Homological stability for moduli spaces of high dimensional manifolds. II

Abstract

We prove a homological stability theorem for moduli spaces of manifolds of dimension $2n$, for attaching handles of index at least $n$, after these manifolds have been stabilised by countably many copies of $S^n \times S^n$. Combined with previous work of the authors, we obtain an analogue of the Madsen–Weiss theorem for any simply-connected manifold of dimension $2n \geq 6$.

  • [MR0283788] Go to document J. F. Adams, "A variant of E. H. Brown’s representability theorem," Topology, vol. 10, pp. 185-198, 1971.
    @ARTICLE{MR0283788, mrkey = {0283788},
      issn = {0040-9383},
      author = {Adams, J. F.},
      mrclass = {55.30},
      doi = {10.1016/0040-9383(71)90003-6},
      journal = {Topology},
      zblnumber = {0197.19604},
      volume = {10},
      mrnumber = {0283788},
      fjournal = {Topology. An International Journal of Mathematics},
      mrreviewer = {R. E. Mosher},
      title = {A variant of {E}. {H}. {B}rown's representability theorem},
      year = {1971},
      pages = {185--198},
      }
  • [BerglundMadsen] A. Berglund and I. Madsen, Homological stability of diffeomorphism groups, 2012.
    @MISC{BerglundMadsen,
      author = {Berglund, Alexander and Madsen, Ib},
      arxiv = {1203.4161},
      title = {Homological stability of diffeomorphism groups},
      year = {2012},
      }
  • [BerglundMadsen2] A. Berglund and I. Madsen, Rational homotopy theory of automorphisms of highly connected manifolds, 2014.
    @MISC{BerglundMadsen2,
      author = {Berglund, Alexander and Madsen, Ib},
      arxiv = {1401.4096},
      title = {Rational homotopy theory of automorphisms of highly connected manifolds},
      year = {2014},
      }
  • [MR613004] Go to document E. Binz and H. R. Fischer, "The manifold of embeddings of a closed manifold," in Differential Geometric Methods in Mathematical Physics, New York: Springer-Verlag, 1981, vol. 139, pp. 310-325.
    @INCOLLECTION{MR613004, mrkey = {0613004},
      author = {Binz, E. and Fischer, H. R.},
      mrclass = {58D15 (58D10 83C05)},
      series = {Lecture Notes in Phys.},
      address = {New York},
      publisher = {Springer-Verlag},
      volume = {139},
      mrnumber = {0613004},
      note = {with an appendix by P. Michor},
      booktitle = {Differential Geometric Methods in Mathematical Physics},
      mrreviewer = {Sadayuki Yamamuro},
      venue = {{P}roc. {I}nternat. {C}onf., {T}ech. {U}niv. {C}lausthal, {C}lausthal-{Z}ellerfeld, 1978},
      title = {The manifold of embeddings of a closed manifold},
      pages = {310--325},
      DOI = {10.1007/3-540-10578-6_35},
      year = {1981},
      }
  • [BER-W] Go to document B. Botvinnik, J. Ebert, and O. Randal-Williams, Infinite loop spaces and positive scalar curvature, 2017.
    @MISC{BER-W,
      author = {Botvinnik, Boris and Ebert, Johannes and Randal-Williams, Oscar},
      doi={10.1007/s00222-017-0719-3},
      title = {Infinite loop spaces and positive scalar curvature},
      year={2017},
      note={published online 14 February 2017, {\em Invent. Math.}},
      }
  • [GMTW] Go to document S. Galatius, U. Tillmann, I. Madsen, and M. Weiss, "The homotopy type of the cobordism category," Acta Math., vol. 202, iss. 2, pp. 195-239, 2009.
    @ARTICLE{GMTW, mrkey = {2506750},
      number = {2},
      issn = {0001-5962},
      author = {Galatius, S. and Tillmann, Ulrike and Madsen, Ib and Weiss, Michael},
