Schur multipliers in Schatten-von Neumann classes

Abstract

We establish a rather unexpected and simple criterion for the boundedness of Schur multipliers $S_M$ on Schatten $p$-classes which solves a conjecture proposed by Mikael de la Salle. Given $1 < p < \infty$, a simple form of our main result for $\mathbf{R}^n \times \mathbf{R}^n$ matrices reads as follows:
$$\big\| S_{M} S_p\! \to\! S_p \big\|_{\mathrm{cb}} \lesssim \frac{p^2}{p-1}\sum_{|\gamma| \le [\frac{n}{2}] +1}  \Big\| |x-y|^{|\gamma|} \Big\{ \big| \partial_x^\gamma M(x,y) \big|  + \big| \partial_y^\gamma M(x,y) \big| \Big\} \Big\|_\infty.$$
In this form, it is a full matrix (nonToeplitz/nontrigonometric) amplification of the Hörmander-Mikhlin multiplier theorem, which admits lower fractional differentiability orders $\sigma >  \frac{n}{2}$ as well. It trivially includes Arazy’s conjecture for $S_p$-multipliers and extends it to $\alpha$-divided differences. It also leads to new Littlewood-Paley characterizations of $S_p$-norms and strong applications in harmonic analysis for nilpotent and high rank simple Lie group algebras.

Authors

José M. Conde-Alonso

Instituto de Ciencias Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Adrián M. González-Pérez

Instituto de Ciencias Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Javier Parcet

Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain

Eduardo Tablate

Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain