Feral curves and minimal sets

Abstract

We prove that for each Hamiltonian function $H\in \mathcal {C}^\infty (\mathbb {R}^4, \mathbb {R})$ defined on the standard symplectic $(\mathbb {R}^4, \omega _0)$, for which $M:=H^{-1}(0)$ is a non-empty compact regular energy level, the Hamiltonian flow on $M$ is not minimal. That is, we prove there exists a closed invariant subset of the Hamiltonian flow in $M$ that is neither $\emptyset $ nor all of $M$. This answers the four-dimensional case of a more than twenty year old question of Michel Herman, part of which can be regarded as a special case of the Gottschalk Conjecture. \par Our principal technique is the introduction and development of a new class of pseudoholomorphic curve in the “symplectization” $\mathbb {R} \times M$ of framed Hamiltonian manifolds $(M, \lambda , \omega )$. We call these feral curves because they are allowed to have infinite (so-called) Hofer energy, and hence may limit to invariant sets more general than the finite union of periodic orbits. Standard pseudoholomorphic curve analysis is inapplicable without energy bounds, and thus much of this paper is devoted to establishing properties of feral curves, such as area and curvature estimates, energy thresholds, compactness, asymptotic properties, etc.

  • [Abbas-Hofer] Go to document C. Abbas and H. Hofer, Holomorphic Curves and Global Questions in Contact Geometry, Birkhäuser/Springer, Cham, 2019.
    @BOOK{Abbas-Hofer,
      author = {Abbas, Casim and Hofer, Helmut},
      title = {Holomorphic Curves and Global Questions in Contact Geometry},
      series = {Birkhäuser Adv. Texts: Basel Textbooks]},
      publisher = {Birkhäuser/Springer, Cham},
      year = {2019},
      pages = {xii+322},
      isbn = {978-3-030-11802-0; 978-3-030-11803-7},
      mrclass = {53D10 (32Q65)},
      mrnumber = {3930591},
      mrreviewer = {Adam Gregory Harris},
      doi = {10.1007/978-3-030-11803-7},
      url = {https://doi.org/10.1007/978-3-030-11803-7},
      zblnumber = {1431.53001},
      }
  • [AI] Go to document M. Asaoka and K. Irie, "A $C^\infty$ closing lemma for Hamiltonian diffeomorphisms of closed surfaces," Geom. Funct. Anal., vol. 26, iss. 5, pp. 1245-1254, 2016.
    @ARTICLE{AI,
      author = {Asaoka, Masayuki and Irie, Kei},
      title = {A {$C^\infty$} closing lemma for {H}amiltonian diffeomorphisms of closed surfaces},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {26},
      year = {2016},
      number = {5},
      pages = {1245--1254},
      issn = {1016-443X},
      mrclass = {37J10 (37E30 37J45)},
      mrnumber = {3568031},
      mrreviewer = {Dimitar Angelov Kolev},
      doi = {10.1007/s00039-016-0386-3},
      url = {https://doi.org/10.1007/s00039-016-0386-3},
      zblnumber = {1408.37092},
      }
  • [B] D. Bennequin, "Entrelacements et équations de Pfaff," in Third Schnepfenried Geometry Conference, Vol. 1, Soc. Math. France, Paris, 1983, vol. 107, pp. 87-161.
    @INCOLLECTION{B,
      author = {Bennequin, Daniel},
      title = {Entrelacements et équations de {P}faff},
      booktitle = {Third {S}chnepfenried Geometry Conference, {V}ol. 1},
      venue = {{S}chnepfenried, 1982},
      series = {Astérisque},
      volume = {107},
      pages = {87--161},
      publisher = {Soc. Math. France, Paris},
      year = {1983},
      mrclass = {58F18 (57R15)},
      mrnumber = {0753131},
      mrreviewer = {Yakov Eliashberg},
      zblnumber = {0573.58022},
      }
  • [BEHWZ] Go to document F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, and E. Zehnder, "Compactness results in symplectic field theory," Geom. Topol., vol. 7, pp. 799-888, 2003.
    @ARTICLE{BEHWZ,
      author = {Bourgeois, F. and Eliashberg, Y. and Hofer, H. and Wysocki, K. and Zehnder, E.},
      title = {Compactness results in symplectic field theory},
      journal = {Geom. Topol.},
      fjournal = {Geometry and Topology},
      volume = {7},
      year = {2003},
      pages = {799--888},
      issn = {1465-3060},
      mrclass = {53D45 (53D35 53D40 57R17)},
      mrnumber = {2026549},
      mrreviewer = {Kai Cieliebak},
      doi = {10.2140/gt.2003.7.799},
      url = {https://doi.org/10.2140/gt.2003.7.799},
      zblnumber = {1131.53312},
      }
  • [AMS] F. E. Browder, Mathematical Developments Arising from Hilbert Problems, Amer. Math. Soc., Providence, R.I., 1976.