      mrclass = {55P47 (55P15 55P42 57R75)},
      doi = {10.1007/s11511-009-0036-9},
      journal = {Acta Math.},
      zblnumber = {1221.57039},
      volume = {202},
      mrnumber = {2506750},
      fjournal = {Acta Mathematica},
      mrreviewer = {Richard John Steiner},
      title = {The homotopy type of the cobordism category},
      year = {2009},
      pages = {195--239},
      }
  • [GR-W] Go to document S. Galatius and O. Randal-Williams, "Monoids of moduli spaces of manifolds," Geom. Topol., vol. 14, iss. 3, pp. 1243-1302, 2010.
    @ARTICLE{GR-W, mrkey = {2653727},
      number = {3},
      issn = {1465-3060},
      author = {Galatius, S. and Randal-Williams, Oscar},
      mrclass = {57R90 (55P47 57R56)},
      doi = {10.2140/gt.2010.14.1243},
      journal = {Geom. Topol.},
      zblnumber = {1205.55007},
      volume = {14},
      mrnumber = {2653727},
      fjournal = {Geometry \& Topology},
      mrreviewer = {R. M. Vogt},
      title = {Monoids of moduli spaces of manifolds},
      year = {2010},
      pages = {1243--1302},
      }
  • [GR-W3] Go to document S. Galatius and O. Randal-Williams, "Homological stability for moduli spaces of high dimensional manifolds. I," J. Amer. Math. Soc., p. 50, 2017.
    @ARTICLE{GR-W3,
      author = {Galatius, S. and Randal-Williams, Oscar},
      title = {Homological stability for moduli spaces of high dimensional manifolds. {I}},
      journal = {J. Amer. Math. Soc.},
      note = {published electronically: June 23, 2017},
      year = {2017},
      doi = {10.1090/jams/884},
      pages = {50 pp.},
      }
  • [GR-W2] Go to document S. Galatius and O. Randal-Williams, "Stable moduli spaces of high-dimensional manifolds," Acta Math., vol. 212, iss. 2, pp. 257-377, 2014.
    @ARTICLE{GR-W2, mrkey = {3207759},
      number = {2},
      issn = {0001-5962},
      author = {Galatius, S. and Randal-Williams, Oscar},
      mrclass = {55R40 (55Pxx 57Mxx)},
      doi = {10.1007/s11511-014-0112-7},
      journal = {Acta Math.},
      zblnumber = {06305189},
      volume = {212},
      mrnumber = {3207759},
      fjournal = {Acta Mathematica},
      mrreviewer = {Semen S. Podkorytov},
      title = {Stable moduli spaces of high-dimensional manifolds},
      year = {2014},
      pages = {257--377},
      }
  • [GoerssSchemmerhorn] Go to document P. Goerss and K. Schemmerhorn, "Model categories and simplicial methods," in Interactions Between Homotopy Theory and Algebra, Providence, RI: Amer. Math. Soc., 2007, vol. 436, pp. 3-49.
    @INCOLLECTION{GoerssSchemmerhorn, mrkey = {2355769},
      author = {Goerss, Paul and Schemmerhorn, Kristen},
      mrclass = {18G55 (18G10 55U35)},
      series = {Contemp. Math.},
      address = {Providence, RI},
      publisher = {Amer. Math. Soc.},
      doi = {10.1090/conm/436/08403},
      zblnumber = {1134.18007},
      volume = {436},
      mrnumber = {2355769},
      booktitle = {Interactions Between Homotopy Theory and Algebra},
      mrreviewer = {Timothy Porter},
      title = {Model categories and simplicial methods},
      pages = {3--49},
      year = {2007},
      }
  • [HV] Go to document A. Hatcher and K. Vogtmann, "Homology stability for outer automorphism groups of free groups," Algebr. Geom. Topol., vol. 4, pp. 1253-1272, 2004.
    @ARTICLE{HV, mrkey = {2113904},
      issn = {1472-2747},
      author = {Hatcher, Allen and Vogtmann, Karen},
      mrclass = {20F28 (20E05 20F65 20J06 57M07)},
      doi = {10.2140/agt.2004.4.1253},
