The Chow $t$-structure on the $\infty $-category of motivic spectra

Abstract

We define the Chow $t$-structure on the $\infty$-category of motivic spectra $\mathcal{SH}(k)$ over an arbitrary base field $k$. We identify the heart of this $t$-structure $\mathcal{SH}(k)^{c\heartsuit}$ when the exponential characteristic of $k$ is inverted. Restricting to the cellular subcategory, we identify the Chow heart $\mathcal{SH}(k)^{\mathrm{cell}, c\heartsuit}$ as the category of even graded $\mathrm{MU}_{2*}\mathrm{MU}$-comodules. Furthermore, we show that the $\infty$-category of modules over the Chow truncated sphere spectrum $\mathbb{1}_{c=0}$ is algebraic.

Our results generalize the ones in Gheorghe–Wang–Xu in three aspects: to integral results; to all base fields other than just $\Bbb{C}$; to the entire $\infty$-category of motivic spectra $\mathcal{SH}(k)$, rather than a subcategory containing only certain cellular objects.

We also discuss a strategy for computing motivic stable homotopy groups of ($p$-completed) spheres over an arbitrary base field $k$ using the Postnikov–Whitehead tower associated to the Chow $t$-structure and the motivic Adams spectral sequences over $k$.

  • [asok2015affine-I] Go to document A. Asok, M. Hoyois, and M. Wendt, "Affine representability results in $\Bbb A^1$-homotopy theory, I: vector bundles," Duke Math. J., vol. 166, iss. 10, pp. 1923-1953, 2017.
    @ARTICLE{asok2015affine-I,
      author = {Asok, Aravind and Hoyois, Marc and Wendt, Matthias},
      title = {Affine representability results in {$\Bbb A^1$}-homotopy theory, {I}: vector bundles},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {166},
      year = {2017},
      number = {10},
      pages = {1923--1953},
      issn = {0012-7094},
      mrclass = {14F42 (55R15)},
      mrnumber = {3679884},
      mrreviewer = {Kyle M. Ormsby},
      doi = {10.1215/00127094-0000014X},
      url = {https://doi.org/10.1215/00127094-0000014X},
      zblnumber = {1401.14118},
      }
  • [aoki2020weight] Go to document K. Aoki, "The weight complex functor is symmetric monoidal," Adv. Math., vol. 368, p. 107145, 2020.
    @ARTICLE{aoki2020weight,
      author = {Aoki, Ko},
      title = {The weight complex functor is symmetric monoidal},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {368},
      year = {2020},
      pages = {107145, 10},
      issn = {0001-8708},
      mrclass = {18M05 (14A30 18N60)},
      mrnumber = {4082495},
      doi = {10.1016/j.aim.2020.107145},
      url = {https://doi.org/10.1016/j.aim.2020.107145},
      zblnumber = {1440.18027},
      }
  • [bachmannrealetale] Go to document T. Bachmann, "Motivic and real étale stable homotopy theory," Compos. Math., vol. 154, iss. 5, pp. 883-917, 2018.
    @ARTICLE{bachmannrealetale,
      author = {Bachmann, Tom},
      title = {Motivic and real étale stable homotopy theory},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {154},
      year = {2018},
      number = {5},
      pages = {883--917},
      issn = {0010-437X},
      mrclass = {14F42 (55P42)},
      mrnumber = {3781990},
      mrreviewer = {Florence Lecomte},
      doi = {10.1112/S0010437X17007710},
      url = {https://doi.org/10.1112/S0010437X17007710},
      zblnumber = {06855294},
      }
  • [bachmann-tambara] Go to document T. Bachmann, "Motivic Tambara functors," Math. Z., vol. 297, iss. 3-4, pp. 1825-1852, 2021.