    @BOOK{AMS, title = {Mathematical Developments Arising from {H}ilbert Problems},
      series = {Proc. Sympos. Pure Math., Vol. XXVIII},
      booktitle = {Proceedings of the {S}ymposium in {P}ure {M}athematics of the {A}merican {M}athematical {S}ociety held at {N}orthern {I}llinois {U}niversity, {D}e {K}alb, {I}ll., {M}ay, 1974},
      author = {Browder, Felix E.},
      publisher = {Amer. Math. Soc., Providence, R.I.},
      year = {1976},
      pages = {xii+628 pp. (loose erratum)},
      mrclass = {00A10},
      mrnumber = {0419125},
      zblnumber = {0326.00002},
      }
  • [CieM2005] Go to document K. Cieliebak and K. Mohnke, "Compactness for punctured holomorphic curves," J. Symplectic Geom., vol. 3, iss. 4, pp. 589-654, 2005.
    @article{CieM2005,
      author = {Cieliebak, K. and Mohnke, K.},
      title = {Compactness for punctured holomorphic curves},
      note = {Conference on Symplectic Topology},
      journal = {J. Symplectic Geom.},
      fjournal = {The Journal of Symplectic Geometry},
      volume = {3},
      year = {2005},
      number = {4},
      pages = {589--654},
      issn = {1527-5256},
      mrclass = {53D45 (53D35 53D40)},
      mrnumber = {2235856},
      mrreviewer = {Timothy Perutz},
      doi = {10.4310/JSG.2005.v3.n4.a5},
      url = {https://dx.doi.org/10.4310/JSG.2005.v3.n4.a5},
      zblnumber = {1113.53053},
      }
  • [CHR] Go to document D. Cristofaro-Gardiner, M. Hutchings, and V. G. B. Ramos, "The asymptotics of ECH capacities," Invent. Math., vol. 199, iss. 1, pp. 187-214, 2015.
    @ARTICLE{CHR,
      author = {Cristofaro-Gardiner, Daniel and Hutchings, Michael and Ramos, Vinicius Gripp Barros},
      title = {The asymptotics of {ECH} capacities},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {199},
      year = {2015},
      number = {1},
      pages = {187--214},
      issn = {0020-9910},
      mrclass = {53D42 (57R17 57R57)},
      mrnumber = {3294959},
      mrreviewer = {David E. Hurtubise},
      doi = {10.1007/s00222-014-0510-7},
      url = {https://doi.org/10.1007/s00222-014-0510-7},
      zblnumber = {1315.53091},
      }
  • [E1] Go to document Y. Eliashberg, "Classification of overtwisted contact structures on $3$-manifolds," Invent. Math., vol. 98, iss. 3, pp. 623-637, 1989.
    @ARTICLE{E1,
      author = {Eliashberg, Yakov},
      title = {Classification of overtwisted contact structures on {$3$}-manifolds},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {98},
      year = {1989},
      number = {3},
      pages = {623--637},
      issn = {0020-9910},
      mrclass = {53C15 (53C57 58A15 58C27)},
      mrnumber = {1022310},
      mrreviewer = {Yong-Geun Oh},
      doi = {10.1007/BF01393840},
      url = {https://doi.org/10.1007/BF01393840},
      zblnumber = {0684.57012},
      }
  • [E2] Go to document Y. Eliashberg, "Contact $3$-manifolds twenty years since J. Martinet’s work," Ann. Inst. Fourier (Grenoble), vol. 42, iss. 1-2, pp. 165-192, 1992.
    @ARTICLE{E2,
      author = {Eliashberg, Yakov},
      title = {Contact {$3$}-manifolds twenty years since {J}. {M}artinet's work},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {42},
      year = {1992},
      number = {1-2},
      pages = {165--192},
      issn = {0373-0956},
      mrclass = {57M50 (53C15 57R15 58F05)},
      mrnumber = {1162559},
      mrreviewer = {Nikolai K. Smolentsev},
      doi = {10.5802/aif.1288},
      url = {https://doi.org/10.5802/aif.1288},
      zblnumber = {0756.53017},
      }
  • [EGH] Go to document Y. Eliashberg, A. Givental, and H. Hofer, "Introduction to symplectic field theory," Geom. Funct. Anal., iss. Special Volume, Part II, pp. 560-673, 2000.
