v and f on
B(r) such that

(3.41) Lsv=f on B(r).
The next lemma corresponds to Pohozaev’s identity for the operator L.
LEMMA 3.5. Letv and f satisfy (3.41); then the following equality holds:

N-2 [ o p 22 ] jaf?
3.42 / [ —_ Vol|? exp 5 +/ x-Vufexp(—==
(3.42) . (5= = 452 IVol exp(— 55 . (—57)

:—/ \VU!Qexp(—%s)—T/ |0,0]? exp(— ‘Zle)
2 JoB(r) dB(r)

9Note that if ve = pexp(ip) then (3.39) is equivalent to (6).
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Proof. We multiply Av by z - Vv exp(—%) and integrate by parts on
B(r). This yields,

/ Av (Z x;0;v) exp(—%)
B(r) i
/B VU.V(Z:UZ&-U) exp(—%) +/ 557 Zx ;0;v) exp( —%)
/ szav exp( —Tl)
z X T
/ Z|8 v|? exp(— |45‘2 / Z 5 0i(19;0[%) exp(— |45|2)
\ |
+/ )262 leav ) exp(—g57) /BB(r szav )exp(—155)
:_/ Z|8jv| exp( |T / Z |0;v|? exp( _|T)
B(r)
|z[? 2 || 0; |
N B(mW'W| exp(—g=) + | 252' le v) exp(= 57)
T x|? x
—/E)B( )Zi\ajvﬁexp(—%) +/ @nv(zﬂﬁiaﬂ)) eXp(—%)
T j )

0B(r)
= N=2 22y 2 exp(— 20 / . |
= . p - )+ x;0;v) exp(—
G SLCE SR - RDY 0)
—f/ |Vo|? exp(— ‘ | >) + 7“/ |9, v]? exp(— ‘f&'Q)
2 JoB(r) aB(r)
The conclusion then follows from (3.41). O

COROLLARY 3.1. Ifv and f satisfy (3.41), then

(3.43)/8]3( IVro|? exp(—1 lo | ) < A2 2/ |Vv|? exp(— ‘455)

1 2 2
= erXp(—%)Jr | 1coP exp(-lgh.

B(r) 0B(r)

Proof. Tt suffices to note that
[ avoren-t- [ Elvipen-i)
B(r) B(r)

1 1 2
< 2102 exp(— 22 ) 2 SN N _/ || 2 o2
< (/B(CB| | Vvl exp( 452)) ( J=exp( 452)) B<T)452|W| exp(—57)

r) B(r)
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Next, we consider the boundary value problem

Lsv=f on B(r)
(344) { g:ﬂ =g on dB(r).

LEMMA 3.6. There ezist some constants C(6,r) depending only and con-
tinuously on 6 and r, such that if v, f,g verify (3.44) then

(3.45)

. 21\ 1/2
/ \Vv\Qexp(—%)gC(é,r)[ f?exp(— / fZexp(— lz| ))
B(r) B(r)

(/ gzeXp(—lej)) }JFKT/ g% exp(— ),
OB(r) 0B(r)

where K depends only possibly on N but not on § or r.

Proof. Note that (3.45) involves only the gradient of v, whereas if v is a
solution to (3.44) so is v + ¢ for every ¢ € R. Therefore we may assume that

(3.46) / v=0.

dB(r)
It is convenient to use the divergence form of the equation, namely
(3.47) —div (exp( =2 )Vv) = exp(—%)f.

We multiply (3.47) by v and integrate by parts on B(r) to obtain
(3.48)

/ Vol exp(-5z) = | fvexp(—%— Orv - wexp(~ )
B(r) B(r)

2 \1/2 2\ 1/2
2 exp(— s / v? exp(— s
/ #)) ([, o))
o? 1/2/ ) o\ /2
+ exp(— iz v exp(— oz .
(/(93(r)g ( 40 )> <BB(7") ( 40 )>

In view of (3.46), we have by the Poincaré-Wirtinger inequality

2
3.49 / v? < / Vvl
(3.49) aB(r) N -1 8B(r)’ T
By (3.43) we thus have
(3.50)
v2exp —% Sr/ VUQexp —% + 4 fzexp —@
/63(” i [ e s gy [ Penh)
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On the other hand, standard elliptic estimates yield
(3.51) / v? exp(— | | =) < C(6,r) / fZexp(— =2 )+/ ngxp(—%)
B(r) OB(r)

where the constant C'(d,7) may depend (strongly) on § and r. Going back to
(3.48) we bound the second term on the right-hand side by

</{)B(r) g exP(—%)) : </83(r) v2 exp(_%)) >
r 1 2

2 |z[? 2 ||
- g° exp s ) + —/ V7 exp(— 153
2 /83(r) =) 2r JoB(r) )

|2 1 x|? 1 x
<r [ Pep-lhyeg [ VolPes-lh) 45 [ el
dB(r) B(r) B(r)

IN

The first term on the right-hand side of (3.48) is estimated as follows

(B(T)f2€Xp(_Z§|j)>%</B(T)U2€Xp( ||)> = ¢, )[ 1% exp(~ )

B(r)

([ ot B) ([, ot et ]

and the conclusion follows. O

We are now in position to complete the estimates for ;.

Estimates for ¢;.  Recall that for every 0 < r < 3/2, ¢, verifies the
equations

{ Lspy = f on B(r) x {t}
8“0* =g ondB(r) x{t}

where f and g are defined by

(3.52) f =vex (2% -Vve — &svg) (Y &) - ey

557 on B(3/2) x {t}

and

(353) g = Ve

85;6 — (d*lf)t + ét)N on 83(7“) X {t}

In view of Lemma 3.6 we choose r € [1,3/2] such that

(3.54) / Vv exp(— ) < 12/ Vv
OB {1} (BE/2\BO)x (1)

(3.55) / Ve[ exp(—L2E) Vo
8B(r)><{t}

IN

12/
(B(3/2)\B(1))x{t}

&

(3.56) / 1&:]% exp(— ) < 12/
AB(r)x{t} (B(3/2)\B(1))x{t}
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so that
(3.57)
||

[ ewt-hex [ (9vel? + [0+ 164P?) exp(~ 2.
9B(r) (BB/2)\B(1))x{t}
Our main estimate for ¢, is the following proposition:

PROPOSITION 3.3.
(3.58) / Verl? exp(— ) < K6Y By o (ve, (0,1), 8)
B(1)
+C(00) [R() + R(£)? Buc(ve, (0,1),6)3]

where C(0g) is a constant depending only on &y, and R(t) is defined as

R(t) = / [2(ve, (0,1)) + Ve(ve) + (Ve + | 1 p(a2)] exp(— 1) da
RN x{t}

Proof. We apply Lemma 3.6 to ¢;. Clearly, in view of the definition (3.52)
of f,

(3.50) | Pew(-kh) < co) R
B(r)
On the other hand, by (3.57),

(3.60) / ¢ exp(~ ki) < K/ Vveexp(— ) 4+ K R(2).
B() (BG/2)\BO) < {1}

The important observation is that

2 2 2
/ Vvel? exp(—25) < 452/ %erﬁexp(—%)
(B(3/2\B(1))x{t} (BG/2\B)x {1} 40
<2NO0"Ey(ve, (0,1),0) + 3R(t),
where we have used (2.44) for the last inequality. The conclusion then follows
from Lemma 3.6. O

The following is a direct consequence of Proposition 3.3 and the definition
of @1 .

COROLLARY 3.2. Fort € Oy,

tﬂvﬁﬁéfﬁgzmwawﬂhﬂﬁﬂ%)n+ﬁ
B(2V/NY¢)

bever (0,1), 1) + Ra(t)]
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where
Ro(t) = C@)| [ (Ve +16P) + ([ 196 + 16} Biclve 0,1, D).
B(3/2) B(3/2)

and C(dp) = Kexp(—%).

3.9. Splitting ¢¥y. We turn next to the estimate for ¢;. As already an-
nounced, this is the key part, and our main contribution in the proof of The-

orem 1.
Recall that v, verifies the equation
(3.61) —AYy =d(ve x dv)x  on RY x {t},

where t = 1 — 62, § € [0p,200] is fixed but to be determined later, and the
cut-off function x depends only on z, verifies 0 < x <1, x =1on B(2), x =0
on RV \ B(4), and |Vx]| < 1.

First, as in [8], we define a reprojection of v¢ in the following way. Let 7
be the real-valued function defined on RY x (0, 4-00) by

7(z,1) = p(|ve(, 1))
where p(-) is a function: [0,3] — [, 2] verifying the properties
pis)=1 ifi<s
(3.62) p(s) = fo<s<i
Ip'(s)| <4 for all s.
By construction, 7 verifies the inequality
(3.63) |1 —72(z)| < K |1 —|ve(2)?].

Set V. = Tv,, so that
Ve =ve if |ve| <
Vel =1 if |ve| >

D[ = =

The main motivation for the previous construction is the following observation.

LEMMA 3.7.
(3.64) (Ve x d¥e)(x) =2 (Ve x 0;%c) dav; A daj.
1<j

In particular,

1
(3.65) A5 X BTN @) =0 if ve(o)| > 5
and therefore

(1 - |vel?)?

(3.66) |d(Ve x d¥o)| < K =KV.(ve) onRY x(0,+00).

4¢2
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Proof. The identity (3.64) follows easily from the definition of d and the
identity d*> = 0. For (3.65), we notice that if |v¢(z)| > % then [V(z)] = 1 so
that 0;v. and 0;V. are collinear on the set

1
0= {:): € RY such that |v,(z)| > 5} .
Finally (3.66) follows from (3.65) and the bound (3.5). O

We decompose 1y as

Ve =1+ onRY x {t}

where
1t = —GN xd(Ve X dVe)x on RV x {t}
{ Yoy = —Gn*d((1—72)ve x dve)y on RN x {t}
so that
(3.67) { — A1 = d(Ve X dVe) x on RV x {t}
’ — Aoy =d((1 — 72)ve x dve) x on RN x {t}.

In view of its definition, 12 is an error term arising from the projection v,
of ve. This term can be handled easily as we see next.

3.10. L? estimate for Vipo;. The following inequality holds for ot
LEMMA 3.8. For N > 3,10

(3.68) / |V¢2,t|2 < 0(50)/ Ve(ve) exp(—%) dx
RN x{t} RN x{t}
where C(8p) = K exp(4/63) and K is a constant depending only on N.

Proof. We multiply the second equation of (3.67) by 12 and integrate by
parts on RY. This yields

Lo v [ = v (Ve + 9 el

RN x{t} RN x{t}

< K(/B(4)XZ€}(V€))E K/RNx{'XwQ’t 2>5 + (/RNXJXX’N)N </RNX{‘Z€2¢’2*>Q_*}
K(/13(4)X{‘§(V5)>2 (/RNX{|X¢2¢ 2)5

where we have used (3.5), (3.63) and the Sobolev inequality. It follows that
4 2
[ VenP<Ken(s) [ Viv)ew(- ) de
RN x {t} 05" JrRV ()

and the proof is complete. O

IN

YFor N = 2, a similar estimate holds replacing RY by any compact set.
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We next turn to the estimate for 1 ;. We will first present a simple proof
in dimension two, and then give the proof for N > 3. Although this proof
might be adapted for the case N = 2, we believe that the simple arguments in
case N = 2 will shed some insight for the general case.

3.11. L? estimate for Vi1 when N = 2. The following estimate holds.

LEMMA 3.9. For every t € [1 — 43,1 — &3],

2 2
[ ek sc][ v e i ogel
B(2)x{t} R2 % {t} 46
Proof. In view of Lemma 3.7,
[ A1 ¢l ey < K Ve(ve)

B(4)x{t}
and by standard elliptic estimates

ordlweu <K [ )
B(4)x{t}
for any 1 < p < 2. On the other hand,
A(h1,ix) = (A1) x + 2V Vx + Y1 Ax

so that

(3.69) 1A@L00 L@y < K / Vi(ve).
B(4)x{t}

To complete the proof, we present an unpublished argument of a preliminary

version of [8], which relies on the following inequality, due to [16] (see also [18]
and [56]).

LEMMA 3.10. For any u € H?(R?),
el ey < K ull s ey [1+ 1083 (1 + [lullaresy) | -
We apply Lemma 3.10 to 1)1 ¢x. Since
K
A1) L2y < =
by (3.5), we deduce that
91, 2 r2) <

Dol =

and therefore

(3.70) l191,ex| oo (r2) < K |[Y1,ell e 2y [log €2
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On the other hand, from standard elliptic estimates and using (3.70) we obtain

(3.71) 1,6 g2y < KNAWL) L2 @2) 191,02 (R2)
< K[ A1) 12 @2 191,60 1 2 log €] 7.

The conclusion then follows from (3.69). O

Remark 3.1. i) The main point here is the L> estimate for 11 ;. The only
property of the equation which is used is the pointwise L* bound on Vv,
in (3.5). A similar type of L> estimate is also used in an essential way for
the elliptic case in [8]. The proof there uses, besides (3.5), the monotonicity
formula.

ii) Recall that H*(R?) — L (R?) for s > 1. This is however not true
for s = 1, which is therefore critical for the previous embedding. Lemma 3.10
can thus be interpreted as an interpolation inequality in the critical dimension.
There are generalizations of Lemma 3.10 for higher dimension (see [16], [18],
[56]); nevertheless they involve critical Sobolev spaces for the corresponding
dimension, which require more regularity than H'.

iii) The proof of Lemma 3.10 can be obtained in the Fourier variable by
a decomposition in high and low frequencies. This idea will be used also in
our estimate of ¢, in the next section; however we have to use additional
ingredients related to the nonlinear parabolic nature of (PGL)..

3.12. L? estimate for Y1+ when N > 3. The analog of Lemma 3.9 in
higher dimension is the following.

PROPOSITION 3.4. There exists a subset Oy C [1 — 402, 1 — 03] such that
3
(3.72) meas (O2) > meas ([1- 462,1 — 5(2)])

and for each t € G4,
(3.73) / V14> < C(0)€d By (ve, (0,1),1)
RN x{t}
+0(50)/ V.(ve) exp(— 2 dar (Ew,e(ve,(o,1),1)+1),
RN x{t}

where C(dy) = Kexp(:%f) and K is a constant depending only on N.

Comment. In contrast to Lemma 3.9, we are only able to establish
inequality (3.73) for appropriate time slices.

The proof of Proposition 3.4 is rather involved. We divide it therefore in
several steps.
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Step 1: Splitting 11. In view of the proof for the elliptic case in [8], as well
as in view of Lemma 3.9, it is tempting to believe that a similar L*° bound for
11+ can be derived for N > 3. Nevertheless, this may not be true (see however
[55] for N = 4). To overcome this difficulty, we perform a splitting of 11 ¢+ in
high and low frequencies,

(374) th = 'l//i"t -+ wit on RN X {t}

We will derive an L estimate for the low frequency part 7, and a smallness
property for the (weaker) L? norm of 1/1’1'7# For the sake of simplicity, we write
11 instead of 11, and similarly Yt and 9§, whenever this does not lead to a
confusion. The high frequencies are essentially contained in wi, whereas ¥}
stands for the low frequency range. Since

Y1 =GN *d(ve X dve) X,

we define the splitting (3.74) introducing an appropriate splitting of the kernel
Gn. More precisely, we write

Gy =Gy + Gy =m(|z]) Gy + (1 — m(|z])) Gn

where m is some nonnegative function with compact support which we define

now. Choose a € (%, %) and consider the nonnegative function [ defined on R*
by
0 it s < e
S \N-1 N-1 -1 :
((e_a) —-1)(2 -1) if ¢ <5< 2¢
I(s) =12 1 if 2¢* <5 <16
(2N-1 (%)N_l)(QN_I —1)7! if16<s<32
0 it s > 32.
We set

(s) = 1-1I(s) if0<s<16
)= 0 if s > 16.

In particular, m is Lipschitz with compact support, and

m(s) =1 for s € (0,€*)
m(s) =0 for s € (2¢%, +00)
|m/(s)] < Ke .

Finally, we define
Y= G« d(Ve x d¥e) x on RN x {t},

and
V§ = G% * d(Ve x dve) x on RN x {t}.

The following properties of the kernel G will be useful. The proofs are
elementary and left to the reader.
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LEMMA 3.11.
IVGy o myy < Ke®,
and

IAGY | Mm@~y < K,

where M denotes the set of finite Radon measures on RN and K is a constant
depending only on N.

We first begin with the L* estimate for ¢{.

Step 2: L™ estimate for 1.  First, notice that G§(z) = Gn(x) for
|x| > 2¢“. In particular, since x has compact support in B(4), it follows that

(3.75) P§ = Gy *d(Ve x dve) x on (RN \ B(4+2¢%)) x {t}.

Therefore, ¢ is harmonic on (RY \ B(5)) (provided e is sufficiently small).
Hence, by the maximum principle,

(3.76) [Tl e mr xgey) < VT Lo (B(5) < 413) -

On the other hand, on the larger ball B(12), one has by the definition of m,
and in view of the support of y,

(3.77) V] = 1(Jz|)Gn * d(Ve X d¥e) x on B(12) x {t}.

Recall also that supp(l) C B(32) so that I(|z|)Gn * d(Ve x d¥,) x has compact
support in B(36). Combining (3.76) and (3.77), we obtain

(3.78) 1971l e @ gy < N(2) G * d(Te X dVe) Xl oo (v 1)) -

In order to estimate the right-hand side of (3.78), we invoke the following
lemma, which motivated the precise definition of I. A similar construction was
already used in our previous work on the NLS equation [10].

