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Large gaps between
consecutive prime numbers

By Kevin Ford, Ben Green, Sergei Konyagin, and Terence Tao

Abstract

Let G(X) denote the size of the largest gap between consecutive primes

below X. Answering a question of Erdős, we show that

G(X) > f(X)
logX log logX log log log logX

(log log logX)2
,

where f(X) is a function tending to infinity with X. Our proof combines

existing arguments with a random construction covering a set of primes

by arithmetic progressions. As such, we rely on recent work on the exis-

tence and distribution of long arithmetic progressions consisting entirely of

primes.
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1. Introduction

WriteG(X) for the maximum gap between consecutive primes less thanX.

It is clear from the prime number theorem that

G(X) > (1 + o(1)) logX,

as the average gap between the prime numbers that are 6 X is ∼ logX. In

1931, Westzynthius [33] proved that infinitely often, the gap between consec-

utive prime numbers can be an arbitrarily large multiple of the average gap,

c© 2016 Department of Mathematics, Princeton University.
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that is, G(X)/ logX → ∞ as X → ∞. Moreover, he proved the qualitative

bound1

G(X)� logX log3X

log4X
.

In 1935 Erdős [9] improved this to

G(X)� logX log2X

(log3X)2
,

and in 1938 Rankin [28] made a subsequent improvement

G(X) > (c+ o(1))
logX log2X log4X

(log3X)2
,

with c = 1
3 . The constant c was subsequently improved several times: to 1

2e
γ

by Schönhage [30], then to c = eγ by Rankin [29], c = 1.31256eγ by Maier and

Pomerance [24] and, most recently, c = 2eγ by Pintz [27].

Our aim in this paper is to show that c can be taken arbitrarily large.

Theorem 1. Let R > 0. Then for any sufficiently large X , there are at

least

R
logX log2X log4X

(log3X)2

consecutive composite natural numbers not exceeding X .

In other words, we have

G(X) > f(X)
logX log2X log4X

(log3X)2

for some function f(X) that goes to infinity as X →∞. Theorem 1 settles in

the affirmative a long-standing conjecture of Erdős [10].

Theorem 1 has been simultaneously and independently established by

Maynard [26] by a different method (relying on the sieve-theoretic techniques

related to those used recently in [25] to obtain bounded gaps between primes,

rather than results on linear equations between primes). As it turns out, the

techniques of this paper and those in [26] may be combined to establish fur-

ther results on large prime gaps; see the followup paper [11] to this work and

to [26].

1As usual in the subject, log2 x = log log x, log3 x = log log log x, and so on. The conven-

tions for asymptotic notation such as � and o() will be defined in Section 1.2.
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Based on a probabilistic model of primes, Cramér [6] conjectured that2

lim sup
X→∞

G(X)

log2X
= 1,

and Granville [14], using a refinement of Cramér’s model, has conjectured that

the lim sup above is in fact at least 2e−γ = 1.1229 . . . . These conjectures are

well beyond the reach of our methods. Cramér’s model also predicts that the

normalized prime gaps pn+1−pn
log pn

should have exponential distribution, that is,

pn+1 − pn > C log pn for about e−Cπ(X) primes 6 X. Numerical evidence

from prime calculations up to 4 ·1018 [31] matches this prediction quite closely,

with the exception of values of C close to logX, in which there is very little

data available. In fact, maxX64·1018 G(X)/ log2X ≈ 0.9206, slightly below the

predictions of Cramér and Granville.

Unconditional upper bounds for G(X) are far from the conjectured truth,

the best being G(X)� X0.525 and due to Baker, Harman and Pintz [1]. Even

the Riemann Hypothesis only3 furnishes the bound G(X)� X1/2 logX [5].

All works on lower bounds for G(X) have followed a similar overall plan

of attack: show that there are at least G(X) consecutive integers in (X/2, X],

each of which has a “very small” prime factor. To describe the results, we

make the following definition.

Definition 1. Let x be a positive integer. Define Y (x) to be the largest

integer y for which one may select residue classes ap (mod p), one for each prime

p 6 x, which together “sieve out” (cover) the whole interval [y] = {1, . . . , y}.

The relation between this function Y and gaps between primes is encoded

in the following simple lemma.

Lemma 1.1. Write P (x) for the product of the primes less than or equal

to x. Then we have G(P (x) + Y (x) + x) > Y (x) for all x.

Proof. Set y = Y (x), and select residue classes ap (mod p), one for each

prime p 6 x, which cover [y]. By the Chinese remainder theorem there is some

m, x < m 6 x+ P (x), with m ≡ −ap (mod p) for all primes p 6 x. We claim

that all of the numbers m+1, . . . ,m+y are composite, which means that there

is a gap of length y amongst the primes less than m + y, thereby concluding

the proof of the lemma. To prove the claim, suppose that 1 6 t 6 y. Then

2Cramér is not entirely explicit with this conjecture. In [6], he shows that his random

analogues Pn of primes satisfy lim sup(Pn+1 − Pn)(logPn)−2 = 1 and writes “Obviously we

may take this as a suggestion that, for the particular sequence of ordinary prime numbers

pn, some similar relation may hold.”
3Some slight improvements are available if one also assumes some form of the pair corre-

lation conjecture; see [22].
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there is some p such that t ≡ ap (mod p), and hence m + t ≡ −ap + ap ≡ 0

(mod p), and thus p divides m+ t. Since m+ t > m > x > p, m+ t is indeed

composite. �

By the prime number theorem we have P (x) = e(1+o(1))x. It turns out

(see below) that Y (x) has size xO(1). Thus the bound of Lemma 1.1 implies

that

G(X) > Y
Ä
(1 + o(1)) logX

ä
as X → ∞. Theorem 1 follows from this and the following bound for Y , the

proof of which is the main business of the paper.

Theorem 2. For any R > 0 and for sufficiently large x, we have

(1.1) Y (x) > R
x log x log3 x

(log2 x)2
.

The function Y is intimately related to Jacobsthal ’s function j. If n is a

positive integer, then j(n) is defined to be the maximal gap between integers

coprime to n. In particular, j(P (x)) is the maximal gap between numbers free

of prime factors 6 x, or equivalently, 1 plus the longest string of consecutive

integers, each divisible by some prime p 6 x. The construction given in the

proof of Lemma 1.1 in fact proves that

j(P (x)) > Y
Ä
(1 + o(1)) logP (x)

ä
= Y

Ä
(1 + o(1))x

ä
.

This observation, together with results in the literature, gives upper bounds

for Y . The best upper bound known is Y (x)� x2, which comes from Iwaniec’s

work [23] on Jacobsthal’s function. It is conjectured by Maier and Pomerance

that in fact Y (x) � x(log x)2+o(1). This places a serious (albeit conjectural)

upper bound on how large gaps between primes we can hope to find via lower

bounds for Y (x): a bound in the region of G(X) ' logX(log logX)2+o(1), far

from Cramér’s conjecture, appears to be the absolute limit of such an approach.

We turn now to a discussion of the proof of Theorem 2. Recall that our

task is to find y, as large as possible, so that the whole interval [y] may be

sieved using congruences ap (mod p), one for each prime p 6 x. Prior authors

divided the sieving into different steps, a key to all of them being to take a

common value of ap for “large” p, say ap = 0 for z < p < δx, where δ > 0 is

a small constant and z = xc log3 x/ log2 x for some constant c > 0. The numbers

in [y] surviving this first sieving either have all of their prime factors 6 z (i.e.,

they are “z-smooth”) or are of the form pm with p prime and m 6 y/δx. One

then appeals to bounds for smooth numbers, e.g., [3], to see that there are

very few numbers of the first kind, say O(x/ log2 x). By the prime number

theorem there are ∼ y log2 x/ log x unsieved numbers of the second kind. By

contrast, if one were to take a random choice for ap for z < p < δx, then with



LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS 939

high probability, the number of unsifted integers in [y] would be considerably

larger, about y log z/ log x.

One then performs a second sieving, choosing ap for “small” p 6 z. Using

a greedy algorithm, for instance, one can easily sieve out all but

y log2 x

log x

∏
p6z

Å
1− 1

p

ã
∼ e−γ y log2 x

log x log z

of the remaining numbers. There are alternative approaches using explicit

choices for ap; we will choose our ap at random. (The set V of numbers

surviving this second sieving has about the same size in each case.)

If |V | 6 π(x)−π(δx), the number of “very large” primes, then we perform

a (rather trivial) third sieving as follows: each v ∈ V can be matched with one

of these primes p, and one may simply take ap = v. This is the route followed

by all authors up to and including Rankin [29]; improvements to G(x) up

to this point depended on improved bounds for counts of smooth numbers.

The new idea introduced by Maier and Pomerance [24] was to make the third

sieving more efficient (and less trivial!) by using many p ∈ (δx, x] to sift not

one but two elements of V . To do this they established a kind of “twin primes

on average” result implying that for most p ∈ (δx, x], there are many pairs

of elements of V that are congruent modulo p. Then the authors proved a

crucial combinatorial result that disjoint sets Vp exist, each of two elements

congruent modulo p, for a large proportion of these primes p; that is, for a large

proportion of p, ap mod p will sift out two elements of V , and the sifted elements

are disjoint. Pintz [27] proved a “best possible” version of the combinatorial

result, that in fact one can achieve a “nearly perfect matching,” that is, disjoint

sets Vp for almost all primes p ∈ (δx, x], and this led to the heretofore best

lower bound for G(X).

Heuristically, much more along these lines should be possible. With y

comparable to the right-hand side of (1.1), the set V turns out have expected

cardinality comparable to a large multiple of x/ log x. Assuming that V is

a “random” subset of [y], for every prime p ∈ (δx, x] there should in fact

be a residue class a (mod p) containing � log x/(log2 x)O(1) elements of V .

(Roughly, the heuristic predicts that the sizes of the sets V ∩ (a (mod p)) are

Poisson distributed with parameter ≈ |V |/p.) Whilst we cannot establish

anything close to this, we are able to use almost all primes p ∈ (x/2, x] to sieve

r elements of V for any fixed r. Where Maier and Pomerance appealed to (in

fact proved) a result about pairs of primes on average, we use results about

arithmetic progressions of primes of length r, established in work of the second

and fourth authors [19], [16] and of these authors and Ziegler [18]. Specifically,

we need results about progressions q, q+ r!p, q+ 2r!p, . . . , q+ (r− 1)r!p; if one

ignores the technical factor r!, these are “progressions of primes with prime
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common difference.” By taking ap = q, the congruence ap (mod p) allows us to

sift out all r elements of such a progression, and it is here that we proceed more

efficiently than prior authors. Ensuring that many of these r-element sifted sets

are disjoint (or at least have small intersections) is a rather difficult problem,

however. Rather than dealing with these intersections directly, we utilize the

random choice of ap in the second step to prove that with high probability, V

has a certain regularity with respect to intersections with progressions of the

form q, q + r!p, q + 2r!p, . . . , q + (r − 1)r!p. We then prove that most elements

of V survive the third sieving with uniformly small probability.
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1.2. Notational conventions. We use f = O(g) and f � g to denote the

claim that there is a constant C > 0 such that |f(·)| 6 Cg(·) for all · in the

domain of f . We adopt the convention that C is independent of any parameter

unless such dependence is indicated by subscript such as �u, except that C

may depend on the parameter r (which we consider to be fixed) in Sections 2–4

and 6–7.