    @article{EGH,
      author = {Eliashberg, Yakov and Givental, A. and Hofer, H.},
      title = {Introduction to symplectic field theory},
      note= {GAFA 2000 (Tel Aviv, 1999)},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      year = {2000},
      number = {Special Volume, Part II},
      pages = {560--673},
      issn = {1016-443X},
      mrclass = {53D45 (53D40)},
      mrnumber = {1826267},
      mrreviewer = {Kai Cieliebak},
      doi = {10.1007/978-3-0346-0425-3\_4},
      url = {https://doi.org/10.1007/978-3-0346-0425-3_4},
      zblnumber = {0989.81114},
      }
  • [FK] Go to document B. Fayad and A. Katok, "Analytic uniquely ergodic volume preserving maps on odd spheres," Comment. Math. Helv., vol. 89, iss. 4, pp. 963-977, 2014.
    @ARTICLE{FK,
      author = {Fayad, Bassam and Katok, Anatole},
      title = {Analytic uniquely ergodic volume preserving maps on odd spheres},
      journal = {Comment. Math. Helv.},
      fjournal = {Commentarii Mathematici Helvetici. A Journal of the Swiss Mathematical Society},
      volume = {89},
      year = {2014},
      number = {4},
      pages = {963--977},
      issn = {0010-2571},
      mrclass = {37C40 (32C05 37A05)},
      mrnumber = {3284302},
      mrreviewer = {Eleonora Catsigeras},
      doi = {10.4171/CMH/341},
      url = {https://doi.org/10.4171/CMH/341},
      zblnumber = {1336.37021},
      }
  • [Fish2] Go to document J. W. Fish, "Target-local Gromov compactness," Geom. Topol., vol. 15, iss. 2, pp. 765-826, 2011.
    @ARTICLE{Fish2,
      author = {Fish, Joel W.},
      title = {Target-local {G}romov compactness},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {15},
      year = {2011},
      number = {2},
      pages = {765--826},
      issn = {1465-3060},
      mrclass = {53D45 (32Q65 53C15)},
      mrnumber = {2800366},
      mrreviewer = {Antoine F. R. Gournay},
      doi = {10.2140/gt.2011.15.765},
      url = {https://doi.org/10.2140/gt.2011.15.765},
      zblnumber = {1223.32016},
      }
  • [FH1] Go to document J. W. Fish and H. Hofer, "Exhaustive Gromov compactness for pseudoholomorphic curves," in Quelques aspects de la théorie des systèmes dynamiques: un hommage à Jean-Christophe Yoccoz. Volume I, Math. Soc. France, Paris, 2020, vol. 415, pp. 87-112.
    @INCOLLECTION{FH1,
      author = {Fish, Joel W. and Hofer, Helmut},
      title = {Exhaustive {G}romov compactness for pseudoholomorphic curves},
      booktitle = {Quelques aspects de la théorie des systèmes dynamiques: un hommage à Jean-Christophe Yoccoz. {V}olume {I}},
      series = {Astérisque},
      publisher={Math. Soc. France, Paris},
      year = {2020},
      volume = {415},
      pages = {87--112},
      issn = {0303-1179},
      isbn = {978-2-85629-916-6},
      mrclass = {32Q65 (18F99 32G15 53D42)},
      mrnumber = {4142448},
      doi = {10.24033/ast.1101},
      url = {https://doi.org/10.24033/ast.1101},
      zblnumber = {1464.32043},
      }
  • [FH_almost] Go to document J. W. Fish and H. H. W. Hofer, "Almost existence from the feral perspective and some questions," Ergodic Theory Dynam. Systems, vol. 42, iss. 2, pp. 792-834, 2022.
    @ARTICLE{FH_almost,
      author = {Fish, Joel W. and Hofer, Helmut H. W.},
      title = {Almost existence from the feral perspective and some questions},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {42},
      year = {2022},
      number = {2},
      pages = {792--834},
      issn = {0143-3857},
      mrclass = {32Q65 (37C99 37J06 37J39 53D99)},
      mrnumber = {4362909},
      doi = {10.1017/etds.2021.20},
      url = {https://doi.org/10.1017/etds.2021.20},
      zblnumber = {1487.32154},
      }
  • [Floer] A. Floer, "Holomorphic curves and a Morse theory for fixed points of exact symplectomorphisms," in Aspects dynamiques et topologiques des groupes infinis de transformation de la mécanique (Lyon, 1986), Hermann, Paris, 1987, vol. 25, pp. 49-60.
    @INCOLLECTION{Floer,
      author = {Floer, A.},
      title = {Holomorphic curves and a {M}orse theory for fixed points of exact symplectomorphisms},
      booktitle = {Aspects dynamiques et topologiques des groupes infinis de transformation de la mécanique ({L}yon, 1986)},
      series = {Travaux en Cours},
      volume = {25},
      pages = {49--60},
      publisher = {Hermann, Paris},
      year = {1987},
      mrclass = {58F05 (53C57 58E05)},
      mrnumber = {0906896},
      mrreviewer = {Jean-Pierre Françoise},
      zblnumber = {0635.58015},
      }
  • [GZ] Go to document H. Geiges and K. Zehmisch, "Odd-symplectic forms via surgery and minimality in symplectic dynamics," Ergodic Theory Dynam. Systems, vol. 40, iss. 3, pp. 699-713, 2020.
