Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0

Abstract

We prove an asymptotic formula for the number of $\mathrm{SL}_3(\mathbb{Z})$-equivalence classes of integral ternary cubic forms having bounded invariants. We use this result to show that the average size of the 3-Selmer group of all elliptic curves, when ordered by height, is equal to 4. This implies that the average rank of all elliptic curves, when ordered by height, is less than 1.17. Combining our counting techniques with a recent result of Dokchitser and Dokchitser, we prove that a positive proportion of all elliptic curves have rank 0. Assuming the finiteness of the Tate–Shafarevich group, we also show that a positive proportion of elliptic curves have rank 1. Finally, combining our counting results with the recent work of Skinner and Urban, we show that a positive proportion of elliptic curves have analytic rank 0; i.e., a positive proportion of elliptic curves have nonvanishing $L$-function at $s=1$. It follows that a positive proportion of all elliptic curves satisfy BSD.

Note: To view the article, click on the URL link for the DOI number.

  • [MMM] Go to document S. Y. An, S. Y. Kim, D. C. Marshall, S. H. Marshall, W. G. McCallum, and A. R. Perlis, "Jacobians of genus one curves," J. Number Theory, vol. 90, iss. 2, pp. 304-315, 2001.
    @article{MMM, mrkey = {1858080},
      author = {An, Sang Yook and Kim, Seog Young and Marshall, David C. and Marshall, Susan H. and McCallum, William G. and Perlis, Alexander R.},
      title = {Jacobians of genus one curves},
      journal = {J. Number Theory},
      fjournal = {Journal of Number Theory},
      volume = {90},
      year = {2001},
      number = {2},
      pages = {304--315},
      issn = {0022-314X},
      coden = {JNUTA9},
      mrclass = {14H40 (11G05 14C20 14C40 14H52)},
      mrnumber = {1858080},
      mrreviewer = {V. V. Chueshev},
      doi = {10.1006/jnth.2000.2632},
      zblnumber = {1066.14035},
      }
  • [A] S. Aronhold, "Theorie der homogenen Funktionen dritten Grades von drei Veränderlichen," J. reine Angew. Math., vol. 55, pp. 97-191, 1858.
    @article{A,
      author = {Aronhold, S.},
      title = {Theorie der homogenen {F}unktionen dritten {G}rades von drei {V}eränderlichen},
      journal = {J. reine Angew. Math.},
      volume = {55},
      year = {1858},
      pages = {97--191},
      ZBLNUMBER= {055.1455cj},
      }
  • [ATR] Go to document M. Artin, F. Rodriguez-Villegas, and J. Tate, "On the Jacobians of plane cubics," Adv. Math., vol. 198, iss. 1, pp. 366-382, 2005.
    @article{ATR, mrkey = {2183258},
      author = {Artin, Michael and Rodriguez-Villegas, Fernando and Tate, John},
      title = {On the {J}acobians of plane cubics},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {198},
      year = {2005},
      number = {1},
      pages = {366--382},
      issn = {0001-8708},
      coden = {ADMTA4},
      mrclass = {14H52 (11G05 14A20)},
      mrnumber = {2183258},
      mrreviewer = {H. Lange},
      doi = {10.1016/j.aim.2005.06.004},
      zblnumber = {1092.14054},
      }
  • [BMSW] Go to document B. Bektemirov, B. Mazur, W. Stein, and M. Watkins, "Average ranks of elliptic curves: tension between data and conjecture," Bull. Amer. Math. Soc., vol. 44, iss. 2, pp. 233-254, 2007.
    @article{BMSW, mrkey = {2291676},
      author = {Bektemirov, Baur and Mazur, Barry and Stein, William and Watkins, Mark},
      title = {Average ranks of elliptic curves: tension between data and conjecture},
      journal = {Bull. Amer. Math. Soc.},
      fjournal = {American Mathematical Society. Bulletin. New Series},
      volume = {44},
      year = {2007},
      number = {2},
      pages = {233--254},
      issn = {0273-0979},
      coden = {BAMOAD},
      mrclass = {11G05 (11D25 11Y35 11Y40)},
      mrnumber = {2291676},
      doi = {10.1090/S0273-0979-07-01138-X},
      zblnumber = {1190.11032},
      }