In Sections 2–4 and 6–7, the symbol o(1) will stand for a function that

tends to 0 as x → ∞, uniform in all parameters except r unless otherwise

indicated. The same convention applies to the asymptotic notationf(x) ∼
g(x), which means f(x) = (1 + o(1))g(x). In Sections 5 and the appendix,

o(g(N)) refers to some function h(N) satisfying limN→∞ h(N)/g(N) = 0.

The symbols p, q and s will always denote prime numbers, except that

in the the appendix, s is a positive integer that measures the complexity of a

system of linear forms.
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Finally, we will be using the probabilistic method and will thus be working

with finite probability spaces. Generically we write P for probability and E for

expectation. If a finite set A is equipped with the uniform probability mea-

sure, we write Pa∈A and Ea∈A for the associated probability and expectation.

Variables in boldface will denote random real-valued scalars, while arrowed

boldface symbols denote random vectors, e.g., ~a.

We also use #A to denote the cardinality of A, and for any positive real

z, we let [z] := {n ∈ N : 1 6 n 6 z} denote the set of natural numbers up to z.

2. On arithmetic progressions consisting of primes

A key tool in the proof of Theorem 2 is an asymptotic formula for counts of

arithmetic progressions of primes. In fact, we shall be interested in progressions

of primes of length r whose common difference is r! times a prime4 for positive

integer values of r. The key technical result we shall need is Lemma 2.4 below.

This is a relatively straightforward consequence of Lemma 2.1 below, which

relies on the work on linear equations in primes of the second and fourth

authors and Ziegler.

We turn to the details. Let y be a sufficiently large quantity (which goes

to infinity for the purposes of asymptotic notation), and let x be a quantity

that goes to infinity at a slightly slower rate than y; for sake of concreteness,

we will impose the hypotheses

(2.1) x
√

log x 6 y 6 x log x.

In fact, the analysis in this section would apply under the slightly weaker

hypotheses y log−O(1) y 6 x 6 o(y), but we will stick with (2.1) for sake of

concreteness since this condition will certainly be satisfied when applying the

results of this section to prove Theorem 2. From (2.1) we see, in particular,

that log y ∼ log x, so we will use log x and log y more or less interchangeably

in what follows. Let P denote the set of all primes in the interval (x/2, x], and

let Q denote the set of all primes in the interval (x/4, y]; thus from the prime

number theorem, we have

(2.2) #P ∼ x

2 log x
; #Q ∼ y

log x
.

In other words, P and Q both have density ∼ 1
log x inside (x/2, x] and (x/4, y]

respectively.

4One could replace r! here if desired by the slightly smaller primorial P (r); as observed

long ago by Lagrange and Waring [8], this primorial must divide the spacing of any sufficiently

large arithmetic progression of primes of length r. However, replacing r! by P (r) would lead

to only a negligible savings in the estimates here.
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Let r > 1 be a fixed natural number. We define a relation between P
and Q as follows: if p ∈ P and q ∈ Q, we write p q if the entire arithmetic

progression {q, q+r!p, . . . , q+(r−1)r!p} is contained inside Q. One may think

of the r relations p q − ir!p for i = 0, . . . , r − 1 as defining r different (but

closely related) bipartite graphs between P and Q. Note that if p q, then

the residue class q (mod p) is guaranteed to contain at least r primes from Q,

which is the main reason why we are interested in these relations (particularly

for somewhat large values of r).

For our main argument, we will be interested in the typical degrees of the

bipartite graphs associated to the relations p q − ir!p. Specifically, we are

interested5 in the following questions for a given 0 6 i 6 r − 1:

(i) For a typical p ∈ P, how many q ∈ Q are there such that p q − ir!p?
(Note that the answer to this question does not depend on i.)

(ii) For a typical q ∈ Q, how many p ∈ P are there such that p q − ir!p?
If P and Q were distributed randomly inside the intervals (x/2, x] and

(x/4, y] respectively, with cardinalities given by (2.2), then standard proba-

bilistic arguments (using, for instance, the Chernoff inequality) would suggest

that the answer to question (i) is ∼ y
logr x , while the answer to question (ii) is

∼ x
2 logr x . As it turns out, the local structure of the primes (for instance, the

fact that all the elements of P and Q are coprime to r!) will bias the answers to

each of these two questions; however (as one may expect from double counting

considerations), they will be biased by exactly the same factor αr (defined in

(2.3) below), and the net effect of this bias will cancel itself out at the end of

the proof of Theorem 2.

One can predict the answers to Questions (i) and (ii) using the Hardy-

Littlewood prime tuples conjecture [21]. If we apply this conjecture (and ignore

any issues as to how uniform the error term in that conjecture is with respect

to various parameters), one soon arrives6 at the prediction that the answer to

Question (i) should be ∼ αr
y

logr x for all p ∈ P, and similarly the answer to

Question (ii) should be ∼ αr
x

2 logr x for all q ∈ Q, where for the rest of the

paper αr will denote the singular series

(2.3) αr :=
∏
p6r

Å
p

p− 1

ãr−1 ∏
p>r

(p− r)pr−1

(p− 1)r
.

The exact form of αr is not important for our argument, so long as it is finite,

positive, and does not depend on x or y; but these claims are clear from (2.3).

5Actually, for technical reasons, we will eventually replace the relation by slightly

smaller relation , which will in turn be randomly refined to an even smaller relation
~a

;

see below.
6See also Sections 6 and 7 for some closely related computations.
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(Note that the second factor (p−r)pr−1

(p−1)r is nonzero and behaves asymptotically

as 1 + O(1/p2).) As mentioned previously, this quantity will appear in two

separate places in the proof of Theorem 2, but these two occurrences will

eventually cancel each other out.

The Hardy-Littlewood conjecture is still out of reach of current technol-

ogy. Note that even the much weaker question as to whether the relation p q

is satisfied for at least one pair of p and q for any given r is at least as hard as

establishing that the primes contain arbitrarily long arithmetic progressions,

which was only established by the second and fourth authors in [15]. How-

ever, for the argument used to prove Theorem 2, it will suffice to be able to

answer Question (i) for almost all p ∈ P rather than all p ∈ P, and simi-

larly for Question (ii). In other words, we only need (a special case of) the

Hardy-Littlewood prime conjecture “on average.” This is easier to establish;

for instance, Balog [2] was able to use the circle method (or “linear Fourier

analysis”) to establish the prime tuples conjecture for “most” tuples in some

sense. The results in [2] are not strong enough for our applications, because

of our need to consider arbitrarily long arithmetic progressions (which are well

known to not be amenable to linear Fourier-analytic methods for r > 4, see

[13]) rather than arbitrary prime tuples. Instead we will use (a modification

of) the more recent work of the second and fourth authors [19]. More precisely,

we claim the following bounds.

Lemma 2.1. Let x, y, r,P,Q, and be as above. Let 0 6 i 6 r − 1.

(i) For all but o(x/ log x) of the p ∈ P , we have the estimate

#{q ∈ Q : p q − ir!p} ∼ αr
y

logr x
.

(ii) For all but o(y/ log x) of the q ∈ Q, we have

#{p ∈ P : p q − ir!p} ∼ αr
x

2 logr x
.

(iii) For all p ∈ P , we have the upper bounds

#{q ∈ Q : p q − ir!p} � y

logr x
.

(iv) For all q ∈ Q, we have the upper bounds

#{p ∈ P : p q − ir!p} � x

2 logr x
.

Parts (iii) and (iv) follow from standard sieve-theoretic methods (e.g., the

Selberg sieve); we omit the proof here, referring the reader instead7 to [20] or

7One could also deduce these bounds from Proposition 6.4′ in Appendix A.
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[12]. The more interesting bounds are (i) and (ii). As stated above, these two

claims are almost relatively straightforward consequences of the main result of

the paper [19] of the second and fourth authors. However, some modifications

of that work are required to deal with the fact that x and y are of somewhat

different sizes. In Section 5 below we state the modified version of the main

result of [19] that we need, Theorem 7. The deductions of parts (i) and (ii) of

Lemmas 2.1 are rather similar to one another, and are given in Sections 6 and

7 respectively. Finally, a proof of Theorem 7 can be obtained by modifying the

arguments of [19] in quite a straightforward manner, but in a large number of

places. We record these modifications in Appendix A.

As presently defined, it is possible for the bipartite graphs given by the

p q− ir!p to overlap; thus it may happen that p q− ir!p and p q− jr!p
for some p ∈ P, q ∈ Q, and 0 6 i < j 6 r − 1. For instance, this situation

will occur if Q has an arithmetic progression q, q+ r!p, . . . , q+ r× r!p of length

r + 1 with p ∈ P. For technical reasons, such overlaps are undesirable for our

applications. However, these overlaps are rather rare and can be easily removed

by the following simple device. We define the modified relation between P
and Q by declaring p q if the progression {q, q + r!p, . . . , q + (r − 1)r!p} is

contained inside Q, but q + r × r!p does not lie in Q. From construction we

have the following basic fact.

Lemma 2.2. For any p ∈ P and q ∈ Q, there is at most one 0 6 i 6 r−1

such that p q − ir!p.

We can then modify Lemma 2.1 slightly by replacing the relation with

its slightly perturbed version :

Lemma 2.3. Let x, y, r,P,Q, and be as above. Let 0 6 i 6 r − 1.

(i) For all but o(x/ log x) of the p ∈ P , we have the estimate

#{q ∈ Q : p q − ir!p} ∼ αr
y

logr x
.

(ii) For all but o(y/ log x) of the q ∈ Q, we have

#{p ∈ P : p q − ir!p} ∼ αr
x

2 logr x
.

(iii) For all p ∈ P , we have the upper bounds

#{q ∈ Q : p q − ir!p} � y

logr x
.