    @ARTICLE{GZ,
      author = {Geiges, Hansjörg and Zehmisch, Kai},
      title = {Odd-symplectic forms via surgery and minimality in symplectic dynamics},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {40},
      year = {2020},
      number = {3},
      pages = {699--713},
      issn = {0143-3857},
      mrclass = {37J11},
      mrnumber = {4059794},
      mrreviewer = {William Liu},
      doi = {10.1017/etds.2018.60},
      url = {https://doi.org/10.1017/etds.2018.60},
      zblnumber = {1437.53068},
      }
  • [Ginzburg:1995] Go to document V. L. Ginzburg, "An embedding $S^{2n-1}\to {\bf R}^{2n}$, $2n-1\geq 7$, whose Hamiltonian flow has no periodic trajectories," Internat. Math. Res. Notices, iss. 2, pp. 83-97, 1995.
    @ARTICLE{Ginzburg:1995,
      author = {Ginzburg, Viktor L.},
      title = {An embedding {$S^{2n-1}\to {\bf R}^{2n}$},
      {$2n-1\geq 7$},
      whose {H}amiltonian flow has no periodic trajectories},
      journal = {Internat. Math. Res. Notices},
      fjournal = {International Mathematics Research Notices},
      year = {1995},
      number = {2},
      pages = {83--97},
      issn = {1073-7928},
      mrclass = {58F05 (58F25)},
      mrnumber = {1317645},
      mrreviewer = {Karl Friedrich Siburg},
      doi = {10.1155/S1073792895000079},
      url = {https://doi.org/10.1155/S1073792895000079},
      zblnumber = {0835.58029},
      }
  • [Ginzburg1997] Go to document V. L. Ginzburg, "A smooth counterexample to the Hamiltonian Seifert conjecture in $\Bbb R^6$," Internat. Math. Res. Notices, iss. 13, pp. 641-650, 1997.
    @ARTICLE{Ginzburg1997,
      author = {Ginzburg, Viktor L.},
      title = {A smooth counterexample to the {H}amiltonian {S}eifert conjecture in {$\bold R^6$}},
      journal = {Internat. Math. Res. Notices},
      fjournal = {International Mathematics Research Notices},
      year = {1997},
      number = {13},
      pages = {641--650},
      issn = {1073-7928},
      mrclass = {58F05 (58F25)},
      mrnumber = {1459629},
      mrreviewer = {Hansjörg Geiges},
      doi = {10.1155/S1073792897000421},
      url = {https://doi.org/10.1155/S1073792897000421},
      zblnumber = {0913.58022},
      }
  • [GG] Go to document V. L. Ginzburg and B. Z. Gürel, "A $C^2$-smooth counterexample to the Hamiltonian Seifert conjecture in $\Bbb R^4$," Ann. of Math. (2), vol. 158, iss. 3, pp. 953-976, 2003.
    @ARTICLE{GG,
      author = {Ginzburg, Viktor L. and Gürel, Ba\c{s}ak Z.},
      title = {A {$C^2$}-smooth counterexample to the {H}amiltonian {S}eifert conjecture in {$\Bbb R^4$}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {158},
      year = {2003},
      number = {3},
      pages = {953--976},
      issn = {0003-486X},
      mrclass = {37J45 (37C27 37J05 53D35 57R25)},
      mrnumber = {2031857},
      mrreviewer = {Ely Kerman},
      doi = {10.4007/annals.2003.158.953},
      url = {https://doi.org/10.4007/annals.2003.158.953},
      zblnumber = {1140.37356},
      }
  • [GN] Go to document V. L. Ginzburg and C. J. Niche, "A remark on unique ergodicity and the contact type condition," Arch. Math. (Basel), vol. 105, iss. 6, pp. 585-592, 2015.
    @ARTICLE{GN,
      author = {Ginzburg, Viktor L. and Niche, César J.},
      title = {A remark on unique ergodicity and the contact type condition},
      journal = {Arch. Math. (Basel)},
      fjournal = {Archiv der Mathematik},
      volume = {105},
      year = {2015},
      number = {6},
      pages = {585--592},
      issn = {0003-889X},
      mrclass = {53D40 (37J55)},
      mrnumber = {3422862},
      mrreviewer = {Gabriele Benedetti},
      doi = {10.1007/s00013-015-0832-8},
      url = {https://doi.org/10.1007/s00013-015-0832-8},
      zblnumber = {1343.53085},
      }
  • [Gr] Go to document M. Gromov, "Pseudo holomorphic curves in symplectic manifolds," Invent. Math., vol. 82, iss. 2, pp. 307-347, 1985.
