Global existence of weak solutions for compressible Navier–Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor

Abstract

We prove global existence of appropriate weak solutions for the compressible Navier–Stokes equations for a more general stress tensor than those previously covered by P.-L.Lions and E. Feireisl’s theory. More precisely we focus on more general pressure laws that are not thermodynamically stable; we are also able to handle some anisotropy in the viscous stress tensor. To give answers to these two longstanding problems, we revisit the classical compactness theory on the density by obtaining precise quantitative regularity estimates: This requires a more precise analysis of the structure of the equations combined to a novel approach to the compactness of the continuity equation. These two cases open the theory to important physical applications, for instance to describe solar events (virial pressure law), geophysical flows (eddy viscosity) or biological situations (anisotropy).

Note: To view the article, click on the URL link for the DOI number.

  • [Ab] H. Abels, Pseudodifferential and Singular Integral Operators, De Gruyter, Berlin, 2012.
    @BOOK{Ab,
      author = {Abels, Helmut},
      title = {Pseudodifferential and Singular Integral Operators},
      series = {De Gruyter Graduate Lectures. An Introduction with Applications},
      publisher = {De Gruyter, Berlin},
      year = {2012},
      pages = {x+222},
      isbn = {978-3-11-025030-5},
      mrclass = {35-01 (35S05 35S30 47G30)},
      mrnumber = {2884718},
      mrreviewer = {Gianluca Garello},
      zblnumber = {1235.35001},
      }
  • [ABC] Go to document G. Alberti, S. Bianchini, and G. Crippa, "A uniqueness result for the continuity equation in two dimensions," J. Eur. Math. Soc. (JEMS), vol. 16, iss. 2, pp. 201-234, 2014.
    @ARTICLE{ABC,
      author = {Alberti, Giovanni and Bianchini, Stefano and Crippa, Gianluca},
      title = {A uniqueness result for the continuity equation in two dimensions},
      journal = {J. Eur. Math. Soc. (JEMS)},
      fjournal = {Journal of the European Mathematical Society (JEMS)},
      volume = {16},
      year = {2014},
      number = {2},
      pages = {201--234},
      issn = {1435-9855},
      mrclass = {35L65 (35A02 35D30 35F10 35L45)},
      mrnumber = {3161282},
      mrreviewer = {Nabil Bedjaoui},
      doi = {10.4171/JEMS/431},
      url = {https://doi.org/10.4171/JEMS/431},
      zblnumber = {1286.35006},
      }
  • [Am] Go to document L. Ambrosio, "Transport equation and Cauchy problem for $BV$ vector fields," Invent. Math., vol. 158, iss. 2, pp. 227-260, 2004.
    @ARTICLE{Am,
      author = {Ambrosio, Luigi},
      title = {Transport equation and {C}auchy problem for {$BV$} vector fields},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {158},
      year = {2004},
      number = {2},
      pages = {227--260},
      issn = {0020-9910},
      mrclass = {35K15 (34A12 35L65)},
      mrnumber = {2096794},
      mrreviewer = {J. W. Jerome},
      doi = {10.1007/s00222-004-0367-2},
      url = {https://doi.org/10.1007/s00222-004-0367-2},
      zblnumber = {1075.35087},
      }
  • [ADM] Go to document L. Ambrosio, C. De Lellis, and J. Malý, "On the chain rule for the divergence of BV-like vector fields: applications, partial results, open problems," in Perspectives in Nonlinear Partial Differential Equations, Amer. Math. Soc., Providence, RI, 2007, vol. 446, pp. 31-67.
    @INCOLLECTION{ADM,
      author = {Ambrosio, Luigi and De Lellis, Camillo and Malý, Jan},
      title = {On the chain rule for the divergence of {BV}-like vector fields: applications, partial results, open problems},
      booktitle = {Perspectives in Nonlinear Partial Differential Equations},
      series = {Contemp. Math.},
      volume = {446},
      pages = {31--67},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2007},
      mrclass = {49Q15 (26B30)},
      mrnumber = {2373724},
      mrreviewer = {Giovanni Alberti},
      doi = {10.1090/conm/446/08625},
      url = {https://doi.org/10.1090/conm/446/08625},
      zblnumber = {1200.49043},
      }
  • [BaChDa] Go to document H. Bahouri, J. Chemin, and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011, vol. 343.
    @BOOK{BaChDa,
      author = {Bahouri, Hajer and Chemin, Jean-Yves and Danchin, Raphaël},
      title = {Fourier Analysis and Nonlinear Partial Differential Equations},
      series = {Grundlehren Math. Wiss.},
      volume = {343},
      publisher = {Springer, Heidelberg},
      year = {2011},
      pages = {xvi+523},
      isbn = {978-3-642-16829-1},
      mrclass = {35-02 (35L72 35Q30 42-02 42B37 76B03 76D03 76N10)},
      mrnumber = {2768550},
      mrreviewer = {Peter R. Massopust},
      doi = {10.1007/978-3-642-16830-7},
      url = {https://doi.org/10.1007/978-3-642-16830-7},
      zblnumber = {1227.35004},
      }
  • [BeJa] Go to document F. B. Belgacem and P. Jabin, "Compactness for nonlinear continuity equations," J. Funct. Anal., vol. 264, iss. 1, pp. 139-168, 2013.
    @ARTICLE{BeJa,
      author = {Belgacem, Fethi Ben and Jabin, Pierre-Emmanuel},
      title = {Compactness for nonlinear continuity equations},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {264},
      year = {2013},
      number = {1},
      pages = {139--168},
      issn = {0022-1236},
      mrclass = {35F21 (35A01 35B25 35B35 35K59 35L02 35L65)},
      mrnumber = {2995703},
      mrreviewer = {Giuseppe Maria Coclite},
      doi = {10.1016/j.jfa.2012.10.005},
      url = {https://doi.org/10.1016/j.jfa.2012.10.005},
      zblnumber = {1262.35157},
      }
  • [BeSe] S. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations. First-order Systems and Applications, The Clarendon Press, Oxford University Press, Oxford, 2007.
    @BOOK{BeSe,
      author = {Benzoni-Gavage, Sylvie and Serre, Denis},
      title = {Multi-dimensional Hyperbolic Partial Differential Equations. First-order Systems and Applications},
      series = {Oxford Math. Monogr.},
      publisher = {The Clarendon Press, Oxford University Press, Oxford},
      year = {2007},
      pages = {xxvi+508},
      isbn = {978-0-19-921123-4; 0-19-921123-X},
      mrclass = {35-02 (35L50 35L65 35L67 76L05 76N10 76N15)},
      mrnumber = {2284507},
      mrreviewer = {Kenneth H. Karlsen},
      zblnumber = {1113.35001},
      }
  • [Bo] Go to document F. Bouchut, "Renormalized solutions to the Vlasov equation with coefficients of bounded variation," Arch. Ration. Mech. Anal., vol. 157, iss. 1, pp. 75-90, 2001.