LEMMA 3.12. Let f € LY(RY). The following equality holds for any y €
RN
16 1

379 iGN = [ s [ eyl ) e
Y,2r) X1

€

7-2_N 16
f(@)h(|lz —y|,7r) dx ,
N_2éwmﬂﬁ<>u 7)

e

_l’_

where the Lipschitz cut-off function h is defined on RT™ x R™ by

1 if0<s<r
N—-1)(N -2 - =
h(s,r) :wal( I ). s gfr < s <2

N—1 _
2 1 0 if s > 2r.
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Proof. We start with the right-hand side of the equality. Integrating by
parts in the variable r, we obtain

16 1
(3.80) / r—l[ﬂ/ F@h(|z — gl r) da] dr
€ r B(y,2r)x{t}
,,,27]\/
+ / fl@)h(lx —y|,r)dx
N2 Jpanein (x)h(| ,7) )

16 TZ—N/ oh
= f@)==(lz —y|,r)dx] dr.
N3 gy T g o

Here, we have used the fact that h(2r,7) = 0 for each r» > 0. Notice that

oh N-1H(N-=-2)|z—y
el 7) = o DA D 220

and is equal to zero elsewhere. The last term in (3.80) can thus be rewritten

16

for z € B(y,2r)\ B(y,r)

as

1y N -1
(3.81) / T WN-15NTT / f(z)|x — y| dz] dr
e (B(y,2r)\B(y,r)) x{t}

and therefore also as

16 2
3.82 w / / / x)dx])dsdr =
(3.82) N= 2N1—1 8Bys><{t} ] W)

Using Fubini’s theorem, we obtain

(3.83)

32 min(s,16) N
Z(y) = wn-1 / / da?]/ N drds.
2N T OB( y,s)x{t} max(s/2,e*)

Note that by construction, [ verifies
N —1 min(s,16)
W/ rNdr=1(s)stV.
- max(s/2,e%)

Therefore, since supp(l) C [e%, 32] we can rewrite

32
— 2—N
I(y) —/6G WN-15 [/BB(y,s)x{t} f(z)dz]i(s)ds
_ WN-1 .
= ooy Tl o))

and the proof is complete. O

In view of the previous lemma, we have, for any y € RV,
16

()G (5 x d¥) ) () = [ 2 Tely)dr + 5 Tioy) = Tee )
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where we set

1 N -
Toly) = s / d(5e x dvh(|z — ), 7) x(z) da.
r B(y,2r)x{t}

In particular, for any y € RV,

- - 16 gy 2
(2 Cr * d(F x 7)) ()| < K sup }[ / _+_]

(384) réfex,16 a T N -2
<K sup |Jr(y)|[|logel +1].
refe,16]

Using (3.64) and the monotonicity formula, one may derive the bound
’jT(y)‘ S KEw,e(()? (07 1)7 1)

This bound however is far from being satisfactory for our purposes. To proceed
further, we argue as in [10], and use a refined estimate due to Jerrard and Soner
[36] which relies on the special structure of the Jacobian

1
JVe = §d(\7E X dve).
More precisely, we have

LEMMA 3.13 (Jerrard & Soner). Assume that w € HE (RN,C), ¢ €
Cg’l(RN, A’RN), and set K = supp(y). Then there exist some constants K > 0
and 0 < B < 1 depending only on N such that

(3.85)
/ <Jw,¢>‘ < HOKTG,HW /K ee(w) + Ked|gleor (1+ /K eo(w))(1+ |KJ2).

With the help of the previous lemma and of the analysis in Section 2.4,
we obtain the following.

LEMMA 3.14. Let 3 > 0 be as given in Lemma 3.13. For any y € B(36),

342/ Fye(ve,(0,1),1) 5
sup | Jr(y)| < K exp(—- : +e€q ).
re[ef‘,lﬁ} ‘ (58 )( \log 6’ )

Proof. Define the rescaled functions v, and X, by
Veyr(x) = Ve(rz +y) and Xy = X(rz +y).

Define also ¢, = £, and notice that for r € [¢*, 16] we have

1
(3.86) lloge| > (1 —a)|loge| > Z|loge\.
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By scaling and the definition of h, we obtain

1 ~ "
(387 Ty)=—s / d(5e x dvh(e — yl,r) (@) de
r B(y,2r)x{t}

- / 2Ty (2) (@, 1) Xy () do.
B(2)x{t}
Note that since x has compact support and r < 16,

1280, Dxyr(leopay < K
where the constant K depends only on N. We apply Jerrard-Soner estimate
(3.85) to w =V, and ¢ = 2h(-, 1)xy,r. In view of (3.86), this yields

€e,. Ve, r)
(3.89) L/m 2JTey. (x,l)xym(x)d$’<il((jé La0; 2 -+erﬁ)
B(2)x{t} |log €|
fB(2)><{t} Ce, (Vey.r)
< T IR /8/4 ]
<K (Fgg )
On the one hand, for €* <1 < g
(3.89)
/ (enr) =53 | (%)
Ce, Veyr) = w5 €e(Ve
B@)x {1} N2 B gan

L / lz—yl*
— ee(Ve) exp(——p2-) dx
rN=2 RN x{t} (ve) ( 4 )

~ 1. -
:ng,é(vév (ya 1 - 62)7 ’l“) S KGXP(E)EUMG(VG? (07 1)) 1)a

<K

where we have used Lemma 2.5 for the last inequality. On the other hand, for
$ <r <16,

1
3.90 / e, {75, v :—/ €e {}E
( ) B(2)x{t} (Feyr) rN-2 B(y,2r)x{t} ()

2 1 ~ z|?
< Kexp((wzg?) )5N—2 /]RNX{t} ee(Ve) exp(— |46|2 ) dz

342 -
S Kexp(?)E’w,e(Vev (07 ]-)? 1)5
0
where we have used the monotonicity formula for the last inequality. The
conclusion then follows from (3.87), (3.88), (3.89) and (3.90). O

We are now in position to derive our L* estimate for 9.

LEMMA 3.15. There exists a constant K depending only on N such that
(3.91) Il gy < C00) (Buse(ves (0,1),1) +1)
where C'(dp) = Kexp(g).
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Proof. Recall that by (3.78) we have
165 gy < 102G (T 5 450 v
Since supp(l) € B(32) and supp(x) C B(4), we also have
(l(lz))Gn * d(¥e x d¥e) x)(y) =0 for y € RN \ B(36).

Therefore we only need to consider the case y € B(36), and the conclusion
follows by (3.84) and Lemma 3.14. O

We next turn to the estimates for the high frequency part of 11, i.e. ¥t.

Step 3: L? estimate for ¢%.  Since i = G! * d(¥. x d¥.)x and since
IVGY ||z < Ke®, a few computations yield the following lemma.

LEMMA 3.16. There exists a constant K depending only on N such that
(392) [ i < O B, (0.1).1),
RN x{t}
where C(dg) = Kexp(%).
Proof. We have
, WN— - -
(3.93) i =m<|:c|>‘f+_g # d(¥e x d7) X

WN-1

m(|x I)| v

WN-1
m(lel) s

w - - WN— N -
d(m(|x\)’x‘NT_12) * (Ve X dVe x) — m(|$|)’x‘NT_12 * (Ve X dVe - dx).

Note that by Lemma 3.11,

(VE X dv, X)

% (Ve X dVe - dx)

(3.94) H m(|z]) "”]VV 1) < Ke,
2] L(&Y)
and that
(3.95) Hm(m)% < Ke < Keo.
|| L1(RN)

From (3.93) we thus infer that
(3.96)

1
2

, 2 . ,
LR < Ke® / Vi? | < Kexp(=)e*Euye(ve,(0,1),0)2
il (RN x{t}) 3(4)X{t}! | (53) (Ve, (0,1),6)

and the conclusion follows by the monotonicity formula. O

Step 4: Introducing an auziliary parabolic problem. Recall that

(3.97) —AY =d(Ve x d¥)x  on RY x {t}.
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In view of the result of Section 2.3, it is tempting to compare ¥ with the
solution 1] of the parabolic problem

(3.98) Dt — Mg = d(¥e x dv) x  on BN x [0, +0c)
’ ¥i(.,0)=0 on RY x {0}.
In view of Lemma 3.7, we have
(1 - |ve?)?
4¢2

where the constant K depends only on N, and the results of Section 2.3 apply
directly to v7. This yields

(3.99) |d(¥e x dv) x| < K x  onRY x[0,00),

LEMMA 3.17. For any § € [1 —463,1 — §2],

(3.100) |i(,1— 62)HL°°(]RN) < C(60)FBwe(ve, (0,1),1),

and

(3.101) / (Vi[> < C(00) Bue(ve, (0,1), 1),
RN x[0,1—62]

where C(8y) = K exp(4/63) and the constant K depends only on N.

Proof. For (3.100), consider the function f defined by
(1 — |ve(a, t)[*)?

flx,t) = 12 x(z) on RY x [0, 00)
and let w be the solution of
L Aw= f on RY x [0, 00),
w(z,0)= 0 for » € RV,

It follows from the maximum principle and (3.99) that
(3.102) Wi (z,1— 63| < Kw(z,1-6%)  VazeRY.
We deduce from Proposition 2.2 with "= 1 and zr = (0,1) that

M 2 5
1 _52> exp(4—62)Ew,e(Ve7(071)71)-
On the other hand, since x is supported in B(4), we deduce from Duhamel’s
representation formula for w that

w(x,1—52)§K<

sup w(z,1—0%) = sup w(z,1—62),

z€RN z€B(4)
and therefore
4 -
sup w(z,1 —6%) < Kexp(a—) Eye(ve, (0,1),1).

TERN 8
The estimate (3.100) then follows from (3.102).
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We next turn to (3.101). Multiplying (3.98) by ] and integrating by
parts we obtain

1 * * ~ ~ *
Gaoz) g [ il [ Ve =[x .
RN x[1—62] RN x[0,1—52] RN x[0,1—52]

Therefore,

(3.104)
Lo weiPs [ fwexdnd (9 i+ 9D
RN x[0,1—62] RN x[0,1—62]

N =

2 %
§Kexp(—2)(/ |v7/}1‘ ) (V67(071)71)
50 RN x[0,1—62]

]‘ *
S _/ |V¢1’2+Kexp( 2) ’LUG(V€7(O 1) )
2 JrRN x[0,1-62] a5

Here, we have used the Sobolev inequality and the monotonicity of the function
Ey.(ve,(0,1),-). Estimate (3.101) follows and the proof is complete. O

Comment. Estimate (3.101) seems a little disappointing, since it does
not offer any improvement for the energy (in the spirit of Proposition 3.4).
However, a few more computations show, by (3.100), that

1-62 1-62
//|w1|2<cao (] [ vitvoesn(-fily) de) (Bulve, 0,1, 1)+1)
RN 1— 452 RN 1— 4(52

Notice that this inequality involves only integration on RY x [1 —483,1 — 3]
whereas (3.101) involves integration on RY x [0, 1 — 62]. We will not make use
of the previous bound.

Step 5: L? estimate for Opb; on appropriate time slices.  In order to
compare ] with 1)1, it seems natural to try to derive some bound on the time
derivative Op). In this direction, we have the following estimate.

LEMMA 3.18.

(3.105) / 052 < C00)e ™ B (ve, (0,1), 1),
RN x[0,1—62]

where C(6y) = Kd;" exp(({%) and K is a constant depending only on N.
A straightforward corollary is the following.
COROLLARY 3.3. There erists a set Og C [1 — 462,1 — 63] such that

(3.106) meas (©2) > Zmeas (1 —465,1—43))
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and for each t € G4,
(3.107) / 100712 < C(80)e B e(ve, (0,1), 1),
RN x{t}

where C(8y) = Kd;° exp(z) and K is a constant depending only on N.

Comment. At first sight, this estimate seems rather poor, since the
right-hand side diverges as |log e|e ™!, whereas for v, we already know that
(3.108) / v < / ec(ve).

RN x[0,1—62] RN x{0}

If one assumes (Hp) then the right-hand side of the previous inequality behaves
as |log €|. However, estimate (3.108) is deeply related to the fact that (PGL). is
the heat flow for the Ginzburg-Landau energy. Linear estimates based on the
pointwise bound |V¥.| < Ke~! would lead only to estimates of order e~2. In
this respect, (3.107) presents a substantial improvement which is again related
to the divergence structure of the term d(v, x dv,). This improvement will be
crucial for estimate (3.133).

In order to prove Lemma 3.18, we begin with the following estimate for
the time derivative 0;v,.

LEMMA 3.19.

(3.109) / Orve 2 exp(— {2l dodt < K652 B e(ve, (0,1),1).
RY x[0,1—42]

Proof. By definition of =, we have

I 2

/ lﬁtve\Qexp(—ﬁ)dx dt
RN x[0,1-62]
|2

< L (= |=[? 2 = '
< /RNx[O,lég] -t ( (Ve, (0,1)) + 4(1_t)]Vv€\ )exp( 4(1_t))d$ dt

The conclusion follows, by (2.37), (3.7), (3.8) and the monotonicity formula.
O

Proof of Lemma 3.18. 'We multiply the equation for %], namely

(3.110) ot — AYF =d(¥e x dve)x  on RN x [0,00),
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by db; and integrate by parts on RY x [0,1 — §2]. We obtain

(3.111)
1-62

1 ~ ~ *
/ ot <~ / 4 / ViPdoyde + [ (e x i o)
x[0,1—62] RN x[0,1—62]

1 - ~ *

- / VI + / (d(Fe % dv)x, 07).
RN x{1-62} RN x[0,1-47]

Since the first term on the right-hand side of (3.111) is nonpositive, we only
need to concentrate on the term

/ (d(Fe x d¥.)x, b))
RN x[0,1—82]

The main idea is to exchange space and time derivatives of V. and %], and
for that purpose we proceed by two successive integrations by parts. Set U =
N x [0,1 — 63]. We first have!!

(3.112) /M<d(vg X dvVe)X, OT)
= Z/ i (Ve X 05%e) — 05(Ve X 0iVe)) x0T 45

1<)

= Z/ —Ve % 05V (Ou(0i] 15)X + Dix Ol 45)

1<J

+Z/ Ve X O0;Ve (at( ﬂh ’Lj)X +83X3t¢1 z])

1<J

-y / (T X B57) x O a5 — Ou(Fe X OiTe) X Ot

1<J

+Z/ (Ve X 0j7¢) Oix Opt1 5 + (Ve X 03¥e) O Opt 5

1<)
— Z/ (Ve X 0jVe) 8iwiij X — (Ve X 0;¥) aﬂ/}iij X-
i<j RN x{1-62}
Notice that
(3.113)
056 x 03 dutix = = [(7 % 00 B+ [ (7 % 050 Buv
u U U

= /Mai (Ve X O1Ve) 0597 ;5 X + /u({fe X O%e) (0597 45 0ix — By 15 9;X) -

11 : * *
Here, we write ¢y = ZKJ. Wi ,i5 dzi A dj.
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Combining (3.112) and (3.113) we obtain, after some easy algebra,

(3.114) / (d(Ve % d0)x, 7)) = Ty + Ty + T3 + Ty,
u
where
Ti=Y / (Or¥e x 0%e) Dl i X + (i X Dr¥e) Dby 15 X
— Ju
<7

T = (Ve X O¥) 33'%@“3@% — (Ve X 0¢Ve) 0197 ij 8jX7
u I ] 7‘7

1<j

T3= g / —(Ve X 0jVe) O 45 0ix + (Ve X 0;%¢) 07 45 05X
— Ju
1<)
and

nexf.

}(‘76 X aj‘h) aﬂ/)ik,ij X — (Ve X 03Ve) aj@biij X-
1<J

x{1—63

We first estimate 77. By (3.5) we obtain,

K ~22% *2%
(3.115) Tlg?(/ulatvelx> (/M\V%!) :

It follows from (3.109) and the definition of ¥, that
(3.116) / |8t\76|2x2 < Kexp(giz) / |815V6|2 exp(—%)
u o Ju
< K50_2 exp(%)f‘?w,g(vg, (0,1),1),

and from (3.101) that

(3.117) / V|2 < K exp(= ) Ew.c(ve, (0,1),1).
RN x[0,1—62]

o%| >~

Combining (3.115), (3.116) and (3.117), we see that the estimate for T} can be
completed as

4 ~
(3.118) Ty < Koy! exp(%)efle,e(ve, (0,1),1).

We turn next to Tb, which is estimated exactly as T except that we do
not need to invoke estimate (3.5). This yields

(3.119) T23K< / |atw?|vX|2)5 ( / |wa"12)5

S K(50_1 eXp(;_Q)Ew,e(vea (07 1)7 ]-)
0
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For T3 we obtain, using the monotonicity formula,'?

(3.120) T3§K< / \W?W)E ( / |at¢r|2>§

4. ~ 1 N
< K exp() (v 0.1)1) + 5 | 0003
0

Finally, for T}, we obtain, using once more the monotonicity formula,'3

(3.121) T4§K</ |Vx76\2|x|2> (/ |W}i‘|2>
RN x{1—62} RN x{1-63}

4 1 .
< K exp(e) e (ve, (0,1),1) + © / VP
5 4 JrNx{1-62}

Combining (3.111) and (3.114) with the estimates (3.118), (3.119), (3.120)
and (3.121), we finally obtain

4 -
(3.122) / 0p5]* < Koyt exp(é_Q)e—le,E(vE, (0,1),1),
RN x[0,1—62] 0
and the proof is completed. O

Step 6: Proof of Proposition 3.4 completed. Let us recall the estimates
that we have obtained so far for 1, = ¥¢ + ¢¢ and .
For t € O3 (©2 given by Lemma 3.3), we have

(3123) ||waLoo(RNX{t}) S C((SO) (Ew,E(VE7 (07 1)7 1) + 1) ’
(3.124) / 132 < C(80)%* By (ve, (0,1),1),

RN x{t}
(3.125) 197 (s )| oo vy < C(00) B e (Ve (0, 1), 1),
(3.126) / 104012 < C(G0)e B (v, (0, 1), 1),

RN x{t}

and

L (1= |ve*)? N
(3.127) |d(Ve x dve) x| < K———F——x on RY x [0, 00),

4¢€2

where C'(dp) < K exp( 33%2) and K is a constant depending only on N. We also
recall that 11 and ] verify the equations

(3.128) —AYy =d(Ve x dv)x  on RY x {t},

2Notice that the factor 1/2 in front of the last term on the right-hand side of (3.120) will
allow us to absorb it in the left-hand side of (3.111).

3Here again, the presence of the factor 1/4 in front of the last term in (3.121), will allow
us to absorb it in the left-hand side of (3.111).
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(3.129) ot — AYF =d(¥e x dv)x  on RN x [0,00).

In order to complete the estimate for |V |2, we write

[V [? = Vipy - Vi + Vb - Vi

and integrate each of the terms of the right-hand side separately. Multiplying
(3.128) by 9§ we obtain:

(3.130) / Vi - VS
RN x{t}

SC’((SO)/ K(Ve)exp(—%)dx
RN x{t}

x (Ew,e(ve, (0,1),1) + 1)

where we have used the L™ estimate (3.123) and the L! estimate (3.127).
Similarly, multiplying (3.128) by 1! we are led to

/ Vi - Vil
RN x{t}

We bound the right-hand side of (3.131) using the equation for ¢)]. We obtain,
multiplying (3.129) by ¢{ and integrating by parts on RY x {t}, the equality

(3.132) /RNx{t}<d({7€ x dve) X, 1/}@ = /

RN x{t}

<K .

(3.131)

/ (d(¥e x dve) x, 1)
RN x{t}

O] -wi+/ Vi - .

RN x{t}

For the first term of (3.132) we invoke Lemma 3.18 (i.e. estimate (3.126)) and
Lemma 3.16 (i.e. estimate (3.124)). By the Cauchy-Schwarz inequality, we
therefore obtain

(3.133)

[, @i
RN x{t}

Finally, we turn to the last term in (3.132), that is

< C(80)€* 2 Eupe(ve, (0,1),1) < C(80)€s By e (ve, (0,1),1).

(3134) [ LR Ry Y R

RN x{¢}

Notice that
— Ayl = AGY * d(Ve x d¥,) x.