    @ARTICLE{Gr,
      author = {Gromov, M.},
      title = {Pseudo holomorphic curves in symplectic manifolds},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {82},
      year = {1985},
      number = {2},
      pages = {307--347},
      issn = {0020-9910},
      mrclass = {53C15 (32F25 53C57 57R15)},
      mrnumber = {0809718},
      mrreviewer = {Yakov Eliashberg},
      doi = {10.1007/BF01388806},
      url = {https://doi.org/10.1007/BF01388806},
      zblnumber = {0592.53025},
      }
  • [Harr] Go to document J. Harrison, "$C^2$ counterexamples to the Seifert conjecture," Topology, vol. 27, iss. 3, pp. 249-278, 1988.
    @ARTICLE{Harr,
      author = {Harrison, J.},
      title = {{$C^2$} counterexamples to the {S}eifert conjecture},
      journal = {Topology},
      fjournal = {Topology. An International Journal of Mathematics},
      volume = {27},
      year = {1988},
      number = {3},
      pages = {249--278},
      issn = {0040-9383},
      mrclass = {58F18 (57R30)},
      mrnumber = {0963630},
      mrreviewer = {John Cantwell},
      doi = {10.1016/0040-9383(88)90009-2},
      url = {https://doi.org/10.1016/0040-9383(88)90009-2},
      zblnumber = {0669.57011},
      }
  • [Herman] Go to document M. Herman, "Some open problems in dynamical systems," in Proceedings of the International Congress of Mathematicians, Vol. II, 1998, pp. 797-808.
    @INPROCEEDINGS{Herman,
      author = {Herman, Michael\noopsort{~R.}},
      title = {Some open problems in dynamical systems},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. {II}},
      venue = {{B}erlin, 1998},
      journal = {Doc. Math.},
      fjournal = {Documenta Mathematica},
      year = {1998},
      number = {Extra Vol. II},
      pages = {797--808},
      issn = {1431-0635},
      mrclass = {58Fxx},
      mrnumber = {1648127},
      mrreviewer = {Rafael de la Llave},
      zblnumber = {0910.58036},
      url = {https://www.elibm.org/article/10011667},
     }
  • [Herman:1999] M. R. Herman, "Examples of compact hypersurfaces in ${\bf R}^{2p}, 2p\ge6$, with no periodic orbits," in Hamiltonian Systems with Three or More Degrees of Freedom, Kluwer Acad. Publ., Dordrecht, 1999, vol. 533, p. 126.
    @INCOLLECTION{Herman:1999,
      author = {Herman, Michel R.},
      title = {Examples of compact hypersurfaces in {${\bf R}^{2p},
      2p\ge6$},
      with no periodic orbits},
      booktitle = {Hamiltonian Systems with Three or More Degrees of Freedom},
      venue = {{S}'{A}garó,
      1995},
      series = {NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci.},
      volume = {533},
      pages = {126},
      publisher = {Kluwer Acad. Publ., Dordrecht},
      year = {1999},
      mrclass = {37J45 (53D05)},
      mrnumber = {1720888},
      zblnumber = {0955.37502},
      }
  • [H93] Go to document H. Hofer, "Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three," Invent. Math., vol. 114, iss. 3, pp. 515-563, 1993.
    @ARTICLE{H93,
      author = {Hofer, Helmut},
      title = {Pseudoholomorphic curves in symplectizations with applications to the {W}einstein conjecture in dimension three},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {114},
      year = {1993},
      number = {3},
      pages = {515--563},
      issn = {0020-9910},
      mrclass = {58F05 (58E99 58F22)},
      mrnumber = {1244912},
      mrreviewer = {Hansjörg Geiges},
      doi = {10.1007/BF01232679},
      url = {https://doi.org/10.1007/BF01232679},
      zblnumber = {0797.58023},
      }
  • [HLS] Go to document H. Hofer, V. Lizan, and J. Sikorav, "On genericity for holomorphic curves in four-dimensional almost-complex manifolds," J. Geom. Anal., vol. 7, iss. 1, pp. 149-159, 1997.
    @ARTICLE{HLS,
      author = {Hofer, Helmut and Lizan, Véronique and Sikorav, Jean-Claude},
      title = {On genericity for holomorphic curves in four-dimensional almost-complex manifolds},
      journal = {J. Geom. Anal.},
      fjournal = {The Journal of Geometric Analysis},
      volume = {7},
      year = {1997},
      number = {1},
      pages = {149--159},
      issn = {1050-6926},
      mrclass = {32Q65 (32Q60 53D45)},
      mrnumber = {1630789},
      doi = {10.1007/BF02921708},
      url = {https://doi.org/10.1007/BF02921708},
      zblnumber = {0911.53014},
      }
  • [HWZGW] Go to document H. Hofer, K. Wysocki, and E. Zehnder, "Applications of polyfold theory I: The polyfolds of Gromov-Witten theory," Mem. Amer. Math. Soc., vol. 248, iss. 1179, p. v, 2017.