(iv) For all q ∈ Q, we have the upper bounds

#{p ∈ P : p q − ir!p} � x

2 logr x
.
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Proof. Parts (iii) and (iv) are immediate from their counterparts in Lemma

2.1, since is a subrelation of . To prove (i), we simply observe from

Lemma 2.1(iii) (with r replaced by r + 1) that

#{q ∈ Q : p q − ir!p but p 6 q − ir!p} � y

logr+1 x
,

and the claim then follows from Lemma 2.1(i) and the triangle inequality. The

claim (ii) is proven similarly. �

For technical reasons, it will be convenient to reformulate the main results

of Lemma 2.3 as follows.

Lemma 2.4. Let x, y, r,P,Q, and be as above. Then there exist subsets

P0, Q0 of P,Q respectively with

(2.4) #P0 ∼
x

2 log x
; #Q0 ∼

y

log x
,

such that

(2.5) #{q ∈ Q : p q − ir!p} ∼ αr
y

logr x

for all p ∈ P0 and 0 6 i 6 r − 1, and similarly that

(2.6) #{p ∈ P0 : p q − ir!p} ∼ αr
x

2 logr x

for all q ∈ Q0 and 0 6 i 6 r − 1.

Proof. From Lemma 2.3(i) we may already find a subset P0 of the desired

cardinality obeying (2.5). If the P0 in (2.6) were replaced by P, then a similar

argument using Lemma 2.3(ii) (and taking the union bound for the exceptional

sets for each 0 6 i 6 r − 1) would give the remainder of the lemma. To deal

with the presence of P0 in (2.6), it thus suffices to show that

#{p ∈ P\P0 : p q − ir!p} = o

Å
x

logr x

ã
for all but o(y/ log x) of the q ∈ Q. By Markov’s inequality, it suffices to show

that

#{(p, q) ∈ (P\P0)×Q : p q − ir!p} = o

Å
x

logr x
× y

log x

ã
.

But this follows by summing Lemma 2.3(iii) for all p ∈ P\P0, since the set

P\P0 has cardinality o(x/ log x). �
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3. Main construction

We now begin the proof of Theorem 2. It suffices to establish the following

claim.

Theorem 3 (First reduction). Let r > 13 be an integer. Take x to be

sufficiently large depending on r (and going to infinity for the purposes of

asymptotic notation), and then define y by the formula

(3.1) y :=
r

6 log r

x log x log3 x

(log2 x)2
.

Then there exists a residue class as (mod s) for each prime s 6 x, such that the

union of these classes contains every positive integer less than or equal to y.

The numerical values of 13 and 6 in the above theorem are only of minor

significancd and can be ignored for a first reading.

Observe that x, y obey the condition (2.1) from the previous section. If

Theorem 3 holds, then in terms of the quantity Y (x) defined in the introduc-

tion, we have

Y (x) > y,

which by (3.1) will imply Theorem 2 by taking r sufficiently large depending

on R.

It remains to prove Theorem 3. Set

(3.2) z := xlog3 x/(3 log2 x),

and partition the primes less than or equal to x into the four disjoint classes

S1 := {s prime : s 6 log x or z < s 6 x/4},
S2 := {s prime : log x < s 6 z},
S3 := P = {s prime : x/2 < s 6 x},
S4 := {s prime : x/4 < s 6 x/2}.

We are going to sieve [y] in four stages by removing at most one congruence

class as (mod s) for each prime s ∈ Si, i = 1, 2, 3, 4. If we can do this in such

a way that nothing is left at the end, we shall have achieved our goal.

We first dispose of the final sieving process (involving S4), as it is rather

trivial. Namely, we reduce Theorem 3 to

Theorem 4 (Second reduction). Let r, x, y be as in Theorem 3, and let

S1,S2,S3 be as above. Then there exists a residue class as (mod s) for each

s ∈ S1 ∪ S2 ∪ S3, such that the union of these classes contains all but at most

(1
5 + o(1)) x

log x of the positive integers less than or equal to y.

Indeed, if the as (mod s) for s ∈ S1 ∪ S2 ∪ S3 are as in Theorem 4, then

from the prime number theorem, the number of integers less than y that have
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not already been covered by a residue class is smaller than the number of

primes in S4. Thus, we may eliminate each of these surviving integers using

a residue class as (mod s) from a different element s from S4 (and selecting

residue classes arbitrarily for any s ∈ S4 that are left over), and Theorem 3

follows.

It remains to prove Theorem 4. For this, we perform the first sieving

process (using up the primes from S1) and reduce to

Theorem 5 (Third reduction). Let r, x, y,S2,S3 be as in Theorem 4, and

(as in the previous section) let Q denote the primes in the range (x/4, y]. Then

there exists a residue class as (mod s) for each s ∈ S2∪S3, such that the union

of these classes contains all but at most (1
5 + o(1)) x

log x of the elements of Q.

Proof of Theorem 4 assuming Theorem 5. We take as := 0 for all s ∈ S1.

Write R ⊂ [y] for the residual set of elements that survive this first sieving;

that is to say, R consists of all numbers in [y] that are not divisible by any

prime s in S1. Taking into account that (x/4) log x > y from (3.1), we conclude

that

R = Q∪Rerr,

where Rerr contains only z-smooth numbers, that is to say, numbers in [y] all

of whose prime factors are at most z.

Let u denote the quantity

u :=
log y

log z
,

so from (3.2) one has u ∼ 3 log2 x
log3 x

. By standard counts for smooth numbers

(e.g., de Bruijn’s theorem [3]),

#Rerr � ye−u log u+O(u log log(u+2))

=
y

log3+o(1) x

=
x

log2+o(1) x

= o(x/ log x).

Thus the contribution of Rerr may be absorbed into the exceptional set in

Theorem 4, and this theorem is now immediate from Theorem 5. �

Remark 1. One can replace the appeal to de Bruijn’s theorem here by the

simpler bounds of Rankin [28, Lemma II], if one makes the very minor change

of increasing the 3 in the denominator of (3.2) to 4, and to similarly increase

the 6 in (3.1) to 8.
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It remains to establish Theorem 5. Recall from (2.2) thatQ has cardinality

∼ y/ log x. This is significantly larger than the error term of (1
5 + o(1)) x

log x

permitted in Theorem 5; our sieving process has to reduce the size of Q by a

factor comparable to y/x. The purpose of the second sieving, by congruences

as (mod s) with s ∈ S2, is to achieve almost all of this size reduction. Our

choice of the as for s ∈ S2 will be completely random (which is why we are

using the boldface font here); that is, for each prime s ∈ S2, we select as
uniformly at random from {0, 1, . . . , s− 1}, and these choices are independent

for different values of s. Write ~a for the random vector (as)s∈S2 .

Observe that if n is any integer (not depending on ~a), then the probability

that n lies outside of all of the as (mod s) is exactly equal to

γ :=
∏
s∈S2

Å
1− 1

s

ã
.

This quantity will be an important normalizing factor in the arguments that

follow. From Mertens’ theorem and (3.1), (3.2), we see that

(3.3) γ ∼ log2 x

log z
∼ 3(log2 x)2

log x log3 x
∼ r

2 log r

x

y
.

Write Q(~a) for the (random) residual set of primes q in Q that do not lie

in any of the congruence classes as (mod s) for s ∈ S2. We will in fact focus

primarily on the slightly smaller set

Q0(~a) := Q(~a) ∩Q0,

where Q0 is the subset of Q constructed in Lemma 2.4. From linearity of

expectation we see that

(3.4) E#Q(~a) = γ#Q

and thus from (3.3), (2.2)

(3.5) E#Q(~a) ∼ r

2 log r

x

log x
.

Similarly, from Lemma 2.4 we have

#(Q\Q0) = o

Å
y

log x

ã
,

and thus from linearity of expectation and (3.3), we have

E#(Q(~a)\Q0(~a)) = o

Å
γ

y

log x

ã
= o

Å
x

log x

ã
.

In particular, from Markov’s inequality we have

(3.6) #(Q(~a)\Q0(~a)) = o

Å
γ

y

log x

ã
= o

Å
x

log x

ã
with probability 1− o(1).
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Set Description Expected

cardinality

P Primes in (x/2, x] ∼ x
2 log x

P0 Primes in P connected to the

expected # of primes in Q ∼ x
2 log x

P1(~a) Primes in P0 connected to the

expected # of primes in Q(~a) ∼ x
2 log x

P1(~a, q; i) Primes in P1(~a) i-connected to a

given prime q ∈ Q1(~a) ∼ γr−1αr
x

2 logr x

Q Primes in (x/4, y] ∼ y
log x

Q0 Primes in Q connected to the

expected # of primes in P0 ∼ y
log x

Q(~a) Randomly refined subset of Q ∼ r
2 log r

x
log x

Q(~a, p) Primes in Q(~a) connected to a

given prime p ∈ P1(~a) ∼ γrαr y
logr x

Q0(~a) Intersection of Q(~a) with Q0 ∼ r
2 log r

x
log x

Q1(~a) Primes in Q0(~a) connected to

the expected # of primes in P1(~a) ∼ r
2 log r

x
log x

Q1(~a, ~q) Randomly refined subset of Q1(~a) ∼ 1
2 log r

x
log x

Table 1. A brief description of the various P and Q-type sets

used in the construction, and their expected size. Roughly

speaking, the congruence classes from S1 are used to cut down

[y] to approximately Q, the congruence classes from S2 are used

to cut Q down to approximately Q0(~a), the congruence classes

from S3 = P are used to cut Q0(~a) down to approximately

Q1(~a, ~q), and the congruence classes in S4 are used to cover all

surviving elements from previous sieving.

We have an analogous concentration bound for #Q(~a):

Lemma 3.1. With probability 1− o(1), we have

#Q(~a) ∼ r

2 log r

x

log x
∼ γ y

log x
.

In particular, from (3.6) we also have

#Q0(~a) ∼ r

2 log r

x

log x
∼ γ y

log x

with probability 1− o(1).

This lemma is proven by a routine application of the second moment

method; we defer that proof to Section 4. It will now suffice to show
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Theorem 6 (Fourth reduction). Let x, y, r,~a,P0,Q0(~a) be as above, and

let ε > 0 be a quantity going to zero arbitrarily slowly as x→∞, thus ε = o(1).

Then with probability at least ε in the random choice of ~a, we may find a length

r arithmetic progression {qp + ir!p : 0 6 i 6 r − 1} for each p ∈ P0, such that

the union of these progressions contains all but at most (1
5 + o(1)) x

log x of the

elements of Q0(~a). (The o(1) decay in the conclusion may depend on ε.)

Indeed, from this theorem (and taking ε going to zero sufficiently slowly)

we may find ~a such that the conclusions of this theorem hold simultaneously

with (3.6), and by combining the residue classes from ~a with the residue classes

qp (mod p) for p ∈ P0 from Theorem 6 (and selecting residue classes arbitrarily

for p ∈ P\P0), we obtain Theorem 5.