    @ARTICLE{bachmann-tambara,
      author = {Bachmann, Tom},
      title = {Motivic {T}ambara functors},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {297},
      year = {2021},
      number = {3-4},
      pages = {1825--1852},
      issn = {0025-5874},
      mrclass = {14F42 (18N99)},
      mrnumber = {4229625},
      doi = {10.1007/s00209-020-02581-x},
      url = {https://doi.org/10.1007/s00209-020-02581-x},
      zblnumber = {07333904},
      }
  • [bachmann-hurewicz] Go to document T. Bachmann, "On the conservativity of the functor assigning to a motivic spectrum its motive," Duke Math. J., vol. 167, iss. 8, pp. 1525-1571, 2018.
    @ARTICLE{bachmann-hurewicz,
      author = {Bachmann, Tom},
      title = {On the conservativity of the functor assigning to a motivic spectrum its motive},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {167},
      year = {2018},
      number = {8},
      pages = {1525--1571},
      issn = {0012-7094},
      mrclass = {14F42 (11E81 14F05 19E15)},
      mrnumber = {3807316},
      mrreviewer = {Annette Huber},
      doi = {10.1215/00127094-2018-0002},
      url = {https://doi.org/10.1215/00127094-2018-0002},
      zblnumber = {1390.14064},
      }
  • [beilinson1982faisceaux] A. A. Beuilinson, J. Bernstein, and P. Deligne, "Faisceaux pervers," in Analysis and Topology on Singular Spaces, I, Soc. Math. France, Paris, 1982, vol. 100, pp. 5-171.
    @INCOLLECTION{beilinson1982faisceaux,
      author = {Be{ĭ}linson, A. A. and Bernstein, J. and Deligne, P.},
      title = {Faisceaux pervers},
      booktitle = {Analysis and Topology on Singular Spaces, {I}},
      venue = {{L}uminy, 1981},
      series = {Astérisque},
      volume = {100},
      pages = {5--171},
      publisher = {Soc. Math. France, Paris},
      year = {1982},
      mrclass = {32C38},
      mrnumber = {0751966},
      mrreviewer = {Zoghman Mebkhout},
      zblnumber = {0536.14011},
      }
  • [bachmann-norms] Go to document T. Bachmann and M. Hoyois, Norms in Motivic Homotopy Theory, Soc. Math. France, Paris, 2021, vol. 425.
    @BOOK{bachmann-norms,
      author = {Bachmann, Tom and Hoyois, Marc},
      title = {Norms in Motivic Homotopy Theory},
      series = {Astérisque},
      publisher = {Soc. Math. France, Paris},
      volume = {425},
      year = {2021},
      pages = {207},
      issn = {0303-1179},
      isbn = {978-2-85629-939-5},
      mrclass = {14F42 (19E15)},
      mrnumber = {4288071},
      doi = {10.24033/ast},
      url = {https://doi.org/10.24033/ast},
      zblnumber = {07403459},
      }
  • [barthel2018algebraic] Go to document T. Barthel and D. Heard, "Algebraic chromatic homotopy theory for $BP_*BP$-comodules," Proc. Lond. Math. Soc. (3), vol. 117, iss. 6, pp. 1135-1180, 2018.
    @ARTICLE{barthel2018algebraic,
      author = {Barthel, Tobias and Heard, Drew},
      title = {Algebraic chromatic homotopy theory for {$BP_*BP$}-comodules},
      journal = {Proc. Lond. Math. Soc. (3)},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {117},
      year = {2018},
      number = {6},
      pages = {1135--1180},
      issn = {0024-6115},
      mrclass = {55N22 (14D23 55P60 55U35)},
      mrnumber = {3893176},
      mrreviewer = {Geoffrey M. L. Powell},
      doi = {10.1112/plms.12158},
      url = {https://doi.org/10.1112/plms.12158},
      zblnumber = {1412.55005},
      }
  • [BHHM] Go to document M. Behrens, M. Hill, M. J. Hopkins, and M. Mahowald, "On the existence of a $v^{32}_2$-self map on $M(1,4)$ at the prime 2," Homology Homotopy Appl., vol. 10, iss. 3, pp. 45-84, 2008.