By standard estimates for convolutions we have

|AGY * d(¥e x d¥e) x|

LIRN x{t}) = HAG?VHM(RN) d(Ve x dve) Xl L1y gy

< 0(50)/ Ve(ve) exp(—12) da,
RN x{t}
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where we have used Lemma 3.11 and (3.128). Going back to (3.134) we obtain,
by (3.125),

(3.135)
/ Vi V| < C(bo) / V(ve) exp(—22) dz By (ve, (0,1), 1),
RN x{t} RN x{t}

Combining (3.131), (3.132), (3.133) and (3.135) we obtain
(3.136)

/ Vi - Vb
RN x{t}

< C(6o)es

By
/ Ve(ve) exp(— ‘ | )dewe(Ve>(0 1), 1).
Nx{t}

Finally, adding (3.130) to (3.136) we obtain the estimate for Vi),
[ V0P <Ol Bl (0.1),1)
RN x{t}

) [ Vitwexpl-lg) do (Buclve (0.11)+ 1)
RN x{t}
which ends the proof. O
3.13. Proof of Proposition 3.1 completed. Recall that
Ve X dve = dpy +dip1 g +dipay + & on B(1) x {t},

and that by (3.19),

Ave2|Vve)? = 4fve x Vve2 + |V|ve?| = 4|ve x Vve|* + 4p%|Vp)?,
where p = |v¢| denotes the modulus. Using the fact that

1—|ve?
40— o) [ < KV g <owv 4 kv,
€

we therefore obtain, using the Hodge-de Rham decomposition (3.37),
(3.137)  ec(ve) < K[ |V‘Pt‘2 + |VP|2 + ‘ftlz + V6<V6)]
on B(1) x {t}. On the other hand, we have by Lemma 3.2, for ¢t € O,

~ 1
3.138 Epe(ve, (0,1),0) < —/
( ) (Ve (0:1):0) < G BVNS)x{t}

ee(ve) + Kllog dn,

where 6 = /1 -t ¢ [50,250].
We emphasize the fact that at this stage dg has not been determined yet.
In order to use (3.137), we first impose the condition

(3.139) 4VNéoy < 1,
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so that, if (3.139) is verified, we have, for t € 0,

/ eo(ve) < K / Vrl? + Vol + [Vabrol® + [Vl + (]2 + Vilwo).
B(2VN&)x{t}  B(2VNé&)x{t}

For each of the terms on the right-hand side , we may safely replace the small

ball B(2v/N§) by the larger ball B(1), except for the term involving ¢; for

which it is crucial to integrate on a ball of radius of order § (see Corollary 3.2).
Notice that ©1 N Oy # (). Indeed

meas(©1 N Oy) > gég,

by Lemma 3.1 and Corollary 3.3. Therefore, combining the estimates in Propo-
sition 3.2, Lemma 3.4, Corollary 3.2, Lemma 3.8 and Proposition 3.4, we ob-
tain, for t € ©1 N B9,

[ et S K@Y + €0t Buve, (0.1).1) + Cléan’.
B(2V/Né§)x{t}
Hence,
(3.140)
s [ edv) < K+ CO0nt By (0.1),1) + Cléon’,
B(2V/N&) x{t}

where C'(dp) depends only on 0y and K depends only on N.
We fiz dp such that (3.139) holds and such that

K& <

| =

From now on, Jp is completely determined. So is C'(dg) in (3.140). Therefore,
choosing 79 such that

)

C(do)ng <

w
PNy

we have for 0 < n < 79, combining (3.140) with (3.138),

=

By (ve,(0,1),8) < =By (ve, (0,1),1) + R(1),

DO =

where
R(n) = C(d0)n> + K|log do|n.

This finishes the proof of Proposition 3.1, and hence the proof of Theorem 1
is completed. O
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4. Consequences of Theorem 1

In this section, we prove some consequences of Theorem 1 which were
announced in the introduction. Proposition 1 is immediate and we leave the
proof to the reader. We present the proofs of Propositions 2 and 3, and we
add another consequence, which allows us to localize vorticity under some
additional compactness properties of the initial data ul.

4.1. Proof of Proposition 2. Let xy be any given point in B(xr, %) We
claim that we can find 0 < A\(T") such that

(4.1) we((z0,T),r) < mi|logel, for every VTp <r < +T1 =R
provided 7 < .14

Proof of the claim. We invoke Proposition 2.3. Letting A > 0 and
V1o <r <411 =R, we have
]. \/i N—2 )\2
(42) Eue((20,T),7) < p ce(ue) + (755)"  Moexp(——)llogel.
B(zo, r)x{T'}
First we choose Ag(7") such that

43) (2% Myexp(—2) < 1.
Set
AT) = max(2,2Xo(T)).
Since g belongs to B(zr, &) and r < R, it follows that
B(zo, \o(T)r) C B(xr, \(T)R).
Therefore,
1 R 1
-2 /Bm,xomr)x{ef}( u) < (7 s /B(:cT,A(T)R»x{T} celue)

= (%)N_zmlogé‘] < (%)N_2ﬁ\loge\.

Choosing Ty of the form Ty = K ﬁﬁ R?, we obtain

1

(4.4) - ec(us) < K~ ]10g€]

/B(ro)\o( T)r)x{T}
It suffices then to fix the constant K as

N N=2
K = | — 2
( 2 ) )
so that combining (4.2),(4.3) and (4.4) we obtain (4.1) and the claim is proved.
The conclusion then follows from Proposition 1. O

1Recall that \ enters in the definition of 7.
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In the next section, we will make use of the following easy variant of
Proposition 2.

PROPOSITION 4.1. Let u. be a solution of (PGL). verifying assumption
(Ho). Let xp € RN, T >0 and R > \/2¢. There exists a positive continuous
function X defined on (R)? such that, if

g 1 m
Nzr, T,R) = ——5—— es(us(-, 1)) < —
( ) RN=2loge| Jpor \(T,R)R) (e, 1)) 2
then
1 R
lue(z,t)] > 3 forte [T+ Ty, T+ T1] cmd:cEB(:CT,ZE).
The function A\(T, R) verifies
N -2
AR ~ | X2 hosT + B2, for (1) — (0.0),

and in particular X(T, R)R remains bounded as R — 0, for any T.

4.2. Proof of Proposition 3. We have, for any zo € RY and ¢t > Ty,

Eun (0, 0), VE)— 0 ly—al
we(@0,0); t)W RNes(ug)exp(—T) y

< Mplloge| < T;T_Moﬂog&\

tN_2
< m|logel,
in view of the definition of Tt. The conclusion follows from Proposition 1. [

4.3. Localizing vorticity. In this section, we assume that u! is localized in
some large ball B(R;). More precisely, we will assume that there exists Ry > 0
such that

(Hy) wW=1 onRY\ B(Ry).

In particular, there is no vorticity outside B(R;) at time zero. In this situation,
we will show that V. N {¢ > 2¢} remains confined in a bounded region of
RN x (0, +00). In view of Proposition 3, we already know that

My

V. c RN x [0,Ty], where Ty = (—)¥
m

2
-2,

We thus need to prove that, under assumption (H;), horizontal spreading is
excluded. More precisely, we have
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PROPOSITION 4.2. Assume ul verifies (Ho) and (Hy). Then there exists
R > 0 depending on My and Ry, but not on e, such that

1 _
(4.5) lue(x,t)| > 3 for all z € RN\ B(R) and t > 2.

Proof. In view of Proposition 3, (4.5) is already established for 7" > T.
We therefore assume ¢t < T'. Set

7= max_A0,R)R,
0<R<\/T;

where A is the function defined in Proposition 4.1. Note that 7 is finite in
view of the last remark in Proposition 4.1. Let 29 € RV \ B(R; + 7), and
V2e < R < /Tf. We have

1
(20,0, R) < = 0y — 0
n(:EOa > )— RN_QHOgE’ /B(xoﬂ_) 65(’118) )

where we have used (H;). Applying Proposition 4.1 for T =0, zp = z¢p and R
we obtain the desired conclusion setting R = Ry + 7. O

5. Improved pointwise bounds and compactness

The aim of this section is to provide proofs to Theorems 2, 3 and 4.

5.1. Proof of Theorem 2. Since by assumption (10), |ue| > 1 —0 > % on
A, there is some real-value function ¢, defined on A such that
(5.1) ue = pe exp(ip:) in A,

where p. = |ue|. Changing u. possibly by a constant phase, we may impose
the additional condition

1
(5.2) T!/A% =0.

We split as previously the estimates for the phase . and for the modulus p.,
and we begin with the phase. Inserting (5.1) into (PGL). we are led to the
parabolic equation

(5.3) —div(p?Vep:) =0  inA.

In contrast with the equation for the modulus, (5.3) has the advantage that
the explicit dependence on ¢ has been removed. We will handle (5.3) as a
linear equation for the function ¢., p. being considered as a coefficient. In the
sequel, we write o = ¢, and p = p. when this is not misleading. In order
to work on a finite domain, we consider the truncated function ¢ defined on
RY x [T, T + AT) by

P(z,t) = p(z,1) x(2),
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where x is a smooth cut-off function such that
4
5
The function ¢ then verifies the equation

X =1on B(=R) and XEOonRN\B(gR).

05 N .
(5.4) 028—(5 — div(p*V@) = div(p*eVx) + p’Vx Ve in A

Moreover, by construction
4
supp($) C B(zR) x [T, T + AT},

and in particular ¢ = 0 on the vertical part of the boundary of A. By a mean
value argument, we may choose some to € [T, T + 2] such that

4
55 / €e(Ue S—/GE Ue
(5.5) e ) S T [ el

and we set
3 AT
Ao = B(R) x [to,T + AT] D Az = B(ZR) x [T+ T,T—i—AT].
Since by assumption p is close to 1, it is natural to treat the left-hand side of
(5.4) as a perturbation of a heat operator, and to rewrite (5.4) as follows:

0P 1oL,
B_f —Ap =div((p* —1)V@)+ (1 — p2)8—f +div(p*pVx) + p*Vx - Ve in A.
We introduce the function ¢ defined on Ag as the solution of
(5.6)
% —Apy = div(p?pVx) + p?Vx - Vi in Ay,

wo(z,t0) = ¢(x,t0) on B(R) x {to},

g00($,t) =0 Vr € 8B(R), vVt > 1.
In particular, since x =1 on B (%R),

4
(57) % —Apg=0 in B(ER) X [to,T—l—AT].
Setting ¢1 = @ — g, i.e.
= o + ¥1,

we will show that ¢; is essentially a perturbation term.
At this stage, we divide the estimates into several steps starting with linear
estimates for ¢g.

Step 1: Estimates for pg. We claim that

(5.5) 19600210 n = C4) | [ extud)
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and

(5.9) IV @0l 700 a

e

<0 | [ et
2N

where 2* = =5 is the Sobolev exponent in dimension NN, and, for 1 < p,q <
+00,

q

T+AT
LPL9(Ag) = {f measurable on Ag such that / / If]9] < +oo}.t®
to B )

(R

Proof. We write pg = ¢ + ), where ¢ is defined by

aa—ﬁg —Ap) =0 in A,
o3(z,t0) = @P(z,t9) on B(R) x {to},
Wz, t) = 0 Va € OB(R), Vt > t.

By standard estimates for the heat equation, we have

V200l 12(Ag) < CIVEI L2(B(R)x (t01) < C(A)lle<(ue)lLr(a)s
and therefore by Sobolev embedding
(5.10) IVl 22 () < O lec(ue)ll i a)-

We turn next to gp(l]. Let 7 be the linear mapping which, to any function f
defined on Ay, associates the unique solution v = 7 f of the problem

% —Av = f in A,
v =0 on B(R) x {to},
v =0 Va € OB(R), Vt > to.

It is well known that the operators f + V(7 f), f %(Tf) and g —
V(7 (div g)) are linear continuous on LPLI(Ag) (see e.g. [37]). With this
notation, we may write

wo=Tf+T(divg)
where
f=0"Vx-Vo,  g=p*Vx.
We have the easy estimate
1£lz2(a0) < CMIVPllL2(ag) < C(A)lec(ue)ll L1y,
and in view of (5.2), Sobolev embedding in dimension N + 1, (2.3) and (5.5),

91l 2 (a0) < Cllellizr (ag) < CMVarellz2(ag) < C(A)lec(ue)llr(a),

1®We recall the obvious identity L¥LP(Ao) = LP(Ao).
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where 2* = 2]J\>[f12 is the Sobolev exponent in dimension N + 1. Therefore, by

the linear theory for 7 mentioned above,

(5.11)
IVl 22 (ay)

IV(T F)ll2r2 (a0) + IV(T(div 9)) | 222+ (a)

A) (I0V? + DT fllr2r2(ag) + V(T (div g)) |l r2r2s ()]
A) [HfHL2L2(AU) + ||9||L2L2*(A0)]

)||€e(ue)||L1(A)-

Combining (5.10) and (5.11) we obtain (5.8). Finally, (5.9) follows from (5.7),
(5.8) and standard estimates for the homogeneous heat equation. O

IN AN NN
2225

Step 2: The equation for ¢1.  The function ¢; verifies the evolution
problem

(5.12)
G~ Aer = div((p? = 1)V@) + (1 p) 5 in A,
gOl(l‘ to) =0 on B(R) X {to},
<p1(x,t) =0 Vo € 8B(R), vVt > 1.

It is convenient to rewrite equation (5.12) as

6801 . 2 .
(5.13) o — Apy =div((p” — 1)Ve1) + fo + div (o),
where we have set

95

fo=(1=p)%  and g0 = (7~ 1)V,
We have, for any 1 < p < 2,
(5.14) ||f0|]’£2Lp(AO) < C(A)Mye®>Plloge|.

Indeed, for any ¢ € [to, T + AT]

= [n-prigrs ([ GER)( [ amm®) T

B(R)x{t} B(R)x{t} B(R)x{t} B(R)x{t}
0P 9\ 2
<cw)( [ 150R) v aologel)
B(R)x{t}
Hence,

M)

/:MT </B(R)x{t}|f0|p>pgc( )[/ o ﬂ +EP) (Mo loge]) 7"

<C(A)er® P (Mpllogel) 7,
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and (5.14) follows. Similarly using (5.8), we obtain, for any 2 < ¢ < 2%, the
estimate for go

(5.15) 900122 1 a,y < CA)Moe? ~loge].
We now estimate ¢ from (5.13) through a fixed point argument.

Step 3: The fixed point argument. Equation (5.13) may be rewritten as
p1 =T (div((p® = )Ve1)) + T (fo + div go),

which is of the form
(Id = A)p1 =0

where A is the linear operator v +— 7 (div((p? —1)Vv)) and b = T (fo +div go).
To go further we need to specify the function space on which we consider
this operator. Set I = [to,T + AT]. Fix p and ¢ such that they verify the

conditions!®

1<p<2, qg=p" = and 2< <28 < 2%

Consider the Banach space
Xy = {ve W(I,Ww 1 4(B(R))) N L*(I, W"4(B(R))) such that v(0) =0} .

It follows from the linear theory for 7 mentioned earlier that A : X, — X, is
linear continuous and that

Al 2cx,) < COIT = pllz=(ao)-

In particular, we may fix ¢ > 0 such that

1
C@IL = pllz=(a,) = Cl@)o < 5.
With this choice of o, we deduce that I — A is invertible on X, and
(5.16) le1llx, < Clbllx,-
Finally, by (5.14), (5.15) and Sobolev embedding we obtain
1bllx, <17 follx, + |7 (div go) | x,
<|IVT follLzpo=r + 10T follzw-1a + llgoll 221
<C) [I(V? +1)T foll2rr + 10:T foll2r» + llgoll 2]
<CW) [Ilfollzzzr + llgoll 2 L]

<CA)(EF +e )My + Dloge].

16 Although the choice of possible p and g verifying the previous conditions shrinks as N
increases, it never becomes void!
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For the third inequality, we have used the fact that LP < W =14 (recall our
choice ¢ = p*). This, in turn, is a consequence of the Sobolev embedding
W4 < [P which follows from the identity (¢')* = ((p*)")* = p/, where stars
and primes refer to Holder and Sobolev conjugates in dimension V.

The following estimate for ¢; then follows from (5.16):

2-p

(5.17) V@il 72raag < CA)E " +& o ) (Mo +1)lloge].
We now combine the estimates for ¢ and ;.

Step 4: Improved integrability of V.  Combining (5.8) and (5.17) we
obtain

(5.18) IV@lZ2paa,) < C(A) (Mo + 1)lloge].

Comment.  Since q > 2, the previous estimate presents a substantial
improvement over the corresponding inequality with ¢ replaced by 2, which
follows directly from (Hp). This improvement is crucial in order to prove the
smallness of both the modulus and potential terms in the energy, which we
derive now.

Step 5: Estimates for the modulus and potential terms. The function p
satisfies the equation

9 _

(1-p?
ot ’

(5.19) Ap+plVel* = p—y

Since x =1 on B(%R), we have ¢ = ¢ on B(%R). Let & be a nonnegative cut-
off function such that £ =1 on B (%R) and ¢ = 0 outside B (%R). Multiplying
(5.19) by (1 — p?)¢ and integrating by parts with respect to space variables we
obtain

2\2
9 2 (1—P)
/AO pIVpl £+/A0p—62 3

a ~
_ A08_§<1_p2)§+/1;o Vp-V€(1—p2)+/0p(1—02)!V<P|2§~

Hence, since p > % on A we obtain

[ 190 Vi) < e ( / rvmm?) ( / v5<ue>)
A% Ao Ao
T+AT % p %2
LK / |v¢|q) / (- i) e
to B(3R)x{t} B(3R)x{t}
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so that using (5.18) and Remark 1.1 we finally infer that

(5.20) /A [V luel|® + Va(ue)] < CA) (Mo + 1) 1 ) log e

To summarize, we have proved at this stage that

\V4 2
(5.21) (1) < | ‘50’ +re,
for some r. > 0 which verifies
(5.22) / re < C(A)Moe®,
A

3
4

for some small o > 0 depending only on N. Therefore, we set

b, = ®0-

Step 6: Proof of the L* bound (11) for the energy. This step relies on a
result by Chen and Struwe [21] (see also [53] and [49]), which provides an L™
bound for the Ginzburg-Landau energy on a cylinder, provided the L' norm
of the energy on a larger cylinder is small. More precisely we have

PROPOSITION 5.1 (see [21]). Let 0 < € < 1 and let ve be a solution of
(PGL). on the cylinder A% = B(R) x [0, R?] for some R > 0. Then there exists
a constant vy > 0, depending only on N such that if R > \/e and

1
(523) ﬁ/{\ ee(ve) S ’YO
then
1
(5.24) ee(ve)(z,t) < KW /AR ec(ve)

for any (z,t) € B(%) X [%R, R].

