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Global existence of weak solutions for
compressible Navier–Stokes equations:

Thermodynamically unstable pressure and
anisotropic viscous stress tensor

By Didier Bresch and Pierre–Emmanuel Jabin

Abstract

We prove global existence of appropriate weak solutions for the com-

pressible Navier–Stokes equations for a more general stress tensor than

those previously covered by P.-L.Lions and E. Feireisl’s theory. More pre-

cisely we focus on more general pressure laws that are not thermodynami-

cally stable; we are also able to handle some anisotropy in the viscous stress

tensor. To give answers to these two longstanding problems, we revisit

the classical compactness theory on the density by obtaining precise quan-

titative regularity estimates: This requires a more precise analysis of the

structure of the equations combined to a novel approach to the compact-

ness of the continuity equation. These two cases open the theory to im-

portant physical applications, for instance to describe solar events (virial

pressure law), geophysical flows (eddy viscosity) or biological situations

(anisotropy).
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1. Introduction

The question of global in time existence of solutions to fluid dynamics’

models goes back to the pioneering work by J. Leray [45] (1934), where he

introduced the concept of weak (turbulent) solutions to the Navier–Stokes

systems describing the motion of an incompressible fluid; this work has become

the basis of the underlying mathematical theory up to the present day. The

theory for viscous compressible fluids in a barotropic regime has, in comparison,

been developed more recently in the monograph by P.-L. Lions [48] (1993-1998),
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later extended by E. Feireisl and collaborators [34] (2001) and has been since

then a very active field of study.

When changes in temperature are not taken into account, the barotropic

Navier–Stokes system reads

(1.1)

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div σ = ρf,

where ρ, u denote respectively the density and the velocity field and f is

the given external force. The stress tensor σ of a general fluid obeys Stokes’

law σ = S − P Id, where P is a scalar function termed pressure (depending

on the density in the compressible barotropic setting or being an unknown

in the incompressible setting) and S denotes the viscous stress tensor that

characterizes the measure of resistance of the fluid to flow.

Our approach should also apply to the Navier–Stokes–Fourier system, as

we will explain in a future work; this system is considered more physically

relevant. But our main purpose here is to explain how the new regularity

method that we introduce can be applied to a wide range of Navier–Stokes-

like models and not to focus on a particular system. For this reason, we discuss

the main features of our new theory on the simpler (1.1).

In comparison with Leray’s work on incompressible flows, which is nowa-

days relatively “simple” at least from the point of view of modern functional

analysis (and in the linear viscous stress tensor case), the mathematical the-

ory of weak solutions to compressible fluids is quite involved, bearing many

common aspects with the theory of non-linear conservation laws.

Our focus is on the global existence of weak solutions. For this reason we

will not refer to the important question of existence of strong solutions or the

corresponding uniqueness issues.

Several important problems about global existence of weak solutions for

compressible flows remain open. In this article we consider the following ques-

tions:

• general pressure laws, in particular without any monotonicity assumption;

• anisotropy in the viscous stress tensor, which is especially important in

geophysics.

In the current Lions–Feireisl theory, the pressure law P is often assumed to be

of the form P (ρ) = aργ but this can be generalized, a typical example being

P ∈ C1([0,+∞)), P (0) = 0 with

aργ−1 − b ≤ P ′(ρ) ≤ 1

a
ργ−1 + b with γ > d/2

(1.2)
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for some constants a > 0, b ≥ 0; see B. Ducomet, E. Feireisl, H. Petzeltova,

I. Straskraba [27] or E. Feireisl [31] for slightly more general assumptions. How-

ever it is always required that P (ρ) be increasing after a certain fixed critical

value of ρ.

This monotonicity of P is connected to several well-known difficulties:

• The monotonicity of the pressure law is required for the stability of the

thermodynamical equilibrium. Changes in monotonicity in the pressure are

typically connected to intricate phase transition problems.

• At the level of compressible Euler, i.e., when S = 0, non-monotone pressure

laws may lead to a loss of hyperbolicity in the system, possibly leading to

corrected systems (in particular, as by Korteweg).

In spite of these issues, we are able to show that compressible Navier–

Stokes systems like (1.1) are globally well posed without monotonicity assump-

tions on the pressure law; instead, only rough growth estimates are required.

This allows us to consider for the first time several famous physical laws such

as modified virial expansions.

As for the pressure law, the theory initiated in the multi-dimensional

setting by P.-L. Lions and E. Feireisl requires that the stress tensor has the

very specific form
σ = 2µD(u) + λdivu Id− P (ρ) Id

with D(u) = (∇u+∇uT )/2, µ and λ such that λ+ 2µ/d ≥ 0. The coefficients

λ and µ do not need to be constant but require some explicit regularity; see,

for instance, [33] for temperature dependent coefficients.

Unfortunately several physical situations involve some anisotropy in the

stress tensor; geophysical flows, for instance, use and require such constitutive

laws; see, for instance, [56] and [14] with eddy viscosity in turbulent flows.

In this article we present the first results able to handle more general

viscous stress tensor of the form

σ = A(t)∇u+ λdivu Id− P (ρ) Id

with a d×d symmetric matrix A with regular enough coefficients. The matrix

A can incorporate anisotropic phenomena in the fluid. Note that our result

also applies to the case

σ = A(t)D(u) + λdivu Id− P (ρ) Id,

where D(u) = (∇u+∇uT )/2 still.

Our new results therefore significantly expand the reach of the current

theory for compressible Navier–Stokes and make it more robust with respect

to the large variety of laws of state and stress tensors that are used. This is

achieved through a complete revisiting of the classical compactness theory by

obtaining quantitative regularity estimates. The idea is inspired by estimates

obtained for non-linear continuity equations in [6], though with a different



COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 581

method than the one introduced here. Those estimates correspond to criti-

cal spaces, also developed and used, for instance, in works by J. Bourgain,

H. Brézis and P. Mironescu and by A.C. Ponce; see [11] and [53].

Because of the weak regularity of the velocity field, the corresponding

norm of the critical space cannot be propagated. Instead the norm has to

be modified by weights based on an auxiliary function that solves a kind of

dual equation adapted to the compressible Navier–Stokes system under con-

sideration. After proving appropriate properties of the weights, we can prove

compactness on the density.

The article is organized as follows:

• Section 2 presents the classical theory by P.-L. Lions and E. Feireisl, with the

basic energy estimates. It explains why the classical proof of compactness

does not seem able to handle the more general equations of state that concern

us here. We also summarize the basic physical discussions on pressure laws

and stress tensors choices that motivate our study. This section can be

skipped by readers who are already familiar with the state of the art.

• In Section 3, we present the equations and the corresponding main results

concerning global existence of weak solutions for non-monotone pressure

law and then for anisotropic viscous stress tensor. Those are given in the

barotropic setting.

• Section 4 is devoted to an introduction to our new method. We give our

quantitative compactness criterion, and we show the basic ideas in the simple

context of linear uncoupled transport equations and a very rough sketch of

proof in the compressible Navier–Stokes setting.

• Section 5 states the stability results that constitute the main contribution of

the paper.

• Section 6 states technical lemmas that are needed in the main proof and are

based on classical harmonic analysis tools: maximal and square functions

properties, and translation of operators. It also includes a basic presentation

of the theory of renormalized solutions that we rely on in our calculations.

• Sections 7 and 8 constitute the heart of the proof. Section 7 is devoted

to the renormalized equation with definitions and properties of the weights.

Section 8 is devoted to the proof of the stability results of Section 5, both

concerning more general pressure laws and concerning the anisotropic stress

tensor.

• Section 9 concerns the construction of the approximate solutions. It uses the

stability results of Section 5 to conclude the proof of the existence theorems

of Section 3.

• Section 10 is a list of some of the notations that we use.

• Section 11 is an appendix recalling basic facts on Besov spaces that are used

in the article.
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2. Classical theory by E. Feireisl and P.-L. Lions, open problems

and physical considerations

For the moment we consider compressible fluid dynamics in a general

domain Ω that can be the whole space Rd, a periodic box Td or a bounded

smooth domain with adequate boundary conditions. We do not specify the

boundary conditions and instead leave those various choices open as they may

depend on the problem, and we want to insist in this section on the common

difficulties and approaches. We will later present our precise estimates in the

periodic setting for simplicity.

2.1. A priori estimates. We collect the main physical a priori estimates

for very general barotropic systems on R+ × Ω,

(2.1)

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)−D u+∇P (ρ) = ρf,

where D is only assumed to be a negative differential operator in divergence

form on u such that

(2.2)

∫
Ω
u · D u dx ∼ −

∫
Ω
|∇u|2 dx,

and for any φ and u,

(2.3)

∫
Ω
φ · D u dx ≤ C ‖∇φ‖L2 ‖∇u‖L2 .

The following estimates form the basis of the classical theory of existence of

weak solutions, and we will use them in our own proof. We only give the formal

derivation of the estimates at the time being.

First of all, the total energy of the fluid is dissipated. This energy is the

sum of the kinetic energy and the potential energy (due to the compressibility),

namely,

E(ρ, u) =

∫
Ω

Ç
ρ
|u|2

2
+ ρe(ρ)

å
dx,

where

e(ρ) =

∫ ρ

ρref

P (s)/s2ds

with ρref a constant reference density. Observe that formally from (2.1),

∂t
Ä
ρ
|u|2

2

ä
+ div

Ç
ρ u
|u|2

2

å
− u · Du+ u · ∇P (ρ) = ρ f · u,

and thus

d

dt

∫
Ω
ρ
|u|2

2
−
∫

Ω
u · D u−

∫
Ω
P (ρ) div u =

∫
Ω
ρf · u.
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On the other hand, by the definition of e, the continuity equation on ρ implies

∂t(ρe(ρ)) + div (ρe(ρ)u) + P (ρ) divu = 0.

Integrating and combining with the previous equality leads to the energy equal-

ity

(2.4)
d

dt
E(ρ, u)−

∫
Ω
u · D u =

∫
Ω
ρf · u.

Let us quantify further the estimates that follow from (2.4). Assume that P (ρ)

behaves roughly like ργ in the following weak sense:

(2.5) C−1 ργ − C ≤ P (ρ) ≤ C ργ + C;

then ρe(ρ) also behaves like ργ . Note that (2.5) does not imply any mono-

tonicity on P that could keep oscillating. One could also work with an even

more general assumption than (2.5): Different exponents γ on the left-hand

side and the right-hand side, for instance. But for simplicity, we use (2.5).

Assuming that f is bounded (or with enough integrability), one now de-

duces from (2.4) the following uniform bounds:

sup
t

∫
Ω
ρ |u|2 dx ≤ C + E(ρ0, u0),

sup
t

∫
Ω
ργ dx ≤ C,∫ T

0

∫
Ω
|∇u|2 dx ≤ C.

(2.6)

We can now improve on the integrability of ρ, as it was first observed by P.-L.

Lions. Choose any smooth, positive χ(t) with compact support, and test the

momentum equation by χ g = χB ρa, where B is a linear operator (in x) such

that

div g = (ρa − ρa), ‖∇g‖Lp ≤ Cp ‖ρa − ρa‖Lp ,
‖B φ‖Lp ≤ Cp ‖φ‖Lp , ∀ 1 < p <∞,

where we denote by ρa the average of ρa over Ω. Finding g is straightforward

in the whole space but more delicate in bounded domain as the right boundary

conditions must also be imposed. This is where E. Feireisl et al. introduce the

BOGOVSKI operator. We obtain that∫
χ(t)

∫
Ω
ρa P (ρ) dx dt ≤

∫
χ(t)

∫
Ω
g (∂t(ρ u) + div (ρ u⊗ u)−D u− ρ f) dx dt

+

∫
χ(t)

∫
Ω
ρaP (ρ).

By (2.5), the left-hand side dominates∫
χ(t)

∫
Ω
ρa+γ dx dt.
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It is possible to bound the terms in the right-hand side. For instance, by (2.3)

−
∫
χ(t) gD u dx dt ≤ C ‖∇u‖L2([0, T ], L2(Ω)) ‖χ∇g‖L2([0, T ], L2(Ω))

≤ C ‖∇u‖L2([0, T ], L2(Ω)) ‖χ (ρa − ρa)‖L2([0, T ], L2(Ω)),

by the choice of g. Given the bound (2.6) on ∇u, this term does not pose any

problem if 2 a < a+ γ. Next

(2.7)

∫
χ g ∂t(ρ u) dx dt = −

∫
(g χ′(t) + χ(t)B (∂t(ρ

a − ρa))) ρ u dx dt.

The first term in the right-hand side is easy to bound; as for the second one,

the continuity equation implies∫
χ(t)B(∂t(ρ

a − ρa)) ρ u dx dt = −
∫
χ [B (div (u ρa))] ρ u

−
∫
χ
î
(a− 1)B

Ä
ρa div u− div(uρa) + (a− 1)ρadivu)

äó
ρ u.

(2.8)

Using the properties of B and the energy estimates (2.6), it is possible to con-

trol those terms as well as the last one in (2.7), provided a ≤ 2γ/d − 1 and

γ > d/2, which leads to

(2.9)

∫ T

0

∫
Ω
ργ+a dx dt ≤ C(T,E(ρ0, u0)).

2.2. Heuristic presentation of the method by E. Feireisl and P.-L. Lions.

Let us explain, briefly and only heuristically, the main steps to prove global

existence of weak solutions in the barotropic case with constant viscosities and

power γ pressure law. Our purpose is to highlight why a specific form of the

pressure or of the stress tensor is needed in the classical approaches. For such a

general presentation of the theory, we also refer to the book by A. Novotny and

I. Straskraba [50], the monograph Etats de la Recherche edited by D. Bresch

[49], or the book by P. Plotnikov and J. Sokolowski [52].

Let us first consider the simplest model with constant viscosity coefficients

µ and λ, before discussing the limitations of the classical approach to other

settings. In that case, the compressible Navier–Stokes equation reads, on R+×
Ω,

(2.10)

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇P (ρ) = ρf,

with P (ρ) = aργ . For simplicity, we work in a smooth, Lipschitz regular,

bounded domain Ω with homogeneous Dirichlet boundary conditions on the

velocity

(2.11) u|∂Ω = 0.
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A key concept for the existence of weak solutions is the notion of renormal-

ized solution to the continuity equation, as per the theory for linear transport

equations by R. J. DiPerna and P.-L. Lions, which we briefly recall in Sec-

tion 6. Assuming ρ and u are smooth and satisfy the continuity equation, for

all b ∈ C([0,+∞)), one may multiply the equation by b′(ρ) to find that (ρ, u)

also solve

(2.12) ∂tb(ρ) + div(b(ρ)u) + (b′(ρ)ρ− b(ρ))divu = 0.

This leads to the following definition:

Definition 2.1. For any T ∈ (0,+∞), f , ρ0, m0 satisfying some technical

assumptions (defined later on in theorems), we say that a couple (ρ, u) is a weak

renormalized solution with bounded energy if it has the following properties:

• ρ ∈ L∞(0, T ;Lγ(Ω))∩C0([0, T ], Lγweak(Ω)), ρ ≥ 0 a.e. in (0, T )×Ω, ρ|t=0 =

ρ0 a.e. in Ω;

• u ∈ L2(0, T ;H1
0 (Ω)), ρ|u|2 ∈ L∞(0, T ;L1(Ω)), ρu is continuous in time

with value in the weak topology of L
2γ/(γ+1)
weak (Ω), (ρu)|t=0 = m0 a.e. Ω;

• (ρ, u) extended by zero out of Ω solves (2.10)1 in D′((0, T )× Rd);
• (ρ, u) solves the momentum equation (2.10)2 in D′((0, T )× Ω);

• for any smooth b with appropriate monotonicity properties, b(ρ) solves the

renormalized equation (2.12);

• for almost all τ ∈ (0, T ), (ρ, u) satisfies the energy inequality

E(ρ, u)(τ) +

∫ τ

0

∫
Ω

(µ|∇u|2 + (λ+ µ) |divu|2) ≤ E0 +

∫ τ

0

∫
Ω
ρf · u.

In this inequality,

E(ρ, u)(τ) =

∫
Ω

(ρ|u|2/2 + ρe(ρ))(τ),

with e(ρ) =
∫ ρ
ρref

P (s)/s2ds (ρref being any constant reference density), denotes

the total energy at time τ and E0 =
∫

Ω |m0|2/2ρ0 + ρ0e(ρ0) denotes the initial

total energy.

Assuming P (ρ) = aργ (in that case e(ρ) may equal to aργ−1/(γ− 1)), the

theory developed by P.-L. Lions to prove the global existence of renormalized

weak solution with bounded energy asks for some limitation on the adiabatic

constant γ, namely, γ > 3d/(d + 2). E. Feireisl et al. have generalized this

approach in order to cover the range γ > 3/2 in dimension 3 and more generally

γ > d/2, where d is the space dimension.

We present the initial proof due to P.-L. Lions and indicate quickly at

the end how it was improved by E. Feireisl et al. The method relies on the

construction of a sequence of approximate solution, derivation of a priori esti-

mates and passage to the limit, which requires delicate compactness estimates.
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For the time being, we skip the construction of such an approximate sequence;

see, for instance, the book by A. Novotny and I. Straskraba for details.

The approximate sequence, denoted by (ρk, uk), should satisfy the energy

inequality leading to a first uniform a priori bound, using that µ > 0 and

λ+ 2µ/d > 0,

sup
t

∫
Ω

(ρk |uk|2/2 + aργk/(γ − 1)) dx+ µ

∫ t

0

∫
Ω
|∇uk|2 dx dt ≤ C,

for some constant independent of n.

For γ > d/2, we also have the final a priori estimate (2.9) explained in the

previous subsection, namely,∫ ∞
0

∫
Ω
ργ+a
k ≤ C(R, T ) for a ≤ 2

d
γ − 1.

When needed for clarification, we denote by U the weak limit of a general

sequence Uk (up to a subsequence). Using the energy estimate and the extra

integrability property proved on the density, and by extracting subsequences,

one obtains the following convergence:

ρk ⇀ ρ in C0([0, T ];Lγweak(Ω)),

ργk ⇀ ργ in L(γ+a)/γ((0, T )× Ω),

ρkuk ⇀ ρu in C0([0, T ];L2γ/(γ+1)(Ω)),

ρku
i
ku

j
k ⇀ ρui uj in D′((0, T )× Ω) for i, j = 1, 2, 3.

The convergence of the non-linear terms ρk uk and ρk uk ⊗ uk uses the com-

pactness in time of ρk deduced from the uniform estimate on ∂tρk given by

the continuity equation and the compactness in time of
√
ρkuk deduced from

the uniform estimate on ∂t(ρkuk) given by the momentum equation. This

is combined with the L2 estimate on ∇uk. Consequently, ρ, u, ργ solve the

momentum equation

∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+ a∇ργ = ρf.

The extensions by zero to (0, T )×Rd/Ω of (ρ, u) (again denoted (ρ, u)) satisfy

the mass equation in R+ × Rd,

(2.13) ∂tρ+ div(ρu) = 0.

The difficulty consists in proving that (ρ, u) is a renormalized weak solution

with bounded energy and the main point is showing that ργ = ργ a.e. in

(0, T )× Ω.

This requires compactness on the density sequence that cannot follow

from the previous a priori estimates only. Instead P.-L. Lions uses a weak

compactness of the sequence {Fk}k∈N∗ = {aργk − (λ+ 2µ)divuk}k∈N∗ , which is

usually called the effective viscous flux. This property was previously identified
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in one space dimension by D. Hoff and D. Serre. More precisely, we have the

following property for all functions b ∈ C1([0,+∞)) satisfying some increasing

properties at infinity:

lim
k→+∞

∫ T

0

∫
Ω

(aργk − (2µ+ λ)divuk)b(ρk)ϕdxdt

=

∫ T

0

∫
Ω

(aργ − (2µ+ λ)divu)b(ρ)ϕdxdt,

(2.14)

where the over-line quantities design the weak limit of the corresponding quan-

tities and ϕ ∈ D((0, T ) × Ω). Note that such a property is reminiscent of

compensated compactness as the weak limit of a product is shown to be the

product of the weak limits. In particular, the previous property implies that

(2.15) ρdivu− ρdivu =
P (ρ)ρ− P (ρ) ρ

2µ+ λ
.

Note that taking the divergence of the momentum equation, we get the relation

∆[(2µ+ λ)divuk − P (ρk)] = div[∂t(ρkuk) + div(ρkuk ⊗ uk)]− div(ρkf)

written as

(2.16) (2µ+ λ)divuk − P (ρk) = Fk +Rk,

where

(2.17) Fk = ∆−1div[∂t(ρkuk) + div(ρkuk ⊗ uk)], Rk = ∆−1div(ρkf).

We call Fk the effective viscous flux that has the same compactness property

in space as (2µ+λ) divuk−P (ρk). Note that here the form of the stress tensor

(isotropy and linearity) has been strongly used to get this expression. From this

identity, P.-L. Lions proves the property (2.14) based on harmonic analysis due

to R. Coifman and Y. Meyer (regularity properties of commutators) and takes

the observations by D. Serre made in the one-dimensional case into account.

The proof by E. Feireisl is based on div-curl lemma introduced by F. Murat

and L. Tartar.

To simplify the remaining calculations, we assume γ ≥ 3d/(d + 2), and

in that case, due to the extra integrability on the density, we get that ρk ∈
L2((0, T )×Ω). This lets us choose b(s) = s log s in the renormalized formulation

for ρk and ρ and take the difference of the two equations. Then we pass to

the limit k → +∞ and use the identity of weak compactness on the effective

viscous flux to replace terms with divergence of velocity by terms with density

using (2.15), leading to

∂t(ρ log ρ− ρ log ρ) + div((ρ log ρ− ρ log ρ)u) =
1

2µ+ λ
(P (ρ)ρ− P (ρ)ρ).
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Observe that the monotonicity of the pressure P (ρ) = aργ implies that

P (ρ)ρ− P (ρ)ρ ≤ 0.

This is the one point where the monotonicity assumption is used. It allows us

to show that the defect measure for the sequence of density satisfies

dft[ρk − ρ](t) =

∫
Ω
ρ log ρ(t)− ρ log ρ(t) dx ≤ dft[ρk − ρ](t = 0).

On the other hand, the strict-convexity of the function s 7→ s log s, s ≥ 0

implies that dft[ρk− ρ] ≥ 0. If initially this quantity vanishes, it then vanishes

at every later time.

Finally the commutation of the weak convergence with a strictly convex

function yields the strong convergence of the density ρk in L1
loc. Combined with

the uniform bound of ρk in Lγ+a((0, T )×Ω), we get the strong convergence of

the pressure term ργk .

This concludes the proof in the case γ ≥ 3d/(d + 2). The proof of E.

Feireisl works even if the density is not a priori square integrable. For that,

E. Feireisl observes that it is possible to control the amplitude of the possible

oscillations on the density in a norm Lp with p > 2 allowing the use of an

effective viscous flux property with some truncature. Namely, he introduced

the following oscillation measure:

oscp[ρk − ρ] = sup
n≥1

[lim sup
k→+∞

‖Tn(ρk)− Tn(ρ)‖Lp((0,T )×Ω],

where Tn are cut-off functions defined as

Tn(z) = nT
Ä z
n

ä
, n ≥ 1

with T ∈ C2(R),

T (z) = z for z ≤ 1, T (z) = 2 for z ≥ 3, T concave on R.

The existence result can then obtained up to γ > d/2; see again the review by

A. Novotny and I. Straskraba [50].

To the author’s knowledge there exist few extensions of the previous study

to more general pressure laws or the more general stress tensor. Concerning a

generalization of the pressure law, as explained in the introduction there exist

the works by B. Ducomet, E. Feireisl, H. Petzeltova, I. Straskraba [27] and

E. Feireisl [31] where the hypothesis imposed on the pressure P imply that

P (z) = r3(z)− r4(z),

where r3 is non-decreasing in [0,+∞) with r4 ∈ C2([0,+∞)) satisfying r4 ≥ 0

and r4(z) ≡ 0 when z ≥ Z for a certain Z ≥ 0. The form is used to show that it

is possible respectively to continue to control the amplitude of the oscillations

oscp[ρk − ρ] and then to show that the defect measure vanishes if initially

it vanishes. The two papers [31] and [27] we refer to allow us to consider,

for instance, two important cases: the Van der Waals equation of state and
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some cold nuclear equations of state with finite number of monomial (see the

subsection on the physical discussion).

2.3. The limitations of the Lions–Feireisl theory. The previous heuristical

part makes explicit the difficulty in extending the global existence result for

the more general non-monotone pressure law or for the non-isotropic stress

tensor. First of all the key point in the previous approach was

P (ρ) ρ− P (ρ) ρ ≤ 0.

This property is intimately connected to the monotonicity of P (ρ) or of P (ρ)

for ρ ≥ ρc with truncation operators as in [31] or [27]. Non-monotone pressure

terms cannot satisfy such an inequality and are therefore completely outside

the current theory.

The difficulty with an anisotropic stress tensor is that we are losing the

other key relation in the previous proof, namely, (2.15). For a non-isotropic

stress tensor with an additional vertical component and power pressure law,

for instance, we get instead the following relation:

ρdivu− ρdivu ≤ aρAµρ
γ − ρAµργ
µx + λ

with some non-local anisotropic operator Aµ = (∆ − (µz − µx)∂2
z )−1∂2

z where

∆ is the total Laplacian in terms of (x, z) with variables x = (x1, · · · , xd−1),

z = xd.

Unfortunately, we are again losing the structure and, in particular, the

sign of the right-hand side as observed, in particular, in [14]. Furthermore

even small anisotropic perturbations of an isotropic stress tensor cannot be

controlled in terms of the defect measure introduced by E. Feireisl and collab-

orators: Note the non-local behavior in the right-hand side due to the term Aµ.

For this reason, the anisotropic case seems to fall completely out the theory

developed by P.-L. Lions and E. Feireisl.

Those two open questions are the main objective of this monograph.

2.4. Physical discussions on pressure laws and stress tensors . The deriva-

tion of the compressible Navier–Stokes system from first principles is delicate

and goes well beyond the scope of this manuscript. In several respects the sys-

tem is only an approximation, and this should be kept in mind in any discussion

of the precise form of the equations, which should allow for some uncertainty.

2.4.1. Equations of state. In general it is a non-straightforward question

to decide what kind of pressure law should be used depending on the many

possible applications: mixtures of fluids, solids, and even the interior of stars.

Among possible equation of state, one can find several well-known laws such

as Dalton’s law of partial pressures (1801), ideal gas law (Clapeyron 1834), the
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Van der Waals equation of state (Van De Waals 1873), the virial equation of

state (H. Hamerlingh Onnes 1901).

In general the pressure law P (ρ, ϑ) can depend on both the density ρ

and the temperature ϑ. While we focus on barotropic systems in this article,

we include the temperature already in the present discussion to emphasize its

relevance and importance.

Let us give some important examples of equations of state.

• State equations are barotropic if P (ρ) depends only on the density. As

explained in the book by E. Feireisl [32] (see pages 8–10 and 13–15), the

simplest example of a barotropic flow is an isothermal flow where the tem-

perature is assumed to be constant. If both conduction of heat and its

generation by dissipation of mechanical energy can be neglected, then the

temperature is uniquely determined as a function of the density (if initially

the entropy is constant) yielding a barotropic state equation for the pressure

P (ρ) = aργ with a > 0 and γ = (R+ cv)/cv > 1. Another barotropic flow

was discussed in [27].

• The classical Van der Waals equation reads

(P + a ρ2) (b− ρ) = c ρ ϑ,

where a, b, c are constants. The pressure law is non-monotone if the tem-

perature ϑ is below a critical value, ϑ < ϑc, but it satisfies (1.2). In com-

pressible fluid dynamics, the Van der Waals equation of state is sometimes

simplified by neglecting specific volume changes and becomes

(P + a) (b− ρ) = c ρ ϑ,

with similar properties.

• Using finite-temperature Hartree-Fock theory, it is possible to obtain a tem-

perature dependent equation of state of the following form:

(2.18) P (ρ, ϑ) = a3(1 + σ)ρ2+σ − a0ρ
2 + kϑ

∑
n≥1

Bnρ
n,

where k is the Boltzmann’s constant, and where the last expansion (a simpli-

fied virial series) converges rapidly because of the rapid decrease of the Bn.

• Equations of state can include other physical mechanism. A good exam-

ple is found in the article [27], where radiation comes into play: a photon

assembly is superimposed to the nuclear matter background. If this radia-

tion is in quasi-local thermodynamical equilibrium with the (nuclear) fluid,

the resulting mixture nucleons+photons can be described by a one-fluid

heat-conducting Navier–Stokes system, provided one adds to the equation

of state a Stefan–Boltzmann contribution of black-body type

PR(ϑ) = aϑ4 with a > 0,
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and provided one adds a corresponding contribution to the energy equation.

The corresponding models are more complex and do not satisfy (1.2) in

general.

• In the context of the previous example, a further simplification can be in-

troduced leading to the so-called Eddington’s standard model. This ap-

proximation assumes that the ratio between the total pressure P (ρ, ϑ) =

PG(ρ, ϑ) + PR(ϑ) and the radiative pressure PR(ϑ) is a pure constant

PR(ϑ)

PG(ρ, ϑ) + PR(ϑ)
= 1− β,

where 0 < β < 1 and PG is given, for instance, by (2.18). Although crude,

this model is in good agreement with more sophisticated models — in par-

ticular, for the sun.

One case where this model leads to a pressure law satisfying (1.2) is when

one keeps only the low order term into the virial expansion. Suppose that

σ = 1, and let us plug the expression of the two pressure laws in this relation,

2a3ρ
3 − a0ρ

2 + kB1ϑρ =
β

1− β
a

3
ϑ4.

By solving this algebraic equation to leading order (high temperature), one

gets

ϑ ≈
Ä6a3(1− β)

aβ

ä
ρ3/4,

leading to the pressure law

P (ρ, ϑ) =
2a3

β
ρ3 − a0ρ

2 + kB1

Ä6a3(1− β)

aβ

ä
ρ7/4,

which satisfies (1.2) because of the constant coefficients.

However in this approximation, only the higher order terms were kept.

Considering the non-constant coefficient or keeping the whole virial sum in

the pressure law was out of the scope of [27] and leads to precisely the type

of non-monotone pressure laws that we consider in the present work.

• The virial equation of state for heat conducting Navier–Stokes equations

can be derived from statistical physics and reads

P (ρ, ϑ) = ρ ϑ
(∑
n≥0

Bn(ϑ)ρn
)

with B0 = cst, and the coefficients Bn(ϑ) have to be specified for n ≥ 1.

We will the treat truncated virial with appropriate assumptions or pres-

sure laws of the type P (ρ, ϑ) = Pe(ρ) + Pth(ρ, ϑ) for the Navier–Stokes–

Fourier system in a future work.

• Pressure laws can also incorporate many other type of phenomena. Com-

pressible fluids may include or model biological agents that have their own
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type of interactions. In addition, as explained later, our techniques also ap-

ply to other types of “momentum” equations. The range of possible pressure

laws is then even wider.

Based on these examples, the possibilities of pressure laws are many. Most

are not monotone and several do not satisfy (1.2), proving the need for a theory

able to handle all sort of behaviors.