It remains to establish Theorem 6. Note now (from Lemma 3.1) that we

only need to reduce the size of the surviving set Q0(~a) through sieving by a

constant factor (comparable to r
log r ), rather than by a factor like y/x that goes

to infinity as x→∞.

Recall from the previous section that we had the relation between P
and Q. We now refine this relation to a (random) relation between P0 and

Q(~a) as follows. If p ∈ P0 and q ∈ Q(~a), we write p
~a
q if p q and if the

arithmetic progression {q, q+ r!p, . . . , q+ (r− 1)r!p} is contained in Q(~a) (i.e.,

the entire progression survives the second sieving process).

Intuitively, if p ∈ P0 and q ∈ Q are such that p q, we expect p
~a
q to

occur with probability close to γr. The following lemma makes this intuition

precise (compare with Lemma 2.4).

Lemma 3.2. Let ε > 0 be a quantity going to zero arbitrarily slowly as

x→∞. Then with probability at least ε, we can find (random) subsets P1(~a)

of P0 and Q1(~a) of Q0(~a) obeying the cardinality bounds

(3.7) #P1(~a) ∼ x

2 log x
; #Q1(~a) ∼ #Q0(~a) ∼ r

2 log r

x

log x
,

such that

#{q ∈ Q(~a) : p
~a
q − ir!p} ∼ γrαr

y

logr x

for all p ∈ P1(~a) and 0 6 i 6 r − 1, and such that

#{p ∈ P1(~a) : p
~a
q − ir!p} ∼ γr−1αr

x

2 logr x

for all q ∈ Q1(~a) and 0 6 i 6 r−1. (The implied o(1) errors in the ∼ notation

may depend on ε.)

This lemma is also proven by an application of the second moment method;

we defer this proof also to Section 4.
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We are now ready to perform the third sieving process. Let us fix any ~a

obeying the properties in Lemma 3.2, and let P1(~a) and Q1(~a) be as in that

lemma. Since ~a has the desired properties with probability at least ε, in order

to establish Theorem 6 (and thus Theorems 2 and 1), it suffices to show that

for every such ~a, there is a choice of residue classes qp for p ∈ P0 satisfying the

required union property for Theorem 6.

For each p ∈ P1(~a), we select qp uniformly at random from the set

(3.8) Q(~a, p) := {q ∈ Q(~a) : p
~a
q},

with the qp for p ∈ P1(~a) being chosen independently (after ~a has been fixed);

note from Lemma 3.2 that

(3.9) #Q(~a, p) ∼ γrαr
y

logr x

for all p ∈ P1(~a). We write ~q for the random tuple (qp)p∈P1(~a), and for brevity

we write P~q and E~q for the associated probability and expectation with respect

to this random tuple (where ~a is now fixed). Let Q1(~a, ~q) denote the elements

of Q1(~a) that are not covered by any of the arithmetic progressions {qp+ ir!p :

0 6 i 6 r − 1} for each p ∈ P1(~a). We claim that

(3.10) E~q#Q1(~a, ~q) 6
x

5 log x
.

This implies (for each fixed choice of ~a) the existence of a vector ~q with

#Q1(~a, ~q) 6
x

5 log x
;

since #(Q0(~a)\Q1(~a)) = o(x/ log x) from (3.7), Theorem 6 follows (upon

choosing qp as the p component of ~q for p ∈ P1(~a) and qp arbitrarily for

p ∈ P0\P1(~a)).

It remains to prove (3.10). We will shortly show that

(3.11) P~q(q ∈ Q1(~a, ~q)) 6
1 + o(1)

r

for each q ∈ Q1(~a). Assuming this bound, then from (3.7) and linearity of

expectation, we have

E~q#Q1(~a, ~q) 6
1 + o(1)

r

r

2 log r

x

log x
,

which gives (3.10) as desired for r > 13.

It remains to prove (3.11). Fix q ∈ Q1(~a), and consider the sets

P1(~a, q; i) := {p ∈ P1(~a) : p
~a
q − ir!p}

for i = 0, . . . , r− 1. From Lemma 2.2, these sets are disjoint; from Lemma 3.2,

these sets each have cardinality (1 + o(1))γr−1αr
x

2 logr x .
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Suppose that 0 6 i 6 r− 1 and p ∈ P1(~a, q; i). Then q− ir!p ∈ Q(~a, p) by

(3.8), and the probability that qp = q − ir!p is equal to

1

#Q(~a, p)
=

1 + o(1)

γrαr
y

logr x

thanks to (3.9). By independence, the probability that qp 6= q − ir!p for all

0 6 i 6 r − 1 and p ∈ P1(~a, q; i) (which is a necessary condition for q to end

up in Q1(~a, ~q)) is thus

r−1∏
i=0

∏
p∈P1(~a,q;i)

(
1− 1 + o(1)

γrαr
y

logr x

)

= exp

(
− 1 + o(1)

γrαr
y

logr x

r(1 + o(1))γr−1αr
x

2 logr x

)

= exp

Å
−(1 + o(1))

rx

2yγ

ã
= exp(−(1 + o(1)) log r)

by (3.3). The claim (3.11) follows.

4. Probability estimates

In this section we establish the results left unproven in the last section,

namely Lemmas 3.1 and 3.2. Our primary tool here will be the second moment

method. Throughout, the probabilistic quantities we write are all with respect

to the random choice of the vector ~a = (as)s∈S2 . In several of these proofs we

will make use of the quantities γi defined by

(4.1) γi :=
∏
s∈S2

Å
1− i

s

ã
for i = 1, . . . , 2r. Note that γ1 = γ in the notation of the previous section.

Lemma 4.1. We have γi ∼ γi, uniformly for all 1 6 i 6 2r.

Proof. We have, uniformly for 1 6 i 6 2r,

γi = γi
∏
s∈S2

Å
1− i

s

ãÅ
1− 1

s

ã−i
= γi

∏
s∈S2

Ä
1 +O(s−2)

ä
= γi(1 +O(1/ log x)),

using the fact that all primes s ∈ S2 are > log x. �

4.1. Proof of Lemma 3.1. To prove Lemma 3.1 we use the second mo-

ment method. Indeed, from Chebyshev’s inequality it will suffice to prove the

asymptotics

(4.2) E#Q(~a) ∼ γ y

log x
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and

(4.3) E(#Q(~a))2 ∼
Å
γ

y

log x

ã2

.

The claim (4.2) is just (3.5), so we turn to (4.3). The left-hand side of (4.3)

may be written as ∑
q1,q2∈Q

P(q1, q2 ∈ Q(~a)).

The diagonal contribution q1 = q2 is clearly negligible (it is crudely bounded

by #Q, which is much smaller than
Ä
γ y

log x

ä2
), so by (2.2) it suffices to show

that

P(q1, q2 ∈ Q(~a)) ∼ γ2

for any distinct q1, q2 ∈ Q.

Fix any such q1, q2. Observe that for each s ∈ S2, the probability that q1

and q2 simultaneously avoid as (mod s) is equal to 1 − 2
s if s does not divide

q2 − q1, and 1 − 1
s otherwise. In the latter case, we crudely write 1 − 1

s as

(1 +O( 1
log x))(1− 2

s ). Since q2− q1 = O(y) and all the primes in S2 are at least

log x, we see that there are at most O( log y
log log x) = o(log x) primes s that divide

q2 − q1. We conclude that

P(q1, q2 ∈ Q(~a)) =

Å
1 +O

Å
1

log x

ãão(log x) ∏
s∈S2

Å
1− 2

s

ã
∼ γ2,

and the claim now follows from Lemma 4.1.

4.2. A preliminary lemma. In order to establish Lemma 3.2, we will first

need the following preliminary result in this direction.

Lemma 4.2. The following two claims hold with probability 1 − o(1) (in

the random choice of ~a) and for any 0 6 i 6 r − 1:

(i) One has

(4.4) #{q ∈ Q(~a) : p
~a
q − ir!p} ∼ γrαr

y

logr x
∼ γr#{q ∈ Q : p q − ir!p}

for all but o(x/ log x) values of p ∈ P0.

(ii) One has

#{p ∈ P0 : p
~a
q − ir!p} ∼ γr−1αr

x

2 logr x

∼ γr−1#{p ∈ P0 : p q − ir!p}
(4.5)

for all but o(x/ log x) values of q ∈ Q0(~a).
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We begin with the proof of Lemma 4.2(i), which goes along very similar

lines to that of the previous lemma. As the quantities here do not depend on i,

we may take i = 0. The second part of (4.4) follows from (2.5), so it suffices

to show that with probability 1− o(1), we have

(4.6) #{q ∈ Q(~a) : p
~a
q} ∼ γrαr

y

logr x

for all but o(x/ log x) values of p ∈ P0. By Markov’s inequality and (2.4), it

suffices to show that for each p ∈ P0, we have the event (4.6) with probability

1− o(1).

Fix p ∈ P0. By Chebyshev’s inequality, it suffices to show that

E#{q ∈ Q(~a) : p
~a
q} ∼ γrαr

y

logr x

and

E
Ä
#{q ∈ Q(~a) : p

~a
q}
ä2 ∼ Åγrαr y

logr x

ã2

.

By (2.5), Lemma 4.1, and linearity of expectation, it thus suffices to show that

(4.7) P(q, q + r!p, . . . , q + (r − 1)r!p ∈ Q(~a)) ∼ γr
for all q ∈ Q with p q, and similarly that

(4.8)

P(q1, q1 + r!p, . . . , q1 + (r− 1)r!p, q2, q2 + r!p, . . . , q2 + (r− 1)r!p ∈ Q(~a)) ∼ γ2r

for any distinct q1, q2 ∈ Q with p q1, p q2.

We begin with (4.7). For any s ∈ S2, the probability that q, q+r!p, . . . , q+

(r − 1)r!p simultaneously avoid as (mod s) is equal to 1 − r
s . (Note that s is

coprime to r!p.) So (4.7) then follows (with exact equality) from (4.1) and

independence.

Now we turn to (4.8). For any s ∈ S2, the probability that q1, q1 +

r!p, . . . , q1 + (r − 1)r!p, q2, q2 + r!p, . . . , q2 + (r − 1)r!p simultaneously avoid

as (mod s) is usually equal to 1 − 2r
s ; the exceptions arise when s divides

q2 − q1 + ir!p for some −r 6 i 6 r, in which case the probability is instead

(1 +O( 1
log x))(1− 2r

s ). But by arguing as in the proof of Lemma 3.1, the num-

ber of exceptional s is o(log x). Multiplying all the independent probabilities

together, we obtain the claim (4.8). This concludes the proof of Lemma 4.2(i).