    @ARTICLE{Bo,
      author = {Bouchut, François},
      title = {Renormalized solutions to the {V}lasov equation with coefficients of bounded variation},
      journal = {Arch. Ration. Mech. Anal.},
      fjournal = {Archive for Rational Mechanics and Analysis},
      volume = {157},
      year = {2001},
      number = {1},
      pages = {75--90},
      issn = {0003-9527},
      mrclass = {35F05 (35D10 35F25)},
      mrnumber = {1822415},
      mrreviewer = {R. Glassey},
      doi = {10.1007/PL00004237},
      url = {https://doi.org/10.1007/PL00004237},
      zblnumber = {0979.35032},
      }
  • [BoCr] Go to document F. Bouchut and G. Crippa, "Lagrangian flows for vector fields with gradient given by a singular integral," J. Hyperbolic Differ. Equ., vol. 10, iss. 2, pp. 235-282, 2013.
    @ARTICLE{BoCr,
      author = {Bouchut, François and Crippa, Gianluca},
      title = {Lagrangian flows for vector fields with gradient given by a singular integral},
      journal = {J. Hyperbolic Differ. Equ.},
      fjournal = {Journal of Hyperbolic Differential Equations},
      volume = {10},
      year = {2013},
      number = {2},
      pages = {235--282},
      issn = {0219-8916},
      mrclass = {35F10 (34C11 35B30 35B35 35F25 37C10 42B20)},
      mrnumber = {3078074},
      mrreviewer = {Hidetoshi Tahara},
      doi = {10.1142/S0219891613500100},
      url = {https://doi.org/10.1142/S0219891613500100},
      zblnumber = {1275.35076},
      }
  • [BoDe] Go to document F. Bouchut and L. Desvillettes, "On two-dimensional Hamiltonian transport equations with continuous coefficients," Differential Integral Equations, vol. 14, iss. 8, pp. 1015-1024, 2001.
    @ARTICLE{BoDe,
      author = {Bouchut, François and Desvillettes, L.},
      title = {On two-dimensional {H}amiltonian transport equations with continuous coefficients},
      journal = {Differential Integral Equations},
      fjournal = {Differential and Integral Equations. An International Journal for Theory \& Applications},
      volume = {14},
      year = {2001},
      number = {8},
      pages = {1015--1024},
      issn = {0893-4983},
      mrclass = {35F10 (34A12 35A30 35L45)},
      mrnumber = {1827101},
      zblnumber = {1028.35042},
      url = {https://projecteuclid.org/euclid.die/1356123178},
      }
  • [BoBrMi] J. Bourgain, H. Brezis, and P. Mironescu, "Another look at Sobolev spaces," in Optimal Control and Partial Differential Equations, IOS, Amsterdam, 2001, pp. 439-455.
    @INCOLLECTION{BoBrMi,
      author = {Bourgain, Jean and Brezis, Haim and Mironescu, Petru},
      title = {Another look at {S}obolev spaces},
      booktitle = {Optimal Control and Partial Differential Equations},
      pages = {439--455},
      publisher = {IOS, Amsterdam},
      year = {2001},
      mrclass = {46E30},
      mrnumber = {3586796},
      zblnumber = {1103.46310},
      }
  • [Br] A. Novotný, R. Danchin, and M. Perepelitsa, Topics on Compressible Navier-Stokes Equations, Société Mathématique de France, Paris, 2016, vol. 50.
    @BOOK{Br,
      author = {Novotný, A. and Danchin, R. and Perepelitsa, M.},
      title = {Topics on Compressible {N}avier-{S}tokes Equations},
      series = {Panor. Synthèses},
      volume = {50},
      note = {papers from the session États de la Recherche held in Le Bourget du Lac, May 21--25, 2012; edited by D. Bresch},
      publisher = {Société Mathématique de France, Paris},
      year = {2016},
      pages = {xxiii+135},
      isbn = {978-2-85629-847-3},
      mrclass = {35-06 (35Q30 35Q35 76Nxx)},
      mrnumber = {3560280},
      zblnumber = {1355.35002},
     }
  • [BD] Go to document D. Bresch and B. Desjardins, "On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids," J. Math. Pures Appl. (9), vol. 87, iss. 1, pp. 57-90, 2007.
    @ARTICLE{BD,
      author = {Bresch, Didier and Desjardins, B.},
      title = {On the existence of global weak solutions to the {N}avier-{S}tokes equations for viscous compressible and heat conducting fluids},
      journal = {J. Math. Pures Appl. (9)},
      fjournal = {Journal de Mathématiques Pures et Appliquées. Neuvième Série},
      volume = {87},
      year = {2007},
      number = {1},
      pages = {57--90},
      issn = {0021-7824},
      mrclass = {35Q35 (35D05 76N10)},
      mrnumber = {2297248},
      mrreviewer = {Vladimir V. Shelukhin},
      doi = {10.1016/j.matpur.2006.11.001},
      url = {https://doi.org/10.1016/j.matpur.2006.11.001},
      zblnumber = {1122.35092},
      }
  • [BrDereview] Go to document D. Bresch and B. Desjardins, "Weak solutions with density-dependent viscosities," in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, , 2018, pp. 1547-1599.
    @INCOLLECTION{BrDereview,
      author = {Bresch, Didier and Desjardins, B.},
      title = {Weak solutions with density-dependent viscosities},
      booktitle = {Handbook of Mathematical Analysis in Mechanics of Viscous Fluids},
      note = {Y. Giga and A. Novotny, editors; first online: 10 April 2017},
      year = {2018},
      pages = {1547--1599},
      zblnumber = {06382698},
      doi = {10.1007/978-3-319-10151-4_44-1},
      }
  • [BrDeGe] Go to document D. Bresch, B. Desjardins, and D. Gérard-Varet, "Rotating fluids in a cylinder," Discrete Contin. Dyn. Syst., vol. 11, iss. 1, pp. 47-82, 2004.