      journal = {Algebr. Geom. Topol.},
      zblnumber = {1093.20020},
      volume = {4},
      mrnumber = {2113904},
      fjournal = {Algebraic \& Geometric Topology},
      mrreviewer = {Mihalis A. Sykiotis},
      title = {Homology stability for outer automorphism groups of free groups},
      year = {2004},
      pages = {1253--1272},
      }
  • [KervaireSCobordism] Go to document M. A. Kervaire, "Le théorème de Barden-Mazur-Stallings," Comment. Math. Helv., vol. 40, pp. 31-42, 1965.
    @ARTICLE{KervaireSCobordism, mrkey = {0189048},
      issn = {0010-2571},
      author = {Kervaire, Michel A.},
      mrclass = {57.10},
      doi = {10.1007/BF02564363},
      journal = {Comment. Math. Helv.},
      zblnumber = {0135.41503},
      volume = {40},
      mrnumber = {0189048},
      fjournal = {Commentarii Mathematici Helvetici},
      mrreviewer = {N. H. Kuiper},
      title = {Le théorème de {B}arden-{M}azur-{S}tallings},
      year = {1965},
      pages = {31--42},
      }
  • [MW] Go to document I. Madsen and M. Weiss, "The stable moduli space of Riemann surfaces: Mumford’s conjecture," Ann. of Math., vol. 165, iss. 3, pp. 843-941, 2007.
    @ARTICLE{MW, mrkey = {2335797},
      number = {3},
      issn = {0003-486X},
      author = {Madsen, Ib and Weiss, Michael},
      mrclass = {14H10 (14F43 19D06 55P47)},
      doi = {10.4007/annals.2007.165.843},
      journal = {Ann. of Math.},
      zblnumber = {1156.14021},
      volume = {165},
      mrnumber = {2335797},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Ulrike Tillmann},
      title = {The stable moduli space of {R}iemann surfaces: {M}umford's conjecture},
      year = {2007},
      pages = {843--941},
      }
  • [McDuff-Segal] Go to document D. McDuff and G. Segal, "Homology fibrations and the “group-completion” theorem," Invent. Math., vol. 31, iss. 3, pp. 279-284, 1975/76.
    @ARTICLE{McDuff-Segal, mrkey = {0402733},
      number = {3},
      issn = {0020-9910},
      author = {McDuff, D. and Segal, G.},
      mrclass = {55D45},
      doi = {10.1007/BF01403148},
      journal = {Invent. Math.},
      zblnumber = {0306.55020},
      volume = {31},
      mrnumber = {0402733},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {Harold Hastings},
      title = {Homology fibrations and the ``group-completion'' theorem},
      year = {1975/76},
      pages = {279--284},
      }
  • [MillerPalmer] Go to document J. Miller and M. Palmer, "A twisted homology fibration criterion and the twisted group-completion theorem," Q. J. Math., vol. 66, iss. 1, pp. 265-284, 2015.
    @ARTICLE{MillerPalmer, mrkey = {3356291},
      number = {1},
      issn = {0033-5606},
      author = {Miller, Jeremy and Palmer, Martin},
      mrclass = {55R65 (55N25 55T10)},
      doi = {10.1093/qmath/hau030},
      journal = {Q. J. Math.},
      zblnumber = {1326.55005},
      volume = {66},
      mrnumber = {3356291},
      fjournal = {The Quarterly Journal of Mathematics},
      mrreviewer = {Steven R. Costenoble},
      title = {A twisted homology fibration criterion and the twisted group-completion theorem},
      year = {2015},
      pages = {265--284},
      }
  • [Quinn4Mfld] Go to document F. Quinn, "The stable topology of $4$-manifolds," Topology Appl., vol. 15, iss. 1, pp. 71-77, 1983.
    @ARTICLE{Quinn4Mfld, mrkey = {0676968},
      number = {1},
      issn = {0166-8641},
      author = {Quinn, Frank},
      mrclass = {57R65 (57R80)},
      doi = {10.1016/0166-8641(83)90049-4},