In our situation, (5.23) is not meant, in general, for the function w, itself.
However, we will use Proposition 5.2 for a suitably scaled version of u., for
which (5.23) applies.

Let /e <19 < %R, to be determined later, set € = % and let (zg,tg) € Ag
be fixed. Consider the map v defined on AY = B(1) x [0, 1] by

o) = 1 (:L' —xo’ (t_toz) —i—r%)

so that
ue(x0,t0) = ve(0,1).



CONVERGENCE OF THE PARABOLIC GL-EQUATION 109

By scaling, we have

1
(5.25) / eclve) =~ / . ()
A? o J Ay (z0,to)

where A, (zo,t0) = B(zo,70) X [to — 3, t0]. Note in particular, since ro < %R,
that
A,y (o, t0) C As;

we may apply the decomposition (5.21) and estimate (5.9) to assert that

/ e.(u.) <meas(Ay, (z0,t0)) - [|VP- |2 +/ "
Ay (zo,t0) A

<wnCa(A)rg 2 [le(ue )l L1 (a) + C(A) Moe™.

Hence, going back to (5.25), we have

(5.26) /A eclve) < wnCo(A)r ex(ue) [ rga) + C(A)Morg Ve,
Therefore,
2 C A 1 1
v inf{lR,( wnCa(A)]ec(ue) L (A))_Q}'
8 Y0

Note in particular that r; N diverges at most as |log 5\%. Hence, for ¢ suffi-

ciently small,

C(A)Morg Ve < %.

On the other hand, by construction,

0
5

Applying Proposition 5.2 to v, together with R = 1, we therefore deduce

wnCa(A)rglles(ue)ll s (a) <

r%ee(ug)(mo,tg) =e(ve)(0,1) < K " ee(ve)

< KwnCa(A)rgle=(ue)|| i (a) + C(A) Morg Ve,

which leads to
e () (w0, o) < C(A) / e (uz) + C(A) My,
A

for some constant 0 < # < «a. This proves (11) for every (zo,t0) € Assg if
Jy ec(ue) > P, otherwise it follows from Proposition 5.1. The remainder of

the proof is devoted to the L* estimates for k.. We start with the modulus
and potential terms.



110 F. BETHUEL, G. ORLANDI, AND D. SMETS

Step 7: Improved estimates for Vp and V.(u:). Set § =1 — p. Applying
Lemma 1.1 to the cylinder As, we obtain

620) 161 < C2 (Il ag) + ozl ) < COLlloge] — on A,

where we invoke (11) for the last inequality. Going back to (5.19) and using
(11) once more, we infer that

(5.28) |00 — AB| < C(A)]loge] on A%.

Since (5.28) is an L*> bound, we deduce by standard linear theory that, for
every 1 < q1 < 400 and 1 < ¢2 < 400,

101lwrar (1,L02(y) < C(A)logel, 0]l Lo 1wz (8)) < C(A)[loge],
where I = [T + %AT,T + AT] and B = B(x, 2R) By interpolation (see e.g.
[44], [37]), we obtain

161] < C(A)[loge].

w o (1,w 2 (B))

Choosing ¢; and ¢ sufficiently large (in particular ¢g; > 3, g2 > 3N ), we obtain
that for every 0 < vy < 1,

HGHCO’%(I,CL'Y(B)) S C<77 A) Hog 5’,

On the other hand, from (5.27) we have
101l o (1,00 (BY) < C(A)e*(logel,

and therefore by interpolation again

(5.29) 16]] <C(A)et

%5 (1,C1#(B))
for some (small) o > 0. In particular, we have

(5.30) Vol = [VOr=a,) = C(A)"

|

Finally, in view of (5.27) once more, we obtain
6> 2 2
Ve(ue) < K— < C(A)e”|loge] on Az
£ 2
so that

(5.31) IVl + Ve(us) < C(A)e” on A:.

Step 8: Improved L™ estimates for V1.  Going back to (5.13), we
estimate again fo and gy, but now with the help of the improved estimates
for p. First, for g, we have by (5.29)

HgOHCO’%([,CLﬁ(B)) < C(A)€a|10g5|‘
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For fy, first notice that since we work on A:, ¢ = ¢ and therefore fy =
(1 — p?)d. From the equation for ¢,

dyp
2— — 1 2 =
Py — div(p"Ve) =0,

and from the a-Holder regularity bound for p, we infer a-Holder regularity
bounds for 0, of the order |loge|. Since on the other hand (5.29) holds, we
deduce that

HfOHCO’Q(A%) < C(A)e*|logel*.
Going back to (5.13) and invoking Schauder theory, we obtain
(5.2) [Ve1lleonay) < CA)E,

for some (> 0.

Step 9: Estimate (14) completed. We write, on A%,
2e. (u:) = |Vue|* 4+ 2V (u.)
=|Vol* + p*[Vl* + 2V (ue)
=|Vpl® + (p? = )|Vl +|V.[* +2V. - Vior + [Vipr [* + 2Vz (ue)
=|VP. > + 2k,
and the conclusion follows directly from our previous estimates. The proof of

Theorem 2 is thus completed. O

In order to prove Theorem 3, we turn next to a new Hodge-de Rham
decomposition which is specially tailored for situations where wild oscillations
in the phase are present. This decomposition will later help us to prove that
the linear and topological modes do not interact.

5.2. Hodge-de Rham decomposition without compactness. Let k € N,
k > 3, and consider a smooth bounded domain  in R¥, such that m;(9Q)
= 0.17 Let 6 and 6* denote respectively the exterior differentiation operator for
differential forms on R*, and its formal adjoint'® Let v, be a smooth complex-
valued function defined on . We assume that, for some constant My > 0, v,
verifies the bounds

(5.33) / e.(v.) < Mallog |,
Q

(5.34) / ec(ve) < Ma|loge],
o2

17Since k > 3, this is the case for instance if € is topologically a ball.
18Since in the sequel we will take k = N + 1, we do not use the notation d and d*, which
we restrict to RY for the ease of reading.
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and
(5.35) lve| < 3.

Then we have

PROPOSITION 5.2. Assume that v. verifies (5.33), (5.34), (5.35). Then
there exists a smooth function @, a smooth 1-form (, and a smooth 2-form ¥
defined on , such that

(5.36) Ve X vz = 0D + 0" + (, 0¥ =0 1in Q, U+ =0 on 09,
and
(5.37) V@l 12(0) + V¥l 12 (0) < C(2)Mzlogel.
Moreover, for any 1 < p < £,
(5.38) { V)10 < O )M,
<l e () < Cp, Q) Mae?,

where C(p, Q) is a constant depending only on p and .

Comment. The terms ¥ and ¢ in the decomposition (5.36) are bounded in
suitable norms. Notice however that it is not possible to find a uniform bound
on @ in any reasonable norm. In vague terms, one might say that the possible
lack of compactness of v. X dv. has been completely “locked” into &.

Proof. We split the proof into two steps. In the first step, we take care
of the boundary ¥ = 99 (which is by assumption a smooth (k-1)-dimensional
manifold), and of the Hodge-de Rham decomposition of the restriction (ve x
dve)T to X. Then, we “gauge away” the possible lack of compactness.

Step 1: HdAR decomposition on 3.  Since by assumption 3 is simply
connected, we may write

(5.39)
(Ve X 6v)T = Ve X dyv, = ds® +dEPE  on ¥, with dg¥Z =0 on X,

where dy; denotes the exterior derivative for forms on X, and dy, its formal
adjoint. Moreover, by orthogonality, we have

(5.40) V@272 + Ve UZ|[7: < K Molloge|.
On the other hand, we claim that for 1 < p < %,

(5.41) IVs¥Z||Lr < Clp, Q) M.

Indeed, applying ds; to (5.39) we obtain

(5.42) —AE\IIE = dx(ve X dyve) = 250, on Y.
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By the Jerrard-Soner estimate [36], we know that, for any 0 < o < 1,

1
5.43 J. 0.a- < C(a, < C(a, Q) M-
643 sl < ClaWgas [ o) < Cla. 900
By the Sobolev embedding, if ¢ > k — 1 we have WH4(X) — C%*(X) for
a = 1 - T’ so that by duality [CO%(X)]* — [Wh4(Z)]* = W—1P(X) where

5 + E = 1. By elliptic regularity theory, we therefore deduce from (5.42)
and (5.43) that, for 1 <p < %,

(5.44)
192 [[wrr < Clp, Q)| Jsvellw-10 < C(p, Q)| Jsve]ljow (s < Clp, Q) M.

We consider next the harmonic extension ® of &= to €, i.e.

AP =0 in Q,
) =¢> onX.

In view of (5.40), we have

(5.45) V2|72 < K Mallogel.

Step 2: “Gauge transformation” of v..  On € we consider the map w,
defined by

we = v exp(—iP?) in Q.
Notice that |we| = |ve|. Moreover, a simple computation shows that
(5.46)  we X Swe = ve X vz — |v| 0P = v x dve — 6B + (1 — |v.|?)6PL.

Since by assumption (5.35) |v:| < 3, we have

(5.47) V.| < |Vv.| + 3|V
and hence
(5.48) IVwel[Z2iq) + & 211 = [wel*)? |72y < K Msllogel.

By Holder inequality, we have for 1 < p < 2,

(5.49) 11 = [0:*)6@2)7, () < K Mae® Plloge]

and similarly

(5.50) (1 = |ve] )dzqﬁ”m &) < K Mae?Plloge].

Next, we apply the Hodge-de Rham decomposition to w. x dw. on €2 so that

We X dwe = 5@; +6*W, in €,
0P, =0 in €,
dL=0, (V.)1=0 on X.
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By orthogonality, we have

(5.51) IVl 2(0) < K Maloge|.
Arguing as above, we are led to the elliptic problem

AV, = w, = 2Jw, in Q
(5.52) (U)T=0 on Y,

(5*\:[16)T = Ag = (’U)E X (S'Z,U&«)T — d%\l}? + (]_ _ |U5|2)d2@§ on 2
In view of (5.44) and (5.50) we have, for any 1 < p < %,
|Ac|| o sy < Cp, Q) M.

On the other hand, by (5.34) we may invoke Proposition II.1 case ii) in [9] to
conclude that for any 0 < o < 1,19

HWEH[CO,Q(Q)]* < C’(a, Q)MQ
In order to conclude, we first invoke the following linear estimate?®
LEMMA 5.1. Let 1 < p < 400 and%—k%:l. LetleN,1 <1<k Let¥
and w be I-forms on Q and A be an (I — 1)-form on ¥ = 0. Assume that

AV =w mn Q
Ut =0, 0*¥)T=A4 onX.

There exists some constant C(p,Y), depending only on p and Q such that

1¥lwr@) < CE.) [l + 1Al 5. ]

Proof of Proposition 5.2 completed. For any 1 < p < k—fl and % + % =1
we have,

[ Ac|| ey S I Acllizasy = 1Acllir(z) < C(p, Q) Ma.

W
Arguing as for (5.44), we obtain

|we[e (@)= < O, D) llwelco. @y < Cla, Q) Mo.
Therefore, we deduce from Lemma 5.1 that
(5.53) e |lwre < C(p, Q) Mo.

Set
=0, &=¢"+d!, and  ((Jv|* —1)60°.

19The previous inequality does not follow immediately from Jerrard-Soner’s work [36] since
we does not have compact support in 2.
20For a proof see e.g. [8] and the references therein.
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Then,
Ve X 0v: = we X dwe + v 2680 = 0B 4+ 5V, + 68° — (1 — |u |*)0P?
=0D + 6"V + ¢,
and the conclusion follows from (5.45), (5.49), (5.51) and (5.53). O

5.3. Ewvolution of the phase. Let u. be a solution of (PGL), verifying (Hp).
Let K be any compact subset of RV x (0, +00). We first choose a parabolic
cylinder A which contains K

K CA=Bx(Ty,T1) € RY x (0, +o0).

Here B is some open ball in RY and 0 < Ty < Ti. Next, let Q be a smooth
bounded domain with simply connected boundary, such that

KcAcCQcRY x(0,+00).

Without loss of generality, we may assume that for e sufficiently small
/ ee(us) < Ma|logel, / ec(us) < Ma|logel, and lue| < 3,
Q o0

where My = C(K)Mjy and C(K) depends only on K. We apply Proposition 5.2
to ue. This yields

(5.54) Ue X OUue = 6P + 6*W + (, 0¥ =01in Q, ¥+ =0 on 09,

where @, ¥ and ( verify the bounds (5.38). In view of (5.38), we have already
obtained good estimates for ¥ and (. In order to handle @, we first prove that
it solves an evolution equation.

LEMMA 5.2. The function @ in (5.54) verifies the equation

(5.55) %—f—Aqﬁ:d*(é*\I/JrC—B(é*\I/JrC)dt)—Pt(é*\IIJrC) in Q.

Here, for a 1-form w on A, P;(w) denotes its dt component.

Proof. Taking the exterior product of (PGL). with u., we are led to

% —div (ue x Vug) =0 in A.

On the other hand, in view of the decomposition (5.54),

(5.56) Uz X

(5.57) ou. 0P «
W = E—i—Pt(é \If—i-C)

Combining (5.56) and (5.57) leads to the conclusion. O

ue X du, = dP + (6*V + ) — P(6*V + ()dt,
Ue X
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5.4. Proof of Theorem 3. Let u. be a solution of (PGL). verifying (Hp),
and let A, K, ¥, @ and ¢ be as in Section 5.3. Without loss of generality, we
may assume that

(5.58) / |Vt > < C(K)Mplloge|,

oA
where V, ; denotes the gradient with respect to both space and time coordi-
nates. Indeed, since by Proposition 5.2

[Vt @l r2(0) < C(2) Mallog e,

if (5.58) were not verified for our original A, we could shrink it to a smaller
cylinder, still containing K and verifying (5.58). Next, we decompose the proof
in two steps.

Step 1: Defining p.. We set 0A = Oy U Oy, where
Oy = (B X {T()}) U (6B X [To,Tl]) and 01 =B x {Tl}
Let @1 be the unique solution of the parabolic problem

(5.59)
9 —AG; =d* (0" + ¢ — P(6*T + ()dt) — P(6*T +¢) in A,
¢ =0 on 0.

Since by (5.38) we have

[0°W + ¢ = P(0"W + Q)dt|| o (a) + [1P(6™Y + Q)| e (a) < C(p, K) Mo,
it follows from standard estimates for the nonhomogeneous heat equation that
(5.60) V1| () < C(p, K)Mp.

Finally, we set
e =D — P

and
We = Ug exp(—igoa).
By construction, ¢, verifies the homogeneous heat equation

{ 9 _Ap. =0 inA,

(5.61) ot

pe =@ on 0.
From standard regularity theory for the heat equation, we have
(562 IVeele i) < COIVai a0, < CUF)Mologe].

This establishes the third statement of Theorem 3. We next turn to the fourth
and last one.
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Step 2: WP estimates for w.. First notice that
lwe 2| Vwe |? = |wel?|V|we| |2 + |we x Vawe|?,

and hence, since |we| = |ug/,

(5.63) / V.| < C(p) U lwe % dwel? +/ \Vlwa\lp] -
Kn{jue|>1} K K

On the other hand, since |Vw.| < |[Vue| + 3|Ve.| < C(K)Mpe™!, we have

o 2\2
(5.64) /1m{| |<1}\Vw5]p < C(K)M052p/ U=l o, KMy,

K 4¢2
By construction, we have
(5.65)  we X Sws = ue X Sus — |[u|?6p: = 5"V + 6Py + (1 — |uc|?)dep-.
Since by the Holder and Cauchy-Schwarz inequalities
11 = Jue*)oe | Lo ) < O p, K)I(1 — !ualz)HL;_vp(K) 10@ell ()
< C(p, K)e*>P|loge| My,
it follows from (5.65), (5.38) and (5.60) that

(5.66) /K e x dw.|P < Cp, K)(Mp + 1).

It remains to bound the LP norm of the gradient of the modulus. For that
purpose, we use the following lemma.

LEMMA 5.3. Set p = |uc|. The following bound holds, for any compact
subset K C RNV x (0,+00), and any 1 < p < 2,

/ V]ue| [7 < C(K) (Mo + 1)e' % [loge],
K
where the constant C(K) depends only on K.

Proof. The function p satisfies the equation
op?
ot

Let us introduce the set

A={(z,t) €Q, p(z,t) >1—"/?}

2
(5.67) Ap? +2|Vu|* = ?,02(1 — ).

and the function
p = max{p, 1- 51/2}7

sothat p=pon Aand 0<1—p5<e/?in Q.



118 F. BETHUEL, G. ORLANDI, AND D. SMETS

Next, let xx be a cut-off function in D(2) such that 0 < yx < 1 on Q,
Xk =1on K, and |Vxg| < C(K).

Multiplying equation (5.67) by xx(p? — 1),2! and integrating over Q we
obtain

202%(1 — p?)(1 — p?
Q Q €
op*

= [a=Auuct [ 9= - [ B -
Q Q 13

It follows that on the set Ax = AN K we have

| wer= [ v
AK AK

272 [ [V + CK) [ [9pllt = 7] + CCMaclog

212 [ [Vueft+ C(K U Vol + / v }

C(K)Mg€4.

IN

IN

Hence, since p > 1 —e'/2 on Ay, we have, for ¢ < 1/4,

(5.68) / IVp|? < 4/ IVp2)? < C(K)Mqe.
AK AK

On the other hand, on Bx = K \ A we have [, (1 — p?)? < O(K)Moe?|log €|
and hence, since (1 — p) > €!/2 on By, it follows that |Bx| < C(K)Mye|loge|.
Thus

p/2
.09 [ 1900 < ([1V62) 1Ba72 < ORIy + eV el
Bk Q
Adding (5.68) and (5.69) we complete the estimate. O

Combining (5.63), (5.64), (5.66) and Lemma 5.3, we have completed the
proof of Theorem 3. O

5.5. Hodge-de Rham decomposition with compactness. In this section, we
adapt the strategy of the proof of Section 5.2 using the compactness assump-
tions (Hy) and (Hz). We are going to work in the domain

Q. = RN x (2, +0).

Notice that in contrast to the results of Section 5.2 the domain here is not com-
pact (but the initial data possess compactness!). Notice also that for technical
reasons (in particular in view of Proposition 1.1 and Proposition 4.2) we have

2'Which is compactly supported in
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removed the boundary layer present in RY x [0,2¢]. This however introduces
a new difficulty, namely we have to keep track of the compactness across this
boundary layer.

As in the proof of Theorem 1, we begin with a reprojection of wu.. Let
p:RT — RT verify (3.62), let 7 = p(|uc|) and set

U = TUe ,
so that |@.] <1 on RY x (0, 400),
- . 1 - . 1
e = ue if |ue| < 1 |ie| =1 if ]u5|2§,

and
Jue =0o0n )V, = {(l’,t), ’us(‘rvt)‘ >

1.