    @ARTICLE{BrDeGe,
      author = {Bresch, Didier and Desjardins, B. and Gérard-Varet, D.},
      title = {Rotating fluids in a cylinder},
      journal = {Discrete Contin. Dyn. Syst.},
      fjournal = {Discrete and Continuous Dynamical Systems. Series A},
      volume = {11},
      year = {2004},
      number = {1},
      pages = {47--82},
      issn = {1078-0947},
      mrclass = {76U05 (35Q30 76D05 76M45 76N99)},
      mrnumber = {2073946},
      mrreviewer = {Raphaël Danchin},
      doi = {10.3934/dcds.2004.11.47},
      url = {https://doi.org/10.3934/dcds.2004.11.47},
      zblnumber = {1138.76446},
      }
  • [BrDeZa] Go to document D. Bresch, B. Desjardins, and E. Zatorska, "Two-velocity hydrodynamics in fluid mechanics: Part II. Existence of global $\kappa$-entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities," J. Math. Pures Appl. (9), vol. 104, iss. 4, pp. 801-836, 2015.
    @ARTICLE{BrDeZa,
      author = {Bresch, Didier and Desjardins, B. and Zatorska, Ewelina},
      title = {Two-velocity hydrodynamics in fluid mechanics: {P}art {II}. {E}xistence of global {$\kappa$}-entropy solutions to the compressible {N}avier-{S}tokes systems with degenerate viscosities},
      journal = {J. Math. Pures Appl. (9)},
      fjournal = {Journal de Mathématiques Pures et Appliquées. Neuvième Série},
      volume = {104},
      year = {2015},
      number = {4},
      pages = {801--836},
      issn = {0021-7824},
      mrclass = {35Q35 (35B10 35B30 35B40 35D30 35Q30 76N10)},
      mrnumber = {3394617},
      mrreviewer = {César J. Niche},
      doi = {10.1016/j.matpur.2015.05.004},
      url = {https://doi.org/10.1016/j.matpur.2015.05.004},
      zblnumber = {1359.35125},
      }
  • [CJ] Go to document N. Champagnat and P. Jabin, "Well posedness in any dimension for Hamiltonian flows with non BV force terms," Comm. Partial Differential Equations, vol. 35, iss. 5, pp. 786-816, 2010.
    @ARTICLE{CJ,
      author = {Champagnat, Nicolas and Jabin, Pierre-Emmanuel},
      title = {Well posedness in any dimension for {H}amiltonian flows with non {BV} force terms},
      journal = {Comm. Partial Differential Equations},
      fjournal = {Communications in Partial Differential Equations},
      volume = {35},
      year = {2010},
      number = {5},
      pages = {786--816},
      issn = {0360-5302},
      mrclass = {34A12 (34C11 35L45 37C10)},
      mrnumber = {2753620},
      mrreviewer = {Nickolai A. Lar\cprime kin},
      doi = {10.1080/03605301003646705},
      url = {https://doi.org/10.1080/03605301003646705},
      zblnumber = {1210.34010},
      }
  • [CHT] Go to document G. Chen, D. Hoff, and K. Trivisa, "Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data," Comm. Partial Differential Equations, vol. 25, iss. 11-12, pp. 2233-2257, 2000.
    @ARTICLE{CHT,
      author = {Chen, Gui-Qiang and Hoff, David and Trivisa, Konstantina},
      title = {Global solutions of the compressible {N}avier-{S}tokes equations with large discontinuous initial data},
      journal = {Comm. Partial Differential Equations},
      fjournal = {Communications in Partial Differential Equations},
      volume = {25},
      year = {2000},
      number = {11-12},
      pages = {2233--2257},
      issn = {0360-5302},
      mrclass = {35Q30 (35B40 35B45 76N10)},
      mrnumber = {1789926},
      mrreviewer = {L. Hsiao},
      doi = {10.1080/03605300008821583},
      url = {https://doi.org/10.1080/03605300008821583},
      zblnumber = {0977.35104},
      }
  • [ChTr] Go to document G. Chen and K. Trivisa, "Analysis on models for exothermically reacting, compressible flows with large discontinous initial data," in Nonlinear Partial Differential Equations and Related Analysis, Amer. Math. Soc., Providence, RI, 2005, vol. 371, pp. 73-91.
    @INCOLLECTION{ChTr,
      author = {Chen, Gui-Qiang and Trivisa, Konstantina},
      title = {Analysis on models for exothermically reacting, compressible flows with large discontinous initial data},
      booktitle = {Nonlinear Partial Differential Equations and Related Analysis},
      series = {Contemp. Math.},
      volume = {371},
      pages = {73--91},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2005},
      mrclass = {35Q35 (35B40 35B45 35D05 76N10 76V05)},
      mrnumber = {2143860},
      mrreviewer = {Yue-Jun Peng},
      doi = {10.1090/conm/371/06848},
      url = {https://doi.org/10.1090/conm/371/06848},
      zblnumber = {1075.35036},
      }
  • [CEGH] Go to document E. Chénier, R. Eymard, T. Gallouët, and R. Herbin, "An extension of the MAC scheme to locally refined meshes: convergence analysis for the full tensor time-dependent Navier-Stokes equations," Calcolo, vol. 52, iss. 1, pp. 69-107, 2015.
    @ARTICLE{CEGH,
      author = {Chénier, Eric and Eymard, Robert and Gallouët, Thierry and Herbin, Raphaèle},
      title = {An extension of the {MAC} scheme to locally refined meshes: convergence analysis for the full tensor time-dependent {N}avier-{S}tokes equations},
      journal = {Calcolo},
      fjournal = {Calcolo. A Quarterly on Numerical Analysis and Theory of Computation},
      volume = {52},
      year = {2015},
      number = {1},
      pages = {69--107},
      issn = {0008-0624},
      mrclass = {65N08 (65M08 76D05)},
      mrnumber = {3313589},
      doi = {10.1007/s10092-014-0108-x},
      url = {https://doi.org/10.1007/s10092-014-0108-x},
      zblnumber = {1310.76105},
      }
  • [CCR] Go to document F. Colombini, G. Crippa, and J. Rauch, "A note on two-dimensional transport with bounded divergence," Comm. Partial Differential Equations, vol. 31, iss. 7-9, pp. 1109-1115, 2006.
    @ARTICLE{CCR,
      author = {Colombini, Ferruccio and Crippa, Gianluca and Rauch, Jeffrey},
      title = {A note on two-dimensional transport with bounded divergence},
      journal = {Comm. Partial Differential Equations},
      fjournal = {Communications in Partial Differential Equations},
      volume = {31},
      year = {2006},
      number = {7-9},
      pages = {1109--1115},
      issn = {0360-5302},
      mrclass = {35F10 (35A05)},
      mrnumber = {2254607},
      mrreviewer = {Florin Iacob},
      doi = {10.1080/03605300500455933},
      url = {https://doi.org/10.1080/03605300500455933},
      zblnumber = {1122.35143},
      }
  • [CR] Go to document F. Colombini and J. Rauch, "Uniqueness in the Cauchy problem for transport in $\Bbb R^2$ and $\Bbb R^{1+2}$," J. Differential Equations, vol. 211, iss. 1, pp. 162-167, 2005.