2.4.2. Stress tensors. One finds a similar variety of stress tensors as for

pressure laws. We recall that we denote D(u) = (∇u+ (∇u)T )/2.
• The isotropic stress tensor with constant coefficients reads as

D = µ∆u+ (λ+ µ)∇ divu,

which is the classical example that can be handled by the Lions–Feireisl

theory; see, for instance, [48], [50] and [52] with γ > d/2. See also the

recent interesting work by P.I. Plotnikov and W. Weigant (see [51]) in the

two-dimensional in space case with γ = 1.

• Isotropic stress tensors with non-constant coefficients better represent the

physics of the fluid however. Those coefficients can be temperature ϑ de-

pendent
D = 2 div (µ(ϑ)D(u)) +∇ (λ(ϑ)divu).

Provided adequate non-degeneracy conditions are made on µ and λ, this

case can still be efficiently treated by the Lions–Feireisl theory under some

assumptions on the pressure law; see, for instance, [32] or [33].

• The coefficients of the isotropic stress tensors may also depend on the den-

sity
D = 2 div (µ(ρ, ϑ)D(u)) +∇ (λ(ρ, ϑ) divu).

This is a very difficult problem in general. The almost only successful insight

in this case can be found in [12], [14], [15], [58], [46] with no dependency with

respect to the temperature; see the recent review paper [13]. Those articles

require a very special form of µ(ρ) and λ(ρ), and without such precise as-

sumptions, almost nothing is known. Note also the very nice paper concern-

ing global existence of strong solutions in two-dimension by A. Kazhikhov

and V. A. Vaigant where µ is constant but λ = ρβ with β ≥ 3; see [57].

• Geophysical flow cannot in general be assumed to be isotropic, but instead

some directions have different behaviors; this can be due to gravity in large

scale fluids for instance. A nice example is found in the handbook written

by R. Temam and M. Ziane, where the eddy-viscous term D is given by

D = µh∆xu+ µz∂
2
zu+ (λ+ µ)∇divu,

with µh 6= µz. While such an anisotropy only requires minor modifications

for the incompressible Navier–Stokes system, it is not compatible with the

Lions–Feireisl approach (see, for instance, [14]) and requires µ, µh, µz > 0

and λ+ 2 min(µh, µz, µ)/d > 0.
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3. New results for the compressible Navier-Stokes system

From now on we will work on the torus Td. This is only for simplicity in

order to avoid discussing boundary conditions or the behavior at infinity. The

proofs would easily extend to other cases as mentioned at the end of the paper.

3.1. Statements of the results : Theorems 3.1 and 3.2. In this section we

present our main existence results. As usual for global existence of weak solu-

tions to non-linear PDEs, one has to prove stability estimates for sequences of

approximate solutions and construct such approximate sequences. The main

contribution in this paper and the major part of the proofs concern the stability

procedure and more precisely the compactness of the density.

(I) Isotropic compressible Navier–Stokes equations with general pressure.

Let us consider the isotropic compressible Navier–Stokes equations in (0, T )

×Td:

(3.1)

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇P (ρ) = ρf,

with 2µ/d+ λ > 0, a pressure law P that is continuous on [0,+∞), P locally

Lipschitz on (0,+∞) with P (0) = 0 such that there exists C > 0 with

(3.2) C−1ργ − C ≤ P (ρ) ≤ Cργ + C

and for all s ≥ 0,

(3.3) |P ′(s)| ≤ P̄ sγ̃−1

with two constants γ > d/2, γ̃ > 1. System (3.1) is complemented with the

initial conditions

(3.4) ρ|t=0 = ρ0, (ρu)|t=0 = ρ0 u0.

One then has global existence.

Theorem 3.1. Assume that the initial data u0 and ρ0 ≥ 0 with
∫
Td ρ0 =

M0 > 0 satisfies the bound

E0 =

∫
Td

Ä |(ρu)0|2

2ρ0
+ ρ0e(ρ0)

ä
dx < +∞,

where e(s) =
∫ s

1 p(τ)/τ2dτ . Let the pressure law P satisfy (3.2) and (3.3) with

(3.5) γ >
Ä
max(2, γ̃) + 1

ä d

d+ 2
,

and let f be bounded in L1(0, T ;L2γ/(γ−1)(Td)). Then there exists a global

weak solution of the compressible Navier–Stokes system (3.1) with the initial

condition (3.4) in the sense of Definition 2.1.
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Remark. Let us note that the solution satisfies the explicit regularity es-

timate

sup
t∈[0,T ]

∫
T2d

Iρk(x,t)≥η Iρk(y,t)≥ηKh(x− y)χ(δρk)(t) ≤
C ‖Kh‖L1

η1/2 | log h|θ/2

for some θ > 0, where Kh is defined as in Proposition 4.1 and δρk and χ are

defined as in Section 8; see (8.1).

(II) Non-isotropic compressible Navier–Stokes equations. We consider an

example of non-isotropic compressible Navier–Stokes equations in (0, T )×Td:
(3.6)∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div (A(t)∇u)− (µ+ λ)∇divu+∇P (ρ) = ρf,

with A(t) a given smooth and symmetric matrix, satisfying

(3.7) A(t) = µ Id + δA(t), µ > 0,
2

d
µ+ λ− ‖δA(t)‖L∞ > 0,

where δA will be a perturbation around µ Id. We again take P locally Lipschitz

on [0,+∞) with P (0) = 0 but require it to be monotone after a certain point

(3.8) C−1 ργ−1 − C ≤ P ′(ρ) ≤ C ργ−1 + C,

with γ > d/2. System (3.6) is supplemented with the initial conditions

(3.9) ρ|t=0 = ρ0, (ρu)|t=0 = ρ0 u0.

The second main result that we obtain is

Theorem 3.2. Assume that the initial data u0 and ρ0 ≥ 0 with
∫
Td ρ0 =

M0 > 0 satisfies the bound

E0 =

∫
Td

Ç
|(ρu)0|2

2ρ0
+ ρ0e(ρ0)

å
dx < +∞,

where e(s) =
∫ s

1 p(τ)/τ2 dτ . Let the pressure P satisfy (3.8) with

γ >
d

2

[Å
1 +

1

d

ã
+

 
1 +

1

d2

]
,

and let f be bounded in L1(0, T ;L2γ/(γ−1)(Td)). There exists a universal con-

stant C? > 0 such that if

‖δA‖∞ ≤ C? (2µ+ λ),

then there exists a global weak solution of the compressible Navier–Stokes equa-

tion (3.6) with the boundary condition (3.9) in the sense of Definition 2.1 but

replacing the isotropic energy inequality by the following anisotropic energy :

E(ρ, u)(τ) +

∫ τ

0

∫
Ω

(∇uT A(t)∇u+ (µ+ λ) |divu|2) ≤ E0.
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Remark. Let us note that the constraint on γ corresponds to the constraint

on p: p > γ + γ/(γ − 1), where p is the extra integrability property on ρ.

3.2. Important comments/comparison with previous results. The choice

was made to focus on explaining the new method instead of trying to write re-

sults as general as possible but at the cost of further burdening the proofs. For

this reason, Theorems 3.1 and 3.2 are only two examples of what can be done.

As we mentioned in the introduction, our new method should also apply

to the Navier–Stokes–Fourier system (with an additional equation for temper-

ature). The Navier–Stokes–Fourier system is physically more relevant than

the barotropic case and moreover, as seen from the discussion in Section 2.4,

it exhibits even more examples of non-monotone pressure laws.

(I) Possible extensions. Applications may be done to various other impor-

tant models — in particular, in the Bio-Sciences where the range of possible

pressure laws (or what plays their role such as chemical attraction/repulsion)

is wide. But there are many other possible extensions; for instance, (3.2) could

be replaced with a more general

C−1 ργ1 − C ≤ P (ρ) ≤ C ργ2 + C,

with different exponents γ1 6= γ2. While the proofs would essentially remain

the same, the assumption (3.5) would then have to be replaced and would

involve γ1 and γ2. Similarly, it is possible to consider the spatially dependent

stress tensor A(t, x) in Theorem 3.2. This introduces additional terms in the

proof, but those can easily be handled as long as A is smooth by classical

methods for pseudo differential operators.

(II) Comparison with previous results.

(III-1) Non-monotone pressure laws. Theorem 3.1 is the first result to

allow for completely non-monotone pressure laws. Among many important

previous contributions, we refer to [27], [31], [17], [48] and [32], [33], [50], [18]

for the Navier–Stokes–Fourier system. These references are our main point

of comparison, and they all require ∂ρP > 0 after a certain point and, in

fact, typically a condition like (3.8). The removal of the key assumption of

monotonicity has important consequences:

• From the physical and modeling point of view, it opens the possibility of

working with a wider range of equations of state as discussed in Section 2.4,

and it makes the current theory on viscous, compressible fluids more robust

to perturbation of the model.

• Changes of monotonicity in P can create and develop oscillations in the den-

sity ρ (because some “regions” of large density become locally attractive).

It was a major question whether such oscillations remain under control at
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least over bounded time intervals. This shows that the stability for bounded

times is very different from uniform in time stability as t→ +∞. Only the

latter requires assumptions of a thermodynamical nature such as the mono-

tonicity of P .

• Obviously well posedness for non-monotone P could not be obtained as

is done here for the compressible Euler system. As can be seen from the

proofs, the viscous stress tensor in the compressible Navier–Stokes system

has precisely the critical scaling to control the oscillations created by the

non-monotonicity. This implies, for instance, that in phase transition phe-

nomena, the transition occurs smoothly precisely at the scale of the viscosity.

• Our results could have further consequences, for instance, to show conver-

gence of numerical schemes (or for other approximate systems). Typical nu-

merical schemes for compressible Navier–Stokes raise issues of oscillations in

the density that are reminiscent of the ones faced in this article. The ques-

tion of convergence of numerical schemes to compressible Navier–Stokes is

an important and delicate subject in its own, going well beyond the scope

of this short comment. We refer, for instance, to the works by R. Eymard,

T. Gallouët, R. Herbin, J.-C. Latché and T. K. Karper; see, for instance,

[36], [29] for the simpler Stokes case, [28], [35], [37] for Navier–Stokes, and

more recently to the work [19], [42].

Concerning the requirement on the growth of the pressure at ∞, that is,

on the coefficient γ in (3.5), we have the following remarks:

• In the typical case where γ̃ = γ, (3.5) leads to the same constraint as in

P.-L. Lions [48] for a similar reason: the need to have ρ ∈ L2 to make sense

of ρdivu. It is worse than the γ > d/2 required, for instance, in [32]. In 3d,

we hence need γ > 9/5 versus only γ > 3/2 in [32].

• It may be possible to improve on (3.5) while still using the method intro-

duced here but propagating compactness on appropriate truncation TK(ρ)

of ρ; for instance, by writing an equivalent of Lemma 7.1 on TK(ρ(t, x)) −
TK(ρ(t, y)) as in the multi-dimensional setting by E. Feireisl. This possibil-

ity was left to future works. Note that the requirement on γ > d/2 comes

from the need to gain integrability as per (2.9) along the strategy presented

in Section 2.1. Our new method still relies on this estimate and therefore

has no hope, on its own, to improve on the condition γ > d/2.

• In the context of general pressure laws, and even more so for possible later

applications to the Navier–Stokes–Fourier system, assumption (3.5) is not

a strong limitation. Virial-type pressure laws, where P (ρ) is a polynomial

expansion, automatically satisfy it, for instance, as do many other examples

discussed in Section 2.4.
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(II-2) Anisotropic stress tensor. Theorem 3.2 is so far the only result of

global existence of weak solutions that is able to handle anisotropy in the stress

tensor. It applies, for instance, to the eddy-viscous tensor mentioned above for

geophysical flows

D = µh∆xu+ µz∂
2
zu+ (λ+ µ)∇divu,

where µh 6= µz and corresponding to

(3.10) Aij = µh δij for i, j = 1, 2, A33 = µz, Aij = 0 otherwise.

This satisfies the assumptions of Theorem 3.2 provided |µh − µx| is not too

large, which is usually the case in the context of geophysical flows.

We also wish to emphasize here that it is also possible to have a fully

symmetric anisotropy, namely, div (ADu) with D(u) = ∇u + ∇uT in the

momentum equation. This is the equivalent of the anisotropic case in linear

elasticity, and it is also an important case for compressible fluids. Note that

it leads to a different form of the stress tensor. With the above choice of A,

equation (3.10), one would instead obtain

div (ADu) = µh∆xu+ µz∂
2
zu+ µz∇∂zuz + (λ+ µ)∇divu.

Accordingly we choose to state Theorem 3.2 with the non-symmetric anisotropy

div (A∇u) as it corresponds to the eddy-viscous term by R. Temam and

M. Ziane mentioned above. But the extension to the symmetric anisotropy is

possible although it introduces some minor complications. For instance, one

cannot simply obtain divu by solving a scalar elliptic system, but one has to

solve a vector valued one instead; we refer the interested readers to the remark

just after (5.10) and at the end of the proof of Theorem 3.2 in Section 9.

Ideally one would like to obtain an equivalent of Theorem 3.2 assuming

only uniform elliptic bounds on A(t) and a much lower bound on γ. The-

orem 3.2 is a first attempt in that direction, which can hopefully later be

improved.

However the reach of Theorem 3.2 should not be minimized because non-

isotropy in the stress tensor appears to be a level of difficulty above even

non-monotone pressure laws. Losing the pointwise relation between divu and

P (ρ) is a major hurdle, as it can also be seen from the proofs later in the

article. Instead one has to work with

divu = P (ρ) + LP (ρ) + effective viscous flux,

with L a non-local operator of order 0. The difficulty is to appropriately control

this non-local term so that its contribution can eventually be bounded by the

dissipation due to the local pressure term.
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Notation. For simplicity, in the rest of the article, C will denote a nu-

merical constant whose value may change from line to line. It may depend

on some uniform estimates on the sequences of functions considered (as per

bounds (5.5) or (5.4) for instance) but it will never depend on the sequence

under consideration (denoted with index k) or the scaling parameters h or h0.

4. Sketch of the new compactness method

The standard compactness criteria used in the compressible Navier–Stokes

framework is the Aubin–Lions–Simon lemma to get compactness on the terms

ρu and ρu ⊗ u. A more complex trick is used to get the strong convergence

of the density. More precisely it combines extra integrability estimates on the

density and the effective viscous flux property (a kind of weak compactness)

and then a convexity-monotonicity tool to conclude.

Here we present a tool that will be the cornerstone in our study to prove

compactness on the density and that will be appropriate to cover the more

general equation of the state or stress tensor form.

In order to give the main idea of the method, we present it first in this

section for the well-known case of linear transport equations, i.e., assuming

that u is given. We then give a rough sketch of the main ideas we will use in

the rest of the article. This presents the steps we will follow for proofs in the

more general setting.

4.1. The compactness criterion. We start with a well-known result pro-

viding compactness of a sequence:

Proposition 4.1. Let ρk be a sequence uniformly bounded in Lp((0, T )

×Td) for some 1 ≤ p <∞. Assume that Kh is a sequence of positive, bounded

functions such that

(i) for all η > 0, suph
∫
Td Kh(x)1{x : |x|≥η}dx <∞;

(ii) ‖Kh‖L1(Td) −→ +∞ as h→ +∞.

If ∂tρk ∈ Lq([0, T ]×W−1,q(Td)) (with q ≥ 1) uniformly in k and

lim sup
k

[ 1

‖Kh‖L1

∫ T

0

∫
T2d
Kh(x− y) |ρk(t, x)− ρk(t, y)|p dx dy dt

]
−→ 0

as h→ 0, then ρk is compact in Lp([0, T ]×Td). Conversely, if ρk is compact

in Lp([0, T ]×Td), then the above quantity converges to 0 with h.

For the reader’s convenience, we just quickly recall that the compactness

in space is connected to the classical approximation by convolution. Denote

by K̄h the normalized kernel

K̄h =
Kh
‖Kh‖L1

.



COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 599

Write

‖ρk − K̄h ?x ρk‖pLp ≤
1

‖Kh‖pL1

∫
Td

(∫
Td
Kh(x− y)|ρk(t, x)− ρk(t, y)|dx

)p
dy

≤ 1

‖Kh‖L1

∫
T2d
Kh(x− y)|ρk(t, x)− ρk(t, y)|pdx dy,

which converges to zero as h → 0 uniformly in k by assumption. On the

other hand, for a fixed h, the sequence Kh ?x uk in k is compact in x. This

completes the compactness in space. Concerning the compactness in time, we

just have to couple everything and use the uniform bound on ∂tρk as per the

usual Aubin-Lions-Simon lemma.

In all the paper the following important choice of Kernel Kh and its asso-

ciated Kh0 functions are used.

Definition 4.2. We define the positive, bounded and symmetric function

Kh such that

Kh(x) =
1

(h+ |x|)a
for |x| ≤ 1/2,

with some a > d and Kh positive, independent of h for |x| ≥ 2/3, Kh positive

constant outsideB(0, 3/4) and periodized so as to belong in C∞(Td\B(0, 3/4)).

For convenience, we denote

Kh(x) =
Kh(x)

‖Kh‖L1(Td)

.

This kernel Kh is enough for linear transport equations to prove compact-

ness. For compressible Navier–Stokes, for 0 < h0 < 1, the following important

quantity will play a crucial role:

Kh0(x) =

∫ 1

h0

Kh(x)
dh

h
.

Important remarks. The weights defined in Definition 4.2 satisfy the prop-

erties

Kh(x) = Kh(−x), |x||∇Kh(x)| ≤ cKh(x)

for some constant c > 0 and

‖Kh0‖L1(Td) ∼ | log h0|.

These properties will be strongly used throughout the paper.

4.2. Compactness for linear transport equation. Consider a sequence of

solutions ρk, on the torus Td (so as to avoid any discussion of boundary con-

ditions or behavior at infinity) to

(4.1) ∂tρk + div (ρk uk) = 0, ρk|t=0 = ρ0
k,
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where uk (a given velocity field) is assumed to satisfy, for some 1 < p ≤ ∞,

(4.2) sup
k
‖uk‖LptW 1,p

x
<∞.

Defining

(4.3) εk(h) =
1

‖Kh‖L1

∫ T

0

∫
T2d

Kh(x− y) |div xuk(t, x)− div yuk(t, y)|p dx dy,

we assume divuk compact in x, i.e.,

lim sup
k

εk(h) −→ 0 as h→ 0.(4.4)

Moreover, defining

(4.5) ε̃k(h) =
1

‖Kh‖L1

∫
T2d

Kh(x− y) |ρ0
k(x)− ρ0

k(y)| dx dy,

we assume compactness of the initial data, namely,

(4.6) lim sup
k

ε̃k(h)→ 0 as h→ 0.

The condition on the divergence is replaced by bounds on ρk,

(4.7) 0 <
1

C
≤ inf

Td
ρk ≤ sup

Td
ρk ≤ C < +∞, ∀ t ∈ [0, T ],

where C does not dependent on k. One then has the well-known

Proposition 4.3. Assume ρk solves (4.1) with the bounds (4.2), and

(4.7). Assume, moreover, that the initial data ρ0
k is compact — namely,

(4.6) — and that the divergence of the velocity uk is compact in space —

namely, (4.4). Then ρk is compact and, more precisely,

(4.8)

sup
t∈[0,T ]

∫
T2d

Kh(x− y) |ρk(t, x)− ρk(t, y)| dx dy ≤ C ‖Kh‖L1

| log(h+ εk(h) + ε̃k(h))|
,

where εk(h), ε̃k(h) are given respectively by (4.3) and (4.5).

This type of results for non-Lipschitz velocity fields uk was first obtained

by R. J. Di Perna and P.-L. Lions in [26] with the introduction of renormalized

solutions for uk ∈W 1,1 and appropriate bounds on div uk. This was extended

to uk ∈ BV , first by F. Bouchut in [8] in the kinetic context (see also M. Hauray

in [39]) and then by L. Ambrosio in [3] in the most general case. We also refer

to C. Le Bris and P.-L. Lions in [44], [48] and to the nice lecture notes written

by C. De Lellis in [23]. In general, uk ∈ BV is the optimal regularity as shown

by N. Depauw in [25]. This can only be improved with specific additional

structure, such as provided by low dimension; see [2], [10], [20], [21], [38],

Hamiltonian properties [16], [40], or as a singular integral [9].
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Of more specific interest for us are the results that do not require bounds

on divuk (which are not available for compressible Navier–Stokes) but replace

them by bounds on ρk, such as (4.7). The compactness in Proposition 4.3 was

first obtained in [4].

Explicit regularity estimates of ρk were first derived by G. Crippa and

C. De Lellis in [22]. (See also [41] for the W 1,1 case.) These are based on

explicit control on the characteristics. While it is quite convenient to work on

the characteristics in many settings, this is not the case here — in particular,

due to the coupling between div uk and p(ρk).

In many respects the proof of Proposition 4.3 is an equivalent approach

to the method of G. Crippa and C. De Lellis in [22] at the PDE level, instead

of the ODE level. Its interest will be manifest later in the article when dealing

with the full Navier–Stokes system. The idea of controlling the compactness of

solutions to transport equations through estimates such as provided by Propo-

sition 4.1 was first introduced in [6] but relied on a very different method.

Note that in the linear case with a given vector field uk sequence, the com-

pactness of the divuk is strictly required to obtain the compactness of ρk; see,

for instance, [24].

Proof. One does not try to directly propagate∫
T2d

Kh(x− y) |ρk(t, x)− ρk(t, y)| dx dy.

Instead one introduces the weight wk solution to the auxiliary equations

(4.9) ∂twk + uk · ∇wk = −λM |∇uk|wk, wk|t=0 = 1,

where M f denotes the maximal function of f (recalled in Section 6) and λ is

a constant to be chosen large enough.

First step: Propagation of a weighted regularity. Here and in the follow-

ing, we use the convenient notation (ρxk, u
x
k) = (ρk(t, x), uk(t, x)), (ρyk, u

y
k) =

(ρk(t, y), uk(t, y)) and (ρxk)0 = ρxk|t=0, (ρyk)0 = ρyk|t=0. We prove that we prop-

agate in time the following quantity:

Rk(t) =

∫
T2d

Kh(x− y) |ρxk − ρ
y
k|w

x
k w

y
k dx dy,

where as before we denote wxk = wk(t, x) and wyk = wk(t, y).

The starting point is essentially a doubling of variables argument, going

to Kruzkov’s seminal work [43]. Using (4.1), we note that densities ρxk and ρyk
respectively satisfy

∂tρ
x
k + divx(ρxku

x
k) = 0, ρxk|t=0 = (ρxk)0,

∂tρ
y
k + divy(ρ

y
ku

y
k) = 0, ρyk|t=0 = (ρy0)0,

(4.10)
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and from (4.9) weights wxk and wyk respectively satisfy

(4.11) ∂tw
x
k + uxk · ∇xwxk = −λM |∇uk|xwxk , wxk |t=0 = 1

and

(4.12) ∂tw
y
k + uyk · ∇yw

y
k = −λM |∇uk|y wyk, wyk|t=0 = 1.

Using (4.10), we obtain that

∂t|ρxk − ρ
y
k|+ div x (uxk |ρxk − ρ

y
k|) + div y (uyk |ρ

x
k − ρ

y
k|)

=
1

2
(div xu

x
k + div yu

y
k) |ρ

x
k − ρ

y
k|

− 1

2
(div xu

x
k − div yu

y
k) (ρxk + ρyk) sk,

where sk = sign(ρxk − ρyk). We refer to Section 7.1 for the details of this

calculation, which is rigorously justified for a fixed k through the theory of

renormalized solutions in [26] as recalled in Section 6. From this equation on

|ρxk − ρ
y
k|, we deduce

d

dt
Rk(t) =

∫
T2d
∇Kh(x− y) · (uxk − u

y
k) |ρ

x
k − ρ

y
k|w

x
k w

y
k dx dy

− 1

2

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k) (ρxk + ρyk) sk w

x
k w

y
k dx dy

+

∫
T2d

Kh(x− y) |ρxk − ρ
y
k|
Å
∂tw

x
k + uxk · ∇xwxk +

1

2
div xu

x
k w

x
k

ã
wyk dx dy

+ symmetric of the last term.

Note that the weights wxk and wyk satisfy (4.11) and (4.12) and are uniformly

bounded; thus ∂tw
x
k + uxk · ∇xwxk + div xu

x
k w

x
k/2 belongs to Lp uniformly in k

for some 1 < p < +∞, even though we may not be able to make sense of each

term individually. Observe that by (4.9), wk ≤ 1 and therefore by (4.7) and

the definition of εk in (4.4), the second term in the right-hand side is easily

bounded:∫ s

0

∫
T2d

Kh(x− y) (divuxk − divuyk) (ρxk + ρyk) sk w
x
k w

y
k dx dy

≤ C ‖Kh‖L1(Td) εk(h).

For the first term, one uses the well-known inequality (see [54], [55] or Section 6)

|uxk − u
y
k| ≤ Cd |x− y| (M |∇uk|

x +M |∇uk|y),

combined with the remark that from the choice of Kh,

|∇Kh(x− y)| |x− y| ≤ C Kh(x− y).
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Therefore,∫ s

0

∫
T2d
∇Kh(x− y) · (uxk − u

y
k) |ρ

x
k − ρ

y
k|w

x
k w

y
k dx dy dt

≤ C
∫ s

0

∫
T2d

Kh(x− y) (M |∇uk|x +M |∇uk|y) |ρxk − ρ
y
k|w

x
k w

y
k dx dy dt,

combining everything and integrating the equation on R(t) from 0 to s:

Rk|t=s −Rk|t=0 ≤ C ‖Kh‖L1 εk(h)

+

∫ s

0

∫
T2d

Kh(x− y)
Ä
∂tw

x
k + uxk · ∇xwxk + C (div xu

x
k +M |∇uk|x)wxk

ä
|ρxk − ρ

y
k|w

y
k dx dy dt+ symmetric of the last term.

Since divuk ≤ d, |∇uk| ≤ dM |∇uk|, by taking the constant λ large enough

in (4.9),

∂tw
x
k + uxk · ∇xwxk + C (div xu

x
k +M |∇uk|x)wxk ≤ 0,

and hence

Rk|t=s ≤
∫
T2d

Kh(x− y) |ρ0
k(x)− ρ0

k(y)| dx dy + C‖Kh‖L1(Td) εk(h)

≤ C ‖Kh‖L1(Td)

Ä
εk(h) + ε̃k(h)

ä
.

(4.13)

Second step: property of the weight. We need to control the measure of

the set where the weight w is small. Obviously if w were to vanish everywhere,

then the control of R(t) would be trivial but of very little interest. From

equation (4.9) one formally obtains

∂t(ρ
x
k | logwxk |) + div x (ρxk uk| logwxk |) = λ ρxkM |∇uk|x.

And thus, integrating in space on Td,

d

dt

∫
Td
| logwxk | ρxk dx = λ

∫
Td
ρxkM |∇uk|x dx

≤ λ ‖ρxk‖Lp∗ (Td) ‖M |∇uk|
x‖Lp(Td).

(4.14)

Of course at this point, the calculations are only formal. In particular, since

wk may vanish, one has to be especially careful when trying to work with

logwk. Instead one may rigorously derive (4.14) directly from the theory of

renormalized solutions; we refer more precisely to Lemma 6.11 later in the

article.

Equation (4.14) gives

sup
t∈[0,T ]

∫
Td
| logwxk | ρxk dx ≤ C

uniformly with respect to k by (4.2) (which implies that the maximal function

is bounded on Lp((0, T ) × Td) for p > 1) and from (4.7). This estimate may
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be written in the (t, y) variable, namely,

sup
t∈[0,T ]

∫
Td
| logwyk| ρ

y
k dx ≤ C

uniformly with respect to k.

Third step: Conclusion of the proof. Assume t is fixed, again using (4.7),

and let η be a small enough parameter. Then

|{x, wxk ≤ η}| ≤
C

| log η|

∫
Td
| logwxk | ρxk dx ≤

C

| log η|
.

Note that the same holds in the (t, y) variables. Let us now write∫
T2d

Kh(x− y) |ρxk − ρ
y
k| dx dy

=

∫
wx
k
>η, wy

k
>η
Kh |ρxk − ρ

y
k| dx dy +

∫
wx
k
≤η or wy

k
≤η
Kx
h |ρxk − ρ

y
k| dx dy,

and so

sup
t∈[0,T ]

∫
T2d

Kh(x− y) |ρxk − ρ
y
k| dx dy

≤ 1

η2
sup
t∈[0,T ]

∫
T2d

Kh |ρxk − ρ
y
k|w

x
k w

y
k dx dy +

C

| log η|
‖Kh‖L1

≤ C ‖Kh‖L1

Ç
εk(h) + ε̃k(h)

η2
+

1

| log η|

å
,

which by minimizing in η finishes the proof of (4.8). The compactness is a

consequence of the compactness criterion, taking lim supk and checking the

convergence to zero when h goes to zero using (4.4) and (4.6). �

4.3. A rough sketch of the extension to compressible Navier–Stokes. We

will only consider the case of general pressure laws and assume that the stress

tensor is isotropic. When considering the compressible Navier–Stokes system,

the divergence divuk is not given anymore but has to be calculated from ρk
and the total time derivative of the velocity itself through the relation (2.16),

where Rk includes the force applied on the fluid and Fk is the effective viscous

flux encoding the total time derivative of the velocity itself (see (2.17)). For

the moment, we will assume to have the compactness property in space for

Rk and Fk ≡ 0 even if for the compressible Navier–Stokes system it is not the

case. More precisely, we consider that

(4.15) divuk = P (ρk) +Rk.

The aim of this subsection is to provide a rough idea of how to extend the

previous method when the velocity field uk is not given but linked to density
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ρk and to prove compactness far from the vacuum. To keep things as simple

as possible here, we temporarily assume that

sup
k
‖Rk‖L∞((0,T )×Td) <∞, lim sup

k
εk(h) −→ 0 as h→ 0,

where εk(h) =
1

‖Kh‖L1

∫ T

0

∫
T2d

Kh(x− y) |Rk(t, x)−Rk(t, y)|p dx dy dt.

(4.16)

Denoting

(4.17) ε̃k(h) =
1

‖Kh‖L1

∫
T2d

Kh(x− y) |ρ0
k(x)− ρ0

k(y)| dx dy,

we assume compactness of the initial data, namely,

(4.18) lim sup
k

ε̃k(h)→ 0 as h→ 0.

We do not assume monotonicity on the pressure P but simply the control

(4.19) |P ′(ρ)| ≤ C ργ−1.

A modification of the previous proof then yields

Proposition 4.4. Assume ρk solves (4.1) and the bounds

sup
k
‖ρk‖L∞(0,T ;L1(Td)) <∞, sup

k
‖ρk‖Lp((0,T )×Td) <∞ with p ≥ γ + 1.