Now we prove Lemma 4.2(ii). Again, the second part of (4.5) follows from

(2.6). For the first part, it suffices (by Lemma 3.1 and (3.3)) to show that with

probability 1− o(1), one has∑
q∈Q0(~a)

∣∣∣∣#{p ∈ P0 : p
~a
q − ir!p} − γr−1αr

x

2 logr x

∣∣∣∣2

= o

Ç
γ

y

log x

Å
γr−1 x

logr x

ã2
å
.
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By Markov’s inequality, it suffices to show that

E
∑

q∈Q0(~a)

∣∣∣∣#{p ∈ P0 : p
~a
q − ir!p} − γr−1αr

x

2 logr x

∣∣∣∣2

= o

Ç
γ

y

log x

Å
γr−1 x

logr x

ã2
å
.

Expanding out the square, it suffices to show the estimate

(4.9) E
∑

q∈Q0(~a)

(
#{p ∈ P0 : p

~a
q − ir!p}

)b
∼ γ y

log x

Å
γr−1αr

x

2 logr x

ãb
for b = 0, 1, 2.

The b = 0 case of (4.9) follows from (2.2) and (3.4). For the b = 1, 2 cases,

observe from Lemma 2.4 that

∑
q∈Q0

(#{p ∈ P0 : p q − ir!p})b ∼
Å
αr

x

2 logr x

ãb y

log x
.

By linearity of expectation, it thus suffices to show that

(4.10) P(q − ir!p, q + (1− i)r!p, . . . , q + (r − 1− i)r!p ∈ Q0(~a)) ∼ γr

whenever p ∈ P0, q ∈ Q0 with p q − ir!p, and

(4.11)

P(q + jr!pk ∈ Q0(~a) for all j = −i, 1− i, . . . , r − 1− i and k = 1, 2) ∼ γ2r−1

whenever p1, p2 ∈ P0, q ∈ Q0 with p1 q− ir!p1, p2 q− ir!p2, and p1 6= p2.

(The total contribution of the diagonal p1 = p2 is easily seen to be negligible.)

We begin with the proof of (4.10). For any s ∈ S2, the probability that

the progression q− ir!p, q+(1− i)r!p, . . . , q+(r−1− i)r!p avoids as (mod s) is

equal to 1− r
s (since s is coprime to r!p), and so by (4.1) and independence, the

left-hand side of (4.10) is precisely γr. The claim now follows from Lemma 4.1.

Now we prove (4.11). For any s ∈ S2, the probability that the intersecting

progressions q − ir!p1, q + (1− i)r!p1, . . . , q + (r − 1− i)r!p1 and q − ir!p2, q +

(1 − i)r!p2, . . . , q + (r − 1 − i)r!p2 avoid s is usually 1 − 2r−1
s . (Note that q

is a common value of the two arithmetic progressions.) The exceptions occur

when s divides jp1 +kp2 for some −r 6 j, k 6 r that are not both zero, but by

arguing as before we see that the number of such exceptions is o(log x), and the

probability in these cases is (1 + O( 1
log x))(1 − 2r−1

s ). Thus by independence,

the left-hand of (4.11) is ∼ γ2r−1, and the claim follows from Lemma 4.1. The

proof of Lemma 4.2 is now complete.
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4.3. Proof of Lemma 3.2. Suppose that ε > 0 goes to zero as x → ∞
sufficiently slowly.

Let P1(~a) be the set of p ∈ P0 obeying (4.4) for all 0 6 i 6 r−1. (Actually

the choice of i is irrelevant here.) Then from Lemma 4.2(i) and (2.4) we have

that with probability at least 1− ε, we have

(4.12) #P1(~a) ∼ x

2 log x

as required. From Lemma 3.1 we also have #Q0(~a) ∼ r
2 log r

x
log x with proba-

bility at least 1− ε as required. To finish the proof of the lemma, it suffices in

view of Lemma 4.2(ii) to show that with probability at least 3ε, one has

#{p ∈ P0\P1(~a) : p
~a
q − ir!p} = o(γr−1x/ logr x)

for all but o(x/ log x) values of q ∈ Q0(~a), and any 0 6 i 6 r − 1.

We use a double counting argument. It clearly suffices to show with prob-

ability at least 3ε that

#{(p, q) ∈ (P0\P1(~a))×Q0(~a) : p
~a
q − ir!p} = o

Å
γr−1 x

logr x
× x

log x

ã
for all 0 6 i 6 r− 1. Actually, the left-hand side does not depend on i (as can

be seen by shifting q by ir!p), so it suffices to show that the above holds with

i = 0. By (3.3), we may rewrite this requirement as

#{(p, q) ∈ (P0\P1(~a))×Q0(~a) : p
~a
q} = o

Å
γrαr

y

logr x
× x

log x

ã
.

Now from (4.4) and (4.12), we have

#{(p, q) ∈ P1(~a)×Q0(~a) : p
~a
q} ∼ γrαr

y

logr x
× x

2 log x

with probability at least 1− ε, so it suffices to show that

#{(p, q) ∈ P0 ×Q0(~a) : p
~a
q} 6 1 + o(1)

1− 4ε
γrαr

y

logr x
× x

2 log x

with probability at least 4ε. (Recall that ε = o(1).) By Markov’s inequality,

it thus suffices to show that

E#{(p, q) ∈ P0 ×Q0(~a) : p
~a
q} 6 (1 + o(1))γrαr

y

logr x
× x

2 log x
.

But this follows from the b = 1 case of (4.9). The proof of Lemma 3.2 is now

complete.
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5. Linear equations in primes with large shifts

The paper [19] of the second and fourth author is concerned with counting

the number of prime points parametrized by a system of affine-linear forms in a

convex body, when the constant terms in the affine-linear forms are comparable

to the size of the body. To establish Lemma 2.1 we will require a strengthening

of the main result in [19], in which the constant terms in the affine-linear forms

are permitted to be larger than the size of the body by a logarithmic factor.

The aim of this section is to state this strengthening. The proof involves a

number of minor modifications to the arguments of [19]: these are indicated

in Appendix A.

To state the results, we need to recall some notation from [19]. If d, t > 1

be integers, then an affine-linear form on Zd is a function ψ : Zd → Z that is

the sum ψ = ψ̇+ψ(0) of a homogeneous linear form ψ̇ : Zd → Z and a constant

ψ(0) ∈ Z. A system of affine-linear forms on Zd is a collection Ψ = (ψ1, . . . , ψt)

of affine-linear forms on Zd. A system Ψ is said to have finite complexity if

and only if no form ψ̇i is a multiple of any other form ψ̇j .

We recall that the von Mangoldt function Λ(n) is defined to equal log p

when n is a prime p or a power of that prime, and zero otherwise.

Here is the main result of [19].

Theorem A [19, Main Theorem]. Let N, d, t, L be positive integers, and

let Ψ = (ψ1, . . . , ψt) be a system of affine-linear forms of finite complexity with

(5.1) ‖Ψ‖N 6 L.

Let K ⊂ [−N,N ]d be a convex body. Then we have

(5.2)
∑

~n∈K∩Zd

t∏
i=1

Λ(ψi(~n)) = β∞
∏
p

βp + ot,d,L(Nd),

where

β∞ := vold
Ä
K ∩Ψ−1((R+)t)

ä
and

βp := E~n∈(Z/pZ)d

t∏
i=1

ΛZ/pZ(ψi(~n)).

Here ‖Ψ‖N is defined by

‖Ψ‖N :=
t∑
i=1

d∑
j=1

|ψ̇i(ej)|+
t∑
i=1

∣∣∣∣∣ψi(0)

N

∣∣∣∣∣ .
The function ΛZ/pZ : Z→ R+ is the local von Mangoldt function, that is, the

p-periodic function defined by setting ΛZ/pZ(b) := p
p−1 when b is coprime to p

and ΛZ/pZ(b) = 0 otherwise. Also, {e1, . . . , ed} is the standard basis for Rd.
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Strictly speaking, the results in [19] were conditional on two (at the time

unproven) conjectures, namely, the Möbius-Nilsequences conjecture and the

inverse conjecture for the Gowers uniformity norms. However, these conjec-

tures have since been proven in [16] and [18] respectively, and so the above

theorem is now unconditional.

The variant of this result that we shall need is that in which the condi-

tion (5.1) is replaced by the weaker condition

(5.3) ‖Ψ‖N,B 6 L,

where B > 0 is some constant. (In fact, any B > 1 will suffice for us.) Here

we have defined

‖Ψ‖N,B :=
t∑
i=1

d∑
j=1

|ψ̇i(ej)|+
t∑
i=1

∣∣∣∣∣ ψi(0)

N logB N

∣∣∣∣∣ .
Note that ‖Ψ‖N,0 = ‖Ψ‖N .

The conclusion is the same, except that the error term in (5.2) must also

depend on B.

Theorem 7. Let B > 0 be a positive quantity. Let everything be as in

Theorem A, except assume that instead of condition (5.1) we have only the

weaker condition (5.3). Then we have

∑
~n∈K∩Zd

t∏
i=1

Λ(ψi(~n)) = β∞
∏
p

βp + ot,d,L,B(Nd),

where β∞ and the βp are given by the same formulae as before.

This extension in effect allows us to consider affine linear forms in which

the constant terms ψi(0) can have size up to � N logB N , whereas in Theorem

A, they are restricted to have size O(N). As mentioned above, the proof of

Theorem 7 is deferred to Appendix A.

6. Proof of Lemma 2.1(i)

In this section we deduce Lemma 2.1(i) from Theorem 7. Throughout this

section, x and y obey (2.1), all o(1) terms may depend on r, and αr is defined

in (2.3).

It suffices to prove the lemma when x is an integer, which we henceforth

assume. We first partition the range (x/4, y] of q into blocks of size about x,

so that p and q range over intervals of roughly the same size. Namely, for a

nonnegative integer m and u ∈ R, we write

I(m,u) := Z ∩ [mx, (m+ 1)x) ∩ (x/4,∞) ∩ [0, y − r!(r − 1)u].
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Observe that

(6.1)
∑

06m6y/x

#I(m,n1) ∼ y

uniformly for x/2 < n1 6 x and that

(6.2) #(m,n1) = x for all x/2 < n1 6 x

for all except o(y/x) values of m, 0 6 m 6 y/x. We call these exceptional

values of m bad and the remaining 0 6 m 6 y/x obeying (6.2) good. Trivially,

|I(m,n1)| 6 x for all m,n1.

We claim the following estimate.

Proposition 1. We have

(6.3)
∑

06m6y/x
x/2<n16x

|F (m,n1)|2Λ(n1) = o(yx2),

where

(6.4) F (m,n1) :=
∑

n2∈I(m,n1)

Ñ
r−1∏
j=0

Λ(n2 + jr!n1)− αr

é
.