    @ARTICLE{CR,
      author = {Colombini, Ferruccio and Rauch, Jeffrey},
      title = {Uniqueness in the {C}auchy problem for transport in {$\Bbb R^2$} and {$\Bbb R^{1+2}$}},
      journal = {J. Differential Equations},
      fjournal = {Journal of Differential Equations},
      volume = {211},
      year = {2005},
      number = {1},
      pages = {162--167},
      issn = {0022-0396},
      mrclass = {35F10 (35A05)},
      mrnumber = {2121112},
      mrreviewer = {Gennadii V. Demidenko},
      doi = {10.1016/j.jde.2004.06.007},
      url = {https://doi.org/10.1016/j.jde.2004.06.007},
      zblnumber = {1134.35311},
      }
  • [CD] Go to document G. Crippa and C. De Lellis, "Estimates and regularity results for the DiPerna-Lions flow," J. Reine Angew. Math., vol. 616, pp. 15-46, 2008.
    @ARTICLE{CD,
      author = {Crippa, Gianluca and De Lellis, Camillo},
      title = {Estimates and regularity results for the {D}i{P}erna-{L}ions flow},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {616},
      year = {2008},
      pages = {15--46},
      issn = {0075-4102},
      mrclass = {34C11 (35L45 37C10)},
      mrnumber = {2369485},
      mrreviewer = {Guido Schneider},
      doi = {10.1515/CRELLE.2008.016},
      url = {https://doi.org/10.1515/CRELLE.2008.016},
      zblnumber = {1160.34004},
      }
  • [DeL] Go to document C. De Lellis, "Notes on hyperbolic systems of conservation laws and transport equations," in Handbook of Differential Equations: Evolutionary Equations. Vol. III, Elsevier/North-Holland, Amsterdam, 2007, pp. 277-382.
    @INCOLLECTION{DeL,
      author = {De Lellis, Camillo},
      title = {Notes on hyperbolic systems of conservation laws and transport equations},
      booktitle = {Handbook of Differential Equations: Evolutionary Equations. {V}ol. {III}},
      series = {Handb. Differ. Equ.},
      pages = {277--382},
      publisher = {Elsevier/North-Holland, Amsterdam},
      year = {2007},
      mrclass = {35L65 (35B45 35B65 35F20 76B03 76N10)},
      mrnumber = {2549371},
      mrreviewer = {Kenneth H. Karlsen},
      doi = {10.1016/S1874-5717(07)80007-7},
      url = {https://doi.org/10.1016/S1874-5717(07)80007-7},
      zblnumber = {1195.35215},
      }
  • [DeLGwSw] Go to document C. De Lellis, P. Gwiazda, and A. Świerczewska-Gwiazda, "Transport equations with integral terms: existence, uniqueness and stability," Calc. Var. Partial Differential Equations, vol. 55, iss. 5, p. 128, 2016.
    @ARTICLE{DeLGwSw,
      author = {De Lellis, Camillo and Gwiazda, Piotr and \'Swierczewska-Gwiazda, Agnieszka},
      title = {Transport equations with integral terms: existence, uniqueness and stability},
      journal = {Calc. Var. Partial Differential Equations},
      fjournal = {Calculus of Variations and Partial Differential Equations},
      volume = {55},
      year = {2016},
      number = {5},
      pages = {Art. 128, 17},
      issn = {0944-2669},
      mrclass = {35F10 (35B35 82C70)},
      mrnumber = {3554338},
      doi = {10.1007/s00526-016-1049-9},
      url = {https://doi.org/10.1007/s00526-016-1049-9},
      zblnumber = {06654681},
      }
  • [DeP] Go to document N. Depauw, "Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d’un hyperplan," C. R. Math. Acad. Sci. Paris, vol. 337, iss. 4, pp. 249-252, 2003.
    @ARTICLE{DeP,
      author = {Depauw, Nicolas},
      title = {Non unicité des solutions bornées pour un champ de vecteurs {BV} en dehors d'un hyperplan},
      journal = {C. R. Math. Acad. Sci. Paris},
      fjournal = {Comptes Rendus Mathématique. Académie des Sciences. Paris},
      volume = {337},
      year = {2003},
      number = {4},
      pages = {249--252},
      issn = {1631-073X},
      mrclass = {35L65},
      mrnumber = {2009116},
      doi = {10.1016/S1631-073X(03)00330-3},
      url = {https://doi.org/10.1016/S1631-073X(03)00330-3},
      zblnumber = {1024.35029},
      }
  • [DL] Go to document R. J. DiPerna and P. -L. Lions, "Ordinary differential equations, transport theory and Sobolev spaces," Invent. Math., vol. 98, iss. 3, pp. 511-547, 1989.
    @ARTICLE{DL,
      author = {DiPerna, R. J. and Lions, P.-L.},
      title = {Ordinary differential equations, transport theory and {S}obolev spaces},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {98},
      year = {1989},
      number = {3},
      pages = {511--547},
      issn = {0020-9910},
      mrclass = {34A10 (34D20 35Q20 58D25 82A70)},
      mrnumber = {1022305},
      mrreviewer = {B. G. Pachpatte},
      doi = {10.1007/BF01393835},
      url = {https://doi.org/10.1007/BF01393835},
      zblnumber = {0696.34049},
      }
  • [DuFePeSt] Go to document B. Ducomet, E. Feireisl, H. Petzeltová, and I. Stravskraba, "Global in time weak solutions for compressible barotropic self-gravitating fluids," Discrete Contin. Dyn. Syst., vol. 11, iss. 1, pp. 113-130, 2004.
    @ARTICLE{DuFePeSt,
      author = {Ducomet, Bernard and Feireisl, Eduard and Petzeltová, Hana and Stra{š}kraba, Ivan},
      title = {Global in time weak solutions for compressible barotropic self-gravitating fluids},
      journal = {Discrete Contin. Dyn. Syst.},
      fjournal = {Discrete and Continuous Dynamical Systems. Series A},
      volume = {11},
      year = {2004},
      number = {1},
      pages = {113--130},
      issn = {1078-0947},
      mrclass = {35Q30 (76N10 85A15)},
      mrnumber = {2073949},
      mrreviewer = {Bum Ja Jin},
      doi = {10.3934/dcds.2004.11.113},
      url = {https://doi.org/10.3934/dcds.2004.11.113},
      zblnumber = {1080.35068},
      }
  • [EGHL] Go to document R. Eymard, T. Gallouët, R. Herbin, and J. -C. Latché, "Convergence of the MAC scheme for the compressible Stokes equations," SIAM J. Numer. Anal., vol. 48, iss. 6, pp. 2218-2246, 2010.