  • [dodpf] Go to document M. Bhargava, "The density of discriminants of quintic rings and fields," Ann. of Math., vol. 172, iss. 3, pp. 1559-1591, 2010.
    @article{dodpf, mrkey = {2745272},
      author = {Bhargava, Manjul},
      title = {The density of discriminants of quintic rings and fields},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {172},
      year = {2010},
      number = {3},
      pages = {1559--1591},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {11R29 (11R21 11R45)},
      mrnumber = {2745272},
      mrreviewer = {Jerzy Browkin},
      doi = {10.4007/annals.2010.172.1559},
      zblnumber = {1220.11139},
      }
  • [geosieve] M. Bhargava, The Ekedahl sieve and the density of squarefree values of invariant polynomials.
    @misc{geosieve,
      author = {Bhargava, Manjul},
      title = {The {E}kedahl sieve and the density of squarefree values of invariant polynomials},
      ARXIV={1402.0031},
      sortyear = {2020},
      }
  • [BhHo] M. Bhargava and W. Ho, Coregular spaces and genus one curves.
    @misc{BhHo,
      author = {Bhargava, Manjul and Ho, W.},
      title = {Coregular spaces and genus one curves},
      arxiv = {1306.4424v1},
      sortyear = {2015},
      }
  • [BS] Go to document M. Bhargava and A. Shankar, "Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves," Ann. of Math., vol. 181, iss. 1, pp. 191-242, 2015.
    @article{BS,
      author = {Bhargava, Manjul and Shankar, A.},
      title = {Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves},
      journal = {Ann. of Math.},
      volume = {181},
      number = {1},
      year = {2015},
      pages = {191--242},
      doi = {10.4007/annals.2015.181.1.3},
      }
  • [BSD] Go to document B. J. Birch and H. P. F. Swinnerton-Dyer, "Notes on elliptic curves. I," J. Reine Angew. Math., vol. 212, pp. 7-25, 1963.
    @article{BSD, mrkey = {0146143},
      author = {Birch, B. J. and Swinnerton-Dyer, H. P. F.},
      title = {Notes on elliptic curves. {I}},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik},
      volume = {212},
      year = {1963},
      pages = {7--25},
      issn = {0075-4102},
      mrclass = {10.66 (10.41)},
      mrnumber = {0146143},
      mrreviewer = {D. J. Lewis},
      doi = {10.1515/crll.1963.212.7},
      zblnumber = {0118.27601},
      }
  • [BH] Go to document A. Borel and Harish-Chandra, "Arithmetic subgroups of algebraic groups," Ann. of Math., vol. 75, pp. 485-535, 1962.
    @article{BH, mrkey = {0147566},
      author = {Borel, Armand and Harish-Chandra},
      title = {Arithmetic subgroups of algebraic groups},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {75},
      year = {1962},
      pages = {485--535},
      issn = {0003-486X},
      mrclass = {20.65 (14.50)},
      mrnumber = {0147566},
      mrreviewer = {P. Cartier},
      doi = {10.2307/1970210},
      zblnumber = {0107.14804},
      }
  • [BK] Go to document A. Brumer and K. Kramer, "The rank of elliptic curves," Duke Math. J., vol. 44, iss. 4, pp. 715-743, 1977.
    @article{BK, mrkey = {0457453},
      author = {Brumer, Armand and Kramer, Kenneth},
      title = {The rank of elliptic curves},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {44},
      year = {1977},
      number = {4},
      pages = {715--743},
      issn = {0012-7094},
      mrclass = {14K15 (10B15 14G25)},
      mrnumber = {0457453},
      mrreviewer = {M. A. Kenku},
      doi = {10.1215/S0012-7094-77-04431-3},
      zblnumber = {0376.14011},
      }
  • [Cassels] Go to document J. W. S. Cassels, "Arithmetic on curves of genus $1$. IV. Proof of the Hauptvermutung," J. Reine Angew. Math., vol. 211, pp. 95-112, 1962.
    @article{Cassels, mrkey = {0163915},
      author = {Cassels, J. W. S.},
      title = {Arithmetic on curves of genus {$1$}. {IV}. {P}roof of the {H}auptvermutung},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik},
      volume = {211},
      year = {1962},
      pages = {95--112},
      issn = {0075-4102},
      mrclass = {14.49 (12.40)},