    @ARTICLE{HWZGW,
      author = {Hofer, Helmut and Wysocki, K. and Zehnder, E.},
      title = {Applications of polyfold theory {I}: {T}he polyfolds of {G}romov-{W}itten theory},
      journal = {Mem. Amer. Math. Soc.},
      fjournal = {Memoirs of the Amer. Math. Soc.},
      volume = {248},
      year = {2017},
      number = {1179},
      pages = {v+218},
      issn = {0065-9266},
      isbn = {978-1-4704-2203-5; 978-1-4704-4060-2},
      mrclass = {53D45 (14N35 57R17)},
      mrnumber = {3683060},
      mrreviewer = {William Liu},
      doi = {10.1090/memo/1179},
      url = {https://doi.org/10.1090/memo/1179},
      zblnumber = {1434.53095},
      }
  • [HWZPF] Go to document H. Hofer, K. Wysocki, and E. Zehnder, Polyfold and Fredholm Theory, Springer, Cham, 2021, vol. 72.
    @BOOK{HWZPF,
      author = {Hofer, Helmut and Wysocki, Krzysztof and Zehnder, Eduard},
      title = {Polyfold and {F}redholm Theory},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {72},
      publisher = {Springer, Cham},
      year = {2021},
      pages = {xxii+1001},
      isbn = {978-3-030-78006-7; 978-3-030-78007-4},
      mrclass = {58B15},
      mrnumber = {4298268},
      doi = {10.1007/978-3-030-78007-4},
      url = {https://doi.org/10.1007/978-3-030-78007-4},
      zblnumber = {1479.58002},
      }
  • [HutchLec] Go to document M. Hutchings, "Lecture notes on embedded contact homology," in Contact and Symplectic Topology, János Bolyai Math. Soc., Budapest, 2014, vol. 26, pp. 389-484.
    @INCOLLECTION{HutchLec,
      author = {Hutchings, Michael},
      title = {Lecture notes on embedded contact homology},
      booktitle = {Contact and Symplectic Topology},
      series = {Bolyai Soc. Math. Stud.},
      volume = {26},
      pages = {389--484},
      publisher = {J\'{a}nos Bolyai Math. Soc., Budapest},
      year = {2014},
      mrclass = {53D42 (53D05 53D10 53D40 57R57 57R58)},
      mrnumber = {3220947},
      mrreviewer = {Hansjörg Geiges},
      doi = {10.1007/978-3-319-02036-5\_9},
      url = {https://doi.org/10.1007/978-3-319-02036-5_9},
      zblnumber = {1432.53126},
      }
  • [Kup] Go to document G. Kuperberg, "A volume-preserving counterexample to the Seifert conjecture," Comment. Math. Helv., vol. 71, iss. 1, pp. 70-97, 1996.
    @ARTICLE{Kup,
      author = {Kuperberg, Greg},
      title = {A volume-preserving counterexample to the {S}eifert conjecture},
      journal = {Comment. Math. Helv.},
      fjournal = {Commentarii Mathematici Helvetici},
      volume = {71},
      year = {1996},
      number = {1},
      pages = {70--97},
      issn = {0010-2571},
      mrclass = {58F18 (57R30 58F22 58F25)},
      mrnumber = {1371679},
      mrreviewer = {Michael Hurley},
      doi = {10.1007/BF02566410},
      url = {https://doi.org/10.1007/BF02566410},
      zblnumber = {0859.57017},
      }
  • [KK1] Go to document G. Kuperberg and K. Kuperberg, "Generalized counterexamples to the Seifert conjecture," Ann. of Math. (2), vol. 143, iss. 3, pp. 547-576, 1996.
    @ARTICLE{KK1,
      author = {Kuperberg, Greg and Kuperberg, Krystyna},
      title = {Generalized counterexamples to the {S}eifert conjecture},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {143},
      year = {1996},
      number = {3},
      pages = {547--576},
      issn = {0003-486X},
      mrclass = {57R30 (58F18)},
      mrnumber = {1394969},
      mrreviewer = {John E. Fornæ ss},
      doi = {10.2307/2118536},
      url = {https://doi.org/10.2307/2118536},
      zblnumber = {0856.57026},
      }
  • [KK2] Go to document K. Kuperberg, "A smooth counterexample to the Seifert conjecture," Ann. of Math. (2), vol. 140, iss. 3, pp. 723-732, 1994.