N =

In particular,
supp (Ju:) C B(Ry) x [0,T¥].

We have

PROPOSITION 5.3. Assume that u. verifies (PGL)., (Hy), (Hy) and (Hs).

Then there exists a smooth function @ and a smooth 2-form ¥ defined on €.
such that

fie X 8ite = 0B + 6"V in Q.

(5.70) v =0 in Qe,

&=0, V=0 on Q. = RN x {2¢}.
Moreover,
(5.71)
”V&?,tQSH%?(RNX[Qs,T]) + Hvﬂxt\IIH%Q(RNX[Zs,T}) < CM()’lOgE’T, fO?“ all T > 2,
and for any 1 < p < % and any compact subset K C RY x (2¢, +00),
(5.72) IVt @l Lo (i) + Vet Ol Lo(rey < Clp, K, Mo).

Proof. The Hodge-de Rham decomposition of the 1-form u. x du. on €2,
leads directly to (5.70) and (5.71). Moreover, applying the §* operator to
(5.70) on €. we are led to the elliptic problem

{ _Az,t\p = 2J:C7t’115 in Qa

(5.73) Ut =0, (60)r = (@ x dtz)T on 0.

In the sequel we write simply A instead of A, ; and similarly for J, when this is

N(N+1)
2

not misleading. Since W is a 2-form it has different scalar components

U= > duAdrj+ Y UydtAday.

1<i<j<N 1<G<N
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Going back to (5.73), we see that the boundary conditions on 02 decouple
into Neumann conditions for the functions ¥;, namely

% U X % on 0f),,
0z
whereas for the functions ¥; ; we have homogeneous Dirichlet conditions
v; i =0 on 0f)..
We divide the proof of (5.72) in several steps.

Step 1: LP estimate for V¥; ;.  We introduce the reflection operator P,
which, to any function f defined on 2., associates its reflected function P:f
defined on RY x (—o0,2¢) by

P.f(x,t) = f(z,~t +4e) Ve e RN t< 2.
We extend ¥, j to RV by setting
U, i(z,t) = =PV, j(x,t)
so that
(5.74) —AV; ;= 21y, Ay, — Pe(21y, Aly,)  in RV

Invoking Proposition II.1, case ii) of [9], we deduce that the right-hand side of
(5.74) is bounded in [C**(RN*1)]*, and arguing as in the proof of Proposition
5.2 we deduce that

(5.75) IVWillLe i) < Clp, K, Mo).

The corresponding estimate for ¥; is less direct. The compactness assumption
on the initial data will be determinant in the computation. We are going to
use the following.

Step 2: Compactness at the initial time. Let x be any function in C} (RY).
We have, for any ¢ > N,

(5.76)

ou?
L% G < 00 (1900 gy + 1+ Mochogel] Tl ey

Proof. First notice that since u? is constant outside B(R;), we only need

to consider the case x € C}(B(2R;)). For the same reason, we also have

0 0
12l 8 sory < € (16208 gy + 1) -

Consider the function @Y defined on RN by 40 = u? if [uf] < 1, @0 = uQ/[u?|
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1

[ull®
if [u®| > 1. Next, we use the embedding W' e < €9 H=, and the fact
that H> N L™ is an algebra. Since || < 1, xu belongs to H> N L and
therefore, on B(2R;),

- 70 s 4510 — 20 s 7a,0 3£ 2,0 70 s di0 — 0 5 7a;0
otherwise. We have ] x dag = ug x du if |ug| < 1, and u x da = ug X dug,

Il 3 < € (Il 18205 + NEl =Xl )
< (@) (Il 3. 170 3 + Il 3)
< C(a) (14 18203 ) Il 3.0

Hence, we obtain, on B(2R;),

/ x(@d x da?)
B(2R))

q
q

(5.77) < lldall,-y Ixadll ;4

< C@IEN 3 Il e (118203 ) -

On the other hand, by construction

1— 012\2 0|2
|ugxdug_agxdagyg\|ug|2_1\.|dug|gﬁg<( uel)” | [Veel )

4e2 2
so that
(6:18) | [ x(al xda  u? x du)| < C@Maellogel [x] g
RN W a i (RY)
Combining (5.77) with (5.78) we derive the conclusion. O

Step 3: Propagating compacitness. We claim that
(5.79) llue (-, 2e) — ug(')”L2(RN) < CMO555|log5|5,
and that for any x € C}(RY),

(5.80)

Oue o 0ul 1 1
_ = < 2 : 2.
\ /(Ua X o, X /(ug X axj)X’ < CMoe? |loge| (HxHLlpHsupp(X)! )
RN x{2e} RN

Proof. Define on RY the function ul (z) = ue(z, 2¢). We have, for z € RV,

2e 2e
(@) — 2@ < ([ 2, 5)ds)? < 2 / |
o Ot 0

Oug

2
5 (z,5s)|" ds.

Hence, by integration,

ou
[ul — Ug||%2(RN) < 25/ | 8t€|2 < 2Moe|log el
RN x (0,2¢)
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and (5.79) follows. For (5.80) we write

oul ou?
uld us—uox Ye _

X —
0z Ox;

X X —
al‘j te al'j
For the first term on the right-hand side , we obtain by the Cauchy-Schwarz

inequality

8u£

oul
f_,0 €
/RN(UE ug) X 9z, ¢

(5.81)

<luf = ulll eyl HLz =[xz

1
< C|lx|| L= Moe> \logal.
For the second term, we integrate by parts
ou?
“(uf - ul)x

0
0 Y f .0 <
U % 8.’E] (U US)X‘ _/]RN /RN Bac]

< luf = ull 2@y 12l 22 supp oy VX 2

(5.82)

uf -

HIVulll o enyllud = ulllpex) ) z=
< CMos? floge] (JIxllwr = + Jsupp()I¥) |
where we have used the bound
4]l 2 (supp(ry < Ol = [l + Clsupp()|> < CeEx(ul)? + Clsupp(x)|?.
Combining (5.81) and (5.82) we deduce (5.80). O

Combining (5.80) and (5.76) we are led to

’/RN ><{25}

and arguing as in Step 2 we conclude that

< C [Jl2113,y + 1+ Mosfogel] (1Ixllwe + lsupp(x)|? )

(5.83)
‘/RNX{QE}

Step 4: Improving (5.83). Let x be in C*(RY) such that

) x| < € 121,y + 1+ Mosfogel] (1Ixllws~ + [supp(x)])

||VX||L°O(RN) + ”X”L?(RN) < +o00.
Then we claim that

(5.84)

[ x\ < C [l +1+ Most[logel*] (19~ + Il z2) .
]RNX{QE}
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Proof. Let £ be a smooth nonnegative cut-off function such that £ =1 on
B(R;) and ¢ = 0 outside B(R2). We write x = x§ + x(1 —&). By (5.83) we
have

- ou
| / e % (52 xE| < C [0l 4 + 1+ Mosllog el (19l + Ixlzz +1).
RN x{2e} ax] H2

On the other hand,

1
2

/ ec(ue)(1 - 5)2] [l 2 ) -
RN x{2¢}

By Corollary 2.1 and assumption (Hi),

[ mxGExa-g <o

Nx{2e}

/ ec(ue)(1— €)% < / e-(u)(1 — €)% + dellog e| Mo | VE |2
RN x{2e} RN x {0}

< 48]10g€\M0HV§H2L°°v

so that the conclusion follows. O

Step 5: LP estimate for VV;. Let K be any compact set in RY x (2¢, +00).

N+1
Then, for any 1 < p < 5,

(5.85) IVl o) < Clp, K) M.
Proof. We argue by duality. Let % + % = 1, so that in particular ¢ >

N 41, and let h be any vector field in LI(RY) with compact support in K.
We introduce the solution ¢ of the dual problem??

e

£—§V =0 on RV x {2¢}.
Extending ¢ by reflection on the whole of R i.e. setting
(=P.(¢) onRY x(—o0,2e),
we have then ( solved the equation
~A¢ =divh +div(P.h)  on RVTL
It follows by standard elliptic estimates that
V¢l Lo@ny < CllR| Loy,

and
¢ e C®(RN\ (K U P.K)),

22 Actually, ¢ is uniquely defined up to a constant.
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where P.K obviously denotes the reflection of K. Moreover, since ( is defined
up to an additive constant, we may also assume that

1]l e

<. t)] < C(K) dist((z, ), K U P.K)N-1

and that
17| La

dist((z,t), K U P.K)N~

We turn back to the system (5.73). Multiplying the equation of (5.73) corre-
sponding to ¥; by ¢ and integrating by parts on (). we obtain

/ V¥;V( :/ 2(uy x azj)g+/ Ue X aus(.
Q. Q. RN x{2¢} Oz

On the other hand, multiplying (5.71) by ¥; and integrating by parts, we

obtain similarly
/ V\IleC:/ h-V;.
Q. Q.

Hence, combining the previous relations, we have

/ h-VV;
QE

Arguing as in Step 1, we are led to the inequality

[V((z,1)] < C(K)

(5.87)

g’/ 2(atxaxj)g‘+/ ﬁsx%c_
0. ' RN x {26} Ox;

[ 2t amc( < OMo|| VL (RY) < CMo| Al oges).

For the second term on the right-hand side of (5.87) we invoke Step 4. This
yields

N Ol
/ i a“ ¢| < C(1+ My + M) [|IV¢] £ + [1€]122]
RN x{2¢} Ly

< C(K) (14 My + Ms)||h a-

Going back to (5.87) we thus obtain

/ h-VU,
Qs

and since h was arbitrary the conclusion follows. O

< O(K) (14 Mo + Ma)|[hllLs(q.),

Step 6: Estimate for V®. Asin Section 5.3 we derive a parabolic equation
for the phase, using (5.56) once more. We have, recalling that 7 = p(|u.|),

Ue X OUe = T 20z X 0lie = 7 20® + 7726 0.
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Hence,

U X due = 772dP 4+ 772 (Y — P(6*V)dt)

ou 00 _ *
Ue X 8: =T 25 + 7 2P (6 W),

and (5.56) leads to

T—Qz—f — div(72V®) = d* (1720 % U — P,(6*V)dt) — 77 2P,(5* D).
We obtain therefore
0P * (_—2 *
5 ~Ae=d (7726 % U — P,(6"W)dt)

—T2P(0* ) + (1 — 7—2)%—f +div((1 — 72)V®).

By (3.63), |1 — 72| < C|1 — |uc|?|. Given the LP estimate for V¥ obtained in
Steps 1 and 5, and arguing as in Step 1 of the proof of Theorem 3, we finally
derive the bound

IV Lrx)y < Cp, K)
for any 1 < p < %, and the proof of Proposition 5.3 is complete. O

5.6. Proof of Theorem 4. First notice that the same way we obtained
(5.63) and (5.64) we have here

/ |Vu|? < C(p) [/ |ue X du5]p+/ ]V\ung] + C(p, K)Mj.
K K K
By Lemma 5.3,
[ Il < 0(0) (g + D' logel.
K
On the other hand,
lue X due|P = 77|l x di.|P < C(p) (VPP + |[VEP).
Hence, by Proposition 5.3
/ |u£ X dua|p < C(p, K)
K

and the conclusion follows. O

5.7. Proof of Proposition 5. Since we assume (H;) and (Hz), we may apply
Theorem 4 (with p = 1), so that

(5.88) / |Vue| < C,
A

1
2
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where A1 = A1 (x,t,7). Since u. verifies (16), we may also apply Proposition 4
2
so that

M)

Ve ?
2
where k¢ is bounded in L and &, verifies the heat flow on Ai. Recall that &,

4
was constructed in the proof of Theorem 2 and verifies (5.6). Notice that on
B(r) x {tp} we may impose the additional condition

(5.90) / V| < C.
B(r)x{to}

Going back to (5.6), we verify that all the terms on the right-hand side are
bounded in some suitable norm, say L'. On the other hand, the initial value
is also bounded by (5.90). Since pg = @, solves the heat equation on A1, we
therefore deduce that !

(589) ea(ua)

+ Ke on A,
4

Vo, | <C on A1

and the conclusion follows from (5.89).

Part II: Analysis of the measures u!

Introduction

As mentioned in our main introduction, the focus of this paper is on the
asymptotic limits, as ¢ — 0, of the Radon measures p. defined on RV x [0, +00)
by
ee(ue(,t))

dx dt,
log €|

pre(z,t) =
where for 0 < ¢ < 1, the functions w. are solutions of (PGL). satisfying
assumption (Hp). We are specially interested in the properties of the time
slices ! defined by
ee(ue(w, 1))

dx.
loge]

pe() =

In view of assumption (Hy) and inequality (II), we may assume that for a
subsequence &,, — 0, there exists a Radon measure 1, defined on RY x [0, +00)
such that

(1) e, — [x as measures.

Following Brakke [15], we may also assume weak convergence of uf for all
t > 0, in the sense of measures.
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LEMMA 1. There exist a subsequence of €y, (still denoted £y,) such that
/‘Zn — forallt >0,
where (it is a finite Radon measure on RN for all t > 0. Moreover, ju, = pt dt.

The proof in [33] carries over word for word. We fix such a sequence
€n, and we will therefore write ¢ instead of €, in the sequel, when this is not
misleading. We also identify in some places the measure ;! with a measure on
RN x {t}, and we will even sometimes identify R and RV x {t}.

Some properties of the functions u. can be translated directly in the lan-
guage of the measure p,. Firstly, an easy consequence of the monotonicity
formula (for u.) is,

LEMMA 2. For eacht > 0 and x € RY, the function €,((x,t),-) defined
on RS by

2

1 I'—y2 -r
P w0 = o [ en-o gt

is nondecreasing for 0 < r < \/t.

Secondly, important consequences of the analysis developed in Part I are
given by the following.

THEOREM 5. i) There exist an absolute constant ny > 0, and a positive
continuous function \ defined on RY such that if, forx € RN, ¢t >0 and r > 0,
and

(2) HL(B(a, A(t)r)) < nar™ 2,

then for every s € [t + %—27“2, t +12), ul is absolutely continuous with respect to
the Lebesgue measure on the ball B(x, %T’). More precisely,

Vo, |?

S

= — d
T 5 de
where @, satisfies the heat equation in A1 = B(zg, 37) X [t + 1377, t + 7).

ii) If ue verifies the conditions (Hy) and (Hg) in addition to (2), then for
every s € [t + 12r?,t + r?,

1
on Bz, Zr),

1
us =0 on B(z, ZR)

Remark 1. Note that the constant 7y and the function A\ are the same as
in Proposition 4 of Part I. Notice also that p, = %|V<25*\2 dx dt on A1, and that
4

|V®,|? is a smooth function.
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We briefly sketch the proof of Theorem 5, which is a rather direct con-
sequence of Theorems 1, 2 and 4 of Part I. We begin with case i). If (2) is
verified, then for € = ¢, small enough

/ ee(ue) < nng_2|log el,
B(z,\(t)r)

so that we may invoke Proposition 4. This yields

Vo, |?
eg(ue):‘ 26’ + ke in A,

where &, verifies the heat equation in As and
8

V&[> < C(A)[logel, k| < C(A)EP in Ai'
Extracting possibly a further subsequence we may assume that
Pe

V/ [logel

Since @, verifies the heat equation, it follows that for every k € N
PDe

V/|loge]

and @, verifies the heat equation on A1. On the other hand,
4

— @, uniformly on A%.

— P, in Ck(Ai),

ke — 0 uniformly on Az,
4

so that

D, |?
ee(ue) — [V, uniformly on As .
llog ¢| 2 16

For case ii), we argue similarly, invoking Proposition 5.

1. Densities and the concentration set

In order to analyse geometric properties of the measures p, and p!, an
important concept is that of densities. For a given Radon measure v on RV,
we have the classical definition.

Definition 1. For m € N, the m-dimensional lower density of v at the
point z is defined by
(B(z,7))

Oy m (v, z) = liminf Y

r—0 W r™ ’

where wy, denotes the volume of the unit ball B™. Similarly, the m-dimensional
upper density OF (v, x) is given by

©;, (v, z) = limsup M

r—0 W T
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When both quantities coincide, v admits an m-dimensional density ©,,(v, x)
at the point x, defined as the common value.

Since the energy measure is expected to concentrate on (N-2)-dimensional
objects, our efforts will be devoted to the study of the density O, y_2(ut,").
Invoking the monotonicity formula once more, we have

LEMMA 3. For all z € RN and for all t > 0,

@*,N—Q(:U“i’x) < 6?\7—2(/‘17]}) < KMOt% < +00.

The previous lemma provides an upper-bound. For regularity properties
(of the concentration set) it is well known that lower bounds play a key role.
However, there are some conceptual difficulties to attack O, y_o(u!, -) directly
(since the equation depends on time). Instead, we will first work on the space-
time measure u., and recall the notion of parabolic density, which is natural
in view of Lemma 2.

Definition 2. Let v be a Radon measure on RY x [0, +00) such that v =
vidt. For t > 0 and m € N, the parabolic m-dimensional lower density of v at
the point (z,t) is defined by

N [z —yl?, e
P _ _ A t—r
0L, (v, (,)) = liminf —_ /R ep(— I )
The parabolic upper density and parabolic density are defined accordingly, and
denoted respectively by ol* and er.

Remark 2. Notice that ©F is not the classical density, in the spirit of
Definition 1, for the parabolic metric defined by

dp((z,t), (2, 1)) = max(|z — 2/|, |t — '|2).

It clearly follows from monotonicity that the limit in Definition 2 is de-
creasing, so that ©% ,(u*, (z,t)) exists everywhere in RY x (0, +00). Another
consequence, which we will prove later (see Section 6.2) is that

(3) ON_a(1" (2,1)) = KOy n-a(pl, )
for some explicit constant K. Motivated by this inequality, we set
S, = {(z,t) € RY x (0,400) such that Oy _,(s, (z,t)) >0},

and for ¢ > 0,
S =3, N (RY x {t}).

An obvious consequence of (3) is that

(4) O.n—2(pl,2) =0  onRV\ X,
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2. First properties of X,

As in Brakke’s and Ilmanen’s works ([15], [32]) the main tool in the study
of geometric properties of ¥, is the following.

THEOREM 6 (clearing-out). There exist a positive continuous function ns
defined on R}, such that for any (x,t) € RN x (0, +00) and any 0 < r < \/t, if

_ 1 ’.T — 9’2 t—r? 2
G,u,((l',t),’f’) = rN—2 RN eXp<_ 472 )d:u'* (y) < 773(t -r )

then
(J;? t) §7_f E#'

Theorem 6 is a consequence of Theorem 5. An immediate corollary is

COROLLARY 1. For any (x,t) € ¥,
ON_2(pia, (1)) > 13(1).

At this stage, we are in position to derive the following, without invoking
any further property of the equation (PGL)..

