Abstract
Let $G(X)$ denote the size of the largest gap between consecutive primes below $X$. Answering a question of Erdős, we show that \[ G(X) \geq f(X) \frac{\log X \log \log X \log \log \log \log X}{(\log \log \log X)^2},\] where $f(X)$ is a function tending to infinity with $X$. Our proof combines existing arguments with a random construction covering a set of primes by arithmetic progressions. As such, we rely on recent work on the existence and distribution of long arithmetic progressions consisting entirely of primes.