Assume that supk ‖uk‖L2(0,T ;H1(Td)) <∞ and that (4.15) holds with the bounds

(4.16) on Rk and (4.19) on P . Assume moreover that the initial data ρ0
k is

compact, namely, (4.18). Then ρk is compact away from the vacuum and, more

precisely,

sup
t∈(0,T )

∫
ρk(t,x)≥η, ρk(t,y)≥η

Kh(x− y) |ρk(t, x)− ρk(t, y)| dx dy

≤ Cη
‖Kh‖L1

| log(h+ (εk(h)) + ε̃k(h))|
,

where εk(h) and ε̃k(h) are respectively given by (4.16) and (4.17).

Unfortunately Proposition 4.4 is only a rough and unsatisfactory attempt

for the following reasons:

• The main problem with Proposition 4.4 is that it does not imply compact-

ness on the sequence ρk because it only controls oscillations of ρk for large

enough values but we do not have any lower bounds on ρk. In fact not only

can ρk vanish, but for weak solutions, a vacuum could even form; that is,

there may be a set of non-vanishing measures where ρk = 0. This comes

from the fact that the proof only gives an estimate on∫
T2d

Kh(x− y) |ρxk − ρ
y
k|w

x
k w

y
k dx dy,
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but since there is no lower bound on ρxk and ρyk anymore, estimates like

(4.14) only control the set where wxk w
y
k is small and both ρxk and ρyk are

small. Unfortunately |ρxk − ρ
y
k| could be large while only one of ρxk and ρyk is

small (and hence wxk w
y
k is small as well).

• The solution is to work with wxk+wyk instead of wxk w
y
k. Now the sum wxk+wyk

can only be small if |ρxk − ρ
y
k| is small as well, meaning that a bound on∫

T2d
Kh(x− y) |ρxk − ρ

y
k| (w

x
k + wyk) dx dy,

together with estimates like (4.14), would control the compactness on ρk.

Unfortunately this leads to various additional difficulties because some terms

are now not localized at the right point. For instance, one has problems es-

timating the commutator term in ∇Kh · (uxk − u
y
k) or one cannot directly

control terms like div xu
x
k w

y
k by the penalization that would now be of the

form M |∇uk|xwxk . Some of these problems are solved by using more elab-

orate harmonic analysis tools, while others require a more precise analysis

of the structure of the equations. Those difficulties are even magnified for

anisotropic stress tensors that add even trickier non-local terms.

• The integrability assumption on ρk, p > γ + 1 is not very realistic and

too demanding. If p = γ(1 + 2/d)− 1 as for the compressible Navier–Stokes

equations with power law P (ρ) = aργ , then this requires γ > d. Improving it

creates important difficulty in the interaction with the penalization. It forces

us to modify the penalization and prevents us from getting an inequality like

(4.14) and, in fact, only modified inequalities can be obtained, of the type

sup
k

∫
Td
| logwxk |θ ρxk dx <∞.

• The bounds (4.16) that we have assumed for simplicity on Rk cannot be

deduced from the equations. The effective viscous flux Fk is not zero, is

not bounded in L∞, and is not a priori compact. (It will only be so at

the very end as a consequence of ρk being compact.) Instead we will have

to establish regularity bounds on the effective viscous flux when integrated

against specific test functions, but in a manner more precise than the exist-

ing Lions–Feireisl theory; see Lemma 8.3 later.

• This is of course only a stability result; in order to get existence one has to

work with an appropriate approximate system. This will be the subject of

Section 9.

Proof. One now works with a different equation for the weight

(4.20) ∂twk + uk · ∇wk = −λ
(
M |∇uk|+ ργk

)
, wk|t=0 = 1,

where M f is again the maximal function of f .
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First step: Propagation of some weighted regularity. Recall, here and in

the following, that we use the notation Gxk = Gk(t, x) and Gyk = Gk(t, y) for

all Gk ∈ D′((0, T ) × Td). The beginning of the first step essentially remains

the same as in the proof of Proposition 4.1: one propagates

Rk(t) =

∫
T2d

Kh(x− y) |ρxk − ρ
y
k|w

x
k w

y
k dx dy.

The initial calculations are nearly identical. The only difference is that we do

not have (4.4) any more, so we simply keep the term with div xu
x
k−div yu

y
k for

the time being. We thus obtain

d

dt
Rk(t) ≤−

1

2

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)(ρ

x
k + ρyk) sk w

x
k w

y
k dx dy

− λ
∫
T2d

((ρxk)γ + (ρyk)
γ) |ρxk − ρ

y
k|w

x
k w

y
k dx dy

(4.21)

by taking the additional term in equation (4.20) into account. This is of course

where the coupling between uk and ρk comes into play, here only through the

simplified equation (4.15). Thus∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k) (ρxk + ρyk) sk w

x
k w

y
k dx dy

=

∫
T2d

Kh(x− y) (P (ρxk)− P (ρyk)) (ρxk + ρyk) sk w
x
k w

y
k dx dy

+

∫
T2d

Kh(x− y) (Rxk −R
y
k) (ρxk + ρyk) sk w

x
k w

y
k dx dy.

(4.22)

By the uniform Lp bound on ρk and the estimate (4.16), one has∫ s

0

∫
T2d

Kh(x− y) (Rxk −R
y
k) (ρxk + ρyk) sk w

xwy dx dy dt

≤ C ‖Kh‖L1 (εk(h))1−1/p.

(4.23)

Now using (4.19), it is possible to bound

|P (ρxk)− P (ρyk)| ≤ |ρ
x
k − ρ

y
k|
∫ 1

0
|P ′(s ρxk + (1− s) ρyk)| ds

≤ C ((ρxk)γ−1 + (ρyk)
γ−1) |ρxk − ρ

y
k|,

leading to∫
T2d

Kh(x− y) (P (ρxk)− P (ρyk)) (ρxk + ρyk) sk w
x
k w

y
k dx dy

≤ C
∫
T2d

Kh(x− y) ((ρxk)γ−1 + (ρyk)
γ−1) (ρxk + ρyk)|ρ

x
k − ρ

y
k|w

x
k w

y
k dx dy

≤ C
∫
T2d

Kh(x− y) ((ρxk)γ + (ρyk)
γ) |ρxk − ρ

y
k|w

x
k w

y
k dx dy.
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Now using this estimate, equality (4.22), the compactness (4.23), and by taking

λ large enough, one finds from (4.21) that

Rk|t=s ≤ Rk|t=0 + C ‖Kh‖L1(Td) (εk(h))1−1/p.

Second step and third steps : Property of the weight and conclusion. The

starting point is again the same and gives∫
Td
| logwxk | ρxk dx ≤ C,

∫
Td
| logwyk| ρ

y
k dy ≤ C

with C independent of k but where we now need ρk ∈ Lp with p ≥ γ + 1

because of the additional term in equation (4.20). By splitting the integration,∫
ρx
k
≥η, ρy

k
≥η
Kh(x− y) |ρxk − ρ

y
k| dx dy

=

∫
ρx
k
≥η, ρy

k
≥η, wx

k
≥η′, wy

k
≥η′

Kh(x− y) |ρxk − ρ
y
k| dx dy

+ ‖Kh‖L1

∫
ρx
k
≥η, wx

k
≤η′

(1 + ρxk) dx.

On the one hand,∫
ρx
k
≥η, wx

k
≤η′

(1 + ρxk) dx ≤
Å

1

η
+ 1

ã ∫
wx
k
≤η′

ρxk dx

≤
Å

1

η
+ 1

ã
1

| log η′|

∫
Td
| logwxk | ρxk dx ≤

Å
1

η
+ 1

ã
C

| log η′|
.

On the other hand,∫
ρx
k
≥η, ρy

k
≥η, wx

k
≥η′, wy

k
≥η′

Kh(x− y) |ρxk − ρ
y
k| dx dy

≤ 1

(η′)2

∫
T2d

Kh(x− y) |ρxk − ρ
y
k|w

x
k w

y
k dx dy.

Therefore,∫
ρx
k
≥η, ρy

k
≥η
Kh(x− y) |ρxk − ρ

y
k| dx dy

≤ ‖Kh‖L1

Å
1

η
+ 1

ã
C

| log η′|
+

C

(η′)2
‖Kh‖L1

Ä
ε̃k(h) + (εk(h))1−1/p

ä
,

(4.24)

which concludes the proof by optimizing in η′ as we get the estimate∫
ρk(x)≥η, ρk(y)≥η

Kh(x− y) |ρk(t, x)− ρk(t, y)| dx dy

≤ Cη
‖Kh‖L1

| log(h+ (εk(h)) + ε̃k(h))|
,
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where εk(h) and ε̃k(h) are respectively given by (4.16) and (4.17). Now taking

the lim sup in k, the resulting quantity converges to zero as h→ 0. Therefore

we get compactness far from the vacuum applying the compactness lemma. �

5. Stability results

5.1. The equations. Here and in the following, we will often use the no-

tation G·1k = Gk(t, ·1) and H ·1,·2k = Hk(t, ·1, ·2) for any space variable ·1, ·2
belonging to Td. For instance, ρxk = ρk(t, x), P

x,ρxk
k = Pk(t, x, ρk(t, x)).

5.1.1. General pressure law. We consider a sequence (ρk, uk) of global

weak solutions (with the uniform bounds given below, which allows us to make

sense of the equations in the sense of distributions). Here ρk solves the conti-

nuity equation

(5.1) ∂tρk + div (ρk uk) = αk∆ρk in (0, T )×Td,

and we ask that ρk be a renormalized solution to (5.1). (We recall this notion

in Section 6.2.) Here uk solves

(5.2) µxk div xu
x
k − P

x,ρxk
k = F xk +Rxk in (0, T )×Td,

where

F xk = ∆−1
x div x(∂t(ρ

x
k u

x
k) + div x(ρxk u

x
k ⊗ uxk))

and Rxk represents terms that will be assumed to be compact as an external

force with the initial conditions

ρk|t=0 = ρ0, ρkuk|t=0 = ρ0u0 in Td

and periodic boundary conditions in space.

Remark. Note that the term F xk represents the effective viscous flux part

coming from the total time derivative. Compactness of such a quantity is

a priori not known and will be treated in a section. Readers who are inter-

ested by the method without too much complexity may skip this term and

the corresponding parts. This will provide compactness with the vacuum state

compared to the previous section, which focused on compactness far from the

vacuum.

Important remark. Note that here we allow a possible explicit dependence

on t and x in Pk, namely, P
x,ρxk
k = Pk(ρk(t, x), t, x). This does not really

affect our stability results, and it can be critical for treating non-homogeneous

settings or cases such as the Navier–Stokes–Fourier system. This general form

is hence a good illustration of the flexibility of our compactness method.

In this part, we will assume the viscosity of the fluid to depend on time

and space for the first time. To handle with more general viscosity of this kind,
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we assume it to be bounded from below and above, namely, that there exists

a constant µ̄ independent on k such that

(5.3) 0 <
1

µ̄
≤ µxk ≤ µ̄ < +∞.

We consider the following control on the density (for p > 1):

(5.4) sup
k

î
‖ρk‖L∞([0, T ], Lγ(Td)) + ‖ρk‖Lp([0, T ]×Td)

ó
<∞.

We consider the following control for uk:

(5.5) sup
k

[
‖ρk |uk|2‖L∞([0, T ], L1(Td)) + ‖∇uk‖L2(0,T ;L2(Td))

]
< +∞.

We also need some control on the time derivative of ρkuk through

(5.6) ∃p̄ > 1, sup
k
‖∂t(ρkuk)‖L2

tW
−1,p̄
x

<∞

and on the time derivative of ρk, namely,

(5.7) ∃q > 1, sup
k
‖∂tρk‖LqtW−1,q

x
<∞.

Remark. Note that usually (see, for instance, [32], [48]), (5.6) and (5.7)

are consequences of the momentum equation and the mass equation using the

uniform estimates given by the energy estimates and the extra integrability on

the density.

Concerning the equation of state, we will consider that for every x, s: P x,sk

continuous in s on [0,+∞) and positive, P x,sk locally Lipschitz in s on (0,+∞)

with P x,0k = Θx
k and with one of the two following cases:

(i) Pressure laws with a quasi-monotone property : There exists P̄ , ρ0 indepen-

dent of t, x such that if s ≥ ρ0, then P x,sk is a function P̃ xk plus a function

independent of t, x and

∂s
Äî
P x,sk − P̃ xk

ó
/s
ä
≥ 0 for all s ≥ ρ0, lim

s→+∞
P x,sk = +∞,

|P x,rk − P y,sk | ≤ P̄ |r − s|+Qx,yk for all r, s ≤ ρ0, x, y ∈ Td,

lim sup
h→0

sup
k

∫ T

0

∫
T2d

Kh(x− y)

‖Kh‖L1

(
|P̃ xk − P̃

y
k |+Qx,yk

)
dx dy dt = 0.

(5.8)

(ii) Non-monotone pressure laws (with very general Lipschitz pressure laws):

There exist P̄ > 0, γ̃ > 0 and P̃ xk in L2((0, T )×Td), Qx,yk in L1((0, T )×T2d)



COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 611

and Θx
k in L1((0, T )×Td) such that for all t,x, y,

|P x,ρ
x
k

k − P y,ρ
y
k

k | ≤ Qx,yk +
î
P̄
Ä
(ρxk)γ̃−1 + (ρyk)

γ̃−1
ä

+ P̃ xk + P̃ yk
ó
|ρxk − ρ

y
k|,

P
x,ρxk
k ≤ P̄ (ρxk)γ̃ + Θx

k with Θx
k ≥ 0,

sup
k

(
‖P̃k‖L2((0, T )×Td)+‖Θk‖L1([0, T ]×Td)

)
<∞,

lim sup
h→0

sup
k

∫ T

0

∫
T2d

Kh(x− y)

‖Kh‖L1

(
|P̃ xk − P̃

y
k |

+ |Θx
k −Θy

k|+Qx,yk

)
dx dy dt = 0.

(5.9)

Two important remarks. (1) The general hypothesis on pressure laws

should prove quite useful in many extensions of our results, such as the heat-

conducting compressible Navier–Stokes case. The pressure law can then in-

clude, for instance, a radiative part (namely, a part depending only on the

temperature as in [33]) and a pressure law in density with coefficients depend-

ing on temperature. (See the comments in the section under consideration.)

But this general form can also cover various inhomogeneous settings where

the pressure law may have some explicit spatial dependence.

(2) In the basic case where Pk does not depend explicitly on t or x (namely,

P̃k ≡ 0, Qk ≡ 0 and Θk ≡ 0), then (5.9) reduces to the very simple condition

|Pk(r)− Pk(s)| ≤ P̄ rγ̃−1|r − s|.

Note that this assumption is satisfied if P is locally Lipschitz on (0,+∞) with

|P ′(s)| ≤ P̄ sγ̃−1,

namely, with the hypothesis mentioned in Theorem 3.1.

Remark. Note that (i) with the lower bound P (ρ) ≥ C−1ργ −C provides

the same assumptions as in the article [31] by E. Feireisl. Point (i) will be used

to construct approximate solutions in the non-monotone case.

5.1.2. A non-isotropic stress tensor. In that case, assume (ρk, uk) to be a

sequence of global weak solutions solving (5.1) with αk = 0,

∂tρk + div (ρk uk) = 0 in (0, T )×Td.

and

(5.10) divuk = νk Pk(ρk) + νk aµAµ Pk(ρk) + Fk,a,

where

Aµ = (∆− aµEk)−1Ek
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with Ek a given integral or differential operator discussed later on and where

the anisotropic effective viscous flux is given by

Fk,a = νk (∆− aµEk)−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)).

The equations are supplemented with the initial conditions

ρk|t=0 = ρ0, ρkuk|t=0 = ρ0u0 in Td

and are periodic in space boundary conditions.

Remark. If one considers a symmetric anisotropy, div (ADu) in Theo-

rem 3.2, then instead of (5.10), we have the more complicated formula

divuk =νk Pk(ρk) + νk aµAµ Pk(ρk)

+ νk div (∆ I − aµEk)−1 (∂t(ρk uk) + div (ρk uk ⊗ uk)),
(5.11)

where Aµ = (∆ I−aµEk)−1 · Ẽk. But now Ek and Ẽk may be different and are

vector-valued operators so that, in particular, (∆ I−aµEk)−1 means inverting

a vector valued elliptic system. Except for the formulation there would however

be no actual difference in the rest of the proof.

Coming back to (5.10), we assume ellipticity on νk:

(5.12) 0 < ν ≤ νk ≤ ν <∞.

We assume that Ek is a given operator (differential or integral) such that

• (∆− aµEk)−1 ∆ is bounded on every Lp space;

• Aµ = (∆− aµEk)−1Ek is bounded of norm less than 1 on every Lp space

and can be represented by a convolution with a singular integral still de-

noted by Aµ:

Aµ f = Aµ ?x f, |Aµ(x)| ≤ C

|x|d
,

∫
Aµ(x) dx = 0.

Note here that to make more apparent the smallness of the non-isotropic

part, we explicitly scale it with aµ. We consider again the control (5.4) on the

density but for p > γ2/(γ − 1), and the bound (5.5) for uk. We also need the

same controls: (5.6) on the time derivative of ρkuk and (5.7) on the time of

the ρk.

The main idea here is to investigate the compactness for an anisotropic

viscous stress obtained as the perturbation of the usual isotropic viscous stress

tensor, namely, −div (A∇u) + (λ + µ)∇divu assuming A = µ Id + δA and

aµ = ‖δA‖ ≤ ε for some small enough ε.
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5.2. The main stability results : Theorems 5.1, 5.2 and 5.3. First note that

as in Lions’ scenario, the main point in the proof of both results is the coupling

of the specific renormalized form of the continuity equation for the new quan-

tity measuring density oscillations with the specific compensated compactness

properties of the commutator involving the effective viscous flux coming from

the total time derivative. Readers who are interested in models without total

time derivative in the equation that gives the velocity field in terms of the

pressure may skip the parts called effective viscous flux.

5.2.1. General pressure laws. The main step in that case is to prove the

two compactness results

Theorem 5.1. Assume that ρk solves (5.1), uk solves (5.2) with the bounds

(5.3), (5.5), (5.6), (5.7), and that µk and Rk are compact in L1((0, T ) × Td).
Moreover,

(i) if αk > 0 (with αk → 0 when k → +∞), we assume the estimate (5.4) on

ρk with γ > 3/2 and p > 2 and quasi-monotonicity on Pk through (5.8);

(ii) if αk = 0, then it is enough to assume (5.4) with γ > 3/2 and p >

max(2, γ̃) and only (5.9) on Pk.

Then the sequence ρk is compact in L1((0, T )×Td).

We also provide a complementary result that is a more precise rate of

compactness away from the vacuum; namely,

Theorem 5.2. Assume again that ρk solves (5.1) with αk = 0, uk solves

(5.2) with the bounds (5.3), (5.5), (5.6), (5.7) and that µk and Rk are compact

in L1((0, T ) × Td). Assume that (5.4) holds with γ > d/2 and p > max(2, γ̃)

and that Pk satisfies (5.9). Then there exists θ > 0 and a continuous function

ε with ε(0) = 0, depending only on µk and Rk such that

lim sup
k

sup
s∈[0,T ]

[∫
T2d

Iρk(x,t)≥η Iρk(y,t)≥ηKh(x− y)χ(δρk) dx dy
]∣∣∣∣
t=s

≤ C ‖Kh‖L1

η1/2 | log(ε(h) + hθ)|θ/2
.

For instance, if P̃k, Θk, µk and Rk are uniformly in W s,1 for s > 0, then

for some constant C > 0,

lim sup
k

sup
s∈[0,T ]

[∫
T2d

Iρk(x,t)≥η Iρk(y,t)≥ηKh(x− y)χ(δρk) dx dy
]∣∣∣∣
t=s

≤ C ‖Kh‖L1

η1/2 | log h|θ/2
.
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Since those results depend on the regularity of µk and Rk, we denote ε0(h) a

continuous function with ε0(0) = 0 such that∫ T

0

∫
T2d

Kh(x− y)
(
|Rxk −R

y
k|+ |µ

x
k − µ

y
k|

+ |P̃ xk − P̃
y
k |+ |Θ

x
k −Θy

k|+ |Q
x,y
k |
)
dx dy dt ≤ ε0(h) ‖Kh‖L1 .

(5.13)

5.2.2. Non-isotropic stress tensor. In that case our result reads

Theorem 5.3. Assume that ρk solves (5.1) and that uk solves (5.10) with

the bounds (5.5), (5.6), (5.7) and (5.12) together with all the assumptions on

Ek below (5.10). Assume as well that Pk satisfies (5.8) and that (5.4) with

γ > d/2 and p > γ2/(γ − 1). There exists a universal constant C∗ > 0 such

that if

aµ ≤ C∗,

then ρk is compact in L1((0, T )×Td).

Remarks. Theorems 5.1, 5.2, and 5.3 are really the main contributions of

this article. For instance, deducing Theorems 3.1 and 3.2 follows usual and

straightforward approximation procedures.

As such the main improvements with respect to the existing theory can be

seen in the fact that point (ii) in Theorem 5.1 does not require monotonicity

on Pk and in the fact that Theorem 5.3 does not require isotropy on the stress

tensor.

Our starting approximate system involves diffusion, αk 6= 0, in the con-

tinuity equation (5.1). As can be seen from point (i) of Theorem 5.1, our

compactness result in that case requires an isotropic stress tensor and a pres-

sure Pk that is monotone after a certain point by (5.8). This limitation is the

reason why we also have to consider approximations Pk and Ek of the pres-

sure and the stress tensor. While it may superficially appear that we did not

improve the existing theory in that case with diffusion, we want to point out

the following:

• We could not have used P.-L. Lions’ approach because this requires strict

monotonicity: P ′k > 0 everywhere. Instead, any non-monotone pressure

P satisfying (5.9) can be approximated by Pk satisfying (5.8) simply by

considering Pk = P + εk ρ
γ̄ as long as γ̄ > γ̃ and thus without changing

the requirements on γ.

• E. Feireisl et al. can handle “quasi-monotone” pressure laws satisfying (5.8)

together with diffusion, but they require higher integrability on ρk for this:

p ≥ 4 in (5.4). This in turn leads to a more complex approximation

procedure.
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6. Technical lemmas and renormalized solutions

6.1. Useful technical lemmas. We recall the well-known inequality, which

we used in Section 4.2 and will use several times in the following (see, for

instance, [54]): For any |x− y| ≤ 1,

(6.1) |Φ(x)− Φ(y)| ≤ C |x− y| (M |∇Φ|(x) +M |∇Φ|(y)),

where M is the localized maximal operator

(6.2) M f(x) = sup
r≤1

1

|B(0, r)|

∫
B(0,r)

f(x+ z) dz.

As will be seen later, there is a technical difficulty in the proof, which would

lead us to try (and fail) to control M |∇uk|(y) by M |∇uk|(x). Instead we

have to be more precise than (6.1) in order to avoid this. To deal with such

problems, we use more sophisticated tools. First,

Lemma 6.1. There exists C > 0 such that for any u ∈W 1,1(Td), one has

|u(x)− u(y)| ≤ C |x− y| (D|x−y|u(x) +D|x−y|u(y)),

where we denote

Dhu(x) =
1

h

∫
|z|≤h

|∇u(x+ z)|
|z|d−1

dz.

Proof. A full proof of such a well-known result can, for instance, be found

in [41] in a more general setting, namely, u ∈ BV . The idea is simply to

consider trajectories γ(t) from x to y that stay within the ball of diameter

|x− y| to control

|u(x)− u(y)| ≤
∫ 1

0
γ′(t) · ∇u(γ(t)) dt,

and then to average over all such trajectories with length of order |x − y|.
Similar calculations are also present, for instance, in [30]. �

Note that this result implies the estimate (6.1) as

Lemma 6.2. There exists C > 0 for any u ∈W 1,p(Td) with p ≥ 1:

Dh u(x) ≤ CM |∇u|(x).
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Proof. Do a dyadic decomposition, and define i0 such that 2−i0−1 < h

≤ 2−i0 :

Dh u(x) ≤ 1

h

∑
i≥i0

∫
2−i−1<|z|≤2−i

|∇u(x+ z)|
|z|d−1

dz

≤
∑
i≥i0

2(i+1) (d−1)

h

∫
2−i−1<|z|≤2−i

|∇u(x+ z)| dz

≤ 2d−1
∑
i≥i0
|B(0, 1)| 2

−i

h
M |∇u|(x) ≤ CM |∇u|(x). �

The key improvement in using Dh is that small translations of the operator

Dh are actually easy to control

Lemma 6.3. For any 1 < p < ∞, there exists C > 0 such that for any

u ∈ H1(Td),

(6.3)

∫ 1

h0

∫
Td
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz

dh

h
≤ C ‖u‖B1

p,1
,

where the definition and basic properties of the Besov space B1
p,1 are recalled

in Section 11. As a consequence,

(6.4)

∫ 1

h0

∫
Td
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖L2 dz

dh

h
≤ C | log h0|1/2 ‖u‖H1 .

It is also possible to disconnect the shift from the radius in Dru and obtain,

for instance,∫ 1

h0

∫
T2d

Kh(z)Kh(w)‖D|z| u(.)−D|z| u(.+ w)‖L2 dz dw
dh

h

≤ C | log h0|1/2 ‖u‖H1 .

(6.5)

We can in fact write a more general version of Lemma 6.3 for any kernel:

Lemma 6.4. For any 1 < p <∞ and any family Nr ∈W s,1(Td) for some

s > 0 such that

sup
|ω|≤1

sup
r
r−s

∫
Td
|z|s |Nr(z)−Nr(z + r ω)| dz <∞,

sup
r

(‖Nr‖L1 + rs ‖Nr‖W s,1) <∞,

there exists C > 0 such that for any u ∈ Lp(Td),

(6.6)

∫ 1

h0

∫
Td
Kh(z) ‖Nh ? u(.)−Nh ? u(.+ z)‖Lp dz

dh

h
≤ C | log h0|1/2 ‖u‖Lp .
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We will mostly use the specific version in Lemma 6.3 but will need the

more general Lemma 6.4 to handle the anisotropic case in Lemma 8.6. Both

lemmas are in fact a corollary of a classical result:

Lemma 6.5. For any 1 < p <∞, any family Lr of kernels satisfying for

some s > 0,

(6.7)∫
Lr = 0, sup

r
(‖Lr‖L1 + rs ‖Lr‖W s,1) ≤ CL, sup

r
r−s

∫
|z|s |Lr(z)| dz ≤ CL,

then there exists C > 0 depending only on CL above such that for any u ∈
Lp(Td),

(6.8)

∫ 1

h0

‖Lr ? u‖Lp
dr

r
≤ C ‖u‖B0

p,1
.

As a consequence, for p ≤ 2,

(6.9)

∫ 1

h0

‖Lr ? u‖Lp
dr

r
≤ C | log h0|1/2 ‖u‖Lp .

Note that by a simple change of variables in r one has, for instance, for

any fixed power l, ∫ 1

h0

‖Lrl ? u‖Lp
dr

r
≤ Cl | log h0|1/2 ‖u‖Lp .

Remark. The bounds (6.4) and (6.9) could also be obtained by straight-

forward application of the so-called square function; see the book written by

E. M. Stein [54]. We instead use Besov spaces as this yields the interesting

and optimal inequalities (6.3)-(6.8) as an intermediary step.

Proof of Lemmas 6.3 and 6.4 assuming Lemma 6.5. First of all, observe

that Dh u = Nh ? u with

Nh =
1

h |z|d−1
I|z|≤h,

which satisfies all the assumptions of Lemma 6.4. Therefore the proofs of

Lemmas 6.3 and 6.4 are identical, just by replacing Dh by Nh?. Hence we only

give the proof of Lemma 6.3.

Calculate ∫ 1

h0

Kh(z)
dh

h
≤
∫ 1

h0

C hν−d

(h+ |z|)ν
dh

h
≤ C

(|z|+ h0)d
.

Note also for future use that the same calculation provides

(6.10)

∫ 1

h0

Kh(z)
dh

h
≥ 1

C (|z|+ h0)d
.
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We hence observe that we are essentially working here with the kernel

1

(|z|+ h0)d
,

which has the critical exponent (equal to the dimension d). Indeed in this

section, we could replace
∫ 1
h0
K̄h

dh
h by 1

(|z|+h0)d
and obtain similar results. Some

formulations though are more natural with K̄h, such as (6.5) in Lemma 6.3.

Therefore, using spherical coordinates,∫ 1

h0

∫
Td
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz dh

≤ C
∫
Sd−1

∫ 1

h0

‖Dr u(.)−Dr u(.+ r ω)‖Lp
dr

r + h0
dω.

Denote

Lω(x) =
I|x|≤1

|x|d−1
−

I|x−ω|≤1

|x− ω|d−1
, Lω,r(x) = r−d Lω(x/r),

and remark that Lω ∈W s,1 for some s > 0 with a norm uniform in ω and with

support in B(0, 2). Moreover,

Dru(x)−Dru(x+ rω) =

∫
|∇u|(x− r z)Lω(z) dz = Lω,r ? |∇u|.

We hence apply Lemma 6.5 since the family Lω,r satisfies the required hypoth-

esis, and we get ∫ 1

h0

‖Lω,r ?∇u‖Lp
dr

r
≤ C ‖u‖B1

1,p
,

with a constant C independent of ω, and so∫ 1

h0

∫
Td
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz dh

≤ C
∫
Sd−1

∫ 1

h0

‖Lω,r ?∇u‖Lp
dr

r
dω ≤ C

∫
Sd−1
‖u‖B1

1,p
dω,

yielding (6.3). The bound (6.4) is deduced in the same manner. The proof of

the bound (6.5) follows the same steps; the only difference is that the aver-

age over the sphere is replaced by a smoother integration against the weight

1/(1 + |w|)a. �

Proof of Lemma 6.5. First remark that Lr is not smooth enough to be

used as the basic kernels Ψk in the classical Littlewood–Paley decomposition

(see Section 11) as, in particular, the Fourier transform of Lr is not necessarily

compactly supported. We use instead the Littlewood–Paley decomposition

of u. Denote

Uk = Ψk ? u.
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The kernel Lr has 0 average, and so

Lr ? Uk =

∫
Td
Lr(x− y) (Uk(y)− Uk(x)) dy.

Therefore,

‖Lr ? Uk‖Lp ≤
∫
Td
|Lr(z)| ‖Uk(.)− Uk(.+ z)‖Lp dz

≤
∫
Td
|Lr(z)| |z|s ‖Uk‖W s,p dz,

yielding by the assumption on Lr, for k < | log2 r|,

(6.11) ‖Lr ? Uk‖Lp ≤ C rs 2k s ‖Uk‖Lp ,

by Proposition 11.2. Note that C only depends on
∫
|z|s |Lr(z)| dz.