      journal = {Topology Appl.},
      zblnumber = {0536.57006},
      volume = {15},
      mrnumber = {0676968},
      fjournal = {Topology and its Applications},
      mrreviewer = {John J. Walsh},
      title = {The stable topology of {$4$}-manifolds},
      year = {1983},
      pages = {71--77},
      }
  • [R-WResolution] Go to document O. Randal-Williams, "Resolutions of moduli spaces and homological stability," J. Eur. Math. Soc. $($JEMS$)$, vol. 18, iss. 1, pp. 1-81, 2016.
    @ARTICLE{R-WResolution, mrkey = {3438379},
      number = {1},
      issn = {1435-9855},
      author = {Randal-Williams, Oscar},
      mrclass = {55R40 (20J06 57M07 57R15 57R50)},
      doi = {10.4171/JEMS/583},
      journal = {J. Eur. Math. Soc. $($JEMS$)$},
      zblnumber = {06539493},
      volume = {18},
      mrnumber = {3438379},
      fjournal = {Journal of the European Mathematical Society (JEMS)},
      mrreviewer = {Yusuke Kuno},
      title = {Resolutions of moduli spaces and homological stability},
      year = {2016},
      pages = {1--81},
      }
  • [Tillmann] Go to document U. Tillmann, "On the homotopy of the stable mapping class group," Invent. Math., vol. 130, iss. 2, pp. 257-275, 1997.
    @ARTICLE{Tillmann, mrkey = {1474157},
      number = {2},
      issn = {0020-9910},
      author = {Tillmann, Ulrike},
      mrclass = {57M99 (19L20 55P47 55Q50 55S12 55U99)},
      doi = {10.1007/s002220050184},
      journal = {Invent. Math.},
      zblnumber = {0891.55019},
      volume = {130},
      mrnumber = {1474157},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {Darryl McCullough},
      title = {On the homotopy of the stable mapping class group},
      year = {1997},
      pages = {257--275},
      }
  • [Wahl] Go to document N. Wahl, "Homological stability for the mapping class groups of non-orientable surfaces," Invent. Math., vol. 171, iss. 2, pp. 389-424, 2008.
    @ARTICLE{Wahl, mrkey = {2367024},
      number = {2},
      issn = {0020-9910},
      author = {Wahl, Nathalie},
      mrclass = {57M99 (55P47 55R35 55T99 57R50)},
      doi = {10.1007/s00222-007-0085-7},
      journal = {Invent. Math.},
      zblnumber = {1140.55007},
      volume = {171},
      mrnumber = {2367024},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {JÂ\copyright{}rÂ'me Scherer},
      title = {Homological stability for the mapping class groups of non-orientable surfaces},
      year = {2008},
      pages = {389--424},
      }
  • [WallFin] Go to document C. T. C. Wall, "Finiteness conditions for ${ CW}$-complexes," Ann. of Math., vol. 81, pp. 56-69, 1965.
    @ARTICLE{WallFin, mrkey = {0171284},
      issn = {0003-486X},
      author = {Wall, C. T. C.},
      mrclass = {55.40},
      doi = {10.2307/1970382},
      journal = {Ann. of Math.},
      zblnumber = {0152.21902},
      volume = {81},
      mrnumber = {0171284},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {A. Dold},
      title = {Finiteness conditions for {${\rm CW}$}-complexes},
      year = {1965},
      pages = {56--69},
      }
  • [Dalian] M. Weiss, Dalian notes on Pontryagin classes, 2015.
    @MISC{Dalian,
      author = {Weiss, Michael},
      arxiv = {1507.00153},
      title = {Dalian notes on {P}ontryagin classes},
      year = {2015},
      }

Authors

Søren Galatius

Stanford University, Stanford, CA

Current address:

University of Copenhagen, Copenhagen, Denmark Oscar Randal-Williams

Centre for Mathematical Sciences, Wilberforce Road, Cambridge, United Kingdom