Let us assume this proposition for the moment and conclude the proof of

Lemma 2.1(i). Let ε = ε(x) > 0 with ε decaying to zero sufficiently slowly.

If n1 is a prime in (x/2, x], say that n1 is exceptional and write n1 ∈ E if

the number of q for which x/4 < q < y − (r − 1)r!n1 and q + jr!n1 is prime

for j = 0, . . . , r − 1 differs from αry/ logr x by at least εy/ logr x. It follows

straightforwardly that if n1 ∈ E , then∣∣∣∣∣∣ ∑
x/46n2<y−(r−1)r!n1

r−1∏
j=0

Λ(n2 + jr!n1)− αry

∣∣∣∣∣∣ > 1

2
εy

if x is sufficiently large. (To see this, note that due to the restriction on the

ranges of n1, n2, Λ(n2 + jr!n1) = log x + O(log2 x) whenever n2 + jr!n1 is

prime. Λ is also supported on prime powers, but the contribution from these

is negligible.) Recall the definition (6.4) of F (m,n1). Using the fact that

[x/4, y − (r − 1)r!n1] =
⋃
m I(m,n1) and (6.1), we conclude that∣∣∣∣∣∣ ∑

06m6y/x

F (m,n1)

∣∣∣∣∣∣ > 1

4
εy

for sufficiently large x. By Cauchy’s inequality, we thus have

∑
06m6y/x

|F (m,n1)|2 >

Ä
1
4εy
ä2

y
x + 2

>
1

32
ε2xy (n1 ∈ E ).
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Since Λ(n1) = log n1 > log(x/2) for every prime n1, we therefore see that the

left-hand side of (6.3) is at least

1

32
ε2xy log(x/2)#E .

Applying (6.3), we conclude that #E = o(x/ log x) if ε goes to zero slowly

enough, and Lemma 2.1(i) follows.

We now prove the proposition. After a change of variables, the left-hand

side of (6.3) may be written as

∑
06m6y/x
x/2<n16x

∣∣∣∣∣∣ ∑
n2∈I(m,n1)−mx

(
r−1∏
j=0

Λ(n2 + jr!n1 +mx)− αr

)∣∣∣∣∣∣
2

Λ(n1).

Expanding out the square, we can write this expression as∑
06m6y/x

Σ2(m)− 2αr
∑

06m6y/x

Σ1(m) + α2
r

∑
06m6y/x

Σ0(m),

where Σ2(m),Σ1(m),Σ0(m) are the quantities

Σ2(m) :=
∑

x/2<n16x
n2∈I(m,n1)−mx
n3∈I(m,n1)−mx

Λ(n1)
∏

06j6r−1
`=2,3

Λ(n` + jr!n1 +mx),

Σ1(m) :=
∑

x/2<n16x
n2∈I(m,n1)−mx

(#I(m,n1))Λ(n1)
r−1∏
j=0

Λ(n2 + jr!n1 +mx),

Σ0(m) :=
∑

x/2<n16x

(#I(m,n1))2Λ(n1).

To prove (6.3), it will thus suffice to establish the estimates

(6.5)
∑

06m6y/x

Σb(m) ∼ αbr
yx2

2

for b = 0, 1, 2.

We begin with the b = 2 case, which is the most difficult. We apply

Theorem 7 with d := 3, t := 2r + 1, and the forms Ψ = (ψ1, . . . , ψ2r+1) given

by

Ψ(n1, n2, n3) := (n1, (n` + jr!n1 +mx)06j6r−1,`=2,3)

and convex polytope K = K(m) given by

K(m) := {(u1, u2, u3) ∈ R3 : x/2 < u1 6 x, u2, u3 ∈ I(m,u1)−mx}.

Since Ψ(K(m)) ⊂ (R+)2r+1, it follows from Theorem 7 that

(6.6) Σ2(m) = vol(K(m))
∏
p

βp + o(x3),
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where

βp := E~n∈(Z/pZ)3

2r+1∏
i=1

ΛZ/pZ(ψi(~n)).

Obviously the system Ψ has finite complexity.

We claim that

(6.7) βp =


( p
p−1)2(r−1) p 6 r,(
(p−r)pr−1

(p−1)r

)2
p > r.

The proof of the claim is quite straightforward. Indeed if p 6 r then, modulo p,

n2 + jr!n1 + mx ≡ n2 + mx and n3 + jr!n1 + mx ≡ n3 + mx, and so all the

forms ψi(~n) are coprime to p if and only if none of n1, n2 + mx or n3 + mx

is zero mod p. Thus the number of ~n = (n1, n2, n3) for which all of the forms

ψi(~n) are nonzero mod p is precisely (p− 1)3.

If, by contrast, p > r, then either n1 ≡ 0 (mod p) or else the values of

n2 + jr!n1 + mx, 0 6 j < r are all distinct mod p, and hence at most one

of them can be zero. The same is true for the values of n3 + jr!n1 + mx.

Thus if n1 6≡ 0 (mod p), then there are r values of n2 for which one of the

forms ψi(~n) vanishes, and also r values of n3 for which one of these forms

vanishes, and thus 2rp − r2 pairs (n2, n3) in total. Thus, in this case the

number of ~n = (n1, n2, n3) for which all of the forms ψi(~n) are nonzero mod p

is p3 − p2 − (p− 1)(2rp− r2) = (p− 1)(p− r)2, and this confirms the formula

for βp.

It follows from the claim (6.7) and the definition (2.3) of αr that
∏
p βp =

α2
r and hence, by (6.6), that

Σ2(m) = vol(K(m))α2
r + o(x3).

By (6.2) above we have vol(K(m)) = x3/2 for all good values of m and

vol(K(m)) 6 x3/2 for all m. It is thus straightforward to conclude the re-

quired asymptotic (6.5) for b = 2.

Next we turn to the b = 1 case of (6.5). Define

S1(m) :=
∑

x/2<n16x
06n2<x

Λ(n1)
r−1∏
j=0

Λ(n2 + jr!n1 +mx).

Then, by (6.2),

(6.8) x
∑

m good

S1(m) 6
∑
m

Σ1(m) 6 x
∑

06m6y/x

S1(m).

To estimate S1(m), apply Theorem 7 with d := 2, t := r + 1, forms Ψ =

(ψ1, . . . , ψr+1) given by

Ψ(n1, n2) := (n1, (n2 + jr!n1 +mx)06j<r)
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and convex polytope K := (x/2, x] × [0, x). The system Ψ also has finite

complexity. Noting that Ψ(K) ⊂ (R+)r+1, we obtain

(6.9) S1(m) =
x2

2

∏
p

βp + o(x2)

uniformly in m where

βp := E~n∈(Z/pZ)2

r+1∏
i=1

ΛZ/pZ(ψi(~n)).

We claim that

(6.10) βp =

( p
p−1)r−1 p 6 r,

(p−r)pr−1

(p−1)r p > r.

The proof of the claim is similar to that of (6.7) but rather easier. Indeed

if p 6 r then, modulo p, n2 + jr!n1 +mx ≡ n2 +mx, and so all the forms ψi(~n)

are coprime to p if and only if neither n1 nor n2 + mx is zero mod p, and so

the number of ~n = (n1, n2) for which all of the forms ψi(~n) are nonzero mod p

is precisely (p− 1)2.

If p > r, then either n1 ≡ 0 (mod p) or else the values of n2 + jr!n1 +mx,

0 6 j < r are all distinct mod p, and hence at most one of them can be zero.

Thus if n1 6≡ 0 (mod p), then there are r values of n2 for which one of the

forms ψi(~n) vanishes. Thus, in this case the number of ~n = (n1, n2) for which

all of the forms ψi(~n) are nonzero mod p is p2 − p− (p− 1)r = (p− 1)(p− r),
and this confirms the formula for βp.

From (6.10) and (2.3), we have
∏
p βp = αr. It follows from (6.8), (6.9)

and (6.10) that (6.5) holds for b = 1.

Finally, we establish the b = 0 case of (6.5). By (6.2), for all except

o(y/x) bad values of m, we have #I(m,n1) = x. If m is good, then by the

prime number theorem Σ0(m) ∼ x3/2, and so the contribution to
∑
m Σ0(m)

from the good m is ∼ yx2/2. The contribution from the bad m can be absorbed

into the error term, and so (6.5) for b = 0 follows. The proof of Lemma 2.1(i)

is now complete.

7. Proof of Lemma 2.1(ii)

In this section we deduce Lemma 2.1(ii) from Theorem 7. The argument

is very similar to that in the last section. As before, x and y obey (2.1), all

o(1) terms may depend on r, and αr is defined in (2.3).

We may again assume that x is an integer. The analogue of Proposition 1 is

Proposition 2. We have

(7.1)
∑

x/4<n16y

|F (n1)|2Λ(n1) = o(yx2),
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where

(7.2) F (n1) :=
∑

x/2<n26x

Ü
Λ(n2)

∏
−i6j<r−i

j 6=0

Λ(n1 + jr!n2)− αr

ê
.

Let us assume this proposition for the moment and conclude the proof of

Lemma 2.1(ii). Let ε = ε(x) > 0 tend to 0 as x → ∞ sufficiently slowly. If

n1 is a prime in (x/4, y], we say that n1 is exceptional and write n1 ∈ E if

the number of primes p ∈ (x/2, x] for which n1 + jr!p is a prime in (x/4, y]

for −i 6 j < r − i, j 6= 0, differs from αr(x/2)/ logr x by at least εx/ logr x.

Arguing as in the proof of Lemma 2.1(i), if n1 ∈ E , then for sufficiently large x

we have

(7.3)

∣∣∣∣∣∣ ∑
x/2<n26x

n1−ir!n2>x/4
n1+(r−i−1)r!n26y

∏
−i6j<r−i

j 6=0

Λ(n1 + jr!n2)− 1

2
αrx

∣∣∣∣∣ > 1

2
εx.

Note that the second and third conditions in the summation are precisely what

constrain all the n1 + jr!n2, −i 6 j < r − i, to lie in (x/4, y]. If we assume

that

(r + 1)!x < n1 < y − (r + 1)!x

and recall from (7.2) above the definition of F (n1), we see that (7.3) is equiv-

alent to

|F (n1)| > 1

2
εx.

Since Λ(n1) = log n1 > log(x/4) for all prime n1, we conclude from the prime

number theorem that the left-hand side of (7.1) is at leastÅ
1

2
εx

ã2

log(x/4)
Ä
#E −O(x/ log x)

ä
.

From this and (7.1) we conclude that #E = o(y/ log x) provided ε tends to

zero sufficiently slowly, and Lemma 2.1(ii) follows.

It remains to establish Proposition 2. For this, we break up the range of

n1 as in the proof of Lemma 2.1(i). For a nonnegative integer m, define

I(m) := Z ∩ [mx, (m+ 1)x) ∩ (x/4, y].