Similarly, we now use that Lr ∈ W s,1 and deduce for k ≥ | log2 r| by

Proposition 11.2,

(6.12) ‖Lr ? Uk‖Lp ≤ ‖Lr‖W s,1 ‖Uk‖W−s,p ≤ C r−s 2−k s ‖Uk‖Lp ,

where C only depends on supr r
s ‖Lr‖W s,1 . From the decomposition of f ,∫ 1

h0

‖Lr ? u‖Lp
dr

r
=
∞∑
k=0

∫ 1

h0

‖Lr ? Uk‖Lp
dr

r

≤ C
∞∑
k=0

‖Uk‖Lp
(
Ik≤| log2 h0|

∫ 2−k

h0

rs 2k s
dr

r
+

∫ 1

max(h0,2−k)
r−s 2−k s

dr

r

)
,

by using (6.11) and (6.12). This shows that∫ 1

h0

‖Lr ? u‖Lp
dr

r
≤C

∑
k≤| log2 h0|

‖Uk‖Lp + C
∑

k>| log2 h0|

2−k s

hs0
‖Uk‖Lp .(6.13)

Now simply bound∑
k≤| log2 h0|

‖Uk‖Lp +
∑

k>| log2 h0|

2−ks

hs0
‖Uk‖Lp ≤ C

∞∑
k=0

2k ‖Uk‖Lp

= C ‖u‖B0
p,1
,

which gives (6.8).

Next remark that∑
k>| log2 h0|

2−ks

hs0
‖Uk‖Lp ≤ C sup

k
‖Uk‖Lp ≤ C ‖u‖B0

p,∞
.

Therefore (6.13) combined with Lemma 11.3 yields∫ 1

h0

‖Lr ? u‖Lp
dr

r
≤ C

»
| log2 h0| ‖u‖Lp + C ‖u‖B0

p,∞
,

which gives (6.9) by Proposition 11.2. �
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Finally we emphasize that

Lemma 6.6. The kernel

Kh0(z) =

∫ 1

h0

Kh(z)
dh

h

also satisfies (i) and (ii) of Proposition 4.1.

Proof. This is a straightforward consequence of using (6.10). �

6.2. A brief presentation of renormalized solutions. Many steps in our

proofs manipulate solutions to the transport equation, either under the con-

servative form

(6.14) ∂tρ+ div (ρ u) = 0,

or under the advective form

(6.15) ∂tw + u · ∇w = F.

We will also consider the particular form of (6.15),

(6.16) ∂tw + u · ∇w = f w,

which can directly be obtained from (6.15) by taking F = f w.

However since u is not Lipschitz, we do not have strong solutions to these

equations, and one should in principle be careful with using them. Those

manipulations can be justified using the theory of renormalized solutions as

introduced in [26]. Instead of having to justify every time, we briefly explain in

this subsection how one may proceed. The reader more familiar with the theory

of renormalized solutions may safely skip most of the presentation below.

Assume for the purpose of this subsection that u is a given vector field

in L2
tH

1
x. The basic idea behind the renormalized solution is the commutator

estimate.

Lemma 6.7. Assume that ρ ∈ L2
t,x and w ∈ L2

t,x. Consider any convolu-

tion kernel L ∈ C1, compactly supported in some B(0, r) with
∫
Td Ldx = 1.

Then

‖div (Lε ?x (ρ u)− uLε ? u)‖L1
t,x
−→ 0 as ε→ 0,

‖(Lε ?x (u · ∇xw)− u · ∇xLε ? w‖L1
t,x
−→ 0 as ε→ 0.

The proof of Lemma 6.7 is straightforward and can be found in [26]. Note

however that the techniques we introduce here could also be used, a variant of

Proposition 4.3, to make the estimates even more explicit. From Lemma 6.7,

one may simply prove
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Lemma 6.8. Assume that ρ ∈ L2
t,x is a solution in the sense of distribution

to (6.14). Assume w ∈ L2
t,x, with F ∈ L1, a solution in the sense of distribution

to (6.15). Then for any χ ∈W 1,∞(R), one has in the sense of distribution that

∂tχ(ρ) + div (χ(ρ)u) = (χ(ρ)− ρχ′(ρ)) divu,

∂tχ(w) + u · ∇χ(w) = F χ′(w).

Finally, if in addition ρ ∈ Lp1 , w ∈ Lp2 , u ∈ Lp3 with 1/p1 + 1/p2 + 1/p3 ≤ 1

and F ∈ Lqt,x with 1/p1 + 1/q ≤ 1, then in the sense of distribution for any

χ ∈W 1,∞(R),

∂t(ρχ(w)) + div (ρχ(w)u) = F χ′(w) ρ.

Of course Lemma 6.8 applies to (6.16) in the exact same manner just

replacing F by f w, provided that f ∈ Lp and w ∈ Lp∗ with 1/p∗ + 1/p = 1

(so that F ∈ L1) and f w ∈ Lqt,x.

Lemma 6.8 can be used to justify most of our manipulations later on.

Remark that all terms in the equation make sense in D′: For instance, u ·∇w =

div (uw)−w divu, which is well defined since u, divu and w belong to L2. The

proof of Lemma 6.8 is essentially found in [26] and consists simply in writing

approximate equations on Lε ?ρ, Lε ?w, performing the required manipulation

on those quantities, and then simply passing to the limit in ε.

As a straightforward consequence, we can easily obtain uniqueness for

(6.14). Consider two solutions ρ1, ρ2 ∈ L2
t,x to (6.14) with same initial data.

Apply the previous lemma to ρ = ρ1− ρ2 and χ(ρ) = |ρ|, and simply integrate

the equation over Td to find

d

dt

∫
Td
|ρ1(t, x)− ρ2(t, x)| dx = 0.

Thus,

Lemma 6.9. For a given ρ0 ∈ L2
x, there exists at most one solution ρ ∈

L2
t,x to (6.14).

The uniqueness for the dual problem (6.15) or (6.16) is, however, more

delicate and, in particular, the previous strategy cannot work unless divu ∈
L∞x . The estimates are now slightly different from (6.15) or (6.16), and we

present them for (6.16) as we use this form more later on.

If one considers two solutions w1 and w2 to (6.16) and a solution ρ to

(6.14), one has

d

dt

∫
Td
ρ(t, x) |w1(t, x)− w2(t, x)| dx =

∫
Td
f ρ(t, x) |w1(t, x)− w2(t, x)| dx,

leading to

Lemma 6.10. Assume that

• ρ ∈ L2
t,x solves (6.14);
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• w1 and w2 are two solutions in L2
t,x to (6.16) with w1(t = 0) = w2(t = 0)

for a given f ∈ Lpt,x and wi ∈ Lp
∗
, i = 1, 2, with 1/p∗ + 1/p = 1;

• ρ ∈ Lp1 , w ∈ Lp2 , u ∈ Lp3 with 1/p1 + 1/p2 + 1/p3 ≤ 1 and f w ∈ Lqt,x with

1/p1 + 1/q ≤ 1;

• finally either f ∈ L∞ or f ≤ 0 and ρ ≥ 0.

Then w1 = w2 ρ almost everywhere.

Of course if ρ > 0 everywhere, then Lemma 6.10 provides the uniqueness

of the solution to (6.15). But in general ρ could vanish on a set of non-

zero measure. (This is the difficult vacuum problem for compressible Navier–

Stokes.) In that case in general one cannot expect uniqueness for (6.15).

We will use the same strategy of integrating against a solution ρ to the

conservative equation (6.14) to obtain some bounds on logw for w a solution

to (6.16).

Lemma 6.11. Assume that

• ρ ≥ 0 in L2
t,x solves (6.14);

• w1 is a solution in L2
t,x to (6.16) with 0 ≤ w1 ≤ 1, w1(t = 0) = w0 for a

given f ∈ Lpt,x and w ∈ Lp∗ , i = 1, 2, with 1/p∗ + 1/p = 1;

• ρ ∈ Lp1 , w ∈ Lp2 , u ∈ Lp3 with 1/p1 + 1/p2 + 1/p3 ≤ 1 and f w ∈ Lqt,x with

1/p1 + 1/q ≤ 1.

Then one has for any 0 ≤ θ ≤ 1,∫
Td

(1 + | logw(t, x)|)θ ρ(t, x) dx ≤
∫
Td
| logw0|θ ρ(t, x) dx

+ θ

∫ t

0

∫
Td
|f(s, x)| (1 + | logw(s, x)|)θ−1 ρ(s, x) dx ds.

The lemma is proved simply by applying Lemma 6.8 (the last point) to

a sequence χε(w) = (1 + | log(ε + w)|)θ, as for a fixed ε > 0, χε is Lipschitz.

One then integrates in t and x and finally passes to the limit ε → 0 by the

monotone convergence theorem.

Note that the log transform allows one to derive (6.15) from (6.16) but

requires in addition logw ∈ L2 while Lemma 6.11 does not require any a priori

estimates on logw.

Let us finish this subsection by briefly mentioning the existence question.

This does not use renormalized solutions per se, although as we saw using the

solutions once they are obtained requires the theory.

For uniqueness, the conservative form was well behaved and the advective

form delicate. Hence for existence, things are reversed. Unless divu ∈ L∞,

it is not possible to have a general existence result for (6.14). In general, a

solution to (6.14) with only divu ∈ L2 may concentrate, forming Dirac masses,

for instance.
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But it is quite simple to obtain a general existence result for (6.15)

Lemma 6.12. Assume that w0 ∈ L∞(Td) and either that f ∈ L∞(Td) or

that f ≤ 0, f ∈ L1
t,x and w0 ≥ 0. Then there exists w ∈ L∞([0, T ] × Td) for

any T > 0 solution to (6.16) in the sense of distributions.

Proof. Consider a sequence un ∈ C∞ such that un converges to u in L2
tH

1
x.

Define the solution wn to

∂twn + un · ∇xwn = f wn, wn(t = 0) = w0.

This solution wn is easy to construct by using the characteristics flow based

on un. Now if f ∈ L∞, then

‖wn(t, .)‖L∞x ≤ ‖w
0‖L∞x e

t ‖f‖L∞
t,x .

In the other case, if w0 ≥ 0, then wn ≥ 0. Furthermore, if f ≤ 0, then

‖wn(t, .)‖L∞x ≤ ‖w
0‖L∞x .

So in both cases wn is uniformly bounded in L∞([0, T ] × Td) for any T > 0.

Extracting a subsequence, still denoted by wn for simplicity, wn converges to

w in the weak-* topology of L∞([0, T ]×Td).
It only remains to pass to the limit in un ·∇xwn = div (unwn)−wn divun,

which follows from the strong convergence in L2 of un and divun. Similarly

one may pass to the limit in f wn. �

7. Renormalized equation and weights

We explain here the various renormalizations of the transport equation

satisfied by ρk. We then define the weights we will consider and give their

properties.

7.1. Renormalized equation. We explain in this subsection how to obtain

the equation satisfied by various quantities that we will need and of the form

Zx,yk χ(ρxk − ρ
y
k) where Zx,yk is chosen as Zx,yk = Kh(x − y)W x,y

k,h with W x,y
k,h =

Wk,h(t, x, y). The weights W x,y
k,h are assumed to satisfy

W x,y
k,h ∈ L

∞((0, T )×T2d),

∂tW
x,y
k,h + uxk · ∇xW

x,y
k,h + uxk · ∇xW

x,y
k,h ∈ L

1((0, T )×T2d)

and

αkW
x,y
k,h ∈ L

1(0, T ;H2(T2d)).
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Lemma 7.1. Assume ρk solves (5.1) with (5.4) for p > 2 and that uk
satisfies (5.5). Then for any convex function χ ∈W 2,∞,[∫
T2d

Kh(x− y)W x,y
k,h χ(δρk) dx dy

]∣∣∣∣
t=s
−
[∫
T2d

Kh(x− y)W x,y
k,h χ(δρk) dx dy

]∣∣∣∣
t=0

+

∫ s

0

∫
T2d

Ä
χ′(δρk)δρk − χ(δρk)

äÄ
div xu

x
k + div yu

y
k

ä
Kh(x− y)W x,y

k,h dx dy dt

−
∫ s

0

∫
T2d

χ(δρk)
î
uxk · ∇xKh(x− y) + uyk · ∇yKh(x− y)

+ αk(∆x + ∆y)Kh(x− y)
ó
W x,y
k,h dx dy dt

− 2αk

∫ s

0

∫
T2d
∇Kh(x− y)χ(δρk)

î
∇xW x,y

k,h −∇yW
x,y
k,h

ó
dx dy dt

− 2αk

∫ s

0

∫
T2d

Kh(x− y)χ(δρk)
î
∆xW

x,y
k,h + ∆yW

x,y
k,h

ó
dx dy dt

≤
∫ s

0

∫
T2d

χ(δρk)[∂tW
x,y
k,h + uxk · ∇xW

x,y
k,h + uyk · ∇yW

x,y
k,h

− αk(∆x + ∆y)W
x,y
k,h ]Kh(x− y) dx dy dt

− 1

2

∫ s

0

∫
T2d

χ′(δρk)Kh(x− y)W x,y
k,h

Ä
div xu

x
k − div yu

y
k)ρ̄k dx dy dt

+
1

2

∫ s

0

∫
T2d

χ′(δρk)Kh(x− y)W x,y
k,h (div xu

x
k + div yu

y
k)δρk dx dy dt.

Proof. The result essentially relies on a doubling of variable argument

and straightforward algebraic calculations (up to Di Perna–Lions techniques).

Since ρk solves (5.1), one has that

∂tρ
x
k + divx(ρxku

x
k) = αk∆xρ

x
k, ∂tρ

y
k + divy(ρ

y
ku

y
k) = αk∆yρ

y
k.

Recalling δρk = ρxk − ρyk, and using that ρk ∈ Lpt,x with p > 2 and hence

ρkdiv uk is well defined, one can check that

∂tδρk+div x(uxk δρk)+div y(u
y
k δρk) = αk(∆x+∆y) δρk−ρyk div xu

x
k+ρxk div yu

y
k.

Then, recalling the notation ρ̄k = ρxk + ρyk, we observe that

−ρyk div xu
x
k + ρxk div yu

y
k =

1

2

(
div xu

x
k ρ

x
k − div xu

x
k ρ

y
k + div yu

y
k ρ

x
k − div yu

y
kρ
y
k

− div xu
x
k ρ

x
k − div xu

x
k ρ

y
k + div yu

y
k ρ

x
k + div yu

y
k ρ

y
k

)
=

1

2
(div xu

x
k + div yu

y
k) δρk −

1

2
(divuxk − divuyk) ρ̄k.

Consequently, we can write

∂tδρk + div x(uxk δρk) + div y(u
y
k δρk) = αk (∆x + ∆y) δρk

+
1

2
(div xu

x
k + div yu

y
k) δρk −

1

2
(divuxk − divuyk) ρ̄k.

(7.1)
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We now turn to the renormalized equation, i.e., the equation satisfied by χ(δk)

for a non-linear function s 7→ χ(s). Formally the equation can be obtained

by multiplying (7.1) by χ′(δρk). If αk = 0 and ρk is not smooth, then the

formal calculation can be justified following Di Perna–Lions techniques using

regularizing by convolution and the estimate (5.5), i.e., uk ∈ L2
tH

1
x. Then

∂tχ(δρk) + div x(uxkχ(δρk)) + div y(u
y
kχ(δρk))

+
Ä
χ′(δρk)δρk − χ(δρk)

äÄ
div xu

x
k + div yu

y
k

ä
= αk(∆x + ∆y)χ(δρk)−

1

2
χ′(δρk)

Ä
div xu

x
k − div yu

y
k)ρ̄k

+
1

2
χ′(δρk)(div xu

x
k + div yu

y
k)δρk − αkχ

′′(ρk)
Ä
|∇xδρk|2 + |∇yδρk|2

ä
.

For any V x
k , V y

k and smooth enough Zx,yk,h , in the sense of distributions one has

Zx,yk,h∆xV
x
k = div x(Zx,yk,h∇xV

x
k )− div x(V x

k ∇xZ
x,y
k ) + V x

k ∆xZ
x,y
k,h ,

Zx,yk,h∆yV
y
k = div y(Z

x,y
k,h∇yV

y
k )− div y(V

y
k ∇yZ

x,y
k,h) + V y

k ∆yZ
x,y
k,h .

Consequently, we get the following equation for Zx,yk,hχ(δρk):

∂t[Z
x,y
k,hχ(δρk)] + div x(uxkχ(δρk)Z

x,y
k,h) + div y(u

y
kχ(δρk)Z

x,y
k,h)

+
Ä
χ′(δρk)δρk − χ(δρk)

äÄ
div xu

x
k + div yu

y
k

ä
Zx,yk,h

− χ(δρk)[∂tZ
x,y
k,h + uxk · ∇xZ

x,y
k,h + uyk · ∇yZ

x,y
k,h − αk(∆x + ∆y)Z

x,y
k,h ] = r.h.s,

with

r.h.s. = −1

2
χ′(δρk)Z

x,y
k,h

Ä
div xu

x
k − div yu

y
k)ρ̄k

+
1

2
χ′(δρk)Z

x,y
k,h(div xu

x
k + div yu

y
k)δρk

− αkχ′′(ρk)Zx,yk,h
Ä
|∇xδρk|2 + |∇yδρk|2

ä
+ 2αkχ(δρk)(∆x + ∆y)Z

x,y
k,h

+ αk
î
div x(Zx,yk,h∇xχ(δρk))− div x(χ(δρk)∇xZx,yk,h)

+ div y(Z
x,y
k,h∇yχ(δρk))− div y(χ(δρk)∇yZx,yk,h)

ó
.

Integrating in time and twice in space (double variable (x,y)) and perform-

ing the required integration by parts, we get the desired equality writing

Zx,yk,h = Kh(x− y)W x,y
k,h . �

7.2. The weights : Choice and properties. In this subsection, we choose

the PDEs satisfied by the weights. We state and then prove some of their

properties.

7.2.1. Basic considerations. We define weights wk, periodic in space, that

satisfy

(7.2) ∂twk + uk · ∇wk = −Dk wk + αk∆wk, wk|t=0 = w0
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for some appropriate penalization Dk depending on the case under consider-

ation: D0,k, D1,k, Da,k. The choice of Dk will be based on the need to control

“bad” terms when looking at the propagation of the weighted quantity. The

choice will also have to ensure that the weights are not too small, too often.

7.2.2. Isotropic viscosity, general pressure laws. The case with αk > 0 and

monotone pressure. The simplest choice for the penalization D to define w0 is

(7.3) D0,k = λM |∇uk|,

with λ a fixed constant (chosen later on) and M the localized maximal operator

as defined by (6.2). In that case we choose accordingly

w0,k|t=0 = w0
0 ≡ 1.

The case αk = 0 and non-monotone pressure. In the absence of diffusion

in (5.1) (αk = 0) and when the pressure term Pk is non-monotone, for instance,

one needs to add a term ργ̃k in the penalization. This would lead to very

strong assumptions, in particular, on the exponent p in (5.4) (and hence γ)

as explained after Proposition 4.4. It is possible to obtain better results using

that ρ ∈ Lp for some p > 2, by taking the more refined

(7.4)
D1,k

λ
= ρk |divuk|+ |divuk|+M |∇uk|+ ργ̃k + P̃k ρk +Rk

for the general compactness result. For simplicity we take

w1,k|t=0 = w0
1 ≡ exp

Ä
−λ sup ρ0

k

ä
.

The reason for the first term in D1,k compared to D0,k is to ensure that

w1,k ≤ e−λρk , which helps compensates the penalization in ργ̃k to get the prop-

erty on ρk| logw1|θ for some θ > 0. The three last terms are needed to respec-

tively counterbalance: additional divergence terms in the propagation quantity

compared to w0, the same M |∇uk| as for w0, and the ργ̃k for terms coming from

the pressure.

7.2.3. Anisotropic stress tensor. The choice for the penalization, denoted

Da in this case and leading to the weight wa, is now

(7.5)
Da,k

λ
= M |∇uk|+Kh ? (|divuk|+ |Aµργk |).

Note that the second term in the penalization is used to control the non-local

part of the pressure terms. As initial condition, we choose accordingly

wa,k|t=0 = w0
a ≡ 1.
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7.2.4. The forms of the weights. Recall that we use the convenient nota-

tion wxk = wk(t, x) and wyk = wk(t, y) when we compare expressions at points

(t, x) and (t, y). Two types of weights W x,y are used:

W x,y = wx + wy, or W x,y = wxwy.

The first one will provide compactness and will be used with (7.3) or (7.4).

The second, used with (7.4), gives better explicit regularity estimates but far

from the vacuum and is considered for the sake of completeness. Therefore one

defines

W x,y
0,k = wx0,k + wy0,k, W x,y

1,k = wx1,k + wy1,k,

W x,y
2,k = wx1,kw

y
1,k, W x,y

a,k = wxa,k + wya,k.
(7.6)

As for the penalization, we use the notation W x,y
k when the particular choice

is not relevant and W x,y
i,k , i = 0, 1, 2 or a otherwise. For all choices, one has

(7.7) ∂tW
x,y
i,k + uxk · ∇xW

x,y
i,k + uyk · ∇yW

x,y
i,k = −Qx,yi,k + αk∆x,yW

x,y
i,k .

The term Qk depends on the choices of penalizations and weights with the four

possibilities

Qx,y0,k = Dx
0,k w

x
0,k +Dy

0,k w
y
0,k, Qx,y1,k = Dx

1,k w
x
1,k +Dy

1,k w
y
1,k,

Qx,y2,k = (Dx
1,k +Dy

1,k)w
x
1,k w

y
1,k, Qx,ya,k = Dx

a,k w
x
a,k +Dy

a,k w
y
a,k.

7.2.5. The weight properties. We summarize the main estimates on the

weights previously defined.

Proposition 7.2. Assume that ρk solves (5.1) with the bounds (5.5) on

uk and (5.4) with p > max(2, γ̃). Assume that P̃k, Rk are given by (5.9) and,

in particular, P̃k is uniformly bounded in L2
t,x and Rk in L1

t,x. Then there exist

weights w0, w1, and wa that satisfy equation (7.2) with initial data respectively,

w0,k|t=0 = 1, w1,k|t=0 = exp(−λ sup ρ0
k), wa,k|t=0 = 1,

and D0,k, D1,k, Da,k respectively given by (7.3), (7.4) and (7.5) such that

(i) For any t,x,

(7.8) 0 ≤ w0,k(t, x) ≤ 1, 0 ≤ wa,k(t, x) ≤ 1, 0 ≤ w1,k(t, x) ≤ e−λ ρk(t, x).

(ii) One has

sup
t∈[0,T ]

∫
Td
ρk(t, x) | logw0,k(t, x)| dx ≤ C (1 + λ).

If αk = 0 and p > max(2, γ̃), then similarly there exists θ > 0 such that

sup
t∈[0,T ]

∫
Td
ρk(t, x) | logw1,k(t, x)|θ dx ≤ Cλ,
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while finally if p ≥ γ + 1, then

(7.9) sup
t∈[0,T ]

∫
Td
ρk(t, x) | logwa,k(t, x)| dx ≤ C(1 + λ).

(iii) For any η, we have the two estimates

sup
t∈[0,T ]

∫
Td
ρk(t, x) I

(Kh ? w0,k)(t, x) ≤ η dx
ó
≤ C 1 + λ

| log η|

and, if p ≥ γ + 1,

sup
t∈[0,T ]

∫
Td
ρk(t, x) I

(Kh ? wa,k)(t, x) ≤ η dx ≤ C
1 + λ

| log η|
.

(iv) Denoting wa,k,h = Kh ? wa,k, if p > γ, for some 0 < θ < 1 we have∫ 1

h0

∫ t

0

∥∥∥∥Kh ?
Ä
Kh ? (|divuk|+ |Aµργk |)wa,k

ä
−
Ä
Kh ? (|divuk|+ |Aµργk |)

ä
wa,k,h

∥∥∥∥
Lq
dt
dh

h
≤ C | log h0|θ,

with q = min(2, p/γ).

Remark 7.3. Part (i) tells us that wi,k is small at the right points (in

particular, when ρk is large). On the other hand, we want wi to be small only

on a set of small mass; otherwise, one obviously does not control much. This

is the role of part (ii). We use part (iv) to regularize weights in the anisotropic

case. Part (iii) is also used to get a control under the form given in 4.1 from

the estimates with weights.

Remark 7.4. Even when αk > 0, it would be possible to define D1 in order

to have a bound like w1,k(t, x) ≤ e−λρk(t,x)q−1
. For instance, take

D1

λ
= ρq−1

k (q − 1) |divuk|+
αk,λ
λ
|∇ logw1,k|2

+ |divuk|+M |∇uk|+ Lργk + P̃k ρk +Rk,

with

αk,λ = αk

(
1− ᾱλ

1 + λ ρq−1
k

)
, ᾱλ =

q − 2

(q − 1)
.

However one needs q ≤ p/2 and q > 2, which already forces p > 4. Moreover

the main difficulty when αk > 0 comes from the proof of Lemma 8.1 which

forces us to work with Kh ? w0,k and not w0,k. Because of that, any pointwise

inequality between wk(x) and ρk(x) is mostly useless.

Proof. Point (i). This point focuses on the construction of the weights

satisfying the bounds (7.8).
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Construction of w0,k. The construction of the weights w0 is classical since

it satisfies a parabolic equation; moreover, since D0,k is positive, then one has

0 ≤ w0,k ≤ 1.

Construction of wa,k. Choosing wa|t=0 = 1 and f = −Da ≤ 0 and noticing

that Da ∈ L2 and we hence easily construct (see Lemmas 6.12, 6.8 and 6.9)

wa,k such that 0 ≤ wa,k ≤ 1 solution of

∂twa,k + uk · ∇wa,k +Da,k wa,k = 0, wa|t=0 = 1.

Note that Da ≥ |divuk| because M |∇uk| ≥ |∇uk| ≥ |divuk| and wa,k also

solves

∂twa,k + div(ukwa,k) + (Da,k − divuk)wa,k = 0,

so that by the maximum principle, we also have wa,k ≤ ρk where ρk > 0.

This means that we can actually uniquely define wa,k by imposing wa,k = 0 if

ρk = 0.

Construction of w1,k. Choosing w1,k|t=0 = exp(−λ sup ρ0
k) and f = −D1

≤ 0 and noticing that D1,k ∈ L1 and D1,k ≥ |divuk|, we again construct w1,k

just as wa,k such that 0 ≤ w1,k ≤ 1 with w1,k(t, x) = 0, where ρk(t, x) = 0 and

w1,k is a solution to

∂tw1,k + div(ukw1,k) + (D1,k − divuk)w1,k = 0, w1,k|t=0 = exp(−λ sup ρ0
k).

Note that using the renormalization technique on the mass equation,

∂t[exp(−λρk] + div
Ä
uk[exp(−λρk)]

ä
+ [−λρkdivuk − divuk] exp(−λρk) = 0.

Subtracting the two equations we get the following on gk = w1,k − exp(−λρk):

∂tgk + div(ukgk) + (D1,k − divuk)gk = −(D1,k + λρkdivuk) exp(−λρk)

Recall now that D1,k ≥ |divuk| and D1,k ≥ −λρkdivuk; thus using the maxi-

mum principle, we get

w1,k ≤ e−λρk ,
recalling that we have w1,k = 0 where ρk = 0.

Point (ii). Let i = 0, 1 or a. By point (i), wi,k ≤ 1, hence | logwi,k| =

− logwi,k, and from (7.2), denoting | logwi,k| = Ai,k,

∂t(Ai,k) + uk · ∇x(Ai,k)−Di,k = − αk
wi,k

∆wi,k

= αk∆Ai,k − αk |∇Ai,k|2.
(7.10)

For A0,k, we directly apply

∂t(ρk A0,k) + div(ρk A0,kuk) = D0,k ρk + αk∆(ρk A0,k)− 2αk∇ρk · ∇A0,k

− αkρk|∇A0,k|2
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and integrate to findÅ∫
Td
ρk A0,k dx

ã
|t=s = C +

∫ s

0

∫
Td
D0,k(t, x) ρk dx dt

− αk
∫ s

0

∫
Td
ρk|∇A0,k|2 dx dt

− 2αk

∫ s

0

∫
Td
∇ρk · ∇A0,k dx dt.

Simply bound

∫ s

0

∫
Td
∇ρk · ∇A0,k dx dt ≤

1

4

∫
Td
ρk|∇A0,k|2 +

∫
Td

|∇ρk|2

ρk
.

On the other hand, using renormalization techniques,

d

dt

∫
Td
ρk log ρk dx = −

∫
Td
ρk divuk dx− αk

∫
Td

|∇ρk|2

ρk
dx.

However as p ≥ 2, then ρk divuk is bounded uniformly in L1
t,x and ρk log ρk in

L∞t (L1
x). This implies, from the previous equality, that

αk

∫ s

0

∫
Td

|∇ρk|2

ρk
dx dt ≤ C,

and consequently

−2αk

∫ s

0

∫
Td
∇ρk · ∇Ai,k dx dt ≤

αk
2

∫ s

0

∫
Td
ρk|∇Ai,k|2 dx dt+ C.

Using this in the equality on

∫
Td
ρk A0,k given previously, we getÅ∫

Td
ρk A0,k dx

ã
(s)≤C+

∫ s

0

∫
D0,k(t, x) ρk dx dt−

αk
2

∫ s

0

∫
Td
ρk|∇A0,k|2 dx dt.

In that case, we know that ‖D0,k‖L2 ≤ C λ, and since p ≥ 2, we get

(7.11)

Å∫
Td
ρk | logw0,k| dx

ã
(s) + αk

∫ s

0

∫
Td
ρk |∇A0,k|2 dx ds ≤ C(1 + λ).

Concerning wa,k, to getÅ∫
Td
ρk | logwa,k| dx

ã
(s) ≤ C(1 + λ),
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the estimate is similar assuming p ≥ γ+1, and even simpler as αk = 0. Indeed

M |∇uk| and Kh ? |divuk| are bounded in L2 by (5.5). Finally,∫ T

0

∫
Td
ρkKh ? (|Aµ ργk |) dx dt ≤

Ç∫ T

0

∫
Td
ργ+1
k dx dt

å1/(γ+1)

·
Ç∫ T

0

∫
Td
|Aµ ργk |

(γ+1)/γ dx dt

åγ/(γ+1)

≤ C
∫ T

0

∫
Td
ργ+1
k dx dt,

since Aµ is continuous on any Lq space for 1 < q < +∞. The right-hand side

is bounded assuming p > γ + 1.

For w1,k, as before the estimate is a bit different. We now assume that

αk = 0, define Ã1,k = (1 +A1,k)
θ and from (7.10), obtain

∂tÃ1,k + uk · ∇Ã1,k = θ
D1,k

(1 +A1,k)1−θ .

Integrating and recalling A1,k ≥ λ ρk, M |∇uk| and P̃k by (5.9) are uniformly

bounded in L2 and Rk in L1:Å∫
Td
ρk Ã1,k dx

ã
(s) ≤ C + C

∫ s

0

∫
Td

1 + ρ2
k

1 + ρ
(1−θ)
k

|divuk| dx dt

+ C

∫ s

0

∫
Td

ρk

1 + ρ
(1−θ)
k

(M |∇uk|+ P̃k ρk + Θk) dx dt

+ C

∫ s

0

∫
Td

ργ̃+1
k

1 + ρ
(1−θ)
k

dx dt ≤ C

for some θ > 0 depending on p − max(2, γ̃). This gives the desired control

regarding ρ| logw1|θ for an exponent θ small enough.