      mrnumber = {0163915},
      mrreviewer = {P. Abellanas},
      doi = {10.1515/crll.1962.211.95},
      zblnumber = {0106.03706},
      }
  • [CFS] Go to document J. E. Cremona, T. A. Fisher, and M. Stoll, "Minimisation and reduction of 2-,~3- and 4-coverings of elliptic curves," Algebra Number Theory, vol. 4, iss. 6, pp. 763-820, 2010.
    @article{CFS, mrkey = {2728489},
      author = {Cremona, John E. and Fisher, Tom A. and Stoll, Michael},
      title = {Minimisation and reduction of \hbox{2-,~3-} and 4-coverings of elliptic curves},
      journal = {Algebra Number Theory},
      fjournal = {Algebra \& Number Theory},
      volume = {4},
      year = {2010},
      number = {6},
      pages = {763--820},
      issn = {1937-0652},
      mrclass = {11G05 (11G07 14H52)},
      mrnumber = {2728489},
      mrreviewer = {Conjeeveram S. Rajan},
      doi = {10.2140/ant.2010.4.763},
      zblnumber = {1222.11073},
      }
  • [DDT] H. Darmon, F. Diamond, and R. Taylor, "Fermat’s last theorem," in Elliptic Curves, Modular Forms & Fermat’s Last Theorem, Cambridge, MA: Int. Press, 1997, pp. 2-140.
    @incollection{DDT, mrkey = {1605752},
      author = {Darmon, Henri and Diamond, Fred and Taylor, Richard},
      title = {Fermat's last theorem},
      booktitle = {Elliptic Curves, Modular Forms \& {F}ermat's Last Theorem},
      venue = {{H}ong {K}ong, 1993},
      pages = {2--140},
      publisher = {Int. Press},
      address = {Cambridge, MA},
      year = {1997},
      mrclass = {11G18 (11D41 11F80 11G05)},
      mrnumber = {1605752},
      mrreviewer = {M. Ram Murty},
      ZBLNUMBER = {0997.11504},
      }
  • [Davenport1] Go to document H. Davenport, "On a principle of Lipschitz," J. London Math. Soc., vol. 26, pp. 179-183, 1951.
    @article{Davenport1, mrkey = {0043821},
      author = {Davenport, H.},
      title = {On a principle of {L}ipschitz},
      journal = {J. London Math. Soc.},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      volume = {26},
      year = {1951},
      pages = {179--183},
      issn = {0024-6107},
      mrclass = {10.0X},
      mrnumber = {0043821},
      mrreviewer = {W. H. Mills},
      doi = {10.1112/jlms/s1-26.3.179},
      zblnumber = {0042.27504},
      note = {[Corrigendum: ``On a principle of Lipschitz'', {\it J. London Math. Soc.} {\bf 39} (1964), 580. \mr{0166155}. \zbl{0125.02703}. \doi{10.1112/jlms/s1-39.1.580-t}]},
      }
  • [deJong] A. J. de Jong, "Counting elliptic surfaces over finite fields," Mosc. Math. J., vol. 2, iss. 2, pp. 281-311, 2002.
    @article{deJong, mrkey = {1944508},
      author = {{de Jong},
      A. J.},
      title = {Counting elliptic surfaces over finite fields},
      note = {Dedicated to Yuri I. Manin on the occasion of his 65th birthday},
      journal = {Mosc. Math. J.},
      fjournal = {Moscow Mathematical Journal},
      volume = {2},
      year = {2002},
      number = {2},
      pages = {281--311},
      issn = {1609-3321},
      mrclass = {11G05 (11G25 11G50 14G25)},
      mrnumber = {1944508},
      mrreviewer = {Yuri Tschinkel},
      zblnumber = {1031.11033},
      }
  • [DD] Go to document T. Dokchitser and V. Dokchitser, "On the Birch-Swinnerton-Dyer quotients modulo squares," Ann. of Math., vol. 172, iss. 1, pp. 567-596, 2010.
    @article{DD, mrkey = {2680426},
      author = {Dokchitser, Tim and Dokchitser, Vladimir},
      title = {On the {B}irch-{S}winnerton-{D}yer quotients modulo squares},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {172},
      year = {2010},
      number = {1},
      pages = {567--596},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {11G40 (11G05)},
      mrnumber = {2680426},
      mrreviewer = {Ramdorai Sujatha},
      doi = {10.4007/annals.2010.172.567},
      zblnumber = {1223.11079},
      }
  • [Du] Go to document W. Duke, "Elliptic curves with no exceptional primes," C. R. Acad. Sci. Paris Sér. I Math., vol. 325, iss. 8, pp. 813-818, 1997.