    @ARTICLE{EGHL,
      author = {Eymard, R. and Gallouët, T. and Herbin, R. and Latché, J.-C.},
      title = {Convergence of the {MAC} scheme for the compressible {S}tokes equations},
      journal = {SIAM J. Numer. Anal.},
      fjournal = {SIAM Journal on Numerical Analysis},
      volume = {48},
      year = {2010},
      number = {6},
      pages = {2218--2246},
      issn = {0036-1429},
      mrclass = {65N08 (35Q35 65M12 76M12 76N15)},
      mrnumber = {2763662},
      mrreviewer = {V\'\i t Dolejš\'\i },
      doi = {10.1137/090779863},
      url = {https://doi.org/10.1137/090779863},
      zblnumber = {05931236},
      }
  • [EGHL2] Go to document R. Eymard, T. Gallouët, R. Herbin, and J. C. Latché, "A convergent finite element-finite volume scheme for the compressible Stokes problem. II. The isentropic case," Math. Comp., vol. 79, iss. 270, pp. 649-675, 2010.
    @ARTICLE{EGHL2,
      author = {Eymard, R. and Gallouët, T. and Herbin, R. and Latché, J. C.},
      title = {A convergent finite element-finite volume scheme for the compressible {S}tokes problem. {II}. {T}he isentropic case},
      journal = {Math. Comp.},
      fjournal = {Mathematics of Computation},
      volume = {79},
      year = {2010},
      number = {270},
      pages = {649--675},
      issn = {0025-5718},
      mrclass = {65N08 (35Q35 65N12 65N30 76M10 76M12)},
      mrnumber = {2600538},
      mrreviewer = {Nasser H. Sweilam},
      doi = {10.1090/S0025-5718-09-02310-2},
      url = {https://doi.org/10.1090/S0025-5718-09-02310-2},
      zblnumber = {1197.35192},
      }
  • [FaKeSe] Go to document E. B. Fabes, C. E. Kenig, and R. P. Serapioni, "The local regularity of solutions of degenerate elliptic equations," Comm. Partial Differential Equations, vol. 7, iss. 1, pp. 77-116, 1982.
    @ARTICLE{FaKeSe,
      author = {Fabes, Eugene B. and Kenig, Carlos E. and Serapioni, Raul P.},
      title = {The local regularity of solutions of degenerate elliptic equations},
      journal = {Comm. Partial Differential Equations},
      fjournal = {Communications in Partial Differential Equations},
      volume = {7},
      year = {1982},
      number = {1},
      pages = {77--116},
      issn = {0360-5302},
      mrclass = {35J70 (35D10)},
      mrnumber = {0643158},
      mrreviewer = {M.-T. Lacroix},
      doi = {10.1080/03605308208820218},
      url = {https://doi.org/10.1080/03605308208820218},
      zblnumber = {0498.35042},
      }
  • [Fe1] Go to document E. Feireisl, "Compressible Navier-Stokes equations with a non-monotone pressure law," J. Differential Equations, vol. 184, iss. 1, pp. 97-108, 2002.
    @ARTICLE{Fe1,
      author = {Feireisl, Eduard},
      title = {Compressible {N}avier-{S}tokes equations with a non-monotone pressure law},
      journal = {J. Differential Equations},
      fjournal = {Journal of Differential Equations},
      volume = {184},
      year = {2002},
      number = {1},
      pages = {97--108},
      issn = {0022-0396},
      mrclass = {35Q35 (35B30 35Q30 76N10)},
      mrnumber = {1929148},
      mrreviewer = {Yue-Jun Peng},
      doi = {10.1006/jdeq.2001.4137},
      url = {https://doi.org/10.1006/jdeq.2001.4137},
      zblnumber = {1012.76079},
      }
  • [Fei] Go to document E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004, vol. 26.
    @BOOK{Fei,
      author = {Feireisl, Eduard},
      title = {Dynamics of Viscous Compressible Fluids},
      series = {Oxford Lecture Ser. Math. Appl.},
      volume = {26},
      publisher = {Oxford University Press, Oxford},
      year = {2004},
      pages = {xii+212},
      isbn = {0-19-852838-8},
      mrclass = {76N10 (35Q35 76N15)},
      mrnumber = {2040667},
      mrreviewer = {Piotr Bogus\l aw Mucha},
      zblnumber = {1080.76001},
      doi = {10.1093/acprof:oso/9780198528388.001.0001},
     }
  • [FeNo] Go to document E. Feireisl and A. n Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser Verlag, Basel, 2009.
    @BOOK{FeNo,
      author = {Feireisl, Eduard and Novotný, Anton\'\i n},
      title = {Singular Limits in Thermodynamics of Viscous Fluids},
      series = {Adv. Math. Fluid Mech.},
      publisher = {Birkhäuser Verlag, Basel},
      year = {2009},
      pages = {xxxvi+382},
      isbn = {978-3-7643-8842-3},
      mrclass = {35-02 (35B25 35Q35 76-02 76N10)},
      mrnumber = {2499296},
      mrreviewer = {Denis Serre},
      doi = {10.1007/978-3-7643-8843-0},
      url = {https://doi.org/10.1007/978-3-7643-8843-0},
      zblnumber = {1176.35126},
      }
  • [FeNoPe] Go to document E. Feireisl, A. Novotný, and H. Petzeltová, "On the existence of globally defined weak solutions to the Navier-Stokes equations," J. Math. Fluid Mech., vol. 3, iss. 4, pp. 358-392, 2001.
    @ARTICLE{FeNoPe,
      author = {Feireisl, Eduard and Novotný, Anton{\'ı}n and Petzeltová, Hana},
      title = {On the existence of globally defined weak solutions to the {N}avier-{S}tokes equations},
      journal = {J. Math. Fluid Mech.},
      fjournal = {Journal of Mathematical Fluid Mechanics},
      volume = {3},
      year = {2001},
      number = {4},
      pages = {358--392},
      issn = {1422-6928},
      mrclass = {35Q30 (76N10)},
      mrnumber = {1867887},
      mrreviewer = {Cun-Zheng Wang},
      doi = {10.1007/PL00000976},
      url = {https://doi.org/10.1007/PL00000976},
      zblnumber = {0997.35043},
      }
  • [GGHL] Go to document T. Gallouët, L. Gastaldo, R. Herbin, and J. Latché, "An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations," M2AN Math. Model. Numer. Anal., vol. 42, iss. 2, pp. 303-331, 2008.