Point (iii). Estimate (7.11) will not be enough in the proof, and we will

need to control the mass of ρk where Kh ? w0,k is small. Denote

Ωh,η = {x ∈ Td, Kh ? w0,k(t, x) ≤ η}, Ω̃h,η = {x ∈ Ωh,η, w0,k(t, x) ≥ √η}.

The time t is fixed during this argument, and for simplicity we omit it. One

cannot easily estimate |Ωh,η| directly, but it is straightforward to bound |Ω̃h,η|.
Assume x ∈ Ωh,η i.e., Kh ? w0,k(x) ≤ η. From the expression of Kh, if |δ| ≤ h

Kh(z + δ) ≤
‖Kh‖−1

L1

(h+ |z + δ|)a
≤ C Kh(z),

then we deduce that for any y ∈ B(x, h),

Kh ? w
y
0,k ≤ C η.
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Now cover Ω̃η,h by
⋃
iC

h
i with Chi disjoint hyper-cubes of diameter h/C. For

any i, denote Ω̃i
η,h = Ω̃η,h ∩ Chi . If Ω̃i

η,h 6= ∅, then Kh ? w0,k(x) ≤ C η on the

whole Chi . In that case,

Cη hd ≥
∫
Chi

Kh ? w0,k dx ≥
∫
Chi

∫
Ω̃i
η,h

Kh(x− y)w0,k(y) dy dx

≥
√
η

C
|Ω̃i
η,h|.

We conclude that |Ω̃i
η,h| ≤ C

√
η hd. Summing over the cubes, we deduce that

one has

|Ω̃η,h| ≤ C
√
η.

Finally,∫
Ωη,h

ρk dx ≤
∫

Ω̃η,h

ρk dx+
2

| log η|

∫
Td
ρk | logw0,k| dx ≤ C η1/2−1/2γ +

C

| log η|
,

since ρk ∈ L∞t (Lγx) for some γ > 1. This is the desired bound.

The same bound may be obtained on the quantity ρkIKh?wa,k≤η in a similar

way when p > γ + 1 because of bound (7.9) on ρk| logwa,k|.

Point (iv). To simplify, denote f = |divuk|+ |Aµ ργk |. Then by the defini-

tion of wa,k,h,∫ 1

h0

∫ s

0

∥∥∥∥Kh ?
Ä
Kh ? f wa,k

ä
−
Ä
Kh ? f

ä
ωa,k,h

∥∥∥∥
Lq(T2d)

dt
dh

h

≤
∫ 1

h0

∫ s

0

∫
Td
Kh(z)

∥∥∥∥Ä(Kh ? f)·+z − (Kh ? f)·
ä
w·+za,k

∥∥∥∥
Lq(Td)

dt dz
dh

h

≤
∫ s

0

∫ 1

h0

∫
Td
Kh(z)

∥∥∥∥Ä(Kh ? f)·+z − (Kh ? f)·
ä∥∥∥∥
Lq(Td)

dz
dh

h
dt

≤ C | log h0|1/2
∫ s

0
‖f(t, .)‖Lq(Td) dt ≤ C | log h0|1/2

by a direct application of Lemma 6.4 with Nh = K̄h provided f is uniformly

bounded in L1
tL

q
x, which is guaranteed by q ≤ min(2, p/γ). �

8. Proof of Theorems 5.1, 5.2 and 5.3

We start with the propagation of regularity on the transport equation in

terms of the regularity of divuk; more precisely, div xu
x
k − div yu

y
k. We prove

in the second subsection some estimates on the effective pressure. This allows

us to write a lemma in the third subsection controlling div xu
x
k − div yu

y
k and

then to close the loop in the fourth subsection, thus concluding the proof. In

Sections 8.5 and 8.6 we consider the anisotropic viscous case.
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8.1. The propagation of regularity on the transport equation. This subsec-

tion uses only equation (5.1) on ρk without yet specifying the coupling between

divuk and ρk (for instance through (5.2)).

Recall that we denote

δρk = ρxk − ρ
y
k, ρ̄k = ρxk + ρyk.

Choose any C2 convex function χ such that

(8.1)

∣∣∣∣χ(ξ)− 1

2
χ′(ξ) ξ

∣∣∣∣ ≤ 1

2
χ′(ξ) ξ, χ′(ξ) ξ ≤ C χ(ξ) ≤ C |ξ|.

It is, for instance, possible to take χ(ξ) = ξ2 for |ξ| ≤ 1/2 and χ(ξ) = |ξ| for

|ξ| ≥ 1.

Similarly for the anisotropic viscous term, for some ` > 0, choose any

convex χa ∈ C1,

∣∣∣∣χa(ξ)− 1

2
χ′a(ξ) ξ

∣∣∣∣ ≤ 1− `
2

χ′a(ξ) ξ,

χ′a(ξ) ξ ≤ C χa(ξ) ≤ C |ξ|1+`,

(ξγ + ξ̃γ)
Ä
−χ′a(ξ − ξ̃)(ξ − ξ̃) + 2χa(ξ − ξ̃)

ä
≥ −(ξγ − ξ̃γ)

`− 1

`
χ′a(ξ − ξ̃)(ξ + ξ̃).

(8.2)

Note that it is possible to simply choose χa = |ξ|1+`. But to unify the notations

and the calculations with the other terms involving χ, we use the abstract χa.

The properties on these non-linear functions χ and χa will be strongly used

to characterize the effect of the pressure law in the contribution of div xuk(x)−
div yuk(y). They will play the role of renormalized functions on the difference

|ρxk − ρ
y
k|.

The form of χ, χa and the choice of ` will have to be determined very

precisely so that the corresponding bad terms will be exactly counterbalanced

by the λ terms coming from the penalization: We refer, for instance, in the

anisotropic case, to the λ terms appearing in Lemma 8.2.

We write two distinct lemmas concerning respectively the non-monotone

pressure law case and the anisotropic tensor case; even though the continuity

equation is the same in both cases, we do not use the same weights as we will

need different properties for them later in the proof.

Lemma 8.1. Assume that ρk solves (5.1) with estimates (5.4) and (5.5)

on uk.
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(i) With diffusion, αk > 0, if p > 2, there exists εh0(k)→ 0 as k →∞ for a

fixed h0:[∫ 1

h0

∫
T4d

Kh(x− z)Kh(y − w)W z,w
0,k Kh(x− y)χ(δρk) dx dy dz dw

dh

h

]∣∣∣∣
t=s

≤ C (εh0(k) + | log h0|1/2)

− 1

2

∫ 1

h0

∫ s

0

∫
T4d

Kh(x−y) (div xu
x
k−div yu

y
k)χ

′(δρk) ρ̄k

·W z,w
0,k Kh(x−z)Kh(y−w) dx dy dz dw dt

dh

h

− 1

2

∫ 1

h0

∫ s

0

∫
T4d

Kh(x− y) (div xu
x
k + div yu

y
k)

· (χ′(δρk) δρk − 2χ(δρk)) W
z,w
0,k Kh(x− z)Kh(y − w) dx dy dz dw dt

dh

h

− λ

2

∫ 1

h0

∫ s

0

∫
T3d

Kh(x− y)χ(δρk)Kh(x− z)M |∇uk|z wz0,k dx dy dz dt
dh

h
,

where we recall that W z,w
0,k = wz0,k + ww0,k.

(ii) Without diffusion, αk = 0, if p ≥ 2, then[∫ 1

h0

∫
T2d

Kh(x− y)χ(δρk) (wx1,k + wy1,k) dx dy
dh

h

]∣∣∣∣
t=s

≤ C | log h0|1/2
∫ s

0
‖uk(t, ·)‖H1dt

− 2λ

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y) ((ρxk)γ̃ + P̃ xk ρ
x
k + Θx

k)wx1,k χ(δρk) dx dy dt
dh

h

− 2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y) (divuxk − divuyk)
(1

2
χ′(δ ρk) ρ̄k

+ χ(δρk)−
1

2
χ′(δ ρk) δρk

)
wx1,k dx dy dt

dh

h
.

For the derivation of explicit regularity estimates, we also have the version with

the product weight, namely,[∫
T2d

Kh(x− y)χ(δρk)w
x
1,k w

y
1,k dx dy

]∣∣∣∣
t=s

≤ C −
∫ s

0

∫
T2d

Kh(x− y)(div xu
x
k − div yu

y
k)χ

′(δ ρk) ρ̄k w
x
1,k w

y
1,k dx dy dt

− λ
∫ s

0

∫
T2d

Kh(x− y)
(
(ρxk)γ̃ + P̃ xk ρ

x
k + Θx

k + (ρyk)
γ̃ + P̃ yk ρ

y
k + Θy

k

)
χ(δρk)

· wx1,k w
y
1,k dx dy dt.

For convenience, we write separately the result that we will use in the

anisotropic case:
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Lemma 8.2. Assume that ρk solves (5.1) with estimates (5.5)–(5.4). With-

out diffusion, αk = 0, assume (8.2) on χa with p > γ + ` + 1, and denote

wa,h = Kh ? wa. There exists θ with 0 < θ < 1 such that[∫ 1

h0

∫
T2d

Kh(x− y)

h
(wxa,k,h + wya,k,h)χa(δρk)(t) dx dy dh

]∣∣∣∣
t=s

≤
[∫ 1

h0

∫
T2d

Kh(x− y)

h
(wxa,k,h + wya,k,h)χa(δρk) dx dy dh

]∣∣∣∣
t=0

+ C | log h0|θ + I + II −Ta,

with the dissipation term

Ta = λ

∫ 1

h0

∫ s

0

∫
Td
wxa,k,h χa(δρk)Kh ? (|divuk|x + |Aµ(ρ)γ |x) K̄h dx dt

dh

h
,

while

I = −1

2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(div xu

x
k − div yu

y
k)

· χ′a(δρk) ρ̄k(wxa,k,h + wya,k,h) dx dy dt dh

and

II = −1

2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(div xu

x
k + div yu

y
k)

· (χ′a(δρk)δρk − 2χa(δρk)) (wxa,k,h + wya,k,h) dx dy dt dh.

Remark. We emphasize that the λ terms in relations (i) and (ii) of Lemma

8.1 come from the penalization in the definition of the weights w0 and w1. They

will help to counterbalance terms coming from the contribution by div xu
x
k −

div yu
y
k. Similarly, the non-local term Ta follows from the definition of the

weights wa.

Proof. Case (i). Denote

W x,y
0,h =

∫
T2d

Kh(x− z)Kh(y − w)W z,w
0,k dz dw,

and let us use χ in the renormalized equation from Lemma 7.1. We getÅ∫
Td
W x,y

0,h Kh(x− y)χ(δρk) dx dy

ã ∣∣∣∣
t=s
≤ A+B +D

− 1

2

∫ s

0

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)χ

′(δρk) ρ̄kW
x,y
0,h dx dy dt

− 1

2

∫ s

0

∫
T2d

Kh(x− y) (div xu
x
k + div yu

y
k) (χ′(δρk) δρk

− 2χ(δρk))W
x,y
0,h dx dy dt,
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with, by the symmetry of Kh, Kh and W x,y
0,h and, in particular, since ∇xW x,y

0,h =

∇yW x,y
0,h ,

A =

∫ s

0

∫
T2d

(uxk − u
y
k) · ∇Kh(x− y) χ(δ ρk)W

x,y
0,h dx dy dt,

B = 2

∫ s

0

∫
T2d

Kh(x− y)
Ä
∂tW

x,y
0,h + uk · ∇xW x,y

0,h − αk∆xW
x,y
0,h

ä
· χ(δ ρk) dx dy dt,

D = 2αk

∫ s

0

∫
T2d

χ(δ ρk) [∆xKh(x− y)W x,y
0,k,h + 2Kh(x− y)∆xW

x,y
0,k,h]dx dy dt.

Then using (8.1), simply bound

D ≤ 8αk h
−2 ‖Kh‖L1(Td ‖ρk‖L1((0,T )×Td) ≤ C αk h−2 ‖Kh‖L1 ,

leading us to choose

(8.3) εh0(k) = αk

∫ 1

h0

h−2 dh

h
.

As for B, using equation (7.2),

B = B1 − 2

∫ s

0

∫
T2d

Kh(x− y)χ(δρk) K̃h ?x,y R0 dx dy dt,

with

B1 = 2

∫ s

0

∫
T4d

Kh(x− y)χ(δρk) (uxk − uzk) · ∇xKh(x− z)Kh(y − w)

·W z,w
0 dx dy dz dw dt.

We recall that Rx,y0 = Dx
0 w

x
0 + Dy

0 w
y
0 with D0 = λKh ? (M |∇uk|), and we

thus only have to bound B1. By Lemma 6.1, we have

B1 ≤ C
∫ s

0

∫
T4d

Kh(x− y)χ(δρk) (D|x−y|u
x
k +D|x−y|u

z
k)|x− z|

· |∇Kh(x− z)|Kh(y − w)W z,w
0 dx dy dz dw dt

≤ C
∫ t

0

∫
T4d

Kh(x− y)χ(δρk) (D|x−y|u
x
k +D|x−y|u

z
k)

·Kh(x− z)Kh(y − w)W z,w
0 dx dy dz dw dt

as |x| |∇Kh| ≤ C Kh. Next, recalling that W z,w
0 = wz0 + ww0 , by symmetry,

B1 ≤ C
∫ s

0

∫
T4d

Kh(x− y)χ(δρk)D|x−y|u
z
k

·Kh(x− z)Kh(y − w)wz0dx dy dz dw dt

+ C

∫ s

0

∫
T4d

Kh(x− y)χ(δρk) (D|x−y|u
x
k +D|x−y|u

w
k − 2D|x−y|u

z
k)

·Kh(x− z)Kh(y − w) wz0dx dy dz dw dt .
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Since D|x−y|uk(z) ≤ CM |∇uk|(z), for λ large enough, the first term may be

bounded by

−λ
2

∫ s

0

∫
T2d

Kh(x− y)χ(δρk)Kh ?x (M |∇uk|w0) dx dy dt.

Use the uniform bound on ‖ρk‖Lp with p > 2 to find∫ s

0

∫
T4d

Kh(x−y)χ(δρk) (D|x−y|u
x
k +D|x−y|u

w
k − 2D|x−y|u

z
k)

·K̃hw
z
0,kdx dy dz dw dt

≤ C
∫ s

0

∫
T3d

∥∥∥D|r|u·k +D|r|u
·+r+u
k − 2D|r|u

·+v
k

∥∥∥
L2
·
Kh(r)

Kh(u)Kh(v) dr du dv dt,

where we used that w = x + (y − x) + (w − y). We now use Lemma 6.3 and,

more precisely, the inequality (6.5) to obtain∫ 1

h0

∫ s

0

∫
T3d

Kh(x− y)χ(δρk) (D|x−y|u
x
k +D|x−y|u

w
k − 2D|x−y|u

z
k)

·K̃hw
z
0,k

dh

h
dx dy dz dw dt

≤ C | log h0|1/2
∫ s

0
‖uk(t, .)‖H1 dt ≤ C | log h0|1/2.

Therefore, we have that∫ 1

h0

B
‖Kh‖−1

L1

h
dh ≤ C εh0(k) + C | log h0|1/2

− 3λ

4

∫ 1

h0

∫ s

0

∫
T
Kh(x− y)χ(δρk)M |∇uk|(z)Kh(x− z)w0(z) dz dx dy dt

dh

h
.

The computations are similar for A, and we only give the main steps. Again

using Lemma 6.1, we have∫ s

0

∫
T2d
∇Kh(x− y) · (uxk − u

y
k)χ(δρk)W

x,y
0,h dx dy dt

≤ C
∫ s

0

∫
T2d

Kh(x− y) (D|x−y| u
x
k +D|x−y| u

y
k)χ(δ ρk)W

x,y
0,h dx dy dt.

By decomposing W0,h, just as for B1, we can write∫ s

0

∫
T2d
∇Kh(x− y) · (uxk − u

y
k)χ(δρk)W

x,y
0,h dx dy dt

≤ C
∫ s

0

∫
T3d

Kh(x− y)M |∇uk|z χ(δ ρk)Kh(x− z)wz0,k dx dy dz dt

+ C

∫ s

0

∫
T4sd

Kh(x− y) (D|x−y| u
x
k +D|x−y| u

y
k +D|x−y| u

w
k − 3D|x−y| u

z
k)

· χ(δ ρk)Kh(x− z)Kh(y − w)wz0,k dx dy dz dw dt.
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The first term in the right-hand side can again be bounded by

−λ
2

∫ s

0

∫
T2d

Kh(x− y)χ(δρk)Kh ?x (M |∇uk|w0,k) dx dy dt.

The second term in the right-hand side is now integrated in h and controlled

as before thanks to the bound (6.5) in Lemma 6.3 and the uniform Lp bound

on ρk and H1 on uk. This leads to∫ 1

h0

A ‖Kh‖−1
L1

dh

h
≤ C | log h0|1/2

+
λ

4

∫ 1

h0

∫ s

0

∫
T3d

Kh(x− y)M |∇uk|z χ(δ ρk)Kh(x− z)wz0,k dx dy dz dt
dh

h
.

Now summing all the contributions we get∫ 1

h0

(A+B +D) ‖Kh‖−1
L1

dh

h
≤ C εh0(k) + C | log h0|1/2

− λ

2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)χ(δρk)Kh ?x (M |∇uk|w0,k) dx dy dt
dh

h
.

Note that indeed εh0(k) → 0 as k → ∞ for a fixed h0. This concludes the

proof in that first case.

Case (ii). In this part, we assume αk = 0. We may not assume that ρk
is smooth anymore. However by [26], since ρk and ∇uk belong to the space

L2((0, T )×Td), one may use the renormalized relation with ϕ = χ and choose

W x,y
h,k = W x,y

i,k . We then can use the identity given in Lemma 7.1. Denoting

χ̃(ξ) =
1

χ(ξ)

Å
χ(ξ)− 1

2
χ′(ξ) ξ

ã
,

for i = 1, 2, we getÅ∫
T2d

Kh(x− y)χ(δρk)W
x,y
i,k dx dy

ã
(s) ≤ Ai +Bi +Di,

where by the symmetry in x and y,

A1 =

∫ s

0

∫
T2d

(uxk − u
y
k) · ∇Kh(x− y)χ(δ ρk)W

x,y
1,k dx dy dt

− λ
∫ s

0

∫
T2d

Kh(x− y) (M |∇uk|xwx1,k +M |∇uk|y wy1,k)χ(δ ρk) dx dy dt,

while

A2 =

∫ s

0

∫
T2d

(uxk − u
y
k) · ∇Kh(x− y)χ(δ ρk)W

x,y
2,k dx dy dt

− λ
∫ s

0

∫
T2d

Kh(x− y) (M |∇uk|x +M |∇uk|y)wx1,k w
y
1,k)χ(δ ρk) dx dy dt.
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Furthermore,

B1 = 2

∫ s

0

∫
T2d

Kh(x− y)
Ä
∂tw

x
1,k + uxk · ∇xwx1,k

+ 2div xu
x
k χ̃(δρk)w

x
1,k + λM |∇uk|xwx1,k

ä
χ(δ ρk) dx dy dt,

while

B2 = 2

∫ s

0

∫
T2d

Kh(x− y)
Ä
∂tw

x
1,k + uxk · ∇xwx1,k

+ div xu
x
k χ̃(δρk)w

x
1,k + λM |∇uk||xwx1,k

ä
wy1,k χ(δ ρk) dx dy dt.

Finally,

D1 = −2

∫ s

0

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)
(1

2
χ′(δ ρk) ρ̄k

+ χ(δρk)−
1

2
χ′(δ ρk) δρk

)
wx1,k dx dy dt

and

D2 = −
∫ s

0

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)χ

′(δ ρk) ρ̄kw
x
1,k w

y
1,k dx dy dt.

Note that we have split a null contribution into several non-null parts in terms

of the maximal function, namely, the ones with M |∇uk|2. Notice also the addi-

tional terms in D1 that come from cross products such as divuk(y) χ̃ χw1(x),

which would pose problems in B1.

The contributions D1 and D2 are already under the right form. Using

equation (7.2) with (7.4), one may directly bound

B1 ≤ −2λ

∫ s

0

∫
T2d

Kh(x− y) ((ρxk)γ̃ + P̃ xk ρ
x
k +Rxk)wx1,k χ(δ ρk) dx dy dt

and

B2 ≤ −2λ

∫ s

0

∫
T2d

Kh(x− y) ((ρxk)γ̃ + P̃ xk ρ
x
k +Rxk)wx1,k w

y
1,k χ(δ ρk) dx dy dt,

giving the desired result by symmetry of the expression in x and y. The term

A2 is straightforward to handle as well. Use (6.1) to get

A2≤
∫ s

0

∫
T2d
|∇Kh(x− y)| |x− y| (M |∇uk|x+M |∇uk|y)χ(δ ρk)W

x,y
2,k dx dy dt

− λ
∫ s

0

∫
T2d

Kh(x− y) (M |∇uk|x +M |∇uk|y)wx1,k w
y
1,k χ(δ ρk) dx dy dt.

Since |x| |∇Kh| ≤ CKh, by taking λ large enough, one obtains

A2 ≤ 0.
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The term A1 is more complex because it has no symmetry. By Lemma 6.1,

A1 ≤ C
∫ s

0

∫
T2d
|∇Kh(x−y)| |x−y| ((D|x−y| uk)x+(D|x−y| uk)

y)

· χ(δ ρk)w
x
1,k dx dy dt

− λ
∫ s

0

∫
T2d

Kh(x− y)M |∇uk|xwx1,k χ(δ ρk) dx dy dt

+ similar terms in wy1,k.

The key problem here is the Dh uk(y)wx1,k term, which one has to control by

the term M |∇uk|(x)wx1,k. This is where integration over h and the use of

Lemma 6.3 is needed. (The other term in wy1;k is dealt with in a symmetric

manner.) For that we will add and subtract an appropriate quantity to see the

quantity (D|x−y|uk)
x − (D|x−y|uk)

y.

By the definition of Kh,

|z| |∇Kh(z)| ≤ C Kh(z)

and by (8.1),

χ(δρk) ≤ C (ρxk + ρyk)

with ρk ∈ L2 uniformly and w1 uniformly bounded. Hence using Cauchy-

Schwartz and denoting z = x− y,∫ 1

h0

A1

‖Kh‖L1

dh

h
≤ 2C

∫ 1

h0

∫ s

0

∫
Td
Kh(z) ‖(D|z| uk)· − (D|z|uk)

·+z‖L2(Td) dz dt
dh

h

+ 4C

∫ s

0

∫
T2d
Kh0(x− y) (D|x−y| uk)

x χ(δ ρk)W
x,y
1,k dx dy dt

− 2λ

∫ s

0

∫
T2d
Kh0(x− y) (M |∇uk|)xwx1,k χ(δ ρk) dx dy dt

≤ 2C

∫ 1

h0

∫
Td
Kh(z) ‖(D|z| uk)· − (D|z|uk)

·+z‖L2 dz
dh

h

by taking λ large enough since Lemma 6.2 bounds (D|x−y| uk)
x by (M |∇uk|)x.

Finally, using Lemma 6.3,∫ 1

h0

A1

‖Kh‖L1

dh

h
≤ C | log h0|1/2

∫ s

0
‖uk(t, ·)‖H1dt.

Summing up Ai+Bi+Di and integrating against
dh

‖Kh‖L1 h
for i = 1 concludes

the proof. �

Proof of Lemma 8.2. In this part, we again assume αk = 0 and still

use [26] to obtain the renormalized relation of Lemma 7.1 with ϕ = χa and

W x,y
k,h = Kh ?Wa,k = wa,k,h +wa,k,h. With this exception the proof follows the

lines of point (i) in Lemma 8.1, so we only sketch it here.
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From Lemma 7.1, we get[∫ 1

h0

∫
T2d

Kh(x− y)

h
(wxa,k,h + wya,k,h)χa(δρk) dx dy dh

]∣∣∣∣
t=s

≤
(∫ 1

h0

∫
T2d

Kh(x− y)

h
(wxa,k,h + wya,k,h)χa(δρk) dx dy dh

)∣∣∣∣
t=0

+A+B +D + I + II +Ta,

with the terms

A =

∫ s

0

∫
T2d

(uxk − u
y
k) · ∇Kh(x− y)χa(δρk)(w

x
a,k,h + wya,k,h) dx dy dt,

while

B = 2
[ ∫ s

0

∫
T3d

Kh(x− y)χa(δρk)(u
x
k − uzk) · ∇xKh(x− z)wza,k dx dy dz dt

− λ
∫ s

0

∫
T2d

Kh(x− y)χa(δρk)(Kh ? (M |∇uk|wa,k))x dx dy dt
]

and

D = −λ
∫ s

0

∫ 1

h0

∫
T2d

χa(δρk) [Kh ? ((|divuk|+ |Aµργ |)wa,k )]x

·Kh(x− y) dx dy
dh

h
dt

+ λ

∫ s

0

∫ 1

h0

∫
T2d

wa,k,h(x)χa(δρk) (Kh ? (|divuk|+ |Aµργ |))x

·Kh(x− y)dx dy
dh

h
dt.

The dissipation term is under the right form

Ta = −λ
∫ s

0

∫ 1

h0

∫
T2d

wxa,k,h χa(δρk) [Kh ? (|divuk|+ |Aµργ |)]x

·Kh(x− y) dx dy
dh

h
dt,

and by symmetry, so are

I = −1

2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(divuxk − divuyk)χ

′
a(δρk) ρ̄k w

x
a,k,h dx dy dt dh

and

II = −1

2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(divuxk + divuyk)(χ

′
a(δρk)δρk − 2χa(δρk))

·wxa,k,h dx dy dt dh.

The terms A and B are treated exactly as in case (i) of Lemma 8.1; they only

require the higher integrability p > γ + 1 + `.
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The only additional term is hence D, which is required in order to write

the dissipation term Ta in the right form. D is bounded directly by point (iv)

in Lemma 7.2. Thus

A+B +D ≤ C | log h0|θ

for some 0 < θ < 1, which concludes the proof. �

8.2. The control on the effective viscous flux. Before coupling the previous

estimate with the equation on divuk, we start with a lemma that will be used

in every situation as it controls the regularity properties of

Fk = ∆−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)) ,

per

Lemma 8.3. Assume that ρk solves (5.1), that (5.5)–(5.6) hold, and (5.4)

with γ > d/2. Assume, moreover, that Φ ∈ L∞([0, T ]×T2d) and that

Cφ :=

∥∥∥∥∫
Td
Kh(x− y) Φ(t, x, y) dy

∥∥∥∥
W 1,1(0,T ;W−1,1

x (Td))

+

∥∥∥∥∫
Td
Kh(x− y) Φ(t, x, y) dx

∥∥∥∥
W 1,1(0,T ;W−1,1

y (Td))
<∞.

Then there exists θ > 0 such that∫ s

0

∫
T2d

Kh(x− y) Φ(t, x, y) (Fk(t, y)− Fk(t, x)) dx dy dt

≤ C ‖Kh‖L1 (hθ + εh(k))
Ä
‖Φ‖L∞((0,T )×T2d) + CΦ

ä
,

with εh(k)→ 0 as k → +∞ for a fixed h (and in fact εh(k) = 0 if αk = 0).

The proof below makes heavy use of some special notation, which we recall

here for convenience. We will often denote exponents q+0 or r−0. This means

that the estimate holds for some exponent q′ > q or some exponent r′ < r.

The exact values of q′ or r′ are irrelevant for our proof. We are indeed using

many interpolations between Sobolev spaces that are not exact. (To have the

precise exponent one would have to use Besov spaces instead; see, for instance,

[47].) We also use θ as a generic but positive exponent whose value may change

from line to line. For example, we may say that a function f belongs to L1+0
t,x ,

meaning that f ∈ Lqt,x for some q > 1. And for any r > 1, we freely use

interpolation arguments of the type

‖f‖L1+0
t,x
≤ ‖f‖1−θ

L1
t,x
‖f‖θLrt,x .

Proof. The proof is divided in four steps. The first one concerns a control

on ρk|uk − uk,η|, where uk,η is a regularization of uk defined later-on. The

second step concerns the proof of an estimate for Φx =
Ä
Kh ? Φ

ä
(t, x) and

Φy =
Ä
Kh ? Φ

ä
(t, y) in L2

tL
p̄′
x with p̄′ = p̄/(p̄ − 1). The third step concerns
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a control with respect to h when Φx, Φy in L2
tL

p̄′
x ∩ W

1,+∞
t W−1,∞−0 with

p̄′ = p̄/(p̄−1). The last term is the end of the proof obtained by interpolation.

(i) A control on ρk|uk − uk,η| where uk,η is a regularization in space and

time defined later-on. Choose a kernel Lη ∈ C∞c (R+ × R+) with Lη ≥ 0, with∫
R+ Lη(t, s) ds = 1 such that Lη(t, s) = 0 if |t − s| ≥ η for smoothing in time.

We still denote, with a slight abuse of notation,

Lη ?t uk(t) =

∫
R+

Lη(t, s)uk(s) ds.

Now uk is uniformly bounded in L2
tH

1
x ⊂ L2

tL
q
x with 1/q = 1/2− 1/d (and in

L2
tL

q
x for any q < ∞ if d = 2). Hence u2

k ∈ L1
tL

q/2, and since γ > d/2, all ex-

pressions of the type ρk uk or ρk |uk|2 are well defined and even belong to L1+0
t,x ,

respectively L1
t L

1+0
x . The same applies if we replace uk by any convolution

Lη ?t,x uk uniformly in the parameter η.

For this reason one has∫
ρk(t, x)

(uk(t, x)− uk(s, x))2

1 + |uk(t, x)|+ |uk(s, x)|
Lη(t, s) dt ds dx

≤
∫
ρk(t, x) (uk(t, x)− uk(s, x))Lη(t, s)Lη′ ?x

uk(t, .)− uk(s, .)
1 + |uk(t, .)|+ |uk(s, .)|

+

∫
ρk(t, x) (uk(t, x)−uk(s, x))Lη(t, s)

∣∣∣Lη′ ?x g(t, s, x)− g(t, s, x)
∣∣∣ dt ds dx,

with g(t, s, x) = uk(t,x)−uk(s,x)
1+|uk(t,x)|+|uk(s,x)| . Since γ > d/2,∫

ρk(t, x) (uk(t, x)− uk(s, x))Lη(t, s)
∣∣∣Lη′ ?x g(t, s, x)− g(t, s, x)

∣∣∣ dt ds dx
≤ 2 ‖ρk uk‖L1+0

t,x

Å∫
Lη(t, s)

∣∣∣Lη′ ?x g(t, s, x)− g(t, s, x)
∣∣∣q dt ds dxã1/q

for some q <∞. Since ‖g‖L∞ ≤ 1, we have by interpolationÅ∫
Lη(t, s)

∣∣∣Lη′ ?x g(t, s, x)− g(t, s, x)
∣∣∣q dt ds dxã1/q

≤ ‖Lη′ ?x uk − uk‖
2/q

L2
t,x
≤ C (η′)2/q ‖uk‖

2/q

L2
tH

1
x
.

Hence for some θ > 0,∫
ρk(t, x) (uk(t, x)− uk(s, x))Lη(t, s)

·
∣∣∣Lη′ ?x g(t, s, x)− g(t, s, x)

∣∣∣ dt ds dx ≤ C (η′)θ.