    @article{Du, mrkey = {1485897},
      author = {Duke, William},
      title = {Elliptic curves with no exceptional primes},
      journal = {C. R. Acad. Sci. Paris Sér. I Math.},
      fjournal = {Comptes Rendus de l'Académie des Sciences. Série I. Mathématique},
      volume = {325},
      year = {1997},
      number = {8},
      pages = {813--818},
      issn = {0764-4442},
      coden = {CASMEI},
      mrclass = {11G05 (11N36)},
      mrnumber = {1485897},
      mrreviewer = {Massimo Bertolini},
      doi = {10.1016/S0764-4442(97)80118-8},
      zblnumber = {1002.11049},
      }
  • [Fisher2] Go to document T. Fisher, "Testing equivalence of ternary cubics," in Algorithmic Number Theory, New York: Springer-Verlag, 2006, vol. 4076, pp. 333-345.
    @incollection{Fisher2, mrkey = {2282934},
      author = {Fisher, Tom},
      title = {Testing equivalence of ternary cubics},
      booktitle = {Algorithmic Number Theory},
      series = {Lecture Notes in Comput. Sci.},
      volume = {4076},
      pages = {333--345},
      publisher = {Springer-Verlag},
      year = {2006},
      mrclass = {11G05},
      mrnumber = {2282934},
      mrreviewer = {Alain Kraus},
      doi = {10.1007/11792086_24},
      address = {New York},
      zblnumber = {1143.11325},
      }
  • [Fisher1] Go to document T. Fisher, "The invariants of a genus one curve," Proc. Lond. Math. Soc., vol. 97, iss. 3, pp. 753-782, 2008.
    @article{Fisher1, mrkey = {2448246},
      author = {Fisher, Tom},
      title = {The invariants of a genus one curve},
      journal = {Proc. Lond. Math. Soc.},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {97},
      year = {2008},
      number = {3},
      pages = {753--782},
      issn = {0024-6115},
      mrclass = {11G05 (11-04 13A50 14H25)},
      mrnumber = {2448246},
      mrreviewer = {Letterio Gatto},
      doi = {10.1112/plms/pdn021},
      zblnumber = {1221.11135},
      }
  • [Gib] Go to document C. G. Gibson, Elementary Geometry of Algebraic Curves: An Undergraduate Introduction, Cambridge: Cambridge Univ. Press, 1998.
    @book{Gib, mrkey = {1663524},
      author = {Gibson, C. G.},
      title = {Elementary Geometry of Algebraic Curves: An Undergraduate Introduction},
      publisher = {Cambridge Univ. Press},
      address = {Cambridge},
      year = {1998},
      pages = {xvi+250},
      isbn = {0-521-64140-3; 0-521-64641-3},
      mrclass = {14-01 (14H45 51N35)},
      mrnumber = {1663524},
      mrreviewer = {Doru {\c{S}}tef{\u{a}}nescu},
      doi = {10.1017/CBO9781139173285},
      zblnumber = {0997.14500},
      }
  • [Kr] A. Kraus, "Quelques remarques à propos des invariants $c_4,\;c_6$ et $\Delta$ d’une courbe elliptique," Acta Arith., vol. 54, iss. 1, pp. 75-80, 1989.
    @article{Kr, mrkey = {1024419},
      author = {Kraus, Alain},
      title = {Quelques remarques à propos des invariants {$c\sb 4,\;c\sb 6$} et {$\Delta$} d'une courbe elliptique},
      journal = {Acta Arith.},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica},
      volume = {54},
      year = {1989},
      number = {1},
      pages = {75--80},
      issn = {0065-1036},
      coden = {AARIA9},
      mrclass = {11G05 (11D25 14K07)},
      mrnumber = {1024419},
      mrreviewer = {Toshihiro Hadano},
      zblnumber = {0628.14024},
      }
  • [LW] Go to document S. Lang and A. Weil, "Number of points of varieties in finite fields," Amer. J. Math., vol. 76, pp. 819-827, 1954.
    @article{LW, mrkey = {0065218},
      author = {Lang, Serge and Weil, Andr{é}},
      title = {Number of points of varieties in finite fields},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {76},
      year = {1954},
      pages = {819--827},
      issn = {0002-9327},
      mrclass = {14.0X},
      mrnumber = {0065218},
      mrreviewer = {B. Segre},
      doi = {10.2307/2372655},
      zblnumber = {0058.27202},
      }
  • [Langlands] R. P. Langlands, "The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups," in Algebraic Groups and Discontinuous Subgroups, Providence, RI: Amer. Math. Soc., 1966, pp. 143-148.