    @ARTICLE{BHHM,
      author = {Behrens, M. and Hill, M. and Hopkins, M. J. and Mahowald, M.},
      title = {On the existence of a {$v^{32}_2$}-self map on {$M(1,4)$} at the prime 2},
      journal = {Homology Homotopy Appl.},
      fjournal = {Homology, Homotopy and Applications},
      volume = {10},
      year = {2008},
      number = {3},
      pages = {45--84},
      issn = {1532-0073},
      mrclass = {55Q51 (55Q40 55T15)},
      mrnumber = {2475617},
      mrreviewer = {Donald M. Davis},
      doi = {10.4310/HHA.2008.v10.n3.a4},
      url = {https://doi.org/10.4310/HHA.2008.v10.n3.a4},
      zblnumber = {1162.55010},
      }
  • [burklund2020galois] R. Burklund, J. Hahn, and A. Senger, Galois reconstruction of Artin–Tate $\mathbb{R}$-motivic spectra, 2020.
    @MISC{burklund2020galois,
      author = {Burklund, Robert and Hahn, Jeremy and Senger, Andrew},
      title = {Galois reconstruction of {A}rtin--{T}ate {$\mathbb{R}$}-motivic spectra},
      year = {2020},
      arxiv = {2010.10325},
      zblnumber = {},
      }
  • [BelIsa] E. Belmont and D. Isaksen, $\mathbb{R}$-motivic stable stems, 2020.
    @MISC{BelIsa,
      author = {Belmont, Eva and Isaksen, Daniel~C.},
      title = {{$\mathbb{R}$}-motivic stable stems},
      year = {2020},
      arxiv = {2001.03606},
      }
  • [bondarko2007weight] Go to document M. V. Bondarko, "Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)," J. K-Theory, vol. 6, iss. 3, pp. 387-504, 2010.
    @ARTICLE{bondarko2007weight,
      author = {Bondarko, M. V.},
      title = {Weight structures vs. {$t$}-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)},
      journal = {J. K-Theory},
      fjournal = {Journal of K-Theory. K-Theory and its Applications in Algebra, Geometry, Analysis \& Topology},
      volume = {6},
      year = {2010},
      number = {3},
      pages = {387--504},
      issn = {1865-2433},
      mrclass = {18E30 (14C15 18G40 19E08 19E15)},
      mrnumber = {2746283},
      mrreviewer = {Florence Lecomte},
      doi = {10.1017/is010012005jkt083},
      url = {https://doi.org/10.1017/is010012005jkt083},
      zblnumber = {1303.18019},
      }
  • [BJ] Go to document M. Behrens and J. Shah, "$C_2$-equivariant stable homotopy from real motivic stable homotopy," Ann. K-Theory, vol. 5, iss. 3, pp. 411-464, 2020.
    @ARTICLE{BJ,
      author = {Behrens, Mark and Shah, Jay},
      title = {{$C_2$}-equivariant stable homotopy from real motivic stable homotopy},
      journal = {Ann. K-Theory},
      fjournal = {Annals of K-Theory},
      volume = {5},
      year = {2020},
      number = {3},
      pages = {411--464},
      issn = {2379-1683},
      mrclass = {14F42 (55N91 55P91 55Q91)},
      mrnumber = {4132743},
      doi = {10.2140/akt.2020.5.411},
      url = {https://doi.org/10.2140/akt.2020.5.411},
      zblnumber = {07237238},
      }
  • [Sega] Go to document L. M. cSega, "Homological properties of powers of the maximal ideal of a local ring," J. Algebra, vol. 241, iss. 2, pp. 827-858, 2001.
    @ARTICLE{Sega,
      author = {{\c{S}}ega, Liana M.},
      title = {Homological properties of powers of the maximal ideal of a local ring},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {241},
      year = {2001},
      number = {2},
      pages = {827--858},
      issn = {0021-8693},
      mrclass = {13D03},
      mrnumber = {1843329},
      mrreviewer = {Yuji Yoshino},
      doi = {10.1006/jabr.2001.8786},
      url = {https://doi.org/10.1006/jabr.2001.8786},
      zblnumber = {0998.13005},
      }
  • [dugger2005motivic] Go to document D. Dugger and D. C. Isaksen, "Motivic cell structures," Algebr. Geom. Topol., vol. 5, pp. 615-652, 2005.