Note that

‖∂tρk‖L1
tW
−1,1
x
≤ C,



644 DIDIER BRESCH and PIERRE–EMMANUEL JABIN

and by interpolation, as γ > d/2 and thus γ > 2d/(d + 2), there exists θ > 0

such that

‖ρk‖Hθ
tH
−1
x
≤ C.

Thus∫
ρk(t, x)

(uk(t, x)− uk(s, x))2

1 + |uk(t, x)|+ |uk(s, x)|
Lη(t, s) dt ds dx

≤
∫

(ρk(t)uk(t, x)− ρk(s)uk(s, x))Lη(t, s)Lη′ ?
uk(t, .)− uk(s, .)

1 + |uk(t, .)|+ |uk(s, .)|

+ C (η′)θ + C
ηθ

η′d
‖uk‖L2

tH
1
x
.

Using (5.6), one deduces that∫
ρk(t, x)

(uk(t, x)− uk(s, x))2

1 + |uk(t, x)|+ |uk(s, x)|
Lη(t, s) dt ds dx ≤ Cη′θ + C

ηθ

η′d
+ C

η

η′d
.

Optimizing in η′ (taking η′ = ηθ
′

for the best exponent θ′), one has that for

some other exponent θ > 0,∫
ρk(t, x)

(uk(t, x)− uk(s, x))2

1 + |uk(t, x)|+ |uk(s, x)|
Lη(t, s) dt ds dx ≤ C ηθ.

We can now remove the denominator in 1 + |uk(t, x)| + |uk(s, x)| simply by

noticing that

(uk(t, x)− uk(s, x))2

1 + |uk(t, x)|+ |uk(s, x)|
≤ |uk(t, x)− uk(s, x)|.

Hence ∫
ρk(t, x) |uk(t, x)− uk(s, x)| Lη(t, s) dt ds dx ≤ Cηθ,

and this directly implies, in particular, that

(8.4)

∫
ρk(t, x) |uk(t, x)− Lη ?t uk(t, x)| dt dx ≤ Cηθ.

For some ν > 0, define
uk,η = Lην ?x Lη ?t uk.

We recall that since γ > d/2, one has for any f ∈ L2
tH

1
x,∫

ρk(t, x) f(t, x) dt dx ≤ ‖ρk‖L∞t Lγx ‖f‖
1−0
L2
tH

1
x
‖f‖L2

t,x
.

On the other hand,

‖uk,η − Lη ?t uk‖L2
t,x
≤ ην ‖uk‖L2

tH
1
x
.

Therefore, ∫
ρk(t, x) |uk,η(t, x)− Lη ?t uk(t, x)| dt dx ≤ C ηθ,

again for some exponent θ > 0.
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Combining this with (8.4), for some θ > 0, we have that∫
ρk(t, x) |uk(t, x)− uk,η(t, x)| dx dt ≤ C ηθ.

Note again that since γ > d/2, one actually has that

‖ρk f‖Lqt,x ≤ C ‖ρk‖L∞t Lγx ‖f‖L2
tH

1
x

for some q > 1, and hence by interpolation,

‖ρk f‖L1+0
t,x
≤ C ‖ρk f‖θL1

t,x
‖ρk‖θL∞t Lγx ‖f‖

1−θ
L2
tH

1
x

still for some (possibly small) positive θ > 0.

Applying this to f = uk(t, x) − uk,η(t, x), we finally deduce that there

exists θ > 0 such that

(8.5) ‖ρk (uk − uk,η)‖L1+0
t L1+0

x
≤ C ηθ.

(ii) The case where Φx, Φy is only in L2
tL

p̄′
x with p̄′ = p̄/(p̄−1). We recall

that p̄ is the exponent in (5.6). Denote

IΦ =

∫ s

0

∫
T2d

Kh(x− y) Φ(t, x, y) (Fk(t, y)− Fk(t, x)) dx dy dt,

which can be seen as a linear form on Φ. Recall as well that

Φx =

∫
Td
Kh(x− y) Φ(t, x, y) dy, Φy =

∫
Td
Kh(x− y) Φ(t, x, y) dx.

By (5.6), Fk is uniformly bounded in L2
tL

p̄
x. Therefore,

(8.6) |I Φ| ≤ C ‖Kh‖L1

Å
‖Φx‖L2

tL
p̄′
x

+ ‖Φy‖L2
tL

p̄′
x

ã
,

1

p̄′
= 1− 1

p̄
> 0.

(iii) The case Φx, Φy in L2
tL

p̄′
x ∩ W

1,+∞
t W−1,∞−0 with p̄′ = p̄/(p̄ − 1).

Denote

C̃Φ = ‖Φx‖L2
tL

p̄′
x

+ ‖Φy‖L2
tL

p̄′
x

+ ‖Φx‖W 1,∞
t W−1,∞−0 + ‖Φy‖W 1,∞

t W−1,∞−0

and

R1 = ∆−1 div ρk (uk − uk,η).
Observe that by (8.5) and integration by part in time,∫ s

0

∫
Td

Φx ∂tR1 dx dt ≤ C̃Φ η
θ ‖Kh‖L1 .

The same procedure can be performed with div (ρk uk ⊗ uk). Denoting

Fk,η = ∆−1 div (∂t(ρk uk,η) + div (ρk uk ⊗ uk,η)) ,

one then has

I Φ ≤C̃Φ ‖Kh‖L1 ηθ

+

∫ s

0

∫
T2d

Kh(x− y) Φ(t, x, y) (Fk,η(t, y)− Fk,η(t, x)) dx dy dt.
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However using (5.1),

∂t(ρk uk,η) + div (ρk uk ⊗ uk,η) = ρk(∂tuk,η + uk · ∇uk,η) + αk uk,η ∆ρk.

For some exponent κ,∥∥∥∆−1div (ρk(∂tuk,η + uk · ∇uk,η))
∥∥∥
L1
tW

1,1
x

≤ C η−κ

and

αk
∥∥∥∆−1div (αk uk,η ∆ρk)

∥∥∥
L2
t L

2
x

≤ C η−κ
√
αk.

Therefore,∫ s

0

∫
T2d

Kh(x− y) Φ(t, x, y) (Fk,η(t, y)− Fk,η(t, x)) dx dy dt

≤ C̃Φ η
−κ ‖Kh‖L1 (h+

√
αk)

1−0.

Finally

I Φ ≤ C̃Φ ‖Kh‖L1

Ä
ηθ + η−κ (h+

√
αk)
ä
,

and by optimizing in η, there exists θ > 0 such that

(8.7) I Φ ≤ C ‖Kh‖L1 (hθ+εh(k))
(
‖Φx‖W 1,∞

t W−1,∞−0 + ‖Φy‖W 1,∞
t W−1,∞−0

)
,

with εh(k)→ 0 as k → +∞ for a fixed h.

(iv) Interpolation between the two inequalities (8.6) and (8.7). For any

s ∈ (0, 1), there exists θ > 0 such that

I Φ ≤ C ‖Kh‖L1 (hθ + +εh(k))
(
‖Φx‖L2

tL
p̄′
x

+ ‖Φy‖L2
tL

p̄′
x

+ ‖Φx‖W s,q+0
t W−s,r+0

x
+ ‖Φy‖W s,q+0

t W−s,r+0
x

)
,

with
1

q
=

1− s
2

,
1

r
=

1− s
p̄′

and εh(k) → 0 as k → +∞ for a fixed h. On the other hand if, for ex-

ample, Φx belongs to L∞t,x and to W 1,1
t W−1,1

x , then by interpolation Φx is in

W
s,1/s−0
t W

−s,1/s−0
x . Hence

Cφ = ‖Φx‖W 1,1
t W−1,1

x
+ ‖Φy‖W 1,1

t W−1,1
y

controls the W s,q+0
t W−s,r+0

x norm provided

s < 1/q =
1− s

2
, s < 1/r =

1− s
p̄′

.

One can readily check that this is always possible by taking s small enough (but

strictly positive) as p̄ > 1 and hence p̄′ <∞. This concludes the proof. �
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8.3. The coupling with the pressure law. We are able to handle all type of

weights at the same time here. For convenience, we denote

χx,y1 =
1

2
χ′(δρk) ρ̄k + χ(ρk)−

1

2
χ′(δρk) δρk.

(1) In the case without diffusion, one has

Lemma 8.4. Assume that ρk solves (5.1) with αk = 0 and that (5.6),

(5.5), and (5.4) with γ > d/2 and p > 2 hold. Assume, moreover, that u

solves (5.2) with µk compact in L1 and satisfying (5.3), Rk compact in L1, Pk
satisfying (5.9).

(i) Then there exists a continuous function ε(.) with ε(0) = 0, depending only

on our uniform bounds and the smoothness of µk and Rk such that

−
∫ s

0

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)χ

x,y
1 wx1,k dx dy dt ≤ C ‖Kh‖L1 ε(h)

+C

∫ s

0

∫
T2d

Kh(x− y)
Ä
1 + (ρxk)γ̃ + P̃ xk ρ

x
k + Θx

k

ä
χ(δρk)w

x
1,k dx dy dt.

(ii) There exist θ > 0 and a continuous function ε with ε(0) = 0, still depend-

ing only on p and the smoothness of µk and Rk, such that

−
∫ s

0

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)χ

′(δρk) ρ̄k w
x
1,k w

y
1,k dx dy dt

≤ C ‖Kh‖L1

Ä
ε(h) + hθ

ä
+ C

∫ s

0

∫
T2d

Kh(x− y)
(
1 + (ρxk)γ̃ + P̃ xk ρ

x
k + Θx

k + (ρyk)
γ̃ + P̃ yk ρ

y
k + Θy

k

)
· χ(δρk)w

x
1,k w

y
1,k dx dy dt.

For instance, if µk and Rk belong to W s,1 for some s > 0, then one may

take ε(h) = hθ for some θ > 0.

(2) In the case with diffusion, more terms have to be considered, but one

can prove a very similar type of result with

Lemma 8.5. Assume that ρk solves (5.1) and that (5.6), (5.5), (5.4) with

γ > d/2 and p > 2 hold. Assume, moreover, that u solves (5.2) with µk
compact in L1 and satisfying (5.3), Rk compact in L1, Pk satisfying (5.8).

Then there exists a continuous function ε(.) with ε(0) = 0 and depending only
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on the smoothness of µk and Rk such that

− 1

2

∫ s

0

∫
T4d

Kh(x− y) (div xu
x
k − div yu

y
k)χ

′(δρk)

· ρ̄kW x,y
0,k Kh(x− z)Kh(y − w) dx dy dz dw dt

− 1

2

∫ t

0

∫
T4d

Kh(x− y)(div xu
x
k + div yu

y
k)(χ

′(δρk)δρk − 2χ(δρk))

·W z,w
0,k Kh(x− z)Kh(y − w) dx dy dz dw dt

− λ

2

∫ s

0

∫
T3d

Kh(x− y)χ(δρk)Kh(x− z)M |∇uk|z wz0,k dx dz dt

≤ C ‖Kh‖L1 (ε(h) + εh(k)) + C

∫ s

0

∫
T4d

Kh(x− y)χ(δρk)W
z,w
0,k

·Kh(x− z)Kh(y − w) dx dy dz dw dt,

with εh(k)→ 0 as k →∞ for a fixed h.

Proof of Lemmas 8.4 and 8.5. The computations are very similar for (i)

and (ii) in Lemma 8.4 and for Lemma 8.5. For simplicity, in order to treat the

proofs together as much as possible, we denote

Gx,y1,k = χx,y1 wx1,k, Gx,y2,k = χ′(δρk) ρ̄k w
x
1,k w

y
1,k,

Gx,y0,k =
1

2
χ′(δρk) ρ̄k

∫
T2d

W z,w
0,k Kh(x− z)Kh(y − w) dz dw.

The first step is to truncate: Denote ILk = φ(ρxk/L)φ(ρyk/L) for some smooth

and compactly supported φ,

−
∫ s

0

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)G

x,y
i,k dx dy dt

≤ C ‖Kh‖L1 L−θ0 −
∫ s

0

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)G

x,y
i,k I

L
k dx dy dt.

Here due to the property of χ, for i = 0, 1, 2, Gx,yi,k ≤ C (ρxk + ρyk) (even

G2 ≤ 2) and consequently, as divuk ∈ L2 uniformly, only p > 2 is required

with θ0 = (p − 2)/2 > 0. Introduce an approximation µk,η of µk, satisfying

(5.3) and such that

‖µk,η‖W 2,∞
t,x
≤ C η−2, ‖µk,η − µk‖L1 ≤ ε0(η),∫ T

0

∫
T2d

Kh(x− y) |µxk,η − µ
y
k,η| dx dy dt ≤ ‖Kh‖L1 ε0(h),

(8.8)

from (5.13). Use (5.2) to decompose

−
∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)G

x,y
i,k I

L
k dx dy = 2Ai + 2Bi + 2Ei,
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with

Ai = −
∫
T2d

Kh(x− y) (Pk(ρ
x
k))− Pk(ρyk))G

x,y
i,k

ILk
µxk,η

dx dy

and

Bi =

∫
T2d

Kh(x− y) R̃x,yk Gx,yi,k
ILk
µxk,η

dx dy,

where

R̃x,yk = Rxk−R
y
k+µyk µ

x
k,η div yu

y
k

(
1

µxk,η
− 1

µyk

)
−µxk µxk,η div xu

x
k

(
1

µxk,η
− 1

µxk

)
.

Finally,

Ei =

∫
Kh(x− y) (F yk − F

x
k )Gx,yi,k

ILk
µxk,η

dx dy,

with Fk the viscous effective flow, namely,

Fk = ∆−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)).

(I) For Bi by the compactness of Rk, µk, estimates (8.8) and (5.13), and

by (5.3),

Bi ≤ C L
∫ t

0

∫
T2d

Kh(x− y) |R̃x,yk | dx dy dt

≤ C L (ε0(h) + ε0(η)) ‖Kh‖L1(Td).

Note that again |Gx,yi,k | ≤ C (ρk(x) + ρk(y)) for i = 0, 1, 2.

(II) For Ei, we use Lemma 8.3 by simply defining

Φi(t, x, y) = Gx,yi,k I
L
k

1

µxk,η
.

By (5.3),

‖Φi‖L∞((0,T )×T2d) ≤ C L.
As for the time derivative of Φ, for i = 1, 2, Gi is a combination of functions

of ρk(t, x), ρk(t, y) and wi, which all satisfy the same transport equation (with

different right-hand sides). By (5.1),

partialtG
x,y
i,k + div x

Ä
uxk G

x,y
i,k

ä
+ div y

(
uykG

x,y
i

)
= fx,y1,i,k div xu

x
k + fx,y2,i,k div yu

y
k + fx,y3,i,kD

x
i,k + f4,iD

y
i,k,

where the Di,k are the penalizations introduced in Section 7.2 and the fx,yn,i,k
are again combinations of functions of ρxk, ρyk, w

x
i,k and wyi,k. Finally by the

smoothness of µk,η,

∂tΦ
x,y
i,k + div x

Ä
uxk Φx,y

i,k

ä
+ div y

Ä
uyk Φx,y

i,k

ä
= f̃1,i div xu

x
k + f̃2,i div yu

y
k + f̃3,iD

x
i,k + f̃4,iD

y
i,k + Φx,y

i,k gη,
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where every f̃n,i contains a factor ILk or a derivative of ILk and thus, for instance,

‖f̃n,i,k‖L∞ ≤ C L ∀n, i.

It is then easy to check that the constant CΦi as defined in Lemma 8.3 is

bounded by C Lη−1.

The case i = 0 is slightly more complicated as W0 is integrated against

Kh so the equation on Φ0 involves non-local terms and we have to take into

account extra terms as mentioned in the statement of Lemma 8.4. By (7.2),

denoting w0,k,h = Kh ? w0,k,

∂tw
x
0,k,h+uxk ·∇xwx0,k,h−αk∆xw

x
0,k,h = −Kh?(D0w0,k)+Rxh−Kh?(divuk w0,k),

with

Rxh =

∫
Td
∇Kh(x− z) · (uxk − uzk)wz0,k dz.

Remark that Rh is uniformly bounded in L2
t,x by usual commutator estimates.

Finally as µk,η is smooth in time, one has

∂tΦ
x,y
0,k + div x

Ä
uxk Φx,y

0,k

ä
+ div y

Ä
uyk Φx,y

0;k

ä
− αk (∆x + ∆y) Φx,y

0,k

= f1,0 div xuk(t, x) + f2,0 div yuk(t, y) + αk
Ä
f3,0 |(∇xρk)x|2 + f4,0 |(∇xρk)y|2

ä
− Φρ

µk,η

Ä
Kh ? (D0w0,k) +Rh −Kh ? (divuk w0,k)

ä
− 2

αk
µk,η
∇xΦρ · ∇xw0,k,h + Φ0 gη,

where Φρ = δρk ρ̄k I
L
k , gη is a function involving first and second derivatives

of µk,η in t and x and ∇uk. The fj,0 are combinations of functions of ρk(t, x)

and ρk(t, y), multiplied by w0,h, and involving φ(ρk(x)/L), φ′(ρk(x)/L), or

φ′′(ρk(x)/L) and the corresponding term with ρk(y). By the L∞ bounds on

Φρ, w0, each fj,0 and by (5.5), one obtains∥∥∥∥∂t ∫
Td
Kh(x− y) Φx,y

0,k dy

∥∥∥∥
L1
t W

−1,1
x

≤ C Lη−1.

Therefore Cφ ≤ C Lη−1. Thus for all three cases, Lemma 8.3 yields

(8.9) Ei ≤ C Lη−1 ‖Kh‖L1 (hθ + εh(k))

for some θ > 0 and εh(k) = 0 if αk = 0.

(III) The term A0: End of proof of Lemma 8.4. The terms Ai are where

lies the main difference between Lemmas 8.4 and 8.5 as Pk is not monotone in

the first case and monotone after a certain threshold in the second. For this

reason we now proceed separately for Lemmas 8.5 and 8.4. In the case with
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diffusion for Lemma 8.5, there also exist extra terms to handle, namely, J + I

with

J = −λ
2

∫ s

0

∫
T3d

Kh(x− y)χ(δρk)Kh(x− z)M |∇uk|z wz0,k dx dy dz dt

and

I = −1

2

∫ s

0

∫
T4d

Kh(x− y) (divuxk + divuyk)

· (χ′(δρk) δρk − 2χ(δρk)) W
x,y
0,k Kh(x− z)Kh(y − w) dx dy dz dw dt.

We decompose this last term in a manner similar to what we have just done,

first of all by introducing the truncation of ρk:

I ≤ C ‖Kh‖L1 L−θ0

· (χ′(δρk) δρk − 2χ(δρk)) I
L
k W

x,y
0,k Kh(x− z)Kh(y − w) dx dy dz dw dt,

again with θ0 = (p− 2)/2. Now introduce the µk:

I ≤ C ‖Kh‖L1 Lθ −
1

2

∫ s

0

∫
T4d

Kh(x− y) (µxkdiv xu
x
k + µykdiv xu

y
k)

· ILk
µk,η(t, x)

(χ′(δρk) δρk − 2χ(δρk)) W
x,y
0,k

·Kh(x− z)Kh(y − w) dx dy dz dw dt

+
1

2

∫ s

0

∫
T4d

Kh(x− y)Hx,y
k (χ′ δρk − 2χ(δρk)) I

L
k W

x,y
0,k Kh(x− z)

·Kh(y − w) dx dy dw dz dt,

where

Hx,y
k = µxkdiv xu

x
k

(
1

µxk,η
− 1

µxk

)
− µykdiv yu

y
k

(
1

µyk
− 1

µxk,η

)
.

By the compactness of µk, one has that∫ s

0

∫
T4d

Kh(x− y)Hx,y
k (χ′ δρk − 2χ(δρk)) W

x,y
0,k Kh(x− z)

·Kh(y − w) dx dy dw dz dt

≤ ‖Kh‖L1 ε0(h) ‖uk‖L2
t H

1
x
‖ρk‖L2

t,x
≤ C ε0(h) ‖Kh‖L1 .

This implies that

I ≤ −1

2

∫ s

0

∫
T4d

Kh(x− y) (µxkdiv xu
x
k + µykdiv yu

y
k)

· I
L
k

µxk,η
(χ′(δρk) δρk − 2χ(δρk)) W

x,y
0,k Kh(x− z)Kh(y − w) dx dy dz dw dt

+ C ‖Kh‖L1(L−θ + ε0(h)).
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Using (5.2) or, namely, that µkdivuk = Fk+Rk+Pk(ρk), the quantity A0+I+J

may be written

(8.10) A0 + I + J ≤ C ‖Kh‖L1(L−θ + ε0(h)) + I1 + I2,

with

I1 = A0 −
1

2

∫ s

0

∫
T4d

Kh(x− y) (P
x,ρxk
k + P

y,ρy
k

k )
ILk
µxk,η

· (χ′(δρk) δρk − 2χ(δρk)) W
x,y
0,k Kh(x− z)Kh(y − w) dx dy dw dz dt

and

I2 = −1

2

∫ s

0

∫
T4d

Kh(x− y) (F xk +Rxk + F yk +Ryk)
ILk
µxk,η

· (χ′(δρk) δρk − 2χ(δρk)) W
x,y
0,k Kh(x− z)Kh(y − w) dx dy dw dz dt

− λ

2

∫ s

0

∫
T3d

Kh(x− y)χ(δρk)Kh(x− z)M |∇uk|z wz0,k dx dy dz dt.

In this case with diffusion, because Pk is essentially monotone, the term A0 is

mostly dissipative and helps control the rest. More precisely,

I1 = −1

2

∫ s

0

∫
T2d

[
Kh(x− y)

î
(P

x,ρxk
k − P y,ρ

y
k

k )χ′(δρk)ρk

+ (P
x,ρxk
k + P

y,ρy
k

k )(χ′(δρk)δρk − 2χ(δρk))
ó

· I
L
k

µxk,η

∫
T2d

W x,y
0,k Kh(x− z)Kh(y − w)dz dw

]
dx dy dt.

As Pk ≥ 0 and by (8.1), χ′(δρk)δρk − 2χ(δρk) ≥ −χ′(δρk)δρk, thus

(P
x,ρxk
k )− P y,ρ

y
k

k ))χ′ρ̄k + (P
x,ρxk
k + P

y,ρy
k

k )(χ′δρk − 2χ(δρk))

≥ χ′(δρk)
ï
(P

x,ρxk
k − P y,ρ

y
k

k ) ρ̄k − (P
x,ρxk
k + P

y,ρy
k

k ) δρk

ò
.

Without loss of generality, we may assume that ρk(x) ≥ ρk(y) and hence

χ′(δρk) ≥ 0. Develop

(P
x,ρxk
k − P y,ρ

y
k

k ) ρ̄k − (P
x,ρxk
k + P

y,ρy
k

k ) δρk = 2P
x,ρxk
k ρyk − 2P

y,ρy
k

k ρxk.

We now use the quasi-monotonicity (5.8) of P x,sk /s. First of all, if ρ0 ≤ ρyk ≤ ρxk,

then necessarily Pk depends only on ρxk or ρyk plus P̃k. Thus

(8.11) P
x,ρxk
k ρyk − P

y,ρy
k

k ρxk ≥ −|P̃ xk − P̃
y
k |.
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If ρyk ≤ ρ0, then by (5.8), P x,sk →∞ as s→∞ while P
y,ρy

k
k is bounded. Hence

there exists ρ̄ large enough with respect to ρ0, such that if ρxk ≥ ρ̄, then again

P
x,ρxk
k ρyk − P

y,ρy
k

k ρxk ≥ 0.

The only case where one does not have the right sign is hence where both

ρxk and ρyk are bounded by ρ̄ and ρ0. Therefore, using the local regularity of

Pk given by (5.8),

(8.12) (P
x,ρxk
k − P y,ρ

y
k

k ) ρ̄k − (P
x,ρxk
k + P

y,ρy
k

k ) δρk ≥ −P̄ |δρk| −Qk(t, x, y).

Introducing estimates (8.11) and (8.12) in I1 yields

I1 ≤ P̄
∫ s

0

∫
T2d

Kh(x− y) (|P̃ xk − P̃
y
k |+Qk + |δρk|)

|χ′(δρk)| ILk
µxk,η

·
ï∫
T2d

W z,w
0,k Kh(x− z)Kh(y− w) dz dq

ò
dx dy dt

≤ ε0(h) ‖Kh‖L1

+ P̄

∫ s

0

∫
T4d

Kh(x− y)χ(δρk)W
z,w
0,k Kh(x− z)Kh(y − w) dx dy dz dw dt.

(8.13)

Now turning to I2, we observe that µkM |∇uk| ≥ µk divuk ≥ Fk + Rk and

that χ(δk) ≥ (2χ(δk) − χ′(δk) δk)/C. Therefore for λ large enough, using

W z,w
0,k = wz0,k + ww0,k and the symmetry, we find

I2 ≤ −
1

2

∫ t

0

∫
T4d

Kh(x− y)

·
(
F xk − F zk +Rxk −Rzk + F yk − F

z
k +Ryk −R

z
k

)
· I

L
k

µxk,η
(χ′(δρk) δρk − 2χ(δρk))W

z,w
0,k Kh(x− z)Kh(y − w).

The differences in the Rk are controlled by the compactness of Rk and the

differences in the effective viscous flux Fk by Lemma 8.3 as for the terms Ei.

Hence, finally

(8.14) I2 ≤ C ‖Kh‖L1 (ε0(h) + Lη−1 hθ).

Conclusion of proof of Lemma 8.5. We sum up the contributions from B0

in (8.3), E0 in (8.9), A0 + I + J in (8.10) together with the bounds on I1 in
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(8.13) and I2 in (8.14) to obtain

− 1

2

∫ s

0

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)G

x,y
0,k dx dy dt

− 1

2

∫ s

0

∫
T4d

Kh(x− y) (div xu
x
k + div yu

y
k) (χ′(δρk) δρk − 2χ(δρk))

·W z,w
0,k Kh(x− z)Kh(y − w) dx dy dw dz dt

− λ

2

∫ s

0

∫
T3d

Kh(x− y)χ(δρk)Kh(x− z)M |∇uk|z wz0 dx dy dz dt

≤ C ‖Kh‖L1

Ä
L−θ0 + L (ε0(h) + ε0(η)) + Lη−1 hθ

ä
+ C

∫ s

0

∫
T4d

Kh(x− y)χ(δρk)W
z,w
0,k Kh(x− z)Kh(y − w) dx dy dz dw dt.

Just optimizing in L and η leads to the desired ε(h) and concludes the proof

of Lemma 8.5. �

(IV) The term Ai with i = 1, 2: End of proof of Lemma 8.4. It now

remains to analyze more precisely the terms (P
x,ρxk
k ) − P y,ρ

y
k

k )Gx,yi,k for i = 1, 2

concerning the case without diffusion but with non-monotone pressure. We will

split the study into three cases but remark that now the possible dependence

of Pk in terms of x affects the estimates. For this reason, we carefully write

this dependence explicitly.

Case (1): The case (P
x,ρxk
k − P y,ρ

y
k

k )δρk ≥ 0. Since G2 obviously have the

same sign as δρk, one simply has

(P
x,ρxk
k − P y,ρ

y
k

k )Gx,y2,k ≥ 0,

We can check this is the same for Gx,y1,k , namely,

(P
x,ρxk
k −P y,ρ

y
k

k )Gx,y1,k

= (P
x,ρxk
k − P y,ρ

y
k

k )

Å
1

2
χ′(δρk) ρ̄k + χ(δρk)−

1

2
χ′(δρk) δρk

ã
wx1,k

≥ |P x,ρ
x
k

k − P y,ρ
y
k

k |
Å

1

2
|χ′(δρk)| ρ̄k −

∣∣∣∣χ(δρk)−
1

2
χ′(δρk) δρk

∣∣∣∣ã wx1,k
≥ 0,

by (8.1) as ρ̄k ≥ |δρk|. Therefore, in that case the terms have the right sign

and can be dropped.

Case (2): The case (P
x,ρxk
k −P y,ρ

y
k

k )δρk < 0 and ρyk ≤ ρxk/2 or ρyk ≥ 2 ρxk for

some constant C . For i = 1, first assume that P
x,ρxk
k ≥ P y,ρ

y
k

k while ρyk ≥ 2 ρxk:

(P
x,ρxk
k − P y,ρ

y
k

k )Gx,y1,k ≥ −Pk(ρ
x
k) (|χ′(δρk)| ρ̄k + χ(δρk))w

x
1,k.
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Now observe that since ρyk ≥ 2 ρxk, then

|χ′(δρk)| ρ̄k ≤
3

2
|χ′(δρk)| ρyk ≤ 3 |χ′(δρk)| |δ ρk| ≤ C χ(δρk),

by (8.1). Therefore in that case, by (5.9),

(P
x,ρxk
k − P y,ρ

y
k

k )Gx,y1,k ≥ −C ((ρxk)γ̃ + Θx
k) χ(δρk)w

x
1,k,

Note that the result is not symmetric in x and y. We also have to check

that Pk(x, ρ
x
k) ≤ Pk(y, ρ

y
k) and ρyk ≤ ρxk/2. Then simply bound since now

ρyk ≤ ρxk:

(P
x,ρxk
k − P y,ρ

y
k

k )Gx,y1,k ≥ −C ((ρyk)
γ̃ + Θy

k) χ(δρk)w
x
1,k

≥ −C ((ρxk)γ̃ + Θy
k) χ(δρk)w

x
1,k.

In both cases, one finally obtains

(P
x,ρxk
k − P y,ρ

y
k

k )Gx,y1,k ≥− C ((ρxk)γ̃ + Θx
k) χ(δρk)w

x
1,k − |Θx

k −Θy
k| ρ̄k w

x
1,k.

For i = 2, the calculations are similar (simpler in fact) for Gx,y2,k , and

this lets us deduce that if P
x,ρxk
k − P y,ρ

y
k

k and ρxk − ρ
y
k have different signs but

ρyk ≤ ρxk/2 or ρyk ≥ 2 ρxk, then

(P
x,ρxk
k − P y,ρ

y
k

k )Gx,y2,k ≥− C ((ρxk)γ̃ + P̃ xk ρ
x
k + (ρyk)

γ̃ + P̃ yk ρ
y
k) χ(δρk)w

x
1,k w

y
1,k.

Case (3): For i = 1, 2, the situation where P
x,ρk(x)
k −P y,ρk(y)

k and ρxk − ρ
y
k

have different signs but ρxk/2 ≤ ρ
y
k ≤ 2 ρxk . Then using the Lipschitz bound on

Pk given by (5.9), one bluntly estimates∣∣∣∣P x,ρxkk − P y,ρ
y
k

k

∣∣∣∣ ≤ C ((ρxk)γ̃−1 + P̃ xk + (ρyk)
γ̃−1 + P̃ yk ) |δρk|+Qk.