PROPOSITION 6. i) The set £, is closed in RN x (0, +00).

ii) For anyt >0,
HNT2 () < KMy < +00.

iii) For any t > 0, the measure ul can be decomposed as
pl =gz, yHN + 0, (z, ) KN 2 L5,

where g is some smooth function defined on RN x (0,+00) \ ¥,, and O,
verifies the bound Oy (x,t) < KMt™s .

Comment. a) The function ©, in decomposition iii) is the Radon-Nikodym
derivative of ul I_EL with respect to HYN72; at this stage we may just assert
that it lies between the lower and upper densities.

b) Concerning g, it can be locally defined as |V®,|? for some smooth

@, verifying the heat equation. The function &, however is not yet globally
defined.

3. Regularity of EZ

As already mentioned, lower bounds for ©, y_» will play an important
role for regularity issues: however, up to now we have only lower bounds for
©% _, (see Corollary 1). The next result provides the reverse inequality to (3).
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PROPOSITION 7. For almost every t > 0, the following inequality holds
(5) O N—2(pl, ) = KON (s, (,1))

for HN=2 almost every x € RV,
Combining Corollary 1 and Proposition 7 we are led to

COROLLARY 2. For almost every t > 0,

(6) Q. N_2(ut, ) > Kns(t), for HN 2-ae. x € EZ.

At this point, combining Theorem 5 with Corollary 2 and Ambrosio-Soner’s
work [4], the proof of Theorem C is complete. Indeed, since V&, = 0, there is
no diffuse part and (AS) holds.

To proceed further towards the proofs of Theorems A and B, we have to
deal with the diffuse part, and different kinds of arguments could then lead
to regularity for ¥/, One way is to follow the arguments of [4] (as above for
Theorem C), which rely on a curvature equation for pl and Allard’s first rec-
tifiability theorem (see [50]). Another possible way is to prove the existence of
the density On_o (HY~2 almost everywhere), and then to invoke Preiss’ reg-
ularity theorem [47]. Even though Preiss’ theorem is notably highly involved,
we choose this last alternative since it will simplify some of the subsequent
arguments. Therefore, we will prove

PROPOSITION 8. For almost every t > 0,

@*,N72(H§<7x) = 97\/72(/‘401’) Z Kn3(t)7

for HN=2 almost every x € EZ. Consequently, for almost every t > 0 the set
1, is (N — 2)-rectifiable.

We recall that a set ¥ C R is said to be (N-2)-rectifiable if HV~2 almost

all of ¥ can be covered by the union of countably many Lipschitz images of
BN72,

4. Globalizing 9.

In order to complete the proof of Theorem A there is still one point to
clarify: the function @, which appears in Theorem A is global, whereas up to
now the function @, constructed in Theorem 5 is only locally defined. Indeed,
using Theorem 5 we may define @, on every simply connected domain of €, =
RY x (0,+00) \ £,. However, Q,, is not simply connected in general, and this
raises a difficulty for defining @, globally. Nevertheless its gradient V@, can
be defined globally on €, (and verifies there the heat equation). In order to
overcome this problem, we will invoke Theorem 3 of Part I.
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For m € N*, set K, = B(m) x [2,m], so that U, K, = RY x (0, +00).
We apply Theorem 3 to u. and K = K,,,, so that we may write
(7) ue = exp(i¢)w  on Ko,
where ¢ solves the heat equation on Ky,
(8) VoI Lo (k,,) < C(m)y/ Mpllog el

and

. N+1
(9) IVl e,y < Clmp)  forany 1< p< ~——.

Let m € N* be fixed for the moment. Extracting possibly a further sub-
sequence of (&,,)nen, we may assume without loss of generality that

o
VMoge]

Moreover, passing to the limit in the equation, we infer that ¢* solves the heat

(10) — o™ in C*(Kp1).

equation on K,,_1.

Next, let g € Q4. Since Q, is open, we may find a small cylindrical
neighborhood A, of z¢ in €2,. There exist mp € N such that for m > my,
Ay, C K. For e sufficiently small,

(11) luel >1—0 > on A,

N =

(where o is the constant in Theorem 2), so that

(12) ue = pe exp(ie:)

for some real-valued function @, (defined up to an integer multiple of 27). In
view of (11), we may apply Theorem 2, and assert that there exists a solution
&, of the heat equation on A, such that

(13) Ve = Vel L ((any) ) < CE”.

1

2
(see Remark 3 of the introduction of Part I). On the other hand, we may write
for m > my

(14) wl' = peexp(ipl") on Ay,

where 9" is a real-valued function. Combining (12), (7) and (14) we are led
to

(15) Vo = Vo' + Vi,
and invoking (13), we have, for m fized,
. ‘ vy

V/|loge]

Vol — Vo,

V/|loge|

+Ce?  on (Ag,)1.

0 |-
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Using (9) we obtain
Vol Vo,

‘ V/log e - V/loge] )

Since —2=— — V4, on (Amo)%, by (10) we deduce

[loge|

0 as ¢ — 0.

Lr((Asp)

1
2

Vd)zkn = Vé>|< on (Axo)

1.

2

Since @, is independent of m, changing possibly ¢I* by a constant we may

assume that all the ¢* coincide on (Ag,):. By analyticity, for each n > my
2

the functions (¢}");,>n coincide on KC,,. Letting n go to infinity, we define their
common value ¢, on RY x (0, +00) and we set

(16) P, = o,.

The proof of Theorem A is now completed, combining (16), Theorem 5,
Proposition 6, Corollary 2 and Proposition 8.

5. Mean curvature flows

In this section we will provide the proof of Theorem B. Since a large part
of this analysis follows the lines of [4], we will only indicate the ingredients,
the necessary adaptations (due to the presence of the diffuse energy) and some
simplifications since rectifiability of Ez is already available. In particular, we
will avoid referring to varifolds (or generalized varifolds) even though these
important objects are hidden.

We first briefly recall both classical and weak notions of mean curvature
flow. Then, following [32], [4], we will underline the relationship between
(PGL), and this flow, leading to Theorem B.

5.1. The classical notion. Let ¥ be a smooth compact manifold of dimen-
sion k, and 79 : ¥ — RN (IV > k) a smooth embedding, so that X0 = (%)
is a smooth k-dimensional submanifold of R". The mean curvature vector at
the point x of X0 is the vector of the orthogonal space (T,%°)* given by

N—k [ & Bue N—k
(17)  Hw(x)=-> Z(Tj : a_Tj)”a == (divy,mor®)v?,

a=1 \j=1 a=1
where (11,...,7) is an orthonormal moving frame on T, %, (v, ..., vV =%) is

an orthonormal moving frame on (TmEO)J-, and divr, o denotes the tangential
divergence at the point z. The integral formulation of (17) is given by

(18) / divyso X dHF = — [ Hyo - X dH*,
30 >0
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for all X € C°(RN,RYN). The vectors Hyo(-) are uniquely determined by (18),
and in particular the definition in (17) does not depend on the choice of or-
thonormal frames.

Next, we introduce a time dependence, and consider a smooth family
{4t }ter of smooth embeddings of ¥ in RY, where I denotes some open interval
containing 0. We set X = ~4(X). If  is a smooth complactly supported function
on R¥, a standard computation shows that

(19) % g x(z) dH* = / t(—x(m)ﬁgn(x)—kP(Vx(az)))-?(x)de,

where Y () = 4y (7 () is the velocity vector at the point z, and P denotes
the orthogonal projection on (7,Xf)*.

The family (X%);c; is moved by mean curvature in the classical sense if
and only if

(20) (m) = Hy: (v(m)),  forallme ¥ andtel.

%’Yt

In particular, if (X%);c is moved by mean curvature, (19) becomes

@) G [ x@ant == [ @ @P it [ Ixie)- o) a

and actually (21) is equivalent to (20) if x is taken to be arbitrary. Notice that
the last term on the right-hand side of (21) corresponds to a transport term,
whereas the first term represents a shrinking of the area. Actually, if x =1 in
a neighborhood of X!, then
d _.
GHEE = = [ (@)
dt st
Finally, existence of a classical solution of (20) for small times can be estab-
lished (see e.g. [54], [29]), but singularities develop in finite time.

5.2. Brakke flows. In the attempt to extend (20) or (21) to a larger class
of (less regular) objects, and in particular to extend the flow past singularities,
Brakke [15] relaxed equality in (21), and considered instead sub-solutions, i.e.
verifying the inequality

22 & [ x@art <~ [ x@lfis@Pdrt + [ Ixa)- () ar
for all nonnegative x € C°(RY). Following Brakke [15], we are thus going to
extend (22) to less regular objects than smooth embedded manifolds. Actu-
ally, we adopt the point of view of Ilmanen [33], which is slightly different from
Brakke’s original one (the difference being very tiny, to the authors’ under-
standing at least!).
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Recall that a Radon measure v on RY is said to be k-rectifiable if there

exists a k-rectifiable set ¥, and a density function © € L (H*[_X) such that
v=0()H"LYx.

Since ¥ is rectifiable, for H¥-a.e. z € 3, there exists a unique tangent space
T, belonging to the Grassmanian G . The distributional first variation of
v is the vector-valued distribution dv defined by

(23) sv(X) = / divy, s X dv for all X € C°(RY,RM).
by
In case [0v| is a measure absolutely continuous with respect to v, we say that
v has a first variation and we may write
Sv=H v,

where H is the Radon-Nikodym derivative of v with respect to v. In this case,
formula (23) becomes

(24) / divy s Xdv = — / H-Xdv.
b b))

Remark 3. Notice that in the smooth case, this notion coincides with the
definition (17), in view of (18). Notice also that the component of H which
is orthogonal to 1,3 is independent of the density ©. However, if © is not
constant, then H may have a tangential part.

We are now in position to give the precise definition of a Brakke flow. Let
()10 be a family of Radon measures on RY. For y € C2(RY,R™), we define

= . vt — plo
Dy (x) = lim sup —(Xz — L93

If ' {x > 0} is a k-rectifiable measure which has a first variation verifying
x|H? € LY(v'), then we set??

B =~ [ xHP s + [V P av
Otherwise, we set

B(Vt’X) = —00.

Definition 3 (Brakke flow). Let (14):>0 be a family of Radon measures
on RY. We say that (14)¢>0 is a k-dimensional Brakke flow if and only if
(25) Dy (x) < B(v', x),
for every x € C°(RY,R*) and for all ¢ > 0.

23Here P denotes H"-a.e. the orthogonal projection onto the tangent space to v'.
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5.3. Relating (PGL): to mean curvature flow. The starting point of the
analysis is the formal analogy of equality (21), namely

d — —

— | x(z)dH" = — / x(z)|Hs: (2)* dH* + / Vx(z) - Hyy(z) dHF,
dt ot St St

with the evolution of local energies for (PGL); (see (2.1) in Part I),

(26)

d . / |Opuc|? —Opue - Vue
— [ x(x)du. = — x(x x)dr + Vx(x)  ————
dt ]RN( ) die ]RNX{t(} ) |log €| (@) RN x {t} (=) log €|

We already know that as e — 0, ul — pul. Therefore, the comparison of the
two formulas suggests, at least formally, that in the limit

(x) dx.

_ |8tu5|2 7
and
—Oyue - Vue -
(28) ol = 2’5107(:1:) dr — Hdu.

Actually, this is a little over optimistic for two reasons. First we have to
deal also with the diffuse part of the energy (this will be handled thanks to
Theorem A). Second, since (27) involves the quadratic term |H|?, only lower
semi-continuity can be expected at first sight?*.

Convergence of ot.  Consider the measure 0. = ol dt defined on RV x
[0, +00). By Cauchy-Schwarz inequality o is uniformly bounded on RY x [0, T']
for every T' > 0, so that passing possibly to a further subsequence, we may
assume that 0. — o, as measures. The Radon-Nikodym derivative of |o.| with
respect to . verifies

d|06| <\/§ |atus|
dpe — e (ue)

On the other hand,
H | Oy | ng N < / |Opuc|?
ee(us) L[0T dpee) = RN x[0,T7] HOgE’

so that % is uniformly bounded in L?(RY x [0,T],dpu.). Arguing as in [4,

Remark 22] (see also [31]) it follows that o, is absolutly continuous with
respect to us. Therefore, we may write

Ox = Eﬂi dtv
where b € L2(RN x [0, 7], ut dt). In view of the decomposition in Theorem A
and Part I, we infer?®

dr dt < KT Mo,

24This is certainly a more serious matter, and would require a much longer discussion!
25 Actually, this requires additional estimates on time derivatives. The details are exposed
in [11].
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LEMMA 4. The measure o, decomposes as 0, = aidt, where fora.e. t > 0,
Ui = —0;®, - VD, dx + Hui

The next step will be to identify the restriction of 6 on EZ with the mean
curvature defined by (24).26 The starting point is a classical formula involving
the stress-energy tensor. Let X € C°(RY,RY). We have, for every ¢ > 0,

(29)

—1 <65<Ue)5ij - % : aue) aX dr = / X: . 7&5“6 ' VUa dx
lloge| Jr~ e} Ox; Oxj) Oxj RN x {t} llog ¢|

_ _/ %ol
RN x{t}

Formula (29) is already very close to (24), in particular the right-hand side. In
order to handle the diffuse energy, as well as to interpret the left-hand side as
a tangential divergence, we need to analyse the weak limit of the stress-energy

tensor v v
al = (Id — M) dpt.
ee(ue)

Clearly, |al] < KNput, and we may assume that

t t t
ae_\a*:A':u*v

where A is an N x N symmetric matrix. Since the symmetric matrix Vu. ® Vu,
is nonnegative, we have

(30) A <Id.
On the other hand,
Tr(e:(ue) Id — Vue @ Vu.) = (N — 2)ec(ue) + 2V (ue).
Therefore, since the trace is a linear operation, passing to the limit we obtain

avi
dpy’

(31) Tr(A) = (N —2) +2

where the (nonnegative) measure Vi is the limit (up to possibly a further
subsequence) of V. (u.)/|loge].

Going to the limit in (29), and using the decomposition in Theorem A,
we obtain for a.e. ¢t > 0,

X &, |2 b, 0D, \ 0X*
(32) AUa—duiJr/ <|V | &g-a 0 )a dzx
RN €5 RN 2 8.’& al'j a$]’
—— | X.pdl— | X V.09, dx.

RN RN

26Notice that we already know by Theorem A that v% is (N-2)-rectifiable for a.e. t > 0.
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On the other hand, @, verifies the heat equation
0P,

33 — AP, =0.
(33) pr
Multiplying (33) by X - V®,, we obtain
|V, |? 0P, 09, \ 0X' -
34 0i7 — dr = — X V.09, dx.
( ) /IRN < 2 J 833‘1 8$j al'j v RN ‘ B

Combining (32) and (34) we have therefore proved

LEMMA 5. For a.e. t >0, and for every X € C°(RN,RN),

(35) / Aijaidui:— X -pdit.
RN 633] RN

Remark 4. The last computations are the precise mathematical expression
of the fact that the linear and the topological modes do not interact.

Recall that we already know that EZ is rectifiable for a.e. t > 0. Com-
paring (35) with (24) in order to identify h with the mean curvature of vt
we merely have to prove that the matrix A corresponds to the orthogonal
projection P onto the tangent space TxZZ. We follow closely the argument

of [4]: however, our presentation is more direct, since rectifiability is already
established. We first have

LEMMA 6. For a.e. t > 0,

(36)  A(x)

T,5,

Vx(y) dHN_Q(y)] =0 for HN 2.q.e. z € Z‘Z,

and for all x € C°(RN,R).

Sketch of the proof. Let x € ZZ be such that T;DEL exists and such that x
is a Lebesgue point for ©, (with respect to H"V~2) and for A (with respect to
vt). For r > 0, consider the vector field )_(’T’l(y) = x(%Y)e. Inserting Xr,l into
(35) and letting  — 0, we obtain, by difference of homogeneity, that the right-
hand side is negligible with respect to the left-hand side, and the conclusion
follows. O

A straightforward consequence is

COROLLARY 3. Fort and x as in Lemma 6,

(Tmﬂi)L C Ker A(z).

With a little more elementary linear algebra, we further deduce



CONVERGENCE OF THE PARABOLIC GL-EQUATION 139

COROLLARY 4. For t and x as in Lemma 6, A = P is the orthogonal
projection onto the tangent space szf,

Proof. By (30), A <1d, and therefore all the eigenvalues A,..., Ay of A
are less than or equal to 1. By (31), Tr(A) > N — 2, so that ZZ]\LI Ai > N —2.
On the other hand, by Corollary 3, A has at least two eigenvalues, say A;
and Ao, equal to zero. Therefore, \; = 1 for ¢ = 3,..., N. In particular A is
an orthogonal projection on an (N — 2)-dimensional space. Since Ker A(z) D
(TxEL)l, and since dim(7,%!,) = N — 2, the conclusion follows. O

Remark 5. Corollaries 3 and 4 have many important consequences.

i) Using (31), we deduce that ZXI = 0, i.e. there is only kinetic energy in
the limit.

ii) Let (1,...,7n5) be an orthonormal frame such that T %!, is spanned
by (73,...,7n). In view of the expression of the stress-energy tensor in these

coordinates, we infer that the energy concentrates in the (71,72) plane (i.e.

t

(TmZZ)l) and uniformly with respect to the direction. In particular, since o

is colinear to Vu, this suggests strongly that His perpendicular to 7,%,,. Such
an argument is made rigorous in [4, Prop. 6.2]. This remark has presumably
many other important consequences, but we will not discuss them here.

Combining the previous arguments, we have finally proved

PROPOSITION 9. For a.e. t > 0, v has a first variation and
vt =phut;
i.e. b is the mean curvature of VL.

Semi-continuity of wt. The purpose of this subsection is to show that for
a.e. t >0,

2
liminf/ x’a”“‘g‘ z/ x\b|2du}£+/ X |0:®.|* da.
=0 Jrvugny " [logel T Jrvuqn RN x {1}

It is tempting to write, on EZ,
1

’&5“5‘2 > |8t : Usvus‘Z > 1|atus . VU€|2 NZ Z _|ﬁ|2ﬂi-
|log el loge[|Vue|* = 2 e-(ue) 2

These formal (but essentially correct) inequalities do not allow us to conclude

the argument, in view of the extra factor % Fortunately, the last inequality is
far from being optimal. Indeed, weak convergence does not imply convergence
of the squared quantities!

Remark 6. In the scalar case, i.e. for the Allen-Cahn equation, this diffi-
culty does not arises since % ~ V.(ue) there, so that |Vu.|? ~ e.(u:). The
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difficulty there however was to establish the balance between the kinetic and
potential terms (see [32, §8.1]).

In order to handle the factor 3, a determining idea of [4] in this context
was to recast the problem in the framework of Young measures, which turn out
to be an appropriate concept for analysing the energies of the oscillations. In
this direction, set p. = %, and consider the measure (defined on RY x R2V)
‘&5“5 : pE‘Q

)
llog €

pe () dz.