    @ARTICLE{GGHL,
      author = {Gallouët, T. and Gastaldo, Laura and Herbin, Raphaele and Latché, Jean-Claude},
      title = {An unconditionally stable pressure correction scheme for the compressible barotropic {N}avier-{S}tokes equations},
      journal = {M2AN Math. Model. Numer. Anal.},
      fjournal = {M2AN. Mathematical Modelling and Numerical Analysis},
      volume = {42},
      year = {2008},
      number = {2},
      pages = {303--331},
      issn = {0764-583X},
      mrclass = {76M25 (35Q35 65M60 76N15)},
      mrnumber = {2405150},
      mrreviewer = {Susana Serna},
      doi = {10.1051/m2an:2008005},
      url = {https://doi.org/10.1051/m2an:2008005},
      zblnumber = {1132.35433},
      }
  • [GHL] Go to document T. Gallouët, R. Herbin, and J. -C. Latché, "A convergent finite element-finite volume scheme for the compressible Stokes problem. I. The isothermal case," Math. Comp., vol. 78, iss. 267, pp. 1333-1352, 2009.
    @ARTICLE{GHL,
      author = {Gallouët, T. and Herbin, R. and Latché, J.-C.},
      title = {A convergent finite element-finite volume scheme for the compressible {S}tokes problem. {I}. {T}he isothermal case},
      journal = {Math. Comp.},
      fjournal = {Mathematics of Computation},
      volume = {78},
      year = {2009},
      number = {267},
      pages = {1333--1352},
      issn = {0025-5718},
      mrclass = {65N30 (35Q35 65N12 76M10 76N15)},
      mrnumber = {2501053},
      mrreviewer = {Nasser H. Sweilam},
      doi = {10.1090/S0025-5718-09-02216-9},
      url = {https://doi.org/10.1090/S0025-5718-09-02216-9},
      zblnumber = {1223.76041},
      }
  • [GHL2] Go to document T. Gallouët, R. Herbin, and J. -C. Latché, "Kinetic energy control in explicit Finite Volume discretizations of the incompressible and compressible Navier-Stokes equations," Int. J. Finite Vol., vol. 7, iss. 2, p. 6, 2010.
    @ARTICLE{GHL2,
      author = {Gallouët, T. and Herbin, R. and Latché, J.-C.},
      title = {Kinetic energy control in explicit {F}inite {V}olume discretizations of the incompressible and compressible {N}avier-{S}tokes equations},
      journal = {Int. J. Finite Vol.},
      fjournal = {International Journal on Finite Volumes},
      volume = {7},
      year = {2010},
      number = {2},
      pages = {6 pp.},
      issn = {1634-0655},
      mrclass = {65M08 (76D05 76M12 76N15)},
      mrnumber = {2753585},
      zblnumber = {},
      url = {https://hal.archives-ouvertes.fr/hal-01112391},
     }
  • [Ha1] Go to document M. Hauray, "On two-dimensional Hamiltonian transport equations with $L_{ loc}^p$ coefficients," Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 20, iss. 4, pp. 625-644, 2003.
    @ARTICLE{Ha1,
      author = {Hauray, M.},
      title = {On two-dimensional {H}amiltonian transport equations with {$L_{\rm loc}^p$} coefficients},
      journal = {Ann. Inst. H. Poincaré Anal. Non Linéaire},
      fjournal = {Annales de l'Institut Henri Poincaré. Analyse Non Linéaire},
      volume = {20},
      year = {2003},
      number = {4},
      pages = {625--644},
      issn = {0294-1449},
      mrclass = {35F10 (35R05 82C70)},
      mrnumber = {1981402},
      mrreviewer = {Manfred W. Kracht},
      doi = {10.1016/S0294-1449(02)00015-X},
      url = {https://doi.org/10.1016/S0294-1449(02)00015-X},
      zblnumber = {1028.35148},
      }
  • [Ha2] Go to document M. Hauray, "On Liouville transport equation with force field in $BV_{ loc}$," Comm. Partial Differential Equations, vol. 29, iss. 1-2, pp. 207-217, 2004.
    @ARTICLE{Ha2,
      author = {Hauray, M.},
      title = {On {L}iouville transport equation with force field in {$BV_{\rm loc}$}},
      journal = {Comm. Partial Differential Equations},
      fjournal = {Communications in Partial Differential Equations},
      volume = {29},
      year = {2004},
      number = {1-2},
      pages = {207--217},
      issn = {0360-5302},
      mrclass = {35F10 (35F20)},
      mrnumber = {2038150},
      mrreviewer = {Abdelhamid Meziani},
      doi = {10.1081/PDE-120028850},
      url = {https://doi.org/10.1081/PDE-120028850},
      zblnumber = {1103.35003},
      }
  • [Ja] Go to document P. Jabin, "Differential equations with singular fields," J. Math. Pures Appl. (9), vol. 94, iss. 6, pp. 597-621, 2010.
    @ARTICLE{Ja,
      author = {Jabin, Pierre-Emmanuel},
      title = {Differential equations with singular fields},
      journal = {J. Math. Pures Appl. (9)},
      fjournal = {Journal de Mathématiques Pures et Appliquées. Neuvième Série},
      volume = {94},
      year = {2010},
      number = {6},
      pages = {597--621},
      issn = {0021-7824},
      mrclass = {34A26 (26B10 26B30 34A34 34C11 37C10)},
      mrnumber = {2737390},
      mrreviewer = {Daniel C. Biles},
      doi = {10.1016/j.matpur.2010.07.001},
      url = {https://doi.org/10.1016/j.matpur.2010.07.001},
      zblnumber = {1217.34015},
      }
  • [JaMa] Go to document P. -E. Jabin and N. Masmoudi, "DiPerna-Lions flow for relativistic particles in an electromagnetic field," Arch. Ration. Mech. Anal., vol. 217, iss. 3, pp. 1029-1067, 2015.