    @ARTICLE{dugger2005motivic,
      author = {Dugger, Daniel and Isaksen, Daniel C.},
      title = {Motivic cell structures},
      journal = {Algebr. Geom. Topol.},
      fjournal = {Algebraic \& Geometric Topology},
      volume = {5},
      year = {2005},
      pages = {615--652},
      issn = {1472-2747},
      mrclass = {55U35 (14F42)},
      mrnumber = {2153114},
      mrreviewer = {Oliver Röndigs},
      doi = {10.2140/agt.2005.5.615},
      url = {https://doi.org/10.2140/agt.2005.5.615},
      zblnumber = {1086.55013},
      }
  • [dugger2010motivic] Go to document D. Dugger and D. C. Isaksen, "The motivic Adams spectral sequence," Geom. Topol., vol. 14, iss. 2, pp. 967-1014, 2010.
    @ARTICLE{dugger2010motivic,
      author = {Dugger, Daniel and Isaksen, Daniel C.},
      title = {The motivic {A}dams spectral sequence},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {14},
      year = {2010},
      number = {2},
      pages = {967--1014},
      issn = {1465-3060},
      mrclass = {55T15 (14F42 55P42)},
      mrnumber = {2629898},
      mrreviewer = {Markus Szymik},
      doi = {10.2140/gt.2010.14.967},
      url = {https://doi.org/10.2140/gt.2010.14.967},
      zblnumber = {1206.14041},
      }
  • [DugIsa] Go to document D. Dugger and D. C. Isaksen, "Low-dimensional Milnor-Witt stems over $\Bbb{R}$," Ann. K-Theory, vol. 2, iss. 2, pp. 175-210, 2017.
    @ARTICLE{DugIsa,
      author = {Dugger, Daniel and Isaksen, Daniel C.},
      title = {Low-dimensional {M}ilnor-{W}itt stems over {$\Bbb{R}$}},
      journal = {Ann. K-Theory},
      fjournal = {Annals of K-Theory},
      volume = {2},
      year = {2017},
      number = {2},
      pages = {175--210},
      issn = {2379-1683},
      mrclass = {14F42 (55Q45 55S10 55T15)},
      mrnumber = {3590344},
      mrreviewer = {Oliver Röndigs},
      doi = {10.2140/akt.2017.2.175},
      url = {https://doi.org/10.2140/akt.2017.2.175},
      zblnumber = {1400.14064},
      }
  • [dold1983duality] A. Dold and D. Puppe, "Duality, trace and transfer," in Topology, , 1983, vol. 154, pp. 81-97.
    @INCOLLECTION{dold1983duality,
      author = {Dold, A. and Puppe, D.},
      title = {Duality, trace and transfer},
      booktitle = {Topology},
      venue={Moscow, 1979},
      series = {Trudy Mat. Inst. Steklov.},
      volume = {154},
      year = {1983},
      pages = {81--97},
      issn = {0371-9685},
      mrclass = {55P25},
      mrnumber = {0733829},
      zblnumber = {0556.55006},
      }
  • [elmanto2018perfection] Go to document E. Elmanto and A. A. Khan, "Perfection in motivic homotopy theory," Proc. Lond. Math. Soc. (3), vol. 120, iss. 1, pp. 28-38, 2020.
    @ARTICLE{elmanto2018perfection,
      author = {Elmanto, Elden and Khan, Adeel A.},
      title = {Perfection in motivic homotopy theory},
      journal = {Proc. Lond. Math. Soc. (3)},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {120},
      year = {2020},
      number = {1},
      pages = {28--38},
      issn = {0024-6115},
      mrclass = {14F42 (19E08 19E15)},
      mrnumber = {3999675},
      mrreviewer = {Federico Binda},
      doi = {10.1112/plms.12280},
      url = {https://doi.org/10.1112/plms.12280},
      zblnumber = {1440.14123},
      }
  • [gheorghe2017motivic] Go to document B. Gheorghe, "The motivic cofiber of $\tau$," Doc. Math., vol. 23, pp. 1077-1127, 2018.