~1
We

Extracting possibly a further subsequence, we may assume that @t dt — @, as
measures. We deduce from the analysis of Part I and Theorem A?7,
LEMMA 7. The measure &, decomposes as 0, = @. dt, and for a.e. t > 0
@l =TI, ,(p) |0:P.|* dw + 20,
where wa is a measure on R*N (with support on the unit ball) and W' =

@L L%, Moreover, IIL ,(R*N) = 1.2

The main ingredient that we will borrow directly from the analysis of [4,
§6] can be formulated as the following:

PROPOSITION 10 (Ambrosio and Soner). For a.e. t > 0, and every x €

C(RN),
/ x(@ﬁﬂi(x,p)Z/ x|p|? dvl.
RN xR2N RN

At this stage, we are (finally!) in position to complete the proof of Theo-
rem B.

Proof of Theorem B. In view of Theorem 4.4 in [4], it suffices to establish
the integral version of (25). Let 0 < T < T1. We integrate (26) on [Ty, 77| and
let & go to zero. Combining the results of Lemma 4, Proposition 9, Lemma 7,
Remark 5, Proposition 10 and Theorem A, we obtain

2 2
(37) Vfl(x)—VfO(X)Jr/ x@dx—/ xwdw
RN x{T}} 2 RN x{To} 2
<[ lffav. + [ VP (5) du.
RNX[To,Tl] RNX[To,Tl]

- / X|0:®.|? dx dt + / VXV®,0,P..
RNX[To,Tl] RNX[To,Tl}

27 Actually, this requires additional estimates on time derivatives. The details are exposed
in [11].

28Notice that the measure IT! , arises from the possible oscillations of the phase ®. of u.,
but is not disturbing since it acts linearly.
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Since @, verifies the heat equation, we have the identity

P, |? P, |?
(38) / de$_/ e
RN x{T1} 2 RN x{Tv} 2

= / X|6t¢*]2 dx dt + / VxV®,0:®P,.
RN x [Tg,Tl] RN X[To,Tl]

Combining (37) and (38) we obtain

VT () — R (x) < — / VIBP dv + / VXP(H) dv..

Nx[To,T1] RN X [Ty, T1]

As mentioned above, this integral formulation implies (25), under suitable
assumptions which are fullfilled here, namely rectifiability of Ef“ lower bounds

on the density ©,, and orthogonality of the mean curvature b with (TxZZ)L.
The proof of Theorem B is complete. O

6. Ilmanen enhanced motion

The notion of motion by mean curvature in the sense of Brakke has many
interesting properties, in particular the fact that the area functional decreases
along the flow, as expected from the classical motion. Unfortunately, as already
mentioned in the main introduction, this notion strongly lacks uniqueness.
Indeed, if (u!)>0 is a Brakke flow, so is also (g(¢)u')¢>0, where g is an arbitrary
nonincreasing function on R*. In particular, the trivial solution given by 1° =
p? and vt = 0 for ¢ > 0 is not excluded a priori. Actually, for (PGL). such a
situation may occur (as in the Allen-Cahn equation), at least in three distinct
cases:

Concentrated phase. the initial data is of the form u? = exp(i2+/|loge]),
where |V?|? is bounded in L' and concentrates on a (N-2)-dimensional set Y.

Low density. we present an example is dimension 3. In the plane (21, z3),
consider a standard dipole (i.e. with “least” energy) of two vortices away from
the origin and separated by a length €” (where 0 < 1 < 1 is fixed), so that the
energy in the plane is of order 7n|loge|. Rotate the dipole along the 3 axis so
that e.(u!) concentrates on a circle with a 1-density proportional to 7. If 7 is
chosen sufficiently small, then uf = 0 for ¢ > 0 by the clearing-out lemma.

Hidden mean curvature.  consider in the (x1,x2) plane the standard
circle S'. Approximate it, weakly in the sense of measures, by a collection
B; of small circles centered on S! and of radii ~ % By Theorem D, for each
1 € N, there exist initial data (ugl) such that the limiting measures ui’i evolve
according to the classical motion of the small circles, whose lifetime is on the
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order of i2. By a diagonal argument, it is therefore possible to construct a
sequence 1 such that pf = S! but pl =0 for t > 0.

Remark 7. The two first cases are related to specific properties of (PGL).,
whereas the third is intrinsically related to motion by mean curvature.

The three cases have a common feature: the Jacobians of u? converge to
zero as € tends to 0, at least in the sense of distributions. We consider next
the space-time Jacobian of u,,

Tue = Z (O, ue X Op,us) dxi A dxj,

0<i<j<N

with the convention that xg = t. In view of the space-times bounds on the
Ginzburg-Landau energy, we may invoke the work of Jerrard and Soner [36]
(see also [1]), to assert that

Jus = J.  in (CO°(RN x RY))",

where J, is an (N-1)-rectifiable vector-valued measure. Moreover, it is shown
in [36], [1], that 17, can be identified with an integer multiplicity (N-1)-
current, whose boundary is exactly J? (the slice at time zero), and

1
—| T <pl, fort>0.

Here, J! denotes the slice of the current 7, on RY x {t} (which we will prove
to be well defined), and coincides with the limit in the sense of currents of
the space Jacobians Ju.(-,t). The (N-1)-rectifiable set ¥ 7 supporting J rep-
resents the concentration set of vorticity, and has therefore great significance
(presumably for the applications, more than the energy). Obviously, £ 7 C ¥,
and it is rather easy to construct examples where they are different (think
of two approaching circles with opposite orientations). Notice also that 7,
a priori, has more structure than pu,, since it has an orientation and integer
multiplicity (modulo 7).

The previous discussion naturally leads to Ilmanen’s notion of enhanced
(mean curvature) motion, which we recall now.

Let Mg be an integer multiplicity (N-2)-current in RY, without boundary.
We assume for simplicity that Mg is bounded and of finite mass. Let M be
an integer multiplicity (N-1)-current in RY x [0, +00), and {u!}i>0 a familly
of nonnegative Radon measures on RV,

Definition 4 (enhanced motion). The pair {M, {u'}i>0} is called an en-
hanced motion with initial condition My if and only if

i) OM = M.
i) 10 = | Mo).
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iii) The measure defined on R* by 7(B) = |[M|(RY x B), for any Borel set
B, is absolutly continuous with respect to the Lebesgue measure on R™.

iv) For all ¢t > 0,
Mt > |Mt|>

where M; denotes the slice of M at time t.
v) {u'}i>0 is a Brakke flow.

Remark 8. Notice in that conditions i) and iii) are closer to what one
would normally expect from a Cauchy problem. In Ilmanen’s terminology, M
is called the under-current, and provides, in view of iv), a lower bound, which
rules out sudden shrinking.

In [33], Ilmanen established the existence of an enhanced motion, for any
initial data as above (actually in any codimension). Theorem D provides an
alternative construction in codimension 2. The two solutions may differ, since
there remains still some possible nonuniqueness for an enhanced motion (see
the discussion on “matching motion” in [33]). Moreover, in the smooth case,
there is uniqueness for an enhanced motion (before singularities appear) and
it coincides with the classical notion.

We are now in position to present the proof of Theorem D.

Proof of Theorem D. The proof essentially relies on a combination of
results proven in [1], [36].

Construction of u?. The existence of a family (u?).¢ satisfying (Hp) and
assumption ii) follows directly from [1, Th. 1.1, ii]). More precisely, the family
(u?)e>0 constructed there verifies

1
(39) ;Jug — My in [COYRM)]*,

1
(40) ;ug = |My| = My,

and the additional compactness conditions (Hy), (H2), as well as the bound
Wl < 1.

Construction of M. We next consider the solution u. of (PGL). with
initial datum u?, verifying (39) and (40) above. In view of (H;) and (Hs),
we may apply Theorem C to p., so that u, has no diffuse part, i.e. g, = v,.
In particular, by Theorem B, {u!};>0 is a Brakke flow, and property v) of
Definition 4 is established.
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In view of (I), the space-time Ginzburg-Landau energy is bounded in R x
[0, T] for every T > 0; more precisely,

1
Lo 3Tl 4 Vi) < Mo(T + 1) loge].
RN x[0,T]
We deduce from [36], [1] that

Jue — J  in [CO*RN x RT)*,

where J, is an (N —1) integer multiplicity current. Notice that J, has compact
support in RN x [0, T} + 1] (see Proposition 3 for the definition of T). We set

1
M - _\7*7
T
and claim that
(41) OM = My;

i.e., ii) is verified.
Indeed, for every test form y € C>°(RY x R*) we have, by Stokes theorem,

1
(42) / jua/\(S)Cz—/ O(ue X dugz) Ndx
RN xR+ 2 JRN xR+
1 1
:—/ 5(u5x5u8/\5x):——/ (ugxdug)/\dx
2 JrRv xR+ 2 Jrvx{o}

1
:—/ d(ugxdug)/\xz/ Jud A x.
2 Jrv x {0} RY % {0}

In view of the compactness results in Theorem 4, and (H;), (Hg), we may
pass to the limit as € — 0, so that

M(dx) = Mo(x),

which establishes the claim.
At this stage, we have shown that the pair {M, {ut};>0} verifies 1), ii), v)
of Definition 4.

Proof of iv). By definition of slicing, and arguing as in (42), we have
M, = lim Juc(-,t).
e—0
Therefore iv) follows from [36], [1].

Proof of iii). Let I = [a,b] be a bounded interval in R. We claim that
(43) IMIRY x [a,8]) < C(Mo)lb — af'/?,
which clearly implies iii). Recall that
IMIRY x [a,8]) = sup{M(x), |x| <1, suppx € RY x [a,b]}.
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In order to prove (43), we need first to go back to the level €. Letting y €
C®(RYN x [a,b]), we have

M(x) =lim [ Ju: A x.

e—0

In order to estimate the integral on the right-hand side, we distinguish the
purely spatial components of the Jacobian, and the space-time components.
For the spatial components, we have by Lemma 3.13 (see also [1]),

(44)

Ous  Oug K
*X )is = X <
/]RNX[QJ)}( X) J 8901 81‘j

<2 / e (u2)
|log e e RN x[af]

+Ke7||xle: <1+/ €s(us)>
RN x[a,b]

< KMolb - af (|Ixloe + ¢ (loge] + Dllxler )

In order to handle the space-time component, we rescale the function wu.

with respect to the time variable. Consider the interval I’ = [a, '], where
V¥ =a+ |b—al'/?, and the function w, defined on RN x I’, by
w(-,8) = uc(-, (s — a)|b — a|"/* + a), sel,

so that 5 5

We _ 1/2 0Ue 1/2

L8 =1p— 2 (s — —

S () = b= o PSE (s~ a)lb— a2 4 a)

and
aws 2 1/2 aus 2 1/2
dzxds = |b — al dxdt < K|b— a|'/*Myl|loge|.
RV x| 08 RV x[a,p] | O

On the other hand, by the energy inequality (I),

Vw.|?
/R ! | 26‘ + Ve(we) < [b—a|'/2Molloge]
NX/

so that

|Vaswe|? 1/2
(45) Pl 4 Vi(wn) < KJb— af /2 Moflogel
RN XTI’

We apply the estimate of Lemma 3.13 to the function w, in RY x I’. This
yields, in view of (45),%°

(46)
/ (*~) . % % Owe
RN’ X 0j aS 81:]

29Here we set x(+,8) =x(, (s —a)|b— a|1/2 + a).

< KMolb— af/?(|[xllc + £ (log e + 1) [ x]lc2)-
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Finally, we have

Ous  Oug / . Ow:. Ow,
4  Ue - e .
[ e g [ e S x

Combining (44), (46) and (47), we are led to

/ jua A X
RN x[a,b]

Passing to the limit in (48) as € — 0, we derive (43). O

(48) < KMo(Jb— al'’? + b — al) | x]ls + o(1).

6. Properties of X,

The purpose of this section is to provide detailed proofs of some technical
statements, concerning J,,, in the introduction to Part II. More precisely, we
will prove (3), Lemma 3, Theorem 6 and Propositions 6, 7 and 8. We begin
with a few elementary observations which we will use later in the proofs.

LEMMA 6.1. Let (z,t) € £, and 0 < r < \/t. Then,
PN (B A= %)) >
where ng s the constant in Theorem 5.
Proof. Indeed, assume by contradiction that
PN (B, A= 1%)r)) < o

Then, by Theorem 5, for every 7 € [t — %’FQ, t]

Vo,|? 1
wy = % dz on B(x, ZT),
where @, is smooth. We are going to show that
2
6.1 2-N _u dut=%" =0
(61) # [ e il — o,
as s — 0. Next, we write
(6.2)

2—N

_ —yl2 2 S 2

2N / exp(— ) dpt =" < S — ||V, < o) / exp(—4h) da
B(x,%) 2 7 Jry

< K[Vl ((a,2))5° = 0.

as s — 0. On the other hand,
2

|z —y|? r
25652

(6.3) 52N/ exp(——— ) dpt=" < 2N exp(—
RN\B(z,5)

452 )Mo =0,
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as € — 0. Combining (6.2) and (6.3), we see that (6.1) follows. Hence
ON o (ks (1)) =0,

i.e.
(CU, t) ¢ 2“7
a contradiction. O

LEMMA 6.2. The function (z,t) — O ,(p, (2,t)) is upper semi-conti-
nuous on the set RN x (0, +00).

Proof. Let (z,t) € RN x (0,+00), and let (,,%,)nen be a sequence such
that (zn,t,) — (z,t). We are going to show that

(6.4) limsup O 5 (s, (€n, tn)) < ON o (ks (2, 1)).

n—-+4o0o

Let 0 < r < 1\/ be fixed for the moment For n sufficiently large, set r, =
V2 +t, —t, sothat t —r?> =t, — 7“ . By monotonicity we have

1 — [ —
6%—2(”*)(xnatn)) < N—2 AN exp(—%)du* "(y)

Tn
1 _ 2 2
= N_Q/ eXp(_|y4f3:l| )dﬂi " (y)-
Tn RN '

Letting n tends to +o00, we obtain

1 a: 2 —r2
limsup ©F (s, (7. t)) < 75 [ exp(=E5E) 7 0

n—-+oo

Next, we let 7 — 0, and (6.4) follows. O

6.1. Proof of Lemma 3. Let x € RY and t > 0. We have, for every
0<r< %\/Z,

t
1 (B(z, 7)) 1 1 / la—yl*
BLPA 1)) oxp(5)———— d
R < exp( 4)wN,2rN*2 ox exp(— ) dul(y)
1 1 e —yl?
< exp(= " yd
= T I ot
My 2w
Sexp(y) 1T

where we have used the monotonicity formula (Lemma 2) for the second in-
equality.

6.2. Proof of inequality (3). Let (x,t) € RN x (0,400) be given. Let
0 < r <t be fixed for the moment. We write, for every 0 < s < /%,

1 t ]- 1 ‘:E— |2 t
—ut(B < ———exp(= — =) d
TN_2 FL*( (.Z', T)) — TN_2 exp(4) /]RN exp( 4r ) M*(y)

1 1 la—yl* \ 7,05
< jexp(z)/ﬂw exp(—m)dﬂ* " (y),
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where we have used the monotonicity (at the point (x,t + 72)) for the last
inequality. Next, we choose s = 1/r. This yields

1 1 1 _ o=y gt
65) amatBen) < ey [ o) diw)

In the last integral, we decompose
RY = B(z,1) U (RY \ B(z,1)).
On B(z,1), observe that

exp(—izcrzg_|r)) < Kexp(—%),

for some absolute constant K. On the other hand, on RY \ B(z,1), we have

lz—yl? t—r 1
exp(—4nz) s (y) < exp(—g5257) Mo-
/RN\BW) (— 2552 dp ™ () < exp(—gray) Mo

Going back to (6.5), we are led to

1 K a2 _ 1
S (Br) < = / exp(— 225 dpl=" + = exp(—g7) Mo,
2 N r2

When r goes to zero the conclusion follows.

6.3. Proof of Theorem 6. Letting (x,t) € RV x (0, +00) and 0 < r < v/,
we have

2-N  t—r? 2 N(t —1?)
66) VR (Bl r)) < exp(C) € (0, 0), 7).
Consider therefore the function
13(s) = exp(=A*(s) /42,
and assume next that, for some 0 < r < V/%,
€, ((z,t),7) < ma(t —r?).

Then, by (6.6),
p (B, At = r%)r)) <12

and the conclusion follows by Lemma 6.1. O
6.4. Proof of Proposition 6.
Proof of i). In view of Corollary 1, we have
S = {(.1) € RY x (0,400), OF 5, (2.1)) = mat)} -

Since 73(+) is continuous, and since ©F (i, ) is upper semi-continuous by
Lemma 6.2, so is OF (g, ) —n3(-) on RY x (0, 4+00). The conclusion follows.
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Proof of ii). We proceed in two steps. Firstly, we establish the estimate
for t = 1 and secondly we argue by scaling.

Step 1: The case t = 1. Let 0 < § < L. Consider a standard (say

1
parallelepipedic) covering of RN such that

o 5
RY C UjerB(zj,9), and B(azi,—)ﬂB(xj,ﬁ):(Z)fori#j.

2

Set
I5 = {i such that B(z;,8) N E}L £0}.

For i € I;, there exists some y; € Eb N B(z;,0). Hence, by Lemma 6.1,
" (Blyis M1 = 6%)8)) > m2d® Y,
and in particular
(6.7) pi " (Bai, (A1 = 6%) +1)8)) > 12627,
On the other hand, since the balls B(z;, %
B(z;, (A(1 - &?

~—

are disjoint, the balls

+1)5)

~—

cover at most K times RY, where K is a constant depending only on N, for
0 < %. Therefore,

(6.8) D T (Ba, (A1 = 6%) + 1)6)) < K Mo,
i€ls
Combining (6.7) and (6.8) we obtain
#15 < K Mys* V.

Since by definition, HN_Q(EL) < K limsupy_(#15)6"V 2, the conclusion fol-
lows.

Step 2: Invariance by scaling. For tg > 0 fixed, consider the function

ve(w,t) = u:(vto , tot)
where € = ﬁ, so that
Uﬁ(x7 1) = us(\/%xvt())a

ve verifies (PGL),, and E(v?) = tOTEE(ug). When ¢, — 0, so does ¢, =
and

En_
Vi’
1t
() = 530 (v)
(with obvious notation); in particular,

Sy (u) = t5 3, (v),
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so that s
N-2 = 4 /N—2/y1
HY (B0 (w) =t * HYT2(2,(v).

By Step 1 applied to ve and the corresponding measure ¥, (v), we obtain

2-N
HN_z(Et(v)) < Ksug (Ee, (v2)) < Kty* M.
ne

Therefore,
HY ()0 (u)) < K M,

and the conclusion ii) follows.