    @ARTICLE{JaMa,
      author = {Jabin, P.-E. and Masmoudi, N.},
      title = {Di{P}erna-{L}ions flow for relativistic particles in an electromagnetic field},
      journal = {Arch. Ration. Mech. Anal.},
      fjournal = {Archive for Rational Mechanics and Analysis},
      volume = {217},
      year = {2015},
      number = {3},
      pages = {1029--1067},
      issn = {0003-9527},
      mrclass = {83C10 (83C50)},
      mrnumber = {3356994},
      mrreviewer = {Giovanni Preti},
      doi = {10.1007/s00205-015-0850-5},
      url = {https://doi.org/10.1007/s00205-015-0850-5},
      zblnumber = {1317.35249},
      }
  • [KaVa] Go to document V. A. Vauigant and A. V. Kazhikhov, "On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid," Sibirsk. Mat. Zh., vol. 36, iss. 6, pp. 1283-1316, 1995.
    @ARTICLE{KaVa,
      author = {Va{ĭ}gant, V. A. and Kazhikhov, A. V.},
      title = {On the existence of global solutions of two-dimensional {N}avier-{S}tokes equations of a compressible viscous fluid},
      journal = {Sibirsk. Mat. Zh.},
      fjournal = {Rossiĭskaya Akademiya Nauk. Sibirskoe Otdelenie. Institut Matematiki im. S. L. Soboleva. SibirskiĭMatematicheskiĭZhurnal},
      volume = {36},
      year = {1995},
      number = {6},
      pages = {1283--1316},
      issn = {0037-4474},
      mrclass = {35Q30 (35D05 76N10)},
      mrnumber = {1375428},
      mrreviewer = {Ivan Straškraba},
      doi = {10.1007/BF02106835},
      url = {https://doi.org/10.1007/BF02106835},
      zblnumber = {0860.35098},
     }
  • [Ka] Go to document T. K. Karper, "A convergent FEM-DG method for the compressible Navier-Stokes equations," Numer. Math., vol. 125, iss. 3, pp. 441-510, 2013.
    @ARTICLE{Ka,
      author = {Karper, Trygve K.},
      title = {A convergent {FEM}-{DG} method for the compressible {N}avier-{S}tokes equations},
      journal = {Numer. Math.},
      fjournal = {Numerische Mathematik},
      volume = {125},
      year = {2013},
      number = {3},
      pages = {441--510},
      issn = {0029-599X},
      mrclass = {65M60 (35Q35 65M12 76N15)},
      mrnumber = {3117509},
      mrreviewer = {Julia Novo},
      doi = {10.1007/s00211-013-0543-7},
      url = {https://doi.org/10.1007/s00211-013-0543-7},
      zblnumber = {1278.76059},
      }
  • [Kruzkov] Go to document S. N. Kruvzkov, "First order quasilinear equations with several independent variables," Mat. Sb. (N.S.), vol. 81 (123), pp. 228-255, 1970.
    @ARTICLE{Kruzkov,
      author = {Kru{ž}kov, S. N.},
      title = {First order quasilinear equations with several independent variables },
      journal = {Mat. Sb. (N.S.)},
      volume = {81 (123)},
      year = {1970},
      pages = {228--255},
      mrclass = {35.37},
      mrnumber = {0267257},
      mrreviewer = {Z. Ziele\'zny},
      zblnumber = {0202.11203},
      doi = {10.1070/SM1970v010n02ABEH002156},
     }
  • [LL] Go to document C. Le Bris and P. -L. Lions, "Renormalized solutions of some transport equations with partially $W^{1,1}$ velocities and applications," Ann. Mat. Pura Appl. (4), vol. 183, iss. 1, pp. 97-130, 2004.
    @ARTICLE{LL,
      author = {Le Bris, C. and Lions, P.-L.},
      title = {Renormalized solutions of some transport equations with partially {$W^{1,1}$} velocities and applications},
      journal = {Ann. Mat. Pura Appl. (4)},
      fjournal = {Annali di Matematica Pura ed Applicata. Series IV},
      volume = {183},
      year = {2004},
      number = {1},
      pages = {97--130},
      issn = {0373-3114},
      mrclass = {35F10 (34A12 60H10 76A05 76M35)},
      mrnumber = {2044334},
      mrreviewer = {Stanis\l aw Burys},
      doi = {10.1007/s10231-003-0082-4},
      url = {https://doi.org/10.1007/s10231-003-0082-4},
      zblnumber = {1170.35364},
      }
  • [Le] Go to document J. Leray, "Sur le mouvement d’un liquide visqueux emplissant l’espace," Acta Math., vol. 63, iss. 1, pp. 193-248, 1934.
    @ARTICLE{Le,
      author = {Leray, Jean},
      title = {Sur le mouvement d'un liquide visqueux emplissant l'espace},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {63},
      year = {1934},
      number = {1},
      pages = {193--248},
      issn = {0001-5962},
      mrclass = {DML},
      mrnumber = {1555394},
      doi = {10.1007/BF02547354},
      url = {https://doi.org/10.1007/BF02547354},
      jfmnumber = {60.0726.05},
      }
  • [LiXi] J. Li and Z. Xin, Global Existence of Weak Solutions to the Barotropic Compressible Navier–Stokes Flows with Degenerate Viscosities, 2015.
    @MISC{LiXi,
      author = {Li, J. and Xin, Z.},
      title = {Global Existence of Weak Solutions to the Barotropic Compressible {N}avier--{S}tokes Flows with Degenerate Viscosities},
      arxiv = {1504.06826},
      year = {2015},
      zblnumber = {},
      }
  • [LP] Go to document J. -L. Lions and J. Peetre, "Sur une classe d’espaces d’interpolation," Inst. Hautes Études Sci. Publ. Math., vol. 19, pp. 5-68, 1964.
    @ARTICLE{LP,
      author = {Lions, J.-L. and Peetre, J.},
      title = {Sur une classe d'espaces d'interpolation},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      volume = {19},
      year = {1964},
      pages = {5--68},
      mrnumber = {0165343},
      zblnumber = {0148.11403},
      doi = {10.1007/BF02684796},
      }
  • [Li2] P. Lions, Mathematical Topics in Fluid Mechanics. Vol. II: Compressible Models, The Clarendon Press, Oxford University Press, New York, 1998, vol. 10.
    @BOOK{Li2,
      author = {Lions, Pierre-Louis},
      title = {Mathematical {T}opics in {F}luid {M}echanics. {V}ol. II: Compressible Models},
      series = {Oxford Lecture Ser. Math. Appl.},
      volume = {10},
      publisher = {The Clarendon Press, Oxford University Press, New York},
      year = {1998},
      zblnumber = {1264.76003},
      mrnumber = {1637634},
     }
  • [NoSt] A. Novotný and I. Stravskraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, Oxford, 2004, vol. 27.