    @ARTICLE{gheorghe2017motivic,
      author = {Gheorghe, Bogdan},
      title = {The motivic cofiber of {$\tau$}},
      journal = {Doc. Math.},
      fjournal = {Documenta Mathematica},
      volume = {23},
      year = {2018},
      pages = {1077--1127},
      issn = {1431-0635},
      mrclass = {14F42 (55P43 55S10 55S35)},
      mrnumber = {3874951},
      mrreviewer = {Drew Heard},
      doi = {10.4153/cjm-1971-110-9},
      url = {https://doi.org/10.4153/cjm-1971-110-9},
      zblnumber = {1407.55007},
      }
  • [mmf] Go to document B. Gheorghe, D. Isaksen, A. Krause, and N. Ricka, "$\mathbb{C}$-motivic modular forms," J. Eur. Math. Soc. (JEMS), 2021.
    @article{mmf,
      author = {Gheorghe, Bogdan and Isaksen, Daniel~C. and Krause, Achim and Ricka, Nicolas},
      title = {{$\mathbb{C}$}-motivic modular forms},
      journal = {J. Eur. Math. Soc. (JEMS)},
      fjournal = {Journal of the European Mathematical Society (JEMS},
      year = {2021},
      arxiv = {},
      doi = {10.4171/JEMS/1171},
      url = {https://doi.org/10.4171/JEMS/1171},
      note = {Published online first: 2021-11-09},
      zblnumber = {},
      }
  • [Goerss] P. Goerss, The Adams–Novikov spectral sequence and the homotopy groups of spheres, 2007.
    @MISC{Goerss,
      author = {Goerss, Paul},
      title = {The {A}dams--{N}ovikov spectral sequence and the homotopy groups of spheres},
      year = {2007},
      note = {available on author's website},
      zblnumber = {},
      }
  • [GWX] Go to document B. Gheorghe, G. Wang, and Z. Xu, "The special fiber of the motivic deformation of the stable homotopy category is algebraic," Acta Math., vol. 226, iss. 2, pp. 319-407, 2021.
    @ARTICLE{GWX,
      author = {Gheorghe, Bogdan and Wang, Guozhen and Xu, Zhouli},
      title = {The special fiber of the motivic deformation of the stable homotopy category is algebraic},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {226},
      year = {2021},
      number = {2},
      pages = {319--407},
      issn = {0001-5962},
      mrclass = {14F42 (18M05 18N40 18N60 55T15)},
      mrnumber = {4281382},
      doi = {10.4310/acta.2021.v226.n2.a2},
      url = {https://doi.org/10.4310/acta.2021.v226.n2.a2},
      zblnumber = {07378147},
      }
  • [Hill] Go to document M. A. Hill, "Ext and the motivic Steenrod algebra over $\Bbb R$," J. Pure Appl. Algebra, vol. 215, iss. 5, pp. 715-727, 2011.
    @ARTICLE{Hill,
      author = {Hill, Michael A.},
      title = {Ext and the motivic {S}teenrod algebra over {$\Bbb R$}},
      journal = {J. Pure Appl. Algebra},
      fjournal = {Journal of Pure and Applied Algebra},
      volume = {215},
      year = {2011},
      number = {5},
      pages = {715--727},
      issn = {0022-4049},
      mrclass = {55T15 (14F42 19D45 55P43 55S10)},
      mrnumber = {2747214},
      mrreviewer = {Kyle M. Ormsby},
      doi = {10.1016/j.jpaa.2010.06.017},
      url = {https://doi.org/10.1016/j.jpaa.2010.06.017},
      zblnumber = {1222.55014},
      }
  • [HuKriz] Go to document P. Hu and I. Kriz, "Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence," Topology, vol. 40, iss. 2, pp. 317-399, 2001.