Proof of iii). By i), we know that ZZ is closed, and hence measurable.
Therefore,

(6.9) pho=pl LRV, + pl LY

We claim that there exists a smooth function ¢ defined on the open set RY x
(0,4+00) \ X, such that

pLL Y\ 5L = g 1.
Indeed, let x € RN \ 3!, Then by definition
lin% ¢.((z,t),r) =0,
so that for some rq sufficiently small
GM((‘/I;’ t)? TU) < 773(t - T(Z))
Therefore, by (6.6),
,ui_ro (B(.TU, )‘(t - T’%)To) < 7727‘(])\[_2’

and we infer from Theorem 5 that for all s € [t — {512, ],
1
1 =g(-,s)HY on B(z, ZTO)’

for some smooth function g. Notice that at this point, we may only locally
write g = |V§Z5*\2 /2, for some smooth @,.. We will see later that &, is global,
whereas g is obviously already globally defined on RN x (0, +00) \ ..

Since HN_Q(ZZ) < 400 we have HN(ZL) =0, and hence

(6.10) PR\ SH) = g(-, ) HY,

which establishes the claim.

Next, we deduce from Lemma 3 that ul I_ZZ is absolutely continuous with
respect to the measure H~ =2, and by ii) that the measure H¥ 2 I_EZ is finite.
We may therefore apply the Radon-Nikodym theorem, which yields

t t __ N-2 t
(6.11) pL LYl = O, (z, yHN 2N,
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where O, is the Radon-Nikodym derivative. By Lemma 3, it verifies the bound
Ou(z,t) < KMyt = .
When (6.9), (6.10) and (6.11) are combined, conclusion iii) follows and the
proof is complete. O
6.5. Proof of Proposition 7. In this section, we shall use some very basic
estimates for the time derivative dyu., namely

1 Ou, 2
< My, for every T > 0.
lloge| Jr~x (o, | Ot

Therefore, extracting possibly a further subsequence, we may assume that

there exists some nonnegative Radon measure w, defined on RV x (0, +o0)

such that )

— Wx as 1measures,

1
[log el

Ou,
ot

so that
wo(RY % (0,T]) < M.

Since we already know that ¥, C RN x (0,T 't + 1), where T} is the constant
in Proposition 3 (after which vorticity has been wiped out), we restrict our
attention to this portion of space-time. Next, we introduce some subsets of
RY x (0,Tf + 1), which are concentration sets for the time derivative. Set, for
[ € N, and ¢ € R+, to be fixed later,

1
Aj(ws) = < (2,t) € RN x (0, Ty + 1), limsup—/ we >15.
r—0 17 B(z,lr)x[t—r2,t]

Concentration sets for bounded measures are classical in the literature, see e.g.
[56]. In a context similar to ours, they have been used in [43] in a related way.
The following shows that A;(w.) is small in some appropriate sense.

LEMMA 6.3. For each |l € N4,

HE(Al(ws)) < + o0,

where H% denotes the q-dimensional Hausdorff measure with respect to the
parabolic distance dp((z,t), (',t)) = max(|z — 2|, |t — /| 7).

Proof. Let § > 0 be given, and fixed for the moment. For (z,t) € Aj(w.),
there exists r = r(z,t) < 0 such that

(6.12) / wy > 1
B(z,lr)x[t—r2,t]

Clearly, U(Lt)eAl(w*)FlP(aE,t,r(w,t)) covers Aj(wy), where

P (z,t,r(x,t)) = Bz, lr(z,t) x (t —r(z,t)%,1).
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Notice that T‘p(FlP ) < lr, where rp denotes the radius with respect to dp.
By [25, 2.8.9], we may apply the Besicovitch covering theorem. In particular,
there exists an integer m(l, N) depending only on N and [, and there exists a
sub-covering of the form

m(l,N)
A[(W*) - U U Ff(l‘j,tj,?’(l’j,tj)) )
=1 jeJ?

where for fixed i, the sets I'; = I'¥ (2, ;, 'r(xj, tj)) are disjoint. Consequently,

it follows from (6.12) that for each i = 1,...,m(l,N),
S g t)1 < Z/ s < / wa < C(Mp).
jeJs jeds RV (0,T5+1]

Therefore,

m(l,N

Z > rp(T))7 < m(l, N)IIC (M)

=1 jeJ?
Note that the constant on the right-hand side is independent of §. Hence,
letting 6 — 0, we obtain

HY(A(w,) <Timsup [ 337 rp(0y)7 | < m(l, N)C(My),

6—0 =1 jeJs
and the proof is complete. O
We fix g = N — % This choice has no specific geometrical meaning, but is

convenient as the following shows.

COROLLARY 6.1.

(6.13) HY "N (Uen, Ai(wy)) = 0.
Hence, for almost every t > 0
(6.14) HY 2 (Ugen, Af (ws)) = 0,

where Al(wy) = Aj(we) NRY x {t}.

Njw

. . N-—
Proof. Since, by the previous lemma, Hp
that

(Aj(wy)) < o0, it follows

HY ! (Ay(w)) = 0.

On the other hand, parabolic balls are smaller than euclidian balls of the
same radius, so that the parabolic Hausdorff measure dominates the euclidian
Hausdorff measure. It follows that

HN_I(UIEN*AI(W*)) =0,
and the proof is complete. O
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Next, we introduce the set
Qo =R x(0,Ty+ 1))\ [J Aulwn

neN,

LEMMA 6.4. Let x € C°(RY). Then, for (z,t) € Q,,
. 1 Y—x, , 4 1 Y—T, , 4,2 _
}1_1}(1) <TN_2 /]RN X( r )dﬂ’*(y) TN_2 /RN X( r )d:U’* (y) =0.

Proof. We need to go back first to the level of the functions u.. For

O<r< \/_, by Lemma 2.1 we have
ea(ua) (y_x)dl'—/ ea(ua)x(y_m)dx
RN x {t—r2} loge] r
Orue Vue-Vx (7)) dadt.

r

X [t—r2,t]
[t —r2 4],

/RNx{t} log €|
Opue|? 1
:_/ Oriel” vy g — L
RN x[t—r2,1) [logel rllogel Jrxx|
x) C B(l). We set A =
and estimate the last term in the previous identity by the Cauchy-Schwarz

Let [ € N, be such that supp(x)
XA / Vu]? \ 2
v ook
e Y

<
A |loge]

B(x,lr) x

inequality,
—x
/ OuVu, -V X( )

We now let € go to zero, therefore obtaining the inequality for measures

r|log£|

N =

019) | oms [ S - )
S[T]\,I_Q/wa*—l-(?w%//\w*)% (o [ ) Tl

Obviously, we have
= o=t (e )
Wy <12 . w
rN=2 JyT T rN=3 AT

On the other hand, it follows from the monotonicity that
1 2-N
TN / d/,L* < C(l)t 2 M().

Therefore, the right-hand side of (6.15) can be bounded by
1 1
R = L Mot [14 = [ o]
r 2

Since by assumption (z,t) € €, letting r go to zero, we obtain
lim R(r) < 2C(t, 1, Mo)| x|lc: nr%ri -0,

and the proof is complete
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In Lemma 6.4, we have assumed that y has compact support. The fol-
||

lowing shows that the result still holds for x = exp(—";-), which is of special
interest in view of the monotonicity!

COROLLARY 6.2. For (z,t) € €,
(6.16)

. 1 w2 1 . .
lim (T‘N2 /RN exp(——| 47«%—' )dﬂi(?/) N2 /RN exp(—%) dpt (y)> —0.

r—0

In particular, for (z,t) € ¥, Ny, the following limit exists and verifies the
inequality

: 1 |z —y|? t
(617) tim s [ e di ) = )

Proof. Let ¢ be a smooth cut-off function such that 0 < <1, (=1 on
B(1) and ¢ = 0 outside B(2). For | € N,, consider the function ¢; defined by

G(y) = ¢(¥), and set

We apply Lemma 6.4 to x;, so that
(6.18)

. 1 Yy— 1 y—x 2
lim (—N_2 / xi( ) dpi(y) — —x— / xi( ) du, (y)) =0.
T RN r T RN r

On the other hand, we claim that, for every s € [t — 2, ],

(6.19)
1 x —y|? y—x s 2-N 12
m/m [exp(—‘ 4r2‘ )—Xz(T)} dpy(y) < Ks™2" Mo exp(—2).
Indeed, notice first that
exp(— 20 (= exp(- P (1 - (=)
472 r 4r2 r
|z —y|? r?
< exp(— 2 )exp(—g).
Secondly, by the monotonicity formula
1 / |z —yl 1
e NN_o eXpl— dp;(y) < ————x= Mo,
(V2r)N=2 Jan e ) (s+2r2)"%

and the claim follows.
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Note that the right-hand side of (6.19) does not depend on r, for r < %\/E
Combining (6.18) and (6.17) we are led to

lim sup ! / exp(— v = y|2) (dpt — dpt ") (y)| < Kt M, exp(—ﬁ).
ro  |TN72 Jpw 472 * * - 8
Since | was arbitrary the conclusion follows. O

We are now in position to present the proof of Proposition 7.

Proof of Proposition 7. For (z,t) € €, set

~ 1
On_2(ps, x) = lim / exp(—

RN 47’2

|z —y|?

) dpes (y)-
In view of Corollary 6.2, O _(pt, x) exists on €, and

(6.20) é(/f;? T) = 9%—2(:“’*7 (z,1)).

If (z,t) ¢ %, then O (1, (z,t)) = 0 so that (5) is obviously verified.
Therefore, we assume in the sequel that (z,t) € ¥, N €),. Arguing as for the
claim in Corollary 6.2, we obtain

1 K ]_ 2 2 2—N
s dult > 5 —— Byt — Kexp(~E)t*3 M.
(lT)N,Q /B(x,rl) My Z IN—-2 pN-2 /]RN exp( 4r ) M exp( 8 ) 0

Hence, when r goes to zero, and by (6.20),

K _ 2 aw
(621) 9*71\/_2(/11,30) > lN—_Q (9113—2(/%“ (.’L’,t)) —- KN 2€Xp(—§)t 2 MO) .

In order to obtain (5), we invoke the fact that on ¥,, ©% , > n3(¢), and
therefore we choose [ sufficiently large so that

_ I >w 1 1
KIN 2 exp(~ 5175 My < (1) < 20K o, (2,1).
Going back to (6.21), with this choice of I, we obtain

K
@*7N_2(/,Li,l') 2 2lN—_2@]1\3],2(,U,*,(.%',t)),

and the proof is complete. O

6.6. Proof of Proposition 8. We turn finally to the proof of Proposition 8.
Once more, the starting point is Corollary 6.2. Let (x,t) € €2, be given and
fixed throughout. We consider the vector-space

F= {g € L®(R™,R) such that I(g) = lin% I.(g) exists and is finite } ,
r—

where for r > 0, I,(9) = == [~ g(@) dpl(y). Notice that I, and I are lin-
ear forms on F. With this notation, the statement of Proposition 8 is precisely
that the characteristic function 1 ) of the interval [0, 1] belongs to F. In order
to establish that fact, we derive first some basic properties of F.
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LEMMA 6.5. i) For every s > 0, the function es defined on R™ by es(l) =
exp(—I?s) belongs to F.

ii) When A(s) = I(es), then
(6.22) A(s) = A(l)s = .

Proof. The case s = i follows immediatly from Corollary 6.2. For the
general case, we argue by scaling. Indeed, we have for any s > 0,

I(e1) = lim exp(- = )
a1 r—0 T'N_2 RN 47,2 *
2V N |z —yl? t
= lim(=") /RN exp(——5 ) . (y)
N |z -y t
=(4s) =z 1
(45) g(l)N/R (= dut )
(45) 7% I(es)
so that I(es) exists and equals (48)%1(61).
Statement ii) then follows from the previous relation. O

Remark 6.1. The argument above shows more generally that if g belongs
to F, the the scaled function g, defined by gs(1) = g(1/sl) belongs also to F.

LEMMA 6.6. For every k € N, the function | — 1?* exp(—I?) belongs to F.

Proof. The case k = 0 follows from Lemma 6.5, with s = 1. We provide
first a detailed proof for the case k = 1. First note that by (6.22) A is smooth
on R;. We are going to prove that for s > 0,

(6.23)
A(s) = lim 1+ / 2 e.(Ddpt(y) = lim —s [ exp(— 2 )yt (),
r— RN r—s

RN

and in particular that the limit on the right-hand side does exist.
Let s > 0 and As € R so that s + As > 0. We have, for [ € RT,

esins(l) — es(l) = —exp(—1?s)(1 — exp(—I*As)),

and by Taylor expansion, for any k € R,

k2
1 exp(—) — k| < -

Hence, for any y € R, we have (when k = \x;21/|2 As)

(estas —es) (5% ‘)+eXP( Ix 2 S)WZ—zyleS SeXp(—Iz;—zy‘zs) Ll (As)?

< (C(s) exp(—lx;?g‘ s)(As)2.
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Integrating against the measure ;! on RY, we are led to

1 €s+As — €5 |.CU - y| |l’ - y|2
rN-2 /RN [ As ( r )+ exp( r2 )

As |33 - y|2 t
S Kerz /}RN exp(— 5,2 s)dp, < C(s)MpAs.

12

r2

Note that the right-hand side side does not depend on r; therefore when
As — 0, identity (6.23) follows. Applying (6.23) with s = 1, we deduce
that the function [ — [? exp(—I?) belongs to F. A similar computation shows
that

d* L (DF g e =yl
020) LA = lim 2 [ E et ),
so that the function I — 12¥ exp(—I?) belongs to F. O

LEMMA 6.7. The set
W={ge C2(RT) such that ¢'(0) = 0}

1s included in F.

Proof. For a function g defined on R™, we consider its extension g to R so
that g is even. In particular, g belongs to W if and only if § belongs to C2(R).
Next, for k € N, we consider the subset V; of L?(R) defined by

Vi = Vect {1 — 1% exp(—1?), j € {0,...,k}}.

In view of Lemma 6.6 the restriction of elements of V, to R* belongs to F. We
are going to show that elements of W can be suitably approximated by elements
of Vi (as k — +00), so that the conclusion will follow. For that purpose, we
recall some well-known facts concerning Hermite polynomials, and which enter
directly in our argument.

Hermite polynomials. For m € N, the Hermite polynomials H,, can be
expressed by Rodrigues’ formula

Hy()=(-1)™ exp(l2)— exp(—l2).

The degree of H,, is exactly m, and H,, is even if m is even, odd if m is odd.
Set, for I € R,

2
wm(l) — CmHm(l> eXp(—%), where Cm = (\/%ang—%

The function ), verifies the first order differential relations

(1= Do = VR Do, (U o = VI,
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so that for m > 0,

(6.25) V2 S = i1~ I F T,
and also,

d2
(6.26) — = tm + Pipr = 2(m + 1)ih

(i.e. the 1y, are eigenfunctions of the harmonic oscillator). Moreover, the family

{tm}men is a Hilbert basis of L*(R). For f € L*(R), set cm(f) = (f, ¥m) r2(®)-
If f belongs to C2(R), then we have, by (6.26),

(6.27)

Cm(f) = ! i !

2 _
and by (6.25), for m > 1

629) en(D) = tom By = (=2 g =\ (1) -\ [ enaa ()

Let P, be the orthogonal projection (for the L?-scalar product) onto the space
Wi, = vecto<j<m{tm}. For f € C2(R), we have by the Bessel-Parseval identity
and (6.27)

(629)  If-Puflt= 3 G 3 E 2

jemt1 Am+1)2 L,

1
< " 22 2 22 .
< oy I + 1 12:]

<17Z}ma le+l2f>a

Since, by (6.25), we have

CT—Pa = Y aNDmva 3 ) [Vivsa— i+ ]

jzm+1 Jjzm+l
=V2 3> [Vi+Temlf) = Viesa(h)] v = Vimem 1 (£,
j>m

we deduce similarily that

N

(6.30) H—(f Pr(OIE: < K D256 (F) < — [l + 12 fll2] -
j>m

Finally combining (6.29) and (6.30),

K
(6.31)  [f = Pn(Hlloo < K| f = Bl < T (7 lze + 122 fl 2] -
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Proof of Lemma 6.7 completed. Let g € W be given, and consider the
function f defined for [ € R by f(I) = g(I) exp(g), so that f € C2(R) and is
even. For m € Ny, set hy, = f — P (f) and gn, = Po(f)er = P(f) exp(—g).
Since f is even, P,,(f) is even also, and consequently g, 2is even, of the form
gm(1) = Qm(l) exp(—I?), where Q,, is an even polynomial of degree less than
or equal to m. In view of Lemma 6.6, the restriction of g,, to R* belongs to F.
Since g = gm + hme%, we may write for 0 < r < 1

(6.32) L.(g) = Ir(gm) + L«(hme%).
By (6.31), we have

)

[P lloo <

HS

where C(g) is independent of m, so that for 0 <r <1
Clg
v

On the other hand, since g,, belongs to F, I(gm) — I(gm), for all m € N.

We claim that the sequence {I(gm)}men converges as m — +oo. Indeed, for
kE > m, we have by (6.32) and (6.33), for 0 < r < 1,

1L (g8) — I(gm)| < %’3

~—

(6.33)

I.(hmey)

2

<

Letting r — 0, we deduce that

Cly)
1 -1 < —=
so that (I(gm))men is a Cauchy sequence and hence converges to a limit L.
We finally prove that I,.(9) — L as r — 0. Indeed, let § > 0 be given. In view

of (6.33) we may choose mg such that |, (hm.e1)| < g for 0 < r < 1, and
11(gm,) — L| < $. Going back to (6.32) we have therefore, for 0 < r < 1,

1:(0) ~ LI < 1L (gmy) — L(gm)| + 5.
Choosing 79 > 0 such that for 0 < r < 79, [Lr(Gm,) — L(gm,)| < %, we deduce
that for 0 < r < rg,
o)~ LI < 5.
Since § was arbitrary, it follows that I,.(g) converges to L as r — 0, and hence

g belongs to F. O

Proof of Proposition 8. In view of the above discussion, we only need
to prove that the caracteristic function 1y ;) of the interval [0, 1] belongs to F.
Let (gn)nen be an increasing sequence of functions defined on R™ verifying

gn € C2(RY), 9n(0) =0, gn <11, and  gn > 11,
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where g, (1) = ”+1gn(n"—+l1). Note that by Lemma 6.7, g, € F and g, € F for
all n € N. Let

(6.34)

n

L= lim I(g,)=supl(gn)-

n—+oo neN

By Remark 6.1, we also have

(6.35)

1 -
lim 1(G,) = lim ()55 1(g) = L.

n—-—+oo n—+oco n  n+1

Finally, since g, < 1j9,1] < gn, for each 0 <7 < 1 and n € N we have

(6.36) I(gn) < Ir(l[o,l]) < I (gn)-
Combining (6.34), (6.35) and (6.36) we obtain L = lim, o I.(1jp,1)), and the
proof is complete. O
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