    @incollection{Langlands, mrkey = {0213362},
      author = {Langlands, R. P.},
      title = {The volume of the fundamental domain for some arithmetical subgroups of {C}hevalley groups},
      booktitle = {Algebraic {G}roups and {D}iscontinuous {S}ubgroups},
      venue = {{P}roc. {S}ympos. {P}ure {M}ath., {B}oulder, {C}olo., 1965},
      pages = {143--148},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {1966},
      mrclass = {14.50},
      mrnumber = {0213362},
      mrreviewer = {T. Ono},
      zblnumber = {0218.20041},
      }
  • [Nekovar] J. Nekovávr, Selmer Complexes, , 2006, vol. 310.
    @book{Nekovar, mrkey = {2333680},
      author = {Nekov{á}{\v{r}},
      Jan},
      title = {Selmer Complexes},
      series = {Astérisque},
      volume = {310},
      year = {2006},
      pages = {viii+559},
      issn = {0303-1179},
      isbn = {978-2-85629-226-6},
      mrclass = {11R23 (11F41 11G40 11R34 22E41)},
      mrnumber = {2333680},
      mrreviewer = {Laurent N. Berger},
      zblnumber = {1211.11120},
      }
  • [Rh] Go to document D. E. Rohrlich, "Variation of the root number in families of elliptic curves," Compositio Math., vol. 87, iss. 2, pp. 119-151, 1993.
    @article{Rh, mrkey = {1219633},
      author = {Rohrlich, David E.},
      title = {Variation of the root number in families of elliptic curves},
      journal = {Compositio Math.},
      fjournal = {Compositio Mathematica},
      volume = {87},
      year = {1993},
      number = {2},
      pages = {119--151},
      issn = {0010-437X},
      coden = {CMPMAF},
      mrclass = {11G40 (11G05 11N36)},
      mrnumber = {1219633},
      mrreviewer = {Fernando Q. Gouv{ê}a},
      url = {http://www.numdam.org/item?id=CM_1993__87_2_119_0},
      zblnumber = {0791.11026},
      }
  • [Sil] Go to document J. H. Silverman, The Arithmetic of Elliptic Curves, New York: Springer-Verlag, 1986, vol. 106.
    @book{Sil, mrkey = {0817210},
      author = {Silverman, Joseph H.},
      title = {The Arithmetic of Elliptic Curves},
      series = {Grad. Texts in Math.},
      volume = {106},
      publisher = {Springer-Verlag},
      year = {1986},
      pages = {xii+400},
      isbn = {0-387-96203-4},
      mrclass = {11G05 (14Gxx 14K07 14K15)},
      mrnumber = {0817210},
      mrreviewer = {Robert S. Rumely},
      doi = {10.1007/978-1-4757-1920-8},
      address = {New York},
      zblnumber = {0585.14026},
      }
  • [SU] Go to document C. Skinner and E. Urban, "The Iwasawa Main Conjectures for $ GL_2$," Invent. Math., vol. 195, iss. 1, pp. 1-277, 2014.
    @article{SU, mrkey = {3148103},
      author = {Skinner, Christopher and Urban, Eric},
      title = {The {I}wasawa {M}ain {C}onjectures for {$\rm GL\sb 2$}},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {195},
      year = {2014},
      number = {1},
      pages = {1--277},
      issn = {0020-9910},
      mrclass = {11R23 (11F03 11G05)},
      mrnumber = {3148103},
      doi = {10.1007/s00222-013-0448-1},
      zblnumber = {06261655},
      }
  • [SW] Go to document S. Wong, "On the density of elliptic curves," Compositio Math., vol. 127, iss. 1, pp. 23-54, 2001.
    @article{SW, mrkey = {1832985},
      author = {Wong, Siman},
      title = {On the density of elliptic curves},
      journal = {Compositio Math.},
      fjournal = {Compositio Mathematica},
      volume = {127},
      year = {2001},
      number = {1},
      pages = {23--54},
      issn = {0010-437X},
      coden = {CMPMAF},
      mrclass = {11G05 (11G50 11N36)},
      mrnumber = {1832985},
      mrreviewer = {Carlo Gasbarri},
      doi = {10.1023/A:1017514507447},
      zblnumber = {1003.11023},
      }

Authors

Manjul Bhargava

Department of Mathematics, Princeton University, Fine Hall-Washington Rd., Princeton, NJ 08544

Arul Shankar

Department of Mathematics, One Oxford Street, Harvard University, Cambridge, MA 02138