    @ARTICLE{HuKriz,
      author = {Hu, Po and Kriz, Igor},
      title = {Real-oriented homotopy theory and an analogue of the {A}dams-{N}ovikov spectral sequence},
      journal = {Topology},
      fjournal = {Topology. An International Journal of Mathematics},
      volume = {40},
      year = {2001},
      number = {2},
      pages = {317--399},
      issn = {0040-9383},
      mrclass = {55T15 (19L47 55N22 55N91 55P42 55P91)},
      mrnumber = {1808224},
      mrreviewer = {J. P. C. Greenlees},
      doi = {10.1016/S0040-9383(99)00065-8},
      url = {https://doi.org/10.1016/S0040-9383(99)00065-8},
      zblnumber = {0967.55010},
      }
  • [hu2011remarks] Go to document P. Hu, I. Kriz, and K. Ormsby, "Remarks on motivic homotopy theory over algebraically closed fields," J. K-Theory, vol. 7, iss. 1, pp. 55-89, 2011.
    @ARTICLE{hu2011remarks,
      author = {Hu, Po and Kriz, Igor and Ormsby, Kyle},
      title = {Remarks on motivic homotopy theory over algebraically closed fields},
      journal = {J. K-Theory},
      fjournal = {Journal of K-Theory. K-Theory and its Applications in Algebra, Geometry, Analysis \& Topology},
      volume = {7},
      year = {2011},
      number = {1},
      pages = {55--89},
      issn = {1865-2433},
      mrclass = {14F42 (19L20 55T15)},
      mrnumber = {2774158},
      mrreviewer = {Rui Miguel Saramago},
      doi = {10.1017/is010001012jkt098},
      url = {https://doi.org/10.1017/is010001012jkt098},
      zblnumber = {1248.14026},
      }
  • [Hoyois2017] Go to document M. Hoyois, S. Kelly, and P. A. Østvaer, "The motivic Steenrod algebra in positive characteristic," J. Eur. Math. Soc. (JEMS), vol. 19, iss. 12, pp. 3813-3849, 2017.
    @ARTICLE{Hoyois2017,
      author = {Hoyois, Marc and Kelly, Shane and {\O}stv{æ}r, Paul Arne},
      title = {The motivic {S}teenrod algebra in positive characteristic},
      journal = {J. Eur. Math. Soc. (JEMS)},
      fjournal = {Journal of the European Mathematical Society (JEMS)},
      volume = {19},
      year = {2017},
      number = {12},
      pages = {3813--3849},
      issn = {1435-9855},
      mrclass = {14F42 (19E15)},
      mrnumber = {3730515},
      mrreviewer = {Ramdorai Sujatha},
      doi = {10.4171/JEMS/754},
      url = {https://doi.org/10.4171/JEMS/754},
      zblnumber = {1386.14087},
      }
  • [Hovey] Go to document M. Hovey, "Homotopy theory of comodules over a Hopf algebroid," in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory, Amer. Math. Soc., Providence, RI, 2004, vol. 346, pp. 261-304.
    @INCOLLECTION{Hovey,
      author = {Hovey, Mark},
      title = {Homotopy theory of comodules over a {H}opf algebroid},
      booktitle = {Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic {$K$}-Theory},
      series = {Contemp. Math.},
      volume = {346},
      pages = {261--304},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2004},
      mrclass = {18G35 (18E30 55N20 55U35)},
      mrnumber = {2066503},
      mrreviewer = {Paul G. Goerss},
      doi = {10.1090/conm/346/06291},
      url = {https://doi.org/10.1090/conm/346/06291},
      zblnumber = {1067.18012},
      }
  • [hoyois-algebraic-cobordism] Go to document M. Hoyois, "From algebraic cobordism to motivic cohomology," J. Reine Angew. Math., vol. 702, pp. 173-226, 2015.