Now bounding the Gi by (8.1),

(P
x,ρxk
k − P y,ρ

y
k

k )Gx,y2,k

≤ C ((ρxk)γ̃ + P̃ xk ρ
x
k + (ρyk)

γ̃ + P̃ yk ρ
y
k)χ(δρk)w

x
1,k w

y
1,k +Qk ρ̄k w

x
1,k

and

(P
x,ρxk
k − P y,ρ

y
k

k )Gx,y1,k ≤ C ((ρxk)γ̃ + P̃ xk ρ
x
k + (ρyk)

γ̃

+ P̃ yk ρ
y
k)χ(δρk)w

x
1,k +Qk ρ̄k

≤ C (1 + (ρxk)γ̃ + P̃ xk ρ
x
k)χ(δρk)w

x
1,k

+ (Qk + |P xk − P
y
k | ρ̄k) ρ̄k w

x
1,k,

as ρxk and ρyk are of the same order. From Proposition 7.2 point (i), we know

that wx1,k ≤ e−λ (ρxk)p−1
. One the other hand, we are precisely in the case where
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ρxk and ρxk are of the same order. Hence ρ̄lk w1,k is uniformly bounded for any

l > 0. Hence in this case, we finally obtain

(P
x,ρxk
k − P y,ρ

y
k

k )Gx,y2,k ≤ C ((ρxk)γ̃ + P̃ xk ρ
x
k

+ (ρyk)
γ̃ + P̃ yk ρ

y
k)χ(δρk)w

x
1,k w

y
1,k +Qx,yk

and

(P
x,ρxk
k − P y,ρ

y
k

k )Gx,y1,k ≤ C (1 + (ρxk)γ̃ + P̃ xk ρ
x
k)χ(δρk)w

x
1,k +Qx,yk + |P xk − P

y
k |.

From the analysis of these three cases, one has that

A1 ≤ C
∫
Kh(x− y) (1 + (ρxk)γ̃ + P̃ xk ρ

x
k + Θx

k)χ(δρk)w
x
1,k dx dy dt

+ C

∫
Kh(x− y) (Qx,yk + |P̃ xk − P̃

y
k |+ |Θ

x
k −Θy

k|) dx dy dt.

Therefore by the compactness properties of Pk and the estimate on Qk in the

assumption (5.8),

A1 ≤ C
∫ s

0

∫
T2d

Kh(x− y) (1 + (ρxk)γ̃ + P̃ xk ρ
x
k + Θx

k)χ(δρk)w
x
1,k dx dy dt

+ ‖Kh‖L1 ε0(h),

(8.15)

and

A2 ≤ C
∫ s

0

∫
T2d

Kh(x− y) (1 + (ρxk)γ̃ + P̃ xk ρ
x
k + Θx

k + (ρyk)
γ̃

+ P̃ yk ρ
y
k + Θy

k)χ(δρk)w
x
1,k w

y
1,k dx dy dt+ ‖Kh‖L1 ε0(h).

(8.16)

Conclusion of the proof of Lemma 8.4. Summing up every term, namely,

(8.3)–(8.9) and (8.15)–(8.16), we eventually find that

−
∫ s

0

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)G

x,y
1,k dx dy dt

≤ C ‖Kh‖L1

Ä
L−θ + L (ε0(h) + ε0(η)) + Lη−1 hθ

ä
+ C

∫ s

0

∫
T2d

Kh(x− y) (1 + (ρxk)γ̃ + P̃ xk ρ
x
k + Θk)χ(δρk)w

x
1,k dx dy dt

while

−
∫ s

0

∫
T2d

Kh(x− y) (div xu
x
k − div yu

y
k)G

x,y
2,k dx dy dt

≤ C ‖Kh‖L1

Ä
L−θ + L (ε0(h) + ε0(η)) + Lη−1 hθ

ä
+ C

∫ s

0

∫
T2d

Kh(x− y)
(
1 + (ρxk)γ̃ + P̃ xk ρ

x
k + Θx

k + (ρyk)
γ̃

+ P̃ yk ρ
y
k + Θy

k

)
χ(δρk)w

x
1,k w

y
1,k dx dy dt.
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To conclude the proof of Lemma 8.4, one optimizes in η and L. Just remark

that since the inequalities depend polynomially in L and η, then the result

depends on εθ0 for some θ.

8.4. Conclusion of the proofs of Theorems 5.1 and 5.2. Now we combine

Lemma 8.1 with Lemma 8.5 or 8.4, and we finally use Proposition 7.2. Let us

summarize the required assumptions. In all cases one assumes that ρk solves

(5.1) and that divuk is coupled with ρk through (5.2); bounds are assumed on

the viscosity as per (5.3), on the time derivative of ρk uk per (5.6) and on uk
per (5.5). Finally the viscosity µk and the force term Rk are assumed to be

compact in L1((0, T )×Td). Moreover,

• In the case with diffusion, αk > 0, one assumes that the pressure term Pk
satisfies (5.8) and the bounds (5.4) on ρk with γ > d/2 and p > 2.

• In the case without diffusion, αk = 0, one needs only (5.9) on the pressure

Pk and the bounds (5.4) on ρk with γ > d/2 and p > 2. Moreover for

Proposition 7.2, it is necessary that p ≥ γ̃. (In general, γ̃ = γ < p so this is

not a big issue.)

Then by taking λ large enough, using the properties of Kh and using a

simple Gronwall lemma, one obtains

∫ 1

h0

∫
T4d

Kh(x− z)Kh(y − w) (wz0,k + ww0,k)Kh(x− y)χ(δρk) dx dy dz dw
dh

h

≤ C
∫
T4d

Kh0(x− z)Kh0(y − w) (wz0,k + ww0,k)Kh0(x− y)χ(δρk) dx dy dz dw

≤ C
Ç
| log h0|1/2 + ε̄h0(k) +

∫ 1

h0

ε(h)
dh

h

å
,

(8.17)

where we have used the monotonicity of 1/(h+ |x|)a to simplify the integration

in h.

For the case without diffusion,

∫ 1

h0

∫
T2d

(wx1,k + wy1,k)Kh(x− y)χ(δρk) dx dy
dh

h

=

∫
T2d

(wx1,k + wy1,k)Kh0(x− y)χ(δρk) dx dy ≤ C
Ç
| log h0|1/2 +

∫ 1

h0

ε(h)
dh

h

å
,

(8.18)

finally with

(8.19)

∫
T2d

wx1,k w
y
1,kKh(x− y)χ(δρk) dx dy ≤ C ‖Kh‖L1

Ä
hθ + ε(h)

ä
,

where ε depends only on the smoothness of µk and Rk and p > 2.
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The key point in all three cases is to be able to remove the weights from

those estimates. For that, one uses point (ii) of Proposition 7.2.

The case with wx0,k +wy0,k. Let t be fixed. Denote ωη = {x : [Kh ?w0,k]
x ≤

η} ⊂ Td for some parameter η that we will only choose in (0, 1). Remark that∫
T2d
Kh0(x− y)χ(δρk) dx dy =

∫ 1

h0

∫
T2d

Kh(x− y)χ(δρk) dx dy
dh

h

=

∫ 1

h0

∫
x∈ωcη or y∈ωcη

Kh(x− y)χ(δρk) dx dy
dh

h

+

∫ 1

h0

∫
x∈ωη and y∈ωη

Kh(x− y)χ(δρk) dx dy
dh

h
.

Now∫ 1

h0

∫
x∈ωcη or y∈ωcη

Kh(x− y)χ(δρk) dx dy
dh

h

≤ 1

η

∫ 1

h0

∫
T2d

Kh(x− y)(Kh ? w0(x) +Kh ? w0(y))χ(δρk) dx dy
dh

h
,

while by point (iii) in Proposition 7.2, using that ρ ∈ Lp((0, T ) × Td) with

p > 2 and recalling that χ(ξ) ≤ C |ξ|,∫ 1

h0

∫
x∈ωη and y∈ωη

Kh(x− y)χ(δρk) dx dy
dh

h

≤ 2

∫ 1

h0

∫
T2d

Kh(x− y) ρk IKh?w0≤η dx dy
dh

h
≤ C | log h0|
| log η|1/2

.

Therefore combining this with (8.17), one obtains∫
T2d
Kh0(x− y)χ(δρk) dx dy

≤ C
(
ε̄h0(k) + | log h0|1/2 +

∫ 1
h0
ε(h)dhh

η
+
‖Kh0‖L1

| log η|1/2

)
,

recalling from equation (8.3) that in this case,

ε̄h0(k) = αk

∫ 1

h0

h−2dh

h
+

∫ 1

h0

εh(k)
dh

h
,

with εh(k) the function introduced in Lemma 8.5. We may freely assume that

εh(k) is decreasing in h (i.e., increasing as h→ 0) and hence

ε̄h0(k) ≤ αk h−2
0 | log h0|+ εh0(k) | log h0|.

We also denote

ε̄(h0) =
1

| log h0|

∫ 1

h0

ε(h)
dh

h
.
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Remark that ε̄(h0) → 0 since ε(h) → 0. For instance if ε(h) = hθ, then

ε̄(h0) ∼ | log h0|−1. The estimate then reads∫
T2d
Kh0(x− y)χ(δρk) dx dy

≤ C
Ç
| log h0|

αkh
−2
0 + εh0(k) + | log h0|−1/2 + ε̄(h0)

η
+
‖Kh0‖L1

| log η|1/2

å
.

As ‖Kh0‖L1 ∼ | log h0|, we optimize in η by taking

η =
Ä
max(1/2, αkh

−2
0 + εh0(k)) + | log h0|−1/2 + ε̄(h0)

ä1/2
,

and we observe that indeed η < 1 if h0 is small enough. The following esti-

mate is obtained if k is large enough with respect to h0 and hence αk h
−2
0 +

εh0(k) < 1/2:∫
T2d
Kh0(x− y)χ(δρk) dx dy

≤ C‖Kh0‖L1

| log
Ä
αkh

−2
0 + εh0(k) + | log h0|−1/2 + ε̄(h0)

ä
|1/2

.

Per Proposition 4.1, this gives the compactness of ρk as

lim sup
k

ñ
1

|Kh0‖L1

∫ T

0

∫
T2d
Kh0(x− y)χ(δρk) dx dy dt

ô
≤ C

| log
Ä
| log h0|−1/2 + ε̄(h0)

ä
|1/2
−→ 0,

as h0 → 0. And it proves case (i) of Theorem 5.1.

The case with wx1,k +wy1,k. Similarly, from (8.18), one then proves that in

the corresponding case,∫
T2d
Kh0(x− y)χ(δρk) dx dy ≤ C | log h0|

Ç
| log h0|−1/2 + ε̄(h0)

η
+

1

| log η|θ

å
≤ C ‖Kh0‖L1

| log
Ä
| log h0|−1/2 + ε̄(h0)

ä
|θ
,

again using part (ii) of Proposition 7.2 to get rid of the weights wx1 and wy1
as shown in the previous case concerning the weight wx0 and wy0 . In both

cases, using Proposition 4.1 together with Lemma 6.6 in the second case, one

concludes that ρk is compact in x and then in t, x. Thus we have shown case

(ii) and concluded the proof of Theorem 5.1.
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The case with wy1,kw
x
1,k. The situation is more complicated for (8.19) and

the product wy1,kw
x
1,k. Indeed wx0,k + wy0,k or wx1,k + wy1,k are small only if both

wx0,k and wy0,k are small (or the corresponding terms for w1,k). But wx1,k w
y
1,k

can be small if either wx1 or wy1 is small. This was previously an advantage,

then with simpler computations, but not here, and (8.19) does not provide

compactness.

This is due to the fact that one does not control the size of {wη ≤ η} but

only the mass of ρk over that set. The difference between the two is the famous

vacuum problem for compressible fluid dynamics, which is still unsolved.

The best that can be done by part (ii) of Proposition 7.2 is for any η, η′,∫
T2d

Iρk(x)≥η Iρk(y)≥ηKh(x− y)χ(δρk) dx dy

≤ 1

η′2

∫
wx1,k w

y
1,kKh(x− y)χ(δρk) dx dy + C

‖Kh‖L1

η1/2 | log η′|θ/2
,

using that ρk ∈ L2 uniformly. Using (8.19) and optimizing in η′, one finds for

some θ > 0,∫
T2d

Iρk(x)≥η Iρk(y)≥ηKh(x− y)χ(δρk) dx dy ≤ C
‖Kh‖L1

η1/2 | log(ε(h) + hθ)|θ/2
.

If µk and Fk are uniformly in W s,1 for s > 0, then∫
T2d

Iρk(x)≥η Iρk(y)≥ηKh(x− y)χ(δρk) dx dy ≤ C
‖Kh‖L1

η1/2 | log h|θ/2
,

which concludes the proof of Theorem 5.2. Note, however, that in many senses

(8.19) is more precise than the final result.

8.5. The coupling with the pressure in the anisotropic case. In that case

we need the weight wa and its regularization wa,h, defined by (7.2) with (7.5)

in order to compensate some terms coming from the anisotropic non-local part

of the stress tensor.

Lemma 8.6. There exists C∗ > 0 such that assuming that ρk solves (5.1)

with αk = 0, that (5.6), (5.5), (5.4) with γ > d/2 and p > γ+1+` = γ2/(γ−1)

hold where ` = 1/(γ − 1); assuming moreover that Pk satisfying (5.8) and that

uk solves (5.10) with

(8.20) aµ ≤ C∗,
then there exists 0 < θ < 1 such that for χa verifying (8.2) for this choice of `,[∫ 1

h0

∫
T2d

Kh(x− y)

h
(wxa,h + wya,h)χa(δρk) dx dy

]∣∣∣∣
t=s

≤
[∫ 1

h0

∫
T2d

Kh(x− y)

h
(wxa,h + wya,h)χa(δρk) dx dy

]∣∣∣∣
t=0

+ C (1 + `) | log h0|θ.
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Proof. To simplify the estimate, we assume in this proof that Pk(ρk) = ργk ,

the extension when Pk satisfies (5.8) instead being straightforward. We also

recall that χa satisfies (8.2), meaning that for all practical purposes, χa(ξ) ∼
|ξ|1+`. We use the formula written in Lemma 8.2, namely,[∫ 1

h0

∫
T2d

Kh(x− y)

h
(wxa,h + wya,h)χa(δρk) dx dy dh

]∣∣∣∣
t=s

−
[∫ 1

h0

∫
T2d

Kh(x− y)

h
(wxa,h + wya,h)χa(δρk) dx dy dh

]∣∣∣∣
t=0

≤ C| log h0|θ + I + II −Ta,

where 0 < θ < 1 and with the dissipation term by symmetry,

Ta = λ

∫ s

0

∫ 1

h0

∫
T2d

wxa,h χa(δρk) [Kh ? (|divuk|+ |AµPk(ρk)|)]x K̄h dx dy
dh

h
dt,

while still by symmetry

I = −1

2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(div xu

x
k − div yu

y
k)χ
′
a(δρk) ρ̄k w

x
a,h dx dy dt dh

and

II = −1

2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(div xu

x
k + div yu

y
k)

· (χ′a(δρk)δρk − 2χa(δρk))w
x
a,h dx dy dt dh.

(I) The quantity I . We recall that in this case one has the formula (5.10)

on divuk,

divuk =νkPk(ρk) + νk aµAµPk(ρk) + Fa,k,(8.21)

where

Fa,k = νk(∆µ − aµEk)−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)).

Therefore, one may decompose

I = I0 + ID + IR,

with

I0 = −1

2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(F xa,k − F

y
a,k)

· χ′a(δρk) ρ̄k (wxa,k,h + wya,k,h) dx dy dt dh,

while

ID = −νk
2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(Pk(ρ

x
k)− Pk(ρyk)

· χ′a(δρk) ρ̄k wxa,k,h dx dy dt dh
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and

IR = −aµ νk
2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(AµPk(ρ

x
k)−AµPk(ρyk))

· χ′a(δρk) ρ̄k wxa,k,h dx dy dt dh.

(I-1) The term I0. This term is handled just as in the proof of Lemmas 8.4

and 8.5 by using Lemma 8.3, and for this reason we do not fully detail all the

steps here. First note that Lemma 8.3 applies to Fa,k as well as for Fk as

Fa,k = (νk(∆µ − aµEk)−1 ∆)Fk.

Then as before, we first truncate by using some smooth function ILk (t, x, y) =

φ(ρxk/L)φ(ρyk/L) with some smooth and compactly supported function φ lead-

ing to I0 = IL0 + IRL0 with

IL0 = −1

2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(F xa,k − F

y
a,k)

· χ′a(δρk) ILk ρ̄k (wxa,h + wya,h) dx dy dt dh

and

IRL0 = −1

2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(F xa,k − F

y
a,k)

· χ′a(δρk) (1− ILk ) ρ̄k (wxa,h + wya,h) dx dy dt dh.

Remark that divuk ∈ L2
t,x, Pk(ρk) ∈ L

p/γ
t,x and since Aµ is an operator of 0

order, AµPk(ρk) ∈ L
p/γ
t,x . Therefore by equation (8.21),

sup
k
‖Fa,k‖Lmin(2,p/γ)

t,x

<∞.

On the other hand, |χ′a(δρk)| ≤ C (1 + `) (|ρk(x)|` + |ρk(y)|`), and this lets us

very simply bound IRL0 by the Hölder estimates

IRL0 ≤ C (1 + `) | log h0| ‖Fa,k‖Lmin(2,p/γ)
t,x

‖(1− ILk ) ρ1+`
k ‖Lmax(2,q)

t,x

≤ C (1 + `) | log h0| ‖(1− ILk ) ρ1+`
k ‖Lmax(2,q)

t,x

,

with 1/q + γ/p = 1. But q (1 + `) < p by the assumption p > γ + 1 + ` and

similarly 2 (1 + `) < p. As a consequence, for some exponent θ1 > 0,

(8.22) IRL0 ≤ C (1 + `) | log h0|L−θ1 .

We now use Lemma 8.3 for Fa,k and Φ = χ′a(δρk) I
L
k ρ̄k wa,k,h(x). We note that

‖Φ‖L∞ ≤ C (1 + `)L1+`. Moreover, just as in the proof of Lemmas 8.4 and
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8.5, we can show that Φ satisfies a transport equation giving that

CΦ =

∥∥∥∥∫
Td
Kh(x− y)Φ(t, x, y) dy

∥∥∥∥
W 1,1
t W−1,1

x

+

∥∥∥∥∫
Td
Kh(x− y)Φ(t, x, y) dx

∥∥∥∥
W 1,1
t W−1,1

x

≤ C (1 + `)L1+`.

By Lemma 8.3, we obtain that for some θ2 > 0,

(8.23) IL0 ≤ C (1 + `)L1+`
∫ 1

h0

hθ2
dh

h
≤ C (1 + `)L1+`.

By optimizing in L, this lets us conclude that again for some 0 < θ < 1 and

provided that p > γ + 1 + `,

(8.24) I0 ≤ C (1 + `) | log h0|θ.

(1-2) The term ID. This term has the right sign as∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
((ρxk)γ − (ρyk)

γ)χ′a(δρk) ρ̄k (wxa,k,h + wya,k,h) dx dy dt dh

≥ C
∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
χ′a(δρk) δρk ρ̄

γ
k (wxak,,h + wya,k,h) dx dy dt dh.

We will actually give a more precise control on ID + IID later on when the

corresponding decomposition of II = II0 + IID + IIR will be introduced.

(I-3) The term IR. The difficulty is thus in this quantity. From its defini-

tion, Aµ is a convolution operator. With a slight abuse of notation, we denote

by Aµ as well its kernel or

Aµf =

∫
Td
Aµ(x− y) f(y) dy,

and we note that Aµ corresponds to an operator of 0 order; i.e., for instance,

it satisfies the property
∫
AAµ = 0 for any annulus A centered at the origin,

|Aµ(x)| ≤ C |x|−d. Decompose

Aµ = Lh +Rh, suppLh ⊂ {|x| ≤ δh}

such that both Lh and Rh remain bounded on any Lp space, 1 < p <∞, and

moreover Rh is a regularization of Aµ, that is, Rh = Aµ ?Nδh for some smooth

kernel Nδh . The scale δh has to satisfy that

δh << h, log
h

δh
<< | log h|.

For simplicity, we choose here δh = h/| log h|.
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Contribution of the Rh part. The first step is to decompose Rh into dyadic

blocks in Fourier. Introduce a decomposition of identity Ψl as in Sections 6

and 11 such that 1 =
∑
l Ψ̂l, and write

(8.25) Rh =

| log2 δh|∑
l=| log2 h|

Ψl ? Rh + R̃h, R̃h =
∑

l<| log2 h|
Ψl ? Rh = Ñh ? Nδh ? Aµ.

Note that of course we require the Ψl to satisfy all the assumptions specified

in Section 11 for the definition of Besov spaces. Now define Nh = Ñh ? Nδh .

This kernel Nh therefore satisfies that for any s > 0,

(8.26) ‖Nh‖W s,1 ≤ C h−s,

and moreover by the localization property of the Ψk, one has that for s > 0

and any |ω| ≤ 1,

(8.27)

∫
Td
|z|s |Nh(z) +Nh(z + ω r)| dr ≤ C hs.

Fix t for the moment, and decompose accordingly∫ 1

h0

∫
Td

Kh(z)

h
‖(Rh ? ργk)· − (Rh ? ρ

γ
k)·+z‖Lqx

≤
∫ 1

h0

∫
Td

Kh(z)

h
‖(R̃h ? ργk)· − (R̃h ? ρ

γ
k)·+z‖Lqx

+

∫ 1

h0

| log2 δh|∑
l=| log2 h|

∫
Td

Kh(z)

h
‖(Ψl ? Rh ? ρ

γ
k)· − (Ψl ? Rh ? ρ

γ
k)·+z‖Lqx .

By (8.26) and (8.27), the kernel Nh satisfies the assumptions of Lemma 6.4.

Thus with Uk = Aµ ? ρ
γ
k , applying Lemma 6.4, for any q > 1,∫ 1

h0

∫
Td

Kh(z)

h
‖(R̃h ? ργk)· − (R̃h ? ρ

γ
k)·+z‖Lqx dz dh

=

∫ 1

h0

∫
Td

Kh(z)

h
‖(Nh ? Uk)

· − (Nh ? Uk)
·+z‖Lqx dz dh

≤ C | log h0|1/2 ‖U ·k‖Lqx .

Recalling that Aµ is continuous on every Lp space, one has that ‖U ·k‖Lpx ≤
C ‖(ργk)·‖Lqx , and hence∫ 1

h0

∫
Td

Kh(z)

h
‖(R̃h ? ργk)· − (R̃h ? ρ

γ
k)·+z‖Lqx dz dh ≤ C | log h0|1/2 ‖ρ·k‖

γ
Lq γx

.

On the other hand, simply by bounding

|(Ψl ? Rh ? ρ
γ
k)x − (Ψl ? Rh ? ρ

γ
k)y|q ≤ C |(Ψl ? Rh ? ρ

γ
k)x|q + |(Ψl ? Rh ? ρ

γ
k)y|q,
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we write∫ 1

h0

| log2 δh|∑
l=| log2 h|

∫
Td

Kh(z)

h
‖(Ψl ? Rh ? ρ

γ
k)· − (Ψl ? Rh ? ρ

γ
k)·+z‖Lqx dz dh

≤ C
∑

l≤| log2 h0|+log2 | log2 h0|
‖(Ψl ? Rh ? ρ

γ
k)·‖Lqx

∫ l 2−l

2−l

dh

h
,

recalling that δh = h/| log2 h|. This leads to∫ 1

h0

| log2 δh|∑
l=| log2 h|

∫
Td

Kh(z)

h
‖(Ψl ? Rh ? ρ

γ
k)· − (Ψl ? Rh ? ρ

γ
k)·+z‖Lqx dz dh

≤ C
∑

l≤2 | log2 h0|
log l ‖(Ψl ? Rh ? ρ

γ
k)·‖Lqx dz dh

and can in turn be directly bounded by

≤ C log | log h0|
∑

l≤2 | log2 h0|
‖(Ψl ? Rh ? ρ

γ
k)·‖Lqx

≤ C log | log h0| | log h0|1/2‖(Rh ? ργk)·‖Lqx ≤ C | log h0|θ ‖ρ·k‖
γ
Lqγtx

,

with 0 < θ < 1 by Lemma 11.3. Combining with the previous estimate, we

deduce that

(8.28)∫ 1

h0

∫
Td

Kh(z)

h
‖(Rh ? ργk)· − (Rh ? ρ

γ
k)·+z‖Lqx , dz dh ≤ C | log h0|θ ‖(ρk)·‖γLqγx ,

with 0 < θ < 1. Therefore since χ′a(ξ) ≤ (1 + `) |ξ|`, by Hölder’s inequality

with the relation 1/q + (1 + `)/(1 + γ + `) = 1, that is, q = (1 + `+ γ)/γ,∫ 1

h0

∫ s

0

∫
T2d

Kh(x−y)

h
((Rh ? ρ

γ
k)x − (Rh ? ρ

γ
k)y)

· χ′a(δρk) ρ̄k (wxa,k,h+wya,k,h) dx dy dt dh

≥ −C (1+`)

∫ s

0
‖ρ·k‖1+`

L1+`+γ
x

∫ 1

h0

∫
Td

· Kh(z)

h
‖(Rh ? ργk)· − (Rh ? ρ

γ
k)·+z‖Lqx dz dh dt.

Finally by (8.28) there exists 0 < θ < 1 such that∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
((Rh ? ρ

γ
k)x − (Rh ? ρ

γ
k)y)

· χ′a(δρk) ρ̄k (wxa,h + wya,h)

≥ −C (1 + `) | log h0|θ ‖ρk‖γ+`+1
Lγ+`+1 .

(8.29)
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Contribution of the Lh part. It remains to deal with the term involving Lh.

First we symmetrize the position of the weight with respect to the convolution

with Lh by

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
((Lh ? ρ

γ
k)x − (Lh ? ρ

γ
k)y)χ′a(δρk) ρ̄k w

x
a,h dx dy dt dh

= ILh −Diff,

with

ILh =

∫ 1

h0

∫ s

0

∫
T3d

Kh(x− y)

h
Lh(z)((ργk)x−z − (ργk)y−z)

· χ′0(δρk) ρ̄k (wxa,h)1−θ (wx−za,h )θ dx dy dz dt dh

for θ = 1− 1/γ. Recall that since wa,h = Kh ?wa, then |wxa,h−w
x−z
a,h | ≤ h−1 |z|

while |z| ∼ δh on the support of Lh. Thus using that |χ′a(ξ)| ≤ C |ξ|` from

(8.2) and that |Lh(z)| ≤ C |z|−d, one has

Diff =

∫ 1

h0

∫ s

0

∫
T3d

Kh(x− y)

h
Lh(z)((ργk)x−z − (ργk)y−z)

· χ′a(δρk) ρ̄k (wxa,h)1−θ ((wxa,h)θ − (wx−za,h )θ) dx dy dz dt dh

≤ C (1 + `)

∫ 1

h0

∫ s

0

∫
T3d

I|z|≤δh
Kh(w)

h |z|d
∣∣∣(ργk)x−z + (ργk)x−z+w

∣∣∣ ρ̄`+1 h−θ

· |z|θ dx dw dz dt dh

≤ C (1 + `)

∫ 1

h0

∫ t

0

∫
T3d

I|z|≤δh
Kh(w)

h1+θ |z|d−θ
Ä
(ργ+`+1
k )x−z + (ργ+`+1

k )x−z+w

+ (ργ+`+1
k )x + (ργ+`+1

k )x−w
ä
dx dw dz dt dh.

Using |z| ≤ δh = h
| log2 h|

, we obtain on the other hand that

∫ 1

h0

dh

h1+θ

∫
|z|≤δh

dz

|z|d−θ
≤ C

∫ 1

h0

δθhdh

h1+θ
= C

∫ 1

h0

dh

h | log h|θ

≤ C | log h0|1−θ.

As θ = 1− 1/γ, this leads to

(8.30) Diff ≤ C (1 + `) ‖ρk‖γ+`+1
Lγ+`+1 | log h0|1/γ .
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As for the first term by Hölder inequality, using again that |χ′a(ξ)| ≤ C ` |ξ|`,

ILh ≤ C (1 + `)

∫ 1

h0

∫ s

0

∫
Td

Å∫
Td
|δρk|`+1 ρ̄

(`+1)/`
k (w

(1−θ) (`+1)/`
a,h )x) dx

ã`/(`+1)

·
Å∫
Td

Ä
Lh ?

Ä
(ργk)· − (ργk)·+w) (wθa,h)·

ää(γ+`+1)/γ
dx

ãγ/(γ+`+1)

· Kh(w)

h
dw dt dh,

provided that ` is chosen such that

γ

γ + `+ 1
+

`

`+ 1
= 1, or `+ 1 =

γ

γ − 1
,

implying, for instance, that

`+ 1

`
= γ,

γ + `+ 1

γ
= `+ 1 · · · .

Given those algebraic relations and recalling that Lh? is continuous on every

Lp for any 1 < p <∞,

ILh ≤ C (1 + `)

∫ 1

h0

∫ s

0

∫
Td

Kh(w)

h

Å∫
Td
|(ργk)x − (ργk)x+w|

γ+`+1
γ wxa,k,h dx

ã γ
γ+`+1

·
Å∫
Td
|χ′0(δk)|γ ρ̄γk w

x
a,h dx

ã`/(`+1)

dw dt dh.

Since using the definition of `,

|(ργk)x − (ργk)x+w|(γ+`+1)/γ ≤ γ ρ̄γ |δρk|(γ+`+1)/γ = γ ρ̄γ |δρk|`+1,

one has

(8.31) ILh ≤ C (1 + `) γ

∫ 1

h0

∫ s

0

∫
T2d

Kh(w)

h
|δρk|`+1 ρ̄γk w

x
a,k,h dx dw dt dh,

which multiplied by −aµ νk/2 will be bounded by ID + IID provided |aµ| is

small enough.

(II) The quantity II . Let us turn to II and decompose it as for I:

II = II0 + IID + IIR,

where

II0 = −1

2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(F xa,k + F ya,k)

· (χ′a(δρk)δρk − 2χa(δρk)) (wxa,k,h + wyak,,h) dx dy dt dh,

while

IID = −νk
2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(Pk(ρ

x
k) + Pk(ρ

y
k))

· (χ′a(δρk)δρk−2χa(δρk)) (wxa,k,h+wya,k,h) dx dy dt dh
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and

IIR = −aµ νk
2

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(AµPk(ρ

x
k) +AµPk(ρ

y
k))

· (χ′a(δρk)δρk − 2χa(δρk)) (wxa,k,h + wxa,k,h) dx dy dt dh.

(II-1) The II0 term. For the term II0, using Lemma 8.3 in a manner

identical to I0,

II0 ≤ −
∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
(Kh ? Fa,k)

x(χ′a(δρk)δρk − 2χa(δρk))

· wxa,k,h dx dy dt dh

+ C (1 + `) ‖ρk‖1+`
Lγ+`+1 | log h0|θ

for some 0 < θ < 1. Using formula (5.10) or (8.21), one has that

divuk − aµAµPk(ρk) ≥ Fa,k,

and hence since −χ′a ξ + 2χa ≥ −C (1 + `)χa,

II0 ≤ C ` ‖ρk‖1+`
Lγ+`+1 | log h0|θ + C (1+`)

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h

·Kh ? (|divuk|+ aµ|AµPk(ρk)|)χa(δρk)wxa,k,h dx dy dt dh,
(8.32)

and the first integral will be bounded by Ta/2 for λ large enough.