    @ARTICLE{KK2,
      author = {Kuperberg, Krystyna},
      title = {A smooth counterexample to the {S}eifert conjecture},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {140},
      year = {1994},
      number = {3},
      pages = {723--732},
      issn = {0003-486X},
      mrclass = {57R25 (58F18 58F22 58F25)},
      mrnumber = {1307902},
      mrreviewer = {John E. Fornæ ss},
      doi = {10.2307/2118623},
      url = {https://doi.org/10.2307/2118623},
      zblnumber = {0856.57024},
      }
  • [MS2] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Second ed., The Clarendon Press, Oxford University Press, New York, 1998.
    @BOOK{MS2,
      author = {McDuff, Dusa and Salamon, Dietmar},
      title = {Introduction to Symplectic Topology},
      series = {Oxford Math. Monogr.},
      edition = {Second},
      publisher = {The Clarendon Press, Oxford University Press, New York},
      year = {1998},
      pages = {x+486},
      isbn = {0-19-850451-9},
      mrclass = {53D35 (53D40 57R17 57R57 57R58)},
      mrnumber = {1698616},
      mrreviewer = {Hansjörg Geiges},
      zblnumber = {1066.53137},
      }
  • [MS] D. McDuff and D. Salamon, $J$-Holomorphic Curves and Symplectic Topology, Second ed., Amer. Math. Soc., Providence, RI, 2012, vol. 52.
    @BOOK{MS,
      author = {McDuff, Dusa and Salamon, Dietmar},
      title = {{$J$}-Holomorphic Curves and Symplectic Topology},
      series = {Amer. Math. Soc. Colloq. Publ.},
      volume = {52},
      edition = {Second},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2012},
      pages = {xiv+726},
      isbn = {978-0-8218-8746-2},
      mrclass = {53D45 (32Q65 53D35)},
      mrnumber = {2954391},
      mrreviewer = {Mark Alan Branson},
      zblnumber = {1272.53002},
      }
  • [Rab] Go to document P. H. Rabinowitz, "Periodic solutions of a Hamiltonian system on a prescribed energy surface," J. Differential Equations, vol. 33, iss. 3, pp. 336-352, 1979.
    @ARTICLE{Rab,
      author = {Rabinowitz, Paul H.},
      title = {Periodic solutions of a {H}amiltonian system on a prescribed energy surface},
      journal = {J. Differential Equations},
      fjournal = {Journal of Differential Equations},
      volume = {33},
      year = {1979},
      number = {3},
      pages = {336--352},
      issn = {0022-0396},
      mrclass = {58F05 (34C25 70H05)},
      mrnumber = {0543703},
      mrreviewer = {A. Vanderbauwhede},
      doi = {10.1016/0022-0396(79)90069-X},
      url = {https://doi.org/10.1016/0022-0396(79)90069-X},
      zblnumber = {0424.34043},
      }
  • [Schw] Go to document P. A. Schweitzer, "Counterexamples to the Seifert conjecture and opening closed leaves of foliations," Ann. of Math. (2), vol. 100, pp. 386-400, 1974.
    @ARTICLE{Schw,
      author = {Schweitzer, Paul A.},
      title = {Counterexamples to the {S}eifert conjecture and opening closed leaves of foliations},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {100},
      year = {1974},
      pages = {386--400},
      issn = {0003-486X},
      mrclass = {57D30 (58F10)},
      mrnumber = {0356086},
      mrreviewer = {Robert Roussarie},
      doi = {10.2307/1971077},
      url = {https://doi.org/10.2307/1971077},
      zblnumber = {0295.57010},
      }
  • [Siefring] Go to document R. Siefring, "Finite-energy pseudoholomorphic planes with multiple asymptotic limits," Math. Ann., vol. 368, iss. 1-2, pp. 367-390, 2017.
    @ARTICLE{Siefring,
      author = {Siefring, Richard},
      title = {Finite-energy pseudoholomorphic planes with multiple asymptotic limits},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {368},
      year = {2017},
      number = {1-2},
      pages = {367--390},
      issn = {0025-5831},
      mrclass = {53D35 (32Q65 37C99 53D10)},
      mrnumber = {3651577},
      mrreviewer = {Richard Keith Hind},
      doi = {10.1007/s00208-016-1478-y},
      url = {https://doi.org/10.1007/s00208-016-1478-y},
      zblnumber = {1373.32020},
      }
  • [Smale] S. Smale, "Mathematical problems for the next century," Gac. R. Soc. Mat. Esp., vol. 3, iss. 3, pp. 413-434, 2000.
    @ARTICLE{Smale,
      author = {Smale, S.},
      title = {Mathematical problems for the next century},
      note = {Translated from Math. Intelligencer {{\bf{2}}0} (1998), no. 2, 7--15 [ MR1631413 (99h:01033)] by M. J. Alcón},
      journal = {Gac. R. Soc. Mat. Esp.},
      fjournal = {La Gaceta de la Real Sociedad Matem\'{a}tica Espa\~{n}ola},
      volume = {3},
      year = {2000},
      number = {3},
      pages = {413--434},
      issn = {1138-8927},
      mrclass = {01A61 (01A67)},
      mrnumber = {1819266},
      zblnumber = {1077.01502},
      }
  • [SZ] Go to document S. Suhr and K. Zehmisch, "Polyfolds, cobordisms, and the strong Weinstein conjecture," Adv. Math., vol. 305, pp. 1250-1267, 2017.