    @BOOK{NoSt,
      author = {Novotný, A. and Stra{š}kraba, I.},
      title = {Introduction to the Mathematical Theory of Compressible Flow},
      series = {Oxford Lecture Ser. Math. Appl.},
      volume = {27},
      publisher = {Oxford University Press, Oxford},
      year = {2004},
      pages = {xx+506},
      isbn = {0-19-853084-6},
      mrclass = {35Q35 (35Q30 76N10)},
      mrnumber = {2084891},
      mrreviewer = {Raphaël Danchin},
      zblnumber = {1088.35051},
      }
  • [PlWe] Go to document P. I. Plotnikov and W. Weigant, "Isothermal Navier-Stokes equations and Radon transform," SIAM J. Math. Anal., vol. 47, iss. 1, pp. 626-653, 2015.
    @ARTICLE{PlWe,
      author = {Plotnikov, P. I. and Weigant, W.},
      title = {Isothermal {N}avier-{S}tokes equations and {R}adon transform},
      journal = {SIAM J. Math. Anal.},
      fjournal = {SIAM Journal on Mathematical Analysis},
      volume = {47},
      year = {2015},
      number = {1},
      pages = {626--653},
      issn = {0036-1410},
      mrclass = {35Q30 (44A12 49J20 76N10)},
      mrnumber = {3305369},
      mrreviewer = {Raphaël Danchin},
      doi = {10.1137/140960542},
      url = {https://doi.org/10.1137/140960542},
      zblnumber = {1323.35134},
      }
  • [PlSo] Go to document P. Plotnikov and J. Sokolowski, Compressible Navier-Stokes Equations. Theory and Shape Optimization, Birkhäuser/Springer Basel AG, Basel, 2012, vol. 73.
    @BOOK{PlSo,
      author = {Plotnikov, Pavel and Soko{\l{o}}wski, Jan},
      title = {Compressible {N}avier-{S}tokes Equations. Theory and Shape Optimization},
      series = {Inst. Mat. Polskiej Akad. Nauk. Monogr. Mat.},
      volume = {73},
      publisher = {Birkhäuser/Springer Basel AG, Basel},
      year = {2012},
      pages = {xvi+457},
      isbn = {978-3-0348-0366-3},
      mrclass = {35-02 (35Q35 35R37 49-02 49Q10 76N10)},
      mrnumber = {2963679},
      mrreviewer = {Raphaël Danchin},
      doi = {10.1007/978-3-0348-0367-0},
      url = {https://doi.org/10.1007/978-3-0348-0367-0},
      zblnumber = {1260.35002},
      }
  • [Po] Go to document A. C. Ponce, "An estimate in the spirit of Poincaré’s inequality," J. Eur. Math. Soc. (JEMS), vol. 6, iss. 1, pp. 1-15, 2004.
    @ARTICLE{Po,
      author = {Ponce, Augusto C.},
      title = {An estimate in the spirit of {P}oincaré's inequality},
      journal = {J. Eur. Math. Soc. (JEMS)},
      fjournal = {Journal of the European Mathematical Society (JEMS)},
      volume = {6},
      year = {2004},
      number = {1},
      pages = {1--15},
      issn = {1435-9855},
      mrclass = {26D15 (46E35)},
      mrnumber = {2041005},
      mrreviewer = {J. Horváth},
      doi = {10.4171/JEMS/1},
      zblnumber = {1051.46019},
      }
  • [Stein] Go to document E. M. Stein, "Maximal functions. I: Spherical means," Proc. Nat. Acad. Sci. U.S.A., vol. 73, iss. 7, pp. 2174-2175, 1976.
    @ARTICLE{Stein,
      author = {Stein, Elias M.},
      title = {Maximal functions. {I}: {S}pherical means},
      journal = {Proc. Nat. Acad. Sci. U.S.A.},
      fjournal = {Proceedings of the National Academy of Sciences of the United States of America},
      volume = {73},
      year = {1976},
      number = {7},
      pages = {2174--2175},
      issn = {0027-8424},
      mrclass = {42A40 (43A85)},
      mrnumber = {0420116},
      mrreviewer = {Alberto Torchinsky},
      zblnumber = {0332.42018},
      doi = {10.1073/pnas.73.7.2174},
     }
  • [Stein2] Go to document E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993, vol. 43.
    @BOOK{Stein2,
      author = {Stein, Elias M.},
      title = {Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals},
      series = {Princeton Math. Ser.},
      volume = {43},
      note = {with the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {1993},
      pages = {xiv+695},
      isbn = {0-691-03216-5},
      mrclass = {42-02 (35Sxx 43-02 47G30)},
      mrnumber = {1232192},
      mrreviewer = {Michael Cowling},
      zblnumber = {0821.42001},
      doi = {10.1515/9781400883929},
      }
  • [TeZi] Go to document R. Temam and M. Ziane, "Some mathematical problems in geophysical fluid dynamics," in Handbook of Mathematical Fluid Dynamics. Vol. III, North-Holland, Amsterdam, 2004, pp. 535-657.
    @INCOLLECTION{TeZi,
      author = {Temam, Roger and Ziane, Mohammed},
      title = {Some mathematical problems in geophysical fluid dynamics},
      booktitle = {Handbook of Mathematical Fluid Dynamics. {V}ol. {III}},
      pages = {535--657},
      publisher = {North-Holland, Amsterdam},
      year = {2004},
      mrclass = {35Q30 (76B03 76D05 76U05 86A05 86A10)},
      mrnumber = {2099038},
      mrreviewer = {John Adam},
      zblnumber = {1222.35145},
      doi = {10.1016/S1874-5792(05)80009-6},
     }
  • [VaYu] Go to document A. F. Vasseur and C. Yu, "Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations," Invent. Math., vol. 206, iss. 3, pp. 935-974, 2016.
    @ARTICLE{VaYu,
      author = {Vasseur, Alexis F. and Yu, Cheng},
      title = {Existence of global weak solutions for 3{D} degenerate compressible {N}avier-{S}tokes equations},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {206},
      year = {2016},
      number = {3},
      pages = {935--974},
      issn = {0020-9910},
      mrclass = {35Q35 (35A01 35D30 76N10)},
      mrnumber = {3573976},
      mrreviewer = {Dominic Breit},
      doi = {10.1007/s00222-016-0666-4},
      url = {https://doi.org/10.1007/s00222-016-0666-4},
      zblnumber = {1354.35115},
      }

Authors

Didier Bresch

Laboratoire de Mathématiques, CNRS UMR5127, Université Grenoble Alpes, Université Savoie Mont Blanc, 73000 Chambéry, France

Pierre--Emmanuel Jabin

Center for Scientific Computation and Mathematical Modeling (CSCAMM) and Department of Mathematics, University of Maryland, College Park, MD 20742