(II-2) The IID term. The term IID is controlled by ID: For a ≥ b, by

(8.2),

(aγ + bγ) (−χ′a(a− b)(a− b) + 2χa(a− b)) ≥ −(aγ − bγ)
`− 1

`
χ′a(a− b)(a+ b).

Therefore,

ID + IID ≤ −C γ νk
2

∫ 1

h0

∫ s

0

∫
T2d

· Kh(x− y)

h
|δρk|`+1 ρ̄γk (wxa,k,h + wya,k,h) dx dy dt dh

(8.33)

for some C independent of ` and γ.

(II-3) The IIR term. The control on the last term, IIR, requires the use

of the penalization Ta:

IIR +
1

2
Ta ≤ −aµ νk

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
((Aµρ

γ
k)x − (AµKh ? ρ

γ
k)x)

· (χ′a(δρk)δρk − 2χa(δρk))w
x
a,k,h dx dy dt dh.

We use the same decomposition of Aµ = Lh +Rh as for IR.
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Contribution of the Rh part. Note that as χa(ξ) ≤ C |ξ|1+` and |χ′a| ≤
C (1 + `) |ξ|`, for q = (1 + `+ γ)/γ or 1/q + (1 + `)/(1 + `+ γ) = 1,

− aµ νk
∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
((Rh ? ρ

γ
k)x − (Kh ? Rh ? ρ

γ
k)x)

· (χ′a(δρk)δρk − 2χa(δρk))w
x
a,kh dx dy dt dh

≤ C(1 + `)

∫ s

0
‖ρ·k‖1+`

L1+`+γ
x

∫ 1

h0

∫
Td

Kh(z)

h
‖(Rh ? ργk)·−(Rh ? ρ

γ
k)·+z‖Lqx dz dh dt.

Now by estimate (8.28), we have that

− aµ νk
∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
((Rh ? ρ

γ
k)x − (Kh ? Rh ? ρ

γ
k)x)

· (χ′a(δρk)δρk − 2χa(δρk))w
x
a,k,h dx dy dt dh

≤ C (1 + `) | log h0|3/4
∫ s

0
‖ρ·k‖1+`

L1+`+γ
x

‖ρ·k‖
γ
Lγ qx

dt

≤ C (1 + `) | log h0|3/4 ‖ρk‖1+`+γ

L1+`+γ
t,x

.

(8.34)

Contribution of the Lh part. Similarly as for IR, we symmetrize the weights

leading to the following decomposition:

− aµ νk
∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
((Lh ? ρ

γ
k)x − (Kh ? Lh ? ρ

γ
k)x)

· (χ′a(δρk)δρk − 2χa(δρk))w
x
a,k,h dx dy dt dh

= IILh + Diff2,

where

IILh = aµ νk

∫ 1

h0

∫ s

0

∫
T2d

Kh(x− y)

h
Lh ?

Ä
(wxa,k,h)θ ((ργk)x − (Kh ? ρ

γ
k)x)
ä

· (−χ′a(δρk)δρk + 2χa(δρk)) (wxa,k,h)1−θ dx dy dt dh,

still with θ = 1−1/γ. The term Diff2 is controlled as the term Diff in IR using

the regularity of wa,h and yielding

(8.35) Diff2 ≤ C (1 + `) | log h0|1/γ ‖ρk‖γ+1+`
Lγ+1+` .
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We handle IILh with Hölder estimates quite similar to the ones used for

the term ILh , recalling that Lh? is bounded on any Lq space for 1 < q <∞:

IILh ≤ C aµ νk (1 + `)

∫ 1

h0

∫ s

0

∫
Td

Kh(w)

h
‖wθa,k,h ((ργk)· − (Kh ? ρ

γ
k)·))‖L`+1

· ‖|δρk|`+1 (wxa,k,h)1−θ‖L(`+1)/` dw dt dh

≤ C aµ νk (1 + `)

∫ 1

h0

∫ s

0

∫
Td

· Kh(w)

h

∫
Td
wxa,k,h |(ρ

γ
k)x − (Kh ? ρ

γ
k)x|`+1 dx dw dt dh

+ C aµ νk (1 + `)

∫ 1

h0

∫ t

0

∫
Td

Kh(w)

h

∫
Td
wxa,k,h |δρk|(`+1)2/` dx dw dt dh.

One immediately has that

∫ 1

h0

∫ s

0

∫
T2d

Kh(w)

h
wxa,k,h |δρk|(`+1)2/` dx dw dt dh

≤
∫ 1

h0

∫ s

0

∫
T2d

Kh(w)

h
wxa,k,h |δρk|`+1 ρ̄γk dx dw dt dh

as |δρk| ≤ ρ̄k and again (`+ 1)/` = γ.

Finally as (`+ 1) (γ − 1) = γ,

∫ 1

h0

∫ s

0

∫
T2d

Kh(w)

h
wxa,k,h |(ρ

γ
k)x − (Kh ? ρ

γ
k)x|`+1 dx dw dt dh

≤ γ
∫ 1

h0

∫ s

0

∫
T3d

· Kh(w)

h
Kh(z)wxa,k,h |ρxk − ρx+z

k |`+1 (ρxk + ρx+z
k )γ dx dw dz dt dh

≤ γ
∫ 1

h0

∫ s

0

∫
T2d

Kh(z)

h
wxa,k,h |ρxk − ρx+z

k |1+` (ρxk + ρx+z
k )γ dz dw dt dh,

as Kh(w) is the only term depending on w and is of integral 1. Therefore,

(8.36) IILh ≤ C aµ νk γ (1 + `)

∫ 1

h0

∫ s

0

∫
T2d

Kh(z)

h
wxa,k,h |δρk|1+` ρ̄γk dz dx dt dh.

To conclude, we sum all the contributions, more precisely (8.24), (8.29),

(8.30), (8.31), (8.32), (8.33), (8.34), (8.35), and (8.36), to find that for some
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0 < θ < 1 and provided p > γ + 1 + `,

[∫ 1

h0

∫
T2d

Kh(x− y)

h
(wxa,k,h + wya,k,h)χa(δρk) dx, dy dh

]∣∣∣∣
t=s

≤
î∫ 1

h0

∫
T2d

Kh(x− y)

h
(wxa,k,h + wya,k,h)χa(δρk) dx dy dh

ó∣∣∣∣
t=0

+ C (1 + `) | log h0|θ

+ C

Å
aµ νk(1+`)− Cνk

2

ã
γ

∫ 1

h0

∫ s

0

∫
T2d

Kh(z)

h
wxa,h |δρk|1+` ρ̄γk dx dz dt dh.

This finishes the proof of the lemma: As 1 + ` = γ/(γ − 1) is bounded (we

recall that γ > d/2), if aµ ≤ C∗ for C∗ > 0 well chosen, the last term in the

right-hand side is non-positive. �

8.6. Conclusion of the proof of Theorem 5.3. We combine Lemmas 8.2

and 8.6 to get the following estimate:

[∫ 1

h0

∫
T2d

Kh(x− y)(wxa,k,h + wya,k,h)χa(δρk)dxdy
dh

h

]∣∣∣∣
t=s

≤ C | log h0|θ + initial value,

with 0 < θ < 1. We now follow the same steps as in the proof of Theorem 5.1

with the weight wx0 + wy0 . We define ωη = {wxa,k,h ≤ η} and note that

∫
T2d
Kh0(x− y)χa(δρk) dx dy

=

∫ 1

h0

∫
T2d

Kh(x− y)χa(δρk) dx dy
dh

h

=

∫ 1

h0

∫
x∈ωcη or y∈ωcη

Kh(x− y)χa(δρk) dx dy
dh

h

+

∫ 1

h0

∫
x∈ωη and y∈ωη

Kh(x− y)χa(δρk) dx dy
dh

h
.

Now∫ 1

h0

∫
x∈ωcη or y∈ωcη

Kh(x− y)χa(δρk) dx dy
dh

h

≤ 1

η

∫ 1

h0

∫
T2d

Kh(x− y)(wxa,k,h + wya,k,h)χa(δρk) dx dy
dh

h
≤ C | log h0|θ

η
,
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while by point (iii) in Proposition 7.2 and using the Lp bound on ρ, for some

θ > 0, ∫ 1

h0

∫
x∈ωη and y∈ωη

Kh(x− y)χa(δρk) dx dy
dh

h

≤ 2

∫ 1

h0

∫
T2d

Kh(x− y) ρ1+`
k IKh?wa≤η dx dy

dh

h

≤ C | log h0|
| log η|θ

.

Hence we haveî∫
T2d
Kh0(x− y)χa(δρk

ó∣∣∣∣
t=s
≤ C | log h0|

Ç
| log h0|θ−1

η
+

1

| log η|θ

å
≤ C ‖Kh0‖L1

| log | log h0||θ
,

by optimizing in η and recalling that ‖Kh0‖L1 = | log h0|. Using Proposition 4.1

together with Lemma 6.6, one concludes that ρk is compact in t, x. Thus we

conclude the proof of Theorem 5.3.

9. Proof of Theorems 3.1 and 3.2: Approximate sequences

In this section, we construct approximate systems that allow us to use

Theorems 5.1 and 5.3 to prove Theorems 3.1 and 3.2.

Here we do not need to use pressure laws P that depend explicitly on t or

x, which simplifies the form of the assumptions on the behavior of P , either

(5.8) or (5.9).

9.1. From regularized systems with added viscosity to no viscosity. Our

starting point for global existence is the following regularized system:

(9.1)


∂tρk + div(ρkuk) = αk∆ρk,

∂t(ρkuk) + div(ρkuk ⊗ uk)− µ∆uk − (λ+ µ)∇divuk −Aε ? uk
+∇Pε(ρk) + αk∇ρk · ∇uk = ρkf,

with the fixed initial data

(9.2) ρk|t=0 = ρ0, ρk uk|t=0 = ρ0 u0.

The pressure Pε satisfies the bound (3.2) with γ > 3d/(d+ 2) uniformly in ε,

that is,

C−1 ργ − C ≤ Pε(ρ) ≤ C ργ + C,

implying that e(ρ) ≥ C−1 ργ−1 − C. In addition we ask that Pε satisfies the

quasi-monotone property (5.8) but possibly depending on ε; i.e., there exists

ρ0,ε such that

(Pε(s)/s)
′ ≥ 0 for all s ≥ ρ0,ε.
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And finally we impose an ε dependent bound (3.2) on Pε for some γε > d:

(9.3) C−1
ε ργε − C ≤ Pε(ρ) ≤ Cε ργε + C,

Similarly Aε is assumed to be a given smooth function, possibly depending on

ε but such that the operator defined by

Dε f = −µ∆f − (λ+ µ)∇divf −Aε ? f

satisfies (2.2) and (2.3) uniformly in ε.

As usual the equation of continuity is regularized by means of an artificial

viscosity term and the momentum balance is replaced by a Faedo-Galerkin

approximation to eventually reduce the problem on Xn, a finite-dimensional

vector space of functions.

This approximate system can then be solved by a standard procedure.

The velocity u of the approximate momentum equation is looked at as a fixed

point of a suitable integral operator. Then given u, the approximate continuity

equation is solved directly by means of the standard theory of linear parabolic

equations. This methodology concerning the compressible Navier–Stokes equa-

tions is well explained and described in the reference books [32], [33], [50]. We

omit the rest of this classical (but tedious) procedure and we assume that we

have well-posed and global weak solutions to (9.1).

We now use the classical energy estimates detailed in Section 2.1. Note

that they remain the same in spite of the added viscosity in the continuity

equation because, in particular, of the added term αk∇ρk ·∇uk in the momen-

tum equation. Let us summarize the a priori estimates that are obtained from

(2.6):

sup
k,ε

sup
t

∫
Td

(ρk |uk|2 + ργk) dx <∞, sup
k,ε

∫ T

0

∫
Td
|∇uk|2 dx dt <∞.

The estimate (2.9) may actually require the ε dependent bound from (9.3) with

γε > d to control the additional term αk∇ρk · ∇uk. It provides

sup
k

∫ T

0

∫
Td
ρpk(t, x) dx dt <∞,

with pε = γε + 2 γε/d − 1 or p = γ + 2 γ/d − 1, which means p > 2 as

γ > 3 d/(d+ 2). This bound may not be independent of ε because it requires

(9.3). However since αk vanishes at the limit, it still implies that any weak

limit ρ of ρk satisfies

sup
ε

∫ T

0

∫
Td
ρpk(t, x) dx dt <∞

for p = γ + 2 γ/d− 1.

From these a priori estimates, we obtain (5.4) and (5.5). And from those

bounds it is straightforward to deduce that ρk uk and ρk |uk|2 belong to Lqt,x



674 DIDIER BRESCH and PIERRE–EMMANUEL JABIN

for some q > 1, uniformly in k. Therefore using the continuity equation in

(9.1), we deduce (5.7). Using the momentum equation, we obtain (5.6), but

this bound (and only this bound) is not independent of ε because of Aε.
Finally taking the divergence of the momentum equation and inverting ∆,

(λ+ 2µ) divuk =Pε(ρk) + ∆−1div (∂t(ρk uk) + div (ρk uk ⊗ uk))

−∆−1 div (ρk f +Aε ? uk) + αk∆
−1 div (∇ρk · ∇uk),

which is exactly (5.2) with µk = λ+ 2µ satisfying (5.3) and compact, while

Fk = −∆−1 div (ρk f +Aε ? uk) + αk∆
−1 div (∇ρk · ∇uk).

The first term in Fk is also compact in L1 since Aε is smooth for a fixed ε. On

the other hand,

αk∆
−1 div (∇ρk · ∇uk)

converges to 0 in L1 since
√
αk∇ρk is uniformly bounded in L2 and ∇uk is as

well in L2. Therefore Fk is compact in L1. We may hence apply point (i) of

Theorem 5.1 to obtain the compactness of ρk in L1. Then extracting converg-

ing subsequences, we can pass to the limit in every term (see Section 2.2 for

instance) and obtain the existence of weak solutions to

(9.4)∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu−Aε ? u+∇Pε(ρ) = ρf.

9.2. General pressure laws : End of proof of Theorem 3.1. Now consider a

non-monotone pressure P satisfying (3.2) and (3.3). Let us fix c0,ε = 1/ε and

define

Pε(ρ) = P (ρ) if ρ ≤ c0,ε, Pε(ρ) = P (c0,ε) + C(ρ− c0,ε)
γ if ρ ≥ c0,ε.

If γ ≤ d, then we also add to Pε a term in ε ργεε to satisfy (9.3). Note that Pε is

Lipschitz and converges uniformly to P on any compact interval. Due to (3.2)

there exists ρ0,ε with ρ0,ε → +∞ as ε→ +∞ such that for ρ ≥ ρ0,ε,

(Pε(s)/s)
′ = (P ′ε(s)s− P (s))/s2 ≥

Ä
C(γ − 1)(ρ− c0,ε)

γ − P (c0,ε)
ä
/s2 ≥ 0.

The approximate pressure Pε still satisfies (3.2) with γ, and due to the previous

inequality it satisfies (5.8) for ρ ≥ ρ0,ε and (5.9) in the following sense: For all

s ≥ 0,

|P ′ε(s)| ≤ Psγ̃−1Is≤c0,ε + C(γ − 1)sγ−1Is≥c0,ε .
As a consequence, we have existence of weak solutions (ρ, u) to (9.1) for this

Pε (assuming Aε = 0) for any ε > 0. Consider a sequence εk → 0 and the

corresponding sequence (ρk, uk) of weak solutions to (9.1).

Because the previous a priori estimates were uniform in ε for the limit ρ

and u (including (5.6) since Aε = 0), then the sequence (ρk, uk) satisfies all

the bounds (5.4), (5.5), (5.6), (5.7) and (5.9).
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Moreover the representation (5.2) still holds with µk = 2µ + λ, compact

in L1 and satisfying (5.3). Finally the exponent p in (5.4) can be chosen up to

γ + 2 γ/d− 1. Since γ > 3 d/(d+ 2), then p > 2. Since γ > (γ̃ + 1) d/(d+ 2),

then one has p > γ̃ as well.

Therefore all the assumptions of point (ii) of Theorem 5.1 are satisfied

and one has the compactness of ρk. Extracting converging subsequences of ρk
and uk, one passes to the limit in every term. Note, in particular, that Pεk(ρk)

converges in L1 to P (ρ) by the compactness of ρk, the uniform convergence of

Pεk to P on compact intervals and by truncating Pεk(ρk) for large values of ρk
since the exponent p in (5.4) is strictly larger than γ.

This proves the global existence in Theorem 3.1. The regularity of ρ

follows from Theorem 5.2, which concludes the proof of Theorem 3.1.

9.3. Anisotropic viscosities : End of proof of Theorem 3.2. For simplicity,

we take f = 0. Now consider a “quasi-monotone” pressure P satisfying (3.8).

Observe that P then automatically satisfies (3.2) since P (0) = 0. To satisfy

(5.8), we have to modify P on an interval (c0,ε,+∞) with c0,ε → +∞ when

ε→ +∞. More precisely, we consider Pε as defined in the previous subsection:

Pε(ρ) = P (ρ) if ρ ≤ c0,ε, Pε(ρ) = P (c0,ε) + C(ρ− c0,ε)
γ if ρ ≥ c0,ε.

Remark that since γ > d here, we never need to add a term with γε.

Now given any smooth kernel, for instance K, we define

Aε ? u = div (δA(t)∇Kε ? u).

Because of the smallness assumption on δA(t), the operator Dε satisfies (2.2)

and (2.3) uniformly in ε. Therefore we have existence of global weak solutions

to (9.4) with this choice of Pε and Aε. We again consider a sequence of such

solutions (ρk, uk) corresponding to some sequence εk → 0. Because the esti-

mates are uniform in ε for (9.4), we again have that this sequence satisfies the

bounds (5.4), (5.5), (5.7). We now assume that

γ >
d

2

[Å
1 +

1

d

ã
+

 
1 +

1

d2

]
,

implying that p in (5.4) is strictly larger than γ2/(γ − 1). Moreover observe

that

‖Aεkuk‖L2
t H
−1
x
≤ C ‖∇uk‖L2

t,x
,

such that (5.6) is also satisfied.

For simplicity, we assume that δA has a vanishing trace; otherwise just

add the corresponding trace to µ. Denote aµ = 2 ‖δA‖L∞/(2µ + λ) and the
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operator Ek

Ek u = −div

Ç
δA(t)

2 ‖δA‖L∞
∇Kε ? u

å
= −

∑
ij

δAij(t)

2 ‖δA‖L∞
∂ijKεk ? u.

For aµ small enough, ∆ − aµEk is a uniform elliptic operator so that (∆ −
aµEk)

−1 ∆ is bounded on every Lp space, uniformly in k. For the same reason,

Aµ = (∆ − aµEk)−1Ek is bounded on every Lp space with norm less than 1

and can be represented by a convolution with a singular integral.

Taking the divergence of the momentum equation in (9.1), one has

(2µ+ λ)
Ä
∆ divuk − aµEk divu

ä
= ∆P (ρk) + div (∂t(ρk uk) + div (ρk uk ⊗ uk)).

Just write ∆Pε(ρk) = (∆ − aµEk)Pε(ρk) + aµEk Pε and take the inverse of

∆− aµEk to obtain

(2µ+ λ) divu =P (ρk) + aµ (∆− aµEk)−1Ek P (ρk)

+ (∆− aµEk)−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)),

which is exactly (5.10) with νk = (2µ + λ)−1. As a consequence, if aµ ≤ C∗,

which is implied by ‖δA‖L∞ small enough, then Theorem 5.3 applies and ρk is

compact. Passing to the limit again in every term proves Theorem 3.2. Note

that Pεk(ρk) converges in L1 to P (ρ) for the same reason as in the previous

subsection.

The case with D(u) instead of ∇u. Let us finish this proof by remarking

on the different structure in the case with symmetric stress tensor div (ADu).

In that case, one cannot find divuk by taking the divergence of the momentum

equation, but instead we have to consider the whole momentum equation. Let

us write it as

E uk = ∇P (ρk) + ∂t(ρk uk) + div (ρk uk ⊗ uk),

with E the elliptic vector-valued operator

E u = µ∆u+ (µ+ λ)∇divu+ div ( δAD u).

The operator E is invertible for δA small enough as one can readily check

in Fourier, for instance, where −Ê becomes a perturbation of µ |ξ|2 I + (µ +

λ) ξ ⊗ ξ. Its inverse has most of the usual properties of inverses of a scalar

elliptic operator (with the exception of the maximum principle for instance).

Therefore, one may still write

divuk = div E−1∇P (ρk) + div E−1 (∂t(ρk uk) + div (ρk uk ⊗ uk)),

leading to the variant (5.11) of the simpler formula (5.10).
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10. Appendix: Notation

For the reader’s convenience, we repeat and summarize some of our main

notation.

Physical quantities.

• ρ, or ρk denotes the density of the fluid.

• u, or uk denotes the velocity field of the fluid.

• P (.), or Pk(.) denotes the pressure law.

• e(ρ) is the internal energy density, which in the barotropic case, reads e(ρ) =∫ ρ
ρref

P (s)/s2 ds.

• E(ρ, u) =
∫
ρ (|u|2/2 + e(ρ)) is the total energy of the fluid.

• µ, λ and µk denote various viscosity coefficients or combination thereof.

• S denotes the viscous stress tensor. In the simplest isotropic case, S =

2µD(u) + λdivuId.

• D is the diffusion term related to the viscous stress tensor by Du = divS.

Technical notation.

• d is the dimension of space.

• gX means g(t,X), where X is any space variable in Td.

• gX,Y means g(t,X, Y ) where X and Y are space variables in Td.

• k as an index always denotes the index of a sequence.

• h and h0 are scaling parameters used to measure oscillations of certain

quantities such as the density.

• Kh is a convolution kernel on Td and Kh(x) = (h+|x|)−a for x small enough

and with a > d.

• Kh is equal to Kh/‖Kh‖L1 .

• Kh0 =
∫ 1
h0
Kh(x) dhh is the weighted average of Kh. Note that ‖Kh0‖L1 ∼

| log h0|.
• w0, w1 and wa are the weights and wi,h = Kh ? wi their regularization with

i = 0, 1, a.

• C is a constant whose exact value may change from one line to another but

which is always independent of k, h or other scaling parameters.

• ε(h) is a smooth function with ε(0) = 0.

• θ is an exponent whose exact value may change as for C but in (0, 1).

• The exponent p is most of the time such that ρ ∈ Lpt,x.

• q and r are other exponents for Lp type spaces that are used when needed.

• I, II, . . . and A, B, D, E, . . . denote some intermediary quantities used in

the proofs. Their definitions may change from one proof to another.

• x, y, w, z are typically variables of integration over the space domain.

• δρk = ρxk − ρ
y
k is the difference of densities.

• ρ̄k = ρxk + ρyk is the sum of densities.
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• Dρuk = ∆−1div (∂t(ρk uk) + div (ρk uk ⊗ uk)) denotes the effective viscous

flux.

• The individual weights w = w0, w1, wa satisfy equation (7.2) or

∂tw + uk · ∇w = −Dw + αk ∆w,

where D = D0, D1, Da are respectively the penalizations in (7.3), (7.4), and

(7.5).

• The weights w0 or wa may be convolved to give wh = Kh ? w0, wa,h =

Kh ? wa.

• The weights are then added or multiplied to obtain the composed W (t, x, y)

= W0,W1, W2,Wa with

W0(t, x, y) = w0(t, x) + w0(t, y), W1(t, x, y) = w1(t, x) + w1(t, y),

W2(t, x, y) = w1(t, x)w1(t, y), Wa(t, x, y) = wa(t, x) + wa(t, y).

The main properties of the weights are given in Proposition 7.2.

11. Appendix: Besov spaces and Littlewood–Paley decomposition

We only recall some basic definitions and properties of Besov spaces for use

in Lemma 6.3. We start with the classical Littlewood–Paley decomposition and

refer to the readers, for instance, to [5], [1] and [7] for details and applications

to fluid mechanic. Choose any family Ψk ∈ S(Td) such that

• its Fourier transform Ψ̂k is positive and compactly supported in the annulus

{2k−1 ≤ |ξ| ≤ 2k+1};
• it leads to a decomposition of the identity in the sense that there exists Φ

with Φ̂ compactly supported in {|ξ| ≤ 2} such that for any ξ,

1 = Φ̂(ξ) +
∑
k≥1

Ψ̂k(ξ);

• the family is localized in Td in the sense that for all s > 0,

sup
k
‖Ψk‖L1 <∞, sup

k
2ks

∫
Td
|z|s |Ψk(z)| dz <∞.

Note that in Rd, one usually takes Ψk(x) = 2kd Ψ(2k x) but in the torus, it can

be advantageous to use a more general family. It is still necessary to take it

smooth enough for the third assumption to be satisfied. (It is, for instance,

the difference between the Dirichlet and Fejer kernels.)

For simplicity, we then denote Ψ0 = Φ for k = 0 and for k ≥ 1, Ψk(x) =

2kd Ψ(2−k x). For any f ∈ S ′(Rd), we also write fk = Ψk ? f and then obtain

the decomposition

(11.1) f =
∞∑
k=0

fk.

From this decomposition one may easily define the Besov spaces:
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Definition 11.1. The Besov space Bs
p,q is the space of all f ∈ L1

loc∩S ′(Rd)
for which

‖f‖Bsp,q =
∥∥∥2s k ‖fk‖Lpx∥∥∥lq

k

=

( ∞∑
k=0

2s k q ‖fk‖qLpx

)1/q

<∞.

The main properties of the Littlewood–Paley decomposition that we use

in this article can be summarized as

Proposition 11.2. For any 1 < p < ∞ and any s, there exists C > 0

such that for any f ∈ L1
loc ∩ S ′(Rd),

2s k

C
‖fk‖Lp ≤ ‖∆s/2 fk‖Lp ≤ C 2s k ‖fk‖Lp ,

C−1

∥∥∥∥∥∥
( ∞∑
k=0

22 k s |fk|2
)1/2

∥∥∥∥∥∥
Lp

≤ ‖f‖W s,p ≤ C

∥∥∥∥∥∥
( ∞∑
k=0

22 k s |fk|2
)1/2

∥∥∥∥∥∥
Lp

.

And as a consequence, we have for 1 < p ≤ 2,

C−1 ‖f‖Bsp,2 ≤ ‖f‖W s,p ≤ C ‖f‖Bsp,p .

Note that the norm

∥∥∥∥Ä∑∞k=0 22 k s |fk|2
ä1/2∥∥∥∥

Lp
actually defines the F 2

p,2

spaces that for 1 < p < ∞ are equivalent to the classical Sobolev spaces.

In particular, a consequence of Proposition 11.2 is the following bound on

truncated Besov norm:

Lemma 11.3. For any 1 < p ≤ 2, there exists C > 0 such that for any

f ∈ L1
loc ∩ S ′(Rd) and any K ∈ N,

K∑
k=0

2s k ‖fk‖Lpx ≤ C
√
K ‖f‖W s,p .

Proof. By a simple Cauchy-Schwartz estimate,

K∑
k=0

2s k ‖fk‖Lpx ≤
√
K

( ∞∑
k=0

22 s k ‖fk‖2Lpx

)1/2

=
√
K ‖f‖Bsp,2 ,

which can easily conclude the proof by applying Proposition 11.2. �
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Paris, 2016, papers from the session États de la Recherche held in Le Bourget du

Lac, May 21–25, 2012; edited by D. Bresch. MR 3560280. Zbl 1355.35002.
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E-mail : didier.bresch@univ-smb.fr

Center for Scientific Computation and Mathematical Modeling (CSCAMM)

and Department of Mathematics, University of Maryland, College Park,

MD 20742

E-mail : pjabin@cscamm.umd.edu

http://www.ams.org/mathscinet-getitem?mr=3305369
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1323.35134
https://doi.org/10.1137/140960542
http://www.ams.org/mathscinet-getitem?mr=2963679
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1260.35002
https://doi.org/10.1007/978-3-0348-0367-0
http://www.ams.org/mathscinet-getitem?mr=2041005
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1051.46019
https://doi.org/10.4171/JEMS/1
https://doi.org/10.4171/JEMS/1
http://www.ams.org/mathscinet-getitem?mr=0420116
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0332.42018
https://doi.org/10.1073/pnas.73.7.2174
https://doi.org/10.1073/pnas.73.7.2174
http://www.ams.org/mathscinet-getitem?mr=1232192
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0821.42001
https://doi.org/10.1515/9781400883929
https://doi.org/10.1515/9781400883929
http://www.ams.org/mathscinet-getitem?mr=2099038
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1222.35145
https://doi.org/10.1016/S1874-5792(05)80009-6
https://doi.org/10.1016/S1874-5792(05)80009-6
http://www.ams.org/mathscinet-getitem?mr=1375428
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0860.35098
https://doi.org/10.1007/BF02106835
https://doi.org/10.1007/BF02106835
http://www.ams.org/mathscinet-getitem?mr=3573976
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1354.35115
https://doi.org/10.1007/s00222-016-0666-4
mailto:didier.bresch@univ-smb.fr
mailto:pjabin@cscamm.umd.edu

	1. Introduction
	2. Classical theory by E. Feireisl and P.-L. Lions, open problems and physical considerations
	2.1. A priori estimates
	2.2. Heuristic presentation of the method by E. Feireisl and P.-L. Lions
	2.3. The limitations of the Lions–Feireisl theory
	2.4. Physical discussions on pressure laws and stress tensors 

	3. New results for the compressible Navier-Stokes system 
	3.1. Statements of the results: Theorems 3.1 and 3.2
	3.2. Important comments/comparison with previous results

	4. Sketch of the new compactness method 
	4.1. The compactness criterion
	4.2. Compactness for linear transport equation
	4.3. A rough sketch of the extension to compressible Navier–Stokes 

	5. Stability results
	5.1. The equations
	5.2. The main stability results: Theorems 5.1, 5.2 and 5.3

	6. Technical lemmas and renormalized solutions
	6.1. Useful technical lemmas
	6.2. A brief presentation of renormalized solutions

	7. Renormalized equation and weights 
	7.1. Renormalized equation
	7.2. The weights: Choice and properties

	8. Proof of Theorems 5.1, 5.2 and 5.3
	8.1. The propagation of regularity on the transport equation
	8.2. The control on the effective viscous flux
	8.3. The coupling with the pressure law
	8.4. Conclusion of the proofs of [maincompactness]Theorems 5.1 and 5.2.
	8.5. The coupling with the pressure in the anisotropic case
	8.6. Conclusion of the proof of Theorem 5.3

	9. Proof of Theorems 3.1 and 3.2: Approximate sequences 
	9.1. From regularized systems with added viscosity to no viscosity
	9.2. General pressure laws: End of proof of Theorem 3.1
	9.3. Anisotropic viscosities: End of proof of Theorem 3.2

	10. Appendix: Notation
	11. Appendix: Besov spaces and Littlewood–Paley decomposition
	References