    @ARTICLE{SZ,
      author = {Suhr, Stefan and Zehmisch, Kai},
      title = {Polyfolds, cobordisms, and the strong {W}einstein conjecture},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {305},
      year = {2017},
      pages = {1250--1267},
      issn = {0001-8708},
      mrclass = {53D42 (37J45 53D40 53D45 57R17)},
      mrnumber = {3570158},
      mrreviewer = {Philippe Rukimbira},
      doi = {10.1016/j.aim.2016.06.030},
      url = {https://doi.org/10.1016/j.aim.2016.06.030},
      zblnumber = {1357.53102},
      }
  • [Taubes1998] Go to document C. H. Taubes, "The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on $S^1\times B^3$," Geom. Topol., vol. 2, pp. 221-332, 1998.
    @ARTICLE{Taubes1998,
      author = {Taubes, Clifford Henry},
      title = {The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on {$S^1\times B^3$}},
      journal = {Geom. Topol.},
      fjournal = {Geometry and Topology},
      volume = {2},
      year = {1998},
      pages = {221--332},
      issn = {1465-3060},
      mrclass = {57R57 (58D10 58D29)},
      mrnumber = {1658028},
      mrreviewer = {François Lalonde},
      doi = {10.2140/gt.1998.2.221},
      url = {https://doi.org/10.2140/gt.1998.2.221},
      zblnumber = {0908.53013},
      }
  • [Taubes-Erg] Go to document C. H. Taubes, "An observation concerning uniquely ergodic vector fields on 3-manifolds," J. Gökova Geom. Topol. GGT, vol. 3, pp. 9-21, 2009.
    @ARTICLE{Taubes-Erg,
      author = {Taubes, Clifford Henry},
      title = {An observation concerning uniquely ergodic vector fields on 3-manifolds},
      journal = {J. Gökova Geom. Topol. GGT},
      fjournal = {Journal of Gökova Geometry Topology. GGT},
      volume = {3},
      year = {2009},
      pages = {9--21},
      mrclass = {57R57 (37C40 57M27)},
      mrnumber = {2595753},
      mrreviewer = {Vicente Mu\~{n}oz},
      url = {https://gokovagt.org/journal/2009/taubes.html},
      zblnumber = {1267.57035},
      }
  • [Tromba] Go to document A. J. Tromba, Teichmüller Theory in Riemannian Geometry, Birkhäuser Verlag, Basel, 1992.
    @BOOK{Tromba,
      author = {Tromba, Anthony J.},
      title = {Teichmüller Theory in {R}iemannian Geometry},
      series = {Lectures in Math. ETH Zürich},
      note = {{L}ecture notes prepared by Jochen Denzler},
      publisher = {Birkhäuser Verlag, Basel},
      year = {1992},
      pages = {220},
      isbn = {3-7643-2735-9},
      mrclass = {32G15 (53C21 58D27 58E20)},
      mrnumber = {1164870},
      mrreviewer = {Colette Anné},
      doi = {10.1007/978-3-0348-8613-0},
      url = {https://doi.org/10.1007/978-3-0348-8613-0},
      zblnumber = {0785.53001},
      }
  • [Ve] Go to document F. Verhulst, Nonlinear DifferentialEquations and Dynamical Systems, Springer-Verlag, Berlin, 1990.
    @BOOK{Ve,
      author = {Verhulst, Ferdinand},
      title = {Nonlinear DifferentialEquations and Dynamical Systems},
      series = {Universitext},
      note = {translated from the Dutch},
      publisher = {Springer-Verlag, Berlin},
      year = {1990},
      pages = {x+277},
      isbn = {3-540-50628-4},
      mrclass = {34-02 (34C35 34Cxx 34E10 58Fxx)},
      mrnumber = {1036522},
      mrreviewer = {A. Pelczar},
      doi = {10.1007/978-3-642-97149-5},
      url = {https://doi.org/10.1007/978-3-642-97149-5},
      zblnumber = {0685.34002},
      }
  • [WendlSFT] C. Wendl, Lectures on symplectic field theory, 2016.
    @MISC{WendlSFT,
      author = {Wendl, C.},
      title = {Lectures on symplectic field theory},
      year = {2016},
      zblnumber = {},
      }

Authors

Joel W. Fish

Department of Mathematics, University of Massachusetts, Boston, MA

Helmut Hofer

School of Mathematics, Institute for Advanced Study, Princeton, NJ