Then we may decompose the left-hand side of (7.1) as∑
06m6y/x
n1∈I(m)

|F (n1)|2Λ(n1).
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With a simple change of variables we see that this quantity equals

∑
06m6y/x

n1∈I(m)−mx

∣∣∣∣∣∣∣∣∣
∑

x/2<n26x

Λ(n2)
∏

−i6j<r−i
j 6=0

Λ(n1 + jr!n2 +mx)− 1

2
αrx

∣∣∣∣∣∣∣∣∣
2

Λ(n1 +mx).

Expanding out the square and applying the prime number theorem, we may

therefore express the above quantity as∑
06m6y/x

Σ2(m)− αrx
∑

06m6y/x

Σ1(m) +
1

4
α2
rx

2y + o(x2y),

where

Σ2(m) :=
∑

n1∈I(m)−mx
x/2<n26x
x/2<n36x

Λ(n1 +mx)Λ(n2)Λ(n3)
∏

−i6j<r−i
j 6=0

∏
`=2,3

Λ(n1 + jr!n` +mx)

and

Σ1(m) =
∑

n1∈I(m)−mx
x/2<n26x

Λ(n2)
∏

−i6j<r−i
Λ(n1 + jr!n2 +mx).

It will thus suffice to show that

(7.4)
∑

06m6y/x

Σb(m) ∼
Å
αr
x

2

ãb
y

for b = 1, 2.

We first handle the b = 2 case of (7.4). We can estimate Σ2(m) using

Theorem 7 with d := 3, t := 2r + 1, forms Ψ = (ψ1, . . . , ψ2r+1) given by

Ψ(n1, n2, n3) := (n1 +mx, n2, n3, (n1 + jr!n` +mx)−i6j<r−i,j 6=0,`=2,3)

and convex polytope K(m) := (I(m)−mx)× (x/2, x]× (x/2, x]. The theorem

tells us that uniformly in m, we have

(7.5) Σ2(m) = vol(K(m))
∏
p

βp + o(x3),

where again

βp := E~n∈(Z/pZ)3

2r+1∏
i=1

ΛZ/pZ(ψi(~n)).

It is again clear that the system Ψ has finite complexity.

Now we claim that the βp are given by the same formulae as in (6.7), that

is to say,

βp =


( p
p−1)2(r−1) p 6 r,(
(p−r)pr−1

(p−1)r

)2
p > r.



LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS 965

The proof of this is very similar to that of (6.7), but subtly different. If

p 6 r, then the forms ψi(~n) are all equal to one of n1 + mx, n2, n3 mod p,

and so there are (p − 1)3 choices of ~n ∈ (Z/pZ)3 for which all the forms are

coprime to p. If p > r, then we must choose n1 6≡ −mx (mod p). For any such

choice, there are precisely r choices of n2 for which one of n1 + jr!n2 + mx

(−i 6 j < r − i, j 6= 0) and n2 is 0 (mod p), namely, n2 ≡ 0 (mod p) and

n2 ≡ −(jr!)−1(n1 + mx) (mod p) for −i 6 j < r − i, j 6= 0. Similarly, there

are precisely r choices for which one of n1 + jr!n3 +mx (−i 6 j < r− i, j 6= 0)

and n3 is 0 (mod p), and so we have 2rp − r2 bad choices of (n2, n3) for each

n1 6≡ −mx (mod p). Therefore, as before, the number of choices of ~n for which

at least one of the ψi(~n) vanishes mod p is p3−p2−(2rp−p2) = (p−1)(p−r)2.

Therefore
∏
p βp = α2

r , and hence from (7.5), we have∑
06m6y/x

Σ2(m) = α2
r

∑
06m6y/x

vol(K(m)) + o(yx2).

We have #I(m) = x and hence vol(K(m)) = x3/4 for all except o(y/x) values

of m, and so the b = 2 case of (7.4) follows immediately.

Now we turn our attention to the b = 1 case of (7.4). Again we can esti-

mate it using Theorem 7, now with d := 2, t := r+1, forms Ψ = (ψ1, . . . , ψr+1)

given by

Ψ(n1, n2) := (n2, (n1 + jr!n2 +mx)−i6j<r−i)

and convex polytope K(m) := (I(m)−mx)× (x/2, x].

The theorem tells us that uniformly in m, we have

(7.6) Σ1(m) = vol(K(m))
∏
p

βp + o(x2),

where

βp := E~n∈(Z/pZ)2

r+1∏
i=1

ΛZ/pZ(ψi(~n)).

Again the system Ψ has finite complexity.

We claim that the βp are the same as in (6.10), that is to say,

βp =

( p
p−1)r−1 p 6 r,

(p−r)pr−1

(p−1)r p > r.

Indeed if p 6 r then, mod p, all the forms in Ψ are either n1 + mx or n2,

so there are (p − 1)2 choices of ~n for which all of the ψi(~n) are coprime to p.

If p > r, then we must take n1 6≡ −mx (mod p), and then for each such

choice, there are precisely r values of n2 (mod p) for which one of the ψi(~n) is

0 (mod p), namely, n2 ≡ 0 (mod p) and n2 ≡ −(jr!)−1(n1 + mx) (mod p) for

−i 6 j < r− i, j 6= 0. It follows that there are p2−p−r(p−1) = (p−1)(p−r)
choices of ~n ∈ (Z/pZ)2 for which none of the ψi(~n) is 0 (mod p).
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Therefore
∏
p βp = αr, and hence from (7.6), we have∑

06m6y/x

Σ1(m) = αr
∑

06m6y/x

vol(K(m)) + o(yx).

We have #I(m) = x and hence vol(K(m)) = x2/2 for all except o(y/x) val-

ues of m, and so the b = 1 case of (7.4) follows immediately. The proof of

Lemma 2.1(ii) is now complete.

8. Further comments and speculations

The reduction of Theorem 5 to Theorem 6 was somewhat wasteful, as one

replaced the entire residue class qp (mod p) by a fairly short arithmetic progres-

sion qp, qp+r!p, . . . , qp+(r−1)r!p inside that residue class. One could attempt

to strengthen the argument here by working with more general patterns such

as qp, qp + a1r!p, . . . , qp + arr!p for some 0 < a1 < · · · < ar = o(y/x), and pos-

sibly trying to exploit further averaging over the a1, . . . , ar. However, we were

unable to take advantage of such ideas to make any noticeable improvements

to the arguments or results.

The dependence of R on x in Theorem 1 is completely ineffective for two

different reasons. The sources of this ineffectivity are

• the use of Davenport’s ineffective bound

sup
θ
|En∈[N ]µ(n)e(nθ)| �A log−AN

in [16], which is intimately related to the possibility of Siegel zeros; and

• the use of ultrafilter arguments in [18] (and in other work of the inverse

conjectures for the Gowers norms, such as that of Szegedy [32]).

The first source of ineffectivity appears to be less serious than the second

with our present state of knowledge. For example, if one is only interested in

having the conclusion of Theorem 1 for an infinite sequence of x’s (rather than

all sufficiently large x), then by choosing x judiciously the influence of Siegel

zeros can be avoided and one has an effective version of Davenport’s bound.

See [7] for some related discussion.

The second source of ineffectivity is problematic, since in taking R large

we need inverse theorems for the Gowers U s+1[N ]-norm with s = s(R) tending

to infinity. Proofs not using ultrafilters are only known in the cases s = 2, 3

and 4, and the bounds in the inverse theorem [17] for the Gowers U4[N ]-norm

(which were not worked out in that paper) are already incredibly bad, of “log∗
type” or worse. In principle (but with great pain) the ultrafilters in [18] could

be removed, but the bounds would be similarly bad. It seems that a genuinely

new idea is needed to make these bounds, and thus the approach of the present

paper, effective in any reasonable sense (for example R being bounded below

by logk x for some finite k).
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Appendix A. Linear equations in primes

In this appendix all page numbers refer to the published version of the

paper [19], with which we assume a certain familiarity.

We turn now to the proof of Theorem 7, indicating the points at which we

must be careful assuming only the bound ‖Ψ‖N,B 6 L rather than the stronger

bound ‖Ψ‖N 6 L allowed in Theorem A, which is the main theorem of [19].

The key points are that (a) the sieve-theoretic portions of [19] are essentially

unaffected by shifts, and (b) the Möbius-nilsequences conjecture used in [19]

comes with a savings of log−AN for arbitrary A > 0, which is enough to absorb

the effect of shifting for that portion of the argument.

We require a precise measure of the complexity of the system Ψ (cf. [19,

Def. 1.5]), which plays a crucial role in the arguments. If 1 6 i 6 t and s > 0,

then we say that Ψ has i-complexity at most s if one can cover the t− 1 forms

{ψ̇j : j 6= i} by s+ 1 classes, such that ψ̇i does not lie in the linear span of any

of these classes. The complexity of the system of forms Ψ is defined to be the

least s for which the system has i-complexity at most s for all 1 6 i 6 t, or ∞
if no such s exists. Note that a system Ψ has finite complexity if and only if

no form ψ̇i is a multiple of any other form ψ̇j .

Let us first of all note that [19] was written to be conditional upon two

sets of conjectures, the Möbius and Nilsequences Conjecture MN(s) and the

Inverse Conjectures for the Gowers norms GI(s), which were unproven at the

time in the cases s > 3. These are now theorems, established in [16] and [18]

respectively, and thus the results of [19] that we plan to modify in this section

are unconditional. We have no need to change any aspect of the inner workings

of either [16] or [18].

The argument in [19] proceeds via a series of reductions to other state-

ments. First, in [19, Ch. 4], some straightforward linear algebra reductions are

given. The first part of the chapter concerns [19, Th. 1.8] and does not concern

us here; our interest begins near the top of page 1771. The subsection “Elimi-

nation of the archimedean factor” makes no use of any bound on ‖Ψ‖N . This

section allows us to assume henceforth that ψ1, . . . , ψt > N9/10 on K. The

only change we need to make to the next subsection, “Normal form reduction

of the main theorem,” is to replace ‖ · ‖N in the statement of [19, Lemma 4.4]

by ‖ · ‖N,B. That such a variant is valid follows from the proof of [19, Lemma

4.4] and, in particular, the observation that Ψ̃(0) = Ψ(0), where Ψ̃ : Zd′ → Zt
is the system of forms constructed in that proof.

The rest of [19, Ch. 4] carries over unchanged. Thus (changing L to

L̃ = Od,t,L(1)) we may assume henceforth that our system affine-linear forms

ψi is in s-normal form and still satisfies ‖Ψ‖N,B 6 L.
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The next step, undertaken in [19, Ch. 5], is to decompose the sum∑
~n∈K∩Zd

∏
i∈[t]

Λ(ψi(~n))

along progressions with common differenceW =
∏
p6w p, where w=log log logN

(say). This is the “W -trick.” The task of proving Theorem A is reduced to

that of establishing the estimate ([19, Th. 5.1])

∑
~n∈K∩Zd

( ∏
i∈[t]

Λ′bi,W (ψi(~n))− 1

)
= o(Nd)

with b1, . . . , bt ∈ [W ] coprime to W , uniformly in the choice of bi. Here

Λ′b,W (n) :=
φ(W )

W
Λ′(Wn+ b)

and Λ′ denotes the restriction of Λ to the primes.

We claim that the proof of Theorem 7 may be similarly reduced to the

task of establishing

(A.1)
∑

~n∈K∩Zd

( ∏
i∈[t]

Λ′bi,W (ψi(~n))− 1

)
= oB(Nd)

uniformly for b1, . . . , bt ∈ [W ], but now only assuming the weaker condition

‖Ψ‖N,B 6 L.

The reduction proceeds exactly as in [19, Ch. 5], except that at the bot-

tom of page 1777 we must remark that the constant term ψ̃i,a(0) is now

only bounded by OL,d,t(N logB N/W ), and where on page 1778 we said that

‖Ψ̃‖Ñ = O(1), we must now say that ‖Ψ̃‖Ñ,B = O(1).

The desired estimate (A.1) may be written in the equivalent form

(A.2)
∑

~n∈K∩Zd

( ∏
i∈[t]

Tψi(0)Λ′bi,W (ψ̇i(~n))− 1

)
= oB(Nd),

where ψ̇i denotes the homogeneous (linear) part of the affine form ψi and T

denotes the translation operator defined by T af(x) := f(x+ a). The homoge-

neous system Ψ̇ = (ψ̇1, . . . , ψ̇t) satisfies the condition ‖Ψ̃‖N 6 L.

The first step in proving (A.2) is to prove a variant of [19, Prop. 6.4] for the

shifted functions Tψi(0)Λ′bi,W . We claim that in fact the following generalisation

of that proposition holds. (For notation and further discussion, see [19, Ch. 6].)

Proposition 6.4′. Let D > 1 be arbitrary, and let z1, . . . , zt ∈ Z>0,

zi 6 N1.01, be arbitrary shifts. Then there is a constant C0 := C0(D) such

that the following is true. Let C > C0, and suppose that N ′ ∈ [CN, 2CN ]. Let
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b1, . . . , bt∈{0, 1, . . . ,W − 1} be coprime to W . Then there exists a D-pseudo-

random measure ν : ZN ′ → R+ (depending on z1, . . . , zt) that obeys the point-

wise bounds

1 + T z1Λ′b1,W (n) + · · ·+ T ztΛ′bt,W (n)�D,C ν(n)

for all n ∈ [N3/5, N ], where we identify n with an element of ZN ′ in the obvious

manner.

The proof of [19, Prop. 6.4] was presented in [19, App. D]. We now indi-

cate the modifications necessary to that argument to obtain the more general

Proposition 6.4′. The first modification we need to make is on page 1839,

where we instead define the preliminary weight ν̃ : [N ]→ R+ by setting

ν̃(n) := Ei∈[t]
φ(W )

W
T ziΛχ,R,2(Wn+ bi).

We have the bound

(A.3) T ziΛ′bi,W (n)�C,D
φ(W )

W
T ziΛχ,R,2(Wn+ bi)

for all i ∈ [t] and all n ∈ [N3/5, N ], analogous to that stated at the bottom of

page 1839. The key observation here is that the left-hand side is only nonzero

when W (n+ zi) + bi is a prime, in which case it equals

φ(W )

W
log(W (n+ zi) + bi) <

2φ(W )

W
logN

(since W 6 logN,n 6 N and zi 6 N1.01). However, if n ∈ [N3/5, N ], then

W (n+zi)+bi > N3/5, and so if the sieve level γ used in the definition of Λχ,R,2

satisfies γ < 3
5 then the right-hand side is φ(W )

W logR. Since R = Nγ and γ

depends only on C,D (see halfway up page 1839), (A.3) follows.

As in [19, App. D], we then transfer to ZN ′ by setting ν(n) := 1
2 + 1

2 ν̃(n)

when n ∈ [N ] and ν(n) := 1 otherwise.

We then need to go back and modify the proof of [19, Th. D.3] so that it

applies with T ziΛχi,R,ai replacing Λχi,R,ai . Equivalently, we need to establish

this theorem with only the weak bound |ψi(0)| � N1.01 on the constant terms

of the forms ψi, rather than the stronger bound ‖Ψ‖N 6 L assumed there.

In fact, no bound on the ψi(0) is required in this part of the argument at all.

The first place in that argument that the assumption ‖Ψ‖N 6 L is used is on

page 1833, where it is asserted that α(p,B) = E~n∈Zd
p
1p|ψi(~n) is equal to 1/p if

p > p0(t, d, L) is sufficiently large. It is easy to see that the bound here depends

only on the sizes of the coefficients in the homogeneous parts of ψi. The second

place that this assumption is used is on page 1834, in the appeal to [19, Lemma

1.3]. As it happens only two of the three conclusions of this lemma as stated

are valid under the weaker assumption: There is a superfluous statement about

what happens for p > C(d, t, L)N that fails in our present context, but that
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is not needed for the applications in [19, App. D]. An appropriately modified

version of the lemma is the following.

Lemma 1.3′. Suppose that Ψ = (ψ1, . . . , ψt) is a system of linear forms

such that the homogeneous parts Ψ̇ = (ψ̇1, . . . , ψ̇t) satisfy ‖Ψ̇‖N 6 L. Then

the local factors βp satisfy βp = 1 +Ot,d,L(p−1). If, furthermore, no two of the

forms ψ̇i are parallel, then βp = 1 +Ot,d,L(p−2).

This lemma, whose proof is the same as that of [19, Lemma 1.3], applies

equally well on page 1834. The rest of the proof of [19, Th. D.3] goes through

unchanged.

The deduction of the linear forms conditions for ν̃ now proceeds exactly as

on page 1840, with Λχi,R,ai replaced by its shifted variant T ziΛχi,R,ai whenever

necessary.

The proof of the correlation conditions for ν̃, starting at the bottom of

page 1840, needs to be tweaked a little.8 Instead of the bound at the bottom

of page 1840, we must establish a variant with shifts, namely,Ç
φ(W )

W

åm(∑
n∈I

∏
j∈[m]

Λχ,R,2(W (n+hj)+bij +Wzij )

)
� N

∑
16j<j′6m

τ(hj−hj′)

whenever i1, . . . , im ∈ [t]. Here, the function τ must satisfy En∈[−N,N ]τ(n)q �q

1. In the argument on page 1841, the set PΨ is now the set of primes dividing

W (hj − hj + zij − zi′j ) + bij − bij′ for some 1 6 j < j′ 6 m, and we define

τ(n) :=
∑

16j<j′6m

exp

(
O(1)

∑
p>w

p|Wn+W (zij−zij′ )+(bij−bij′ )

1

p1/2

)
.

It now suffices to prove the bound

En∈[N ] exp

(
q

∑
p>w

p|Wn+h

1

p1/2

)
�q 1

uniformly for all h = O(N1.02). This is the same as the estimate at the bottom

of page 1841, only there we had the stronger assumption h = O(W ). The only

difference this makes to the argument is that the third displayed equation on

page 1842 (which it is our task to prove) only comes with the weaker constraint

8Note, however, that by the work of Conlon, Fox and Zhao [4] one could in principle

dispense with the need for this condition entirely.
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d = O(N1.02); that is to say, we must show∑
(d,W )=1

d=O(N1.02)

d−1/4
∑
n∈[N ]
d|Wn+h

1� N,

whereas before we had d = O(WN). However, the proof of this slightly

stronger bound is the same: using the bound∑
n∈[N ]
d|Wn+h

1� 1 +
N

d
,

it reduces to ∑
d=O(N1.02)

d−1/4
Å

1 +
N

d

ã
� N,

a true statement. This at last completes the proof of Proposition 6.4′.

We now continue with the arguments of [19, Ch. 7]. Using Proposition

6.4′ in place of [19, Prop. 6.4], we see that the proof of (A.1), and hence of

Theorem 7, reduces to establishing the bound

‖T zΛ′b,W − 1‖Us+1[N ] = os,B(1)

uniformly for all b ∈ {0, 1, . . . ,W−1} and for all shifts z with |z| 6 LN logB N .

By the arguments of [19, §10] (but using Proposition 6.4′ in place of [19,

Prop. 6.4]) we can reduce to proving the bound

En∈[N ](T
zΛ′b,W (n)− 1)ψ(n) = oψ,B(1)

for any s-step nilsequence ψ(n) = F (gnx), where the oψ(1) term may depend

on the underlying nilmanifold G/Γ and the Lipschitz constant of F but not on

the nilrotation g.

Chapter 11 of [19] requires no change, and the only changes required to

Chapter 12 up to the bottom of page 1804 are to replace Λ] and Λ[ by their

shifted variants T zΛ] and T zΛ[. This reduces matters to establishing the two

estimates

(A.4)

∥∥∥∥∥φ(W )

W
T zΛ](Wn+ b)− 1

∥∥∥∥∥
Us+1[N ]

= os(1)

(the shifted analogue of (12.5) in [19]) and

(A.5) En∈[N ]
φ(W )

W
T zΛ[(Wn+ b)ψ(n) = oψ,B(1)

for all nilsequences ψ (the shifted analogue of (12.4) in [19].

The proof of the first of these, (A.4), proceeds exactly as in the proof of

(12.5) of [19], which is given on pages 1842–1843. The only change required is

to use the variant of [19, Th. D.3] with shifts, the validity of which was noted

above. For this argument, we do not need any bound on z.
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Finally, we turn to the estimate (A.5). The analysis of page 1805 may be

easily adapted, with the result that it is enough to prove that

En∈[N ]T
zWΛ[(n)ψ(n) = oψ,B(1).

This, however, follows immediately from (12.10) of [19], which asserted the

bound ∣∣∣∣∣ ∑
n∈[N ]

Λ[(n)ψ(n)

∣∣∣∣∣�ψ,A N log−AN

for any A. In particular, taking A = B + 2 (and noting that W = o(logN)

and z 6 LN logB N) we have∣∣∣∣∣ ∑
16n6N+zW

Λ[(n)ψ(n)

∣∣∣∣∣ = oψ,B(N)

and ∣∣∣∣∣ ∑
16n6N

Λ[(n)ψ(n)

∣∣∣∣∣ = oψ,B(N).

Subtracting these two estimates gives the result.
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