    @ARTICLE{hoyois-algebraic-cobordism,
      author = {Hoyois, Marc},
      title = {From algebraic cobordism to motivic cohomology},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {702},
      year = {2015},
      pages = {173--226},
      issn = {0075-4102},
      mrclass = {14F43 (14F42 55N22 55U35)},
      mrnumber = {3341470},
      mrreviewer = {Christophe Cazanave},
      doi = {10.1515/crelle-2013-0038},
      url = {https://doi.org/10.1515/crelle-2013-0038},
      zblnumber = {1382.14006},
      }
  • [hoyois-equivariant] Go to document M. Hoyois, "The six operations in equivariant motivic homotopy theory," Adv. Math., vol. 305, pp. 197-279, 2017.
    @ARTICLE{hoyois-equivariant,
      author = {Hoyois, Marc},
      title = {The six operations in equivariant motivic homotopy theory},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {305},
      year = {2017},
      pages = {197--279},
      issn = {0001-8708},
      mrclass = {14F42 (55P91)},
      mrnumber = {3570135},
      mrreviewer = {Jeremiah Ben Heller},
      doi = {10.1016/j.aim.2016.09.031},
      url = {https://doi.org/10.1016/j.aim.2016.09.031},
      zblnumber = {1400.14065},
      }
  • [haesemeyer2019norm] Go to document C. Haesemeyer and C. A. Weibel, The Norm Residue Theorem in Motivic Cohomology, Princeton Univ. Press, Princeton, NJ, 2019, vol. 200.
    @BOOK{haesemeyer2019norm,
      author = {Haesemeyer, Christian and Weibel, Charles A.},
      title = {The Norm Residue Theorem in Motivic Cohomology},
      series = {Ann. of Math. Stud.},
      volume = {200},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {2019},
      pages = {xiii+299},
      isbn = {978-0-691-19104-1; 978-0-691-18182-0},
      mrclass = {14F42 (14C15 18F20 18G60 19E20)},
      mrnumber = {3931681},
      mrreviewer = {Thomas Benedict Williams},
      doi = {10.1515/9780691189635},
      url = {https://doi.org/10.1515/9780691189635},
      zblnumber = {1433.14001},
      }
  • [Isa] Go to document D. C. Isaksen, Stable Stems, Amer. Math. Soc., 2019, vol. 262.
    @BOOK{Isa,
      author = {Isaksen, Daniel C.},
      title = {Stable Stems},
      series = {Mem. Amer. Math. Soc.},
      publisher={Amer. Math. Soc.},
      volume = {262},
      year = {2019},
      number = {1269},
      pages = {viii+159},
      issn = {0065-9266},
      isbn = {978-1-4704-3788-6; 978-1-4704-5511-8},
      mrclass = {14F42 (16T05 55P42 55Q10 55Q45 55S10 55S30 55T15)},
      mrnumber = {4046815},
      mrreviewer = {Masaki Kameko},
      doi = {10.1090/memo/1269},
      url = {https://doi.org/10.1090/memo/1269},
      zblnumber = {1454.55001},
      }
  • [IWX] D. C. Isaksen, G. Wang, and Z. Xu, More stable stems, 2020.
    @MISC{IWX,
      author = {Isaksen, Daniel C. and Wang, Guozhen and Xu, Zhouli},
      title = {More stable stems},
      year = {2020},
      arxiv = {2001.04511},
      zblnumber = {},
      }
  • [IWX2] Go to document D. C. Isaksen, G. Wang, and Z. Xu, "Stable homotopy groups of spheres," Proc. Natl. Acad. Sci. USA, vol. 117, iss. 40, pp. 24757-24763, 2020.
    @ARTICLE{IWX2,
      author = {Isaksen, Daniel C. and Wang, Guozhen and Xu, Zhouli},
      title = {Stable homotopy groups of spheres},
      journal = {Proc. Natl. Acad. Sci. USA},
      fjournal = {Proceedings of the National Academy of Sciences of the United States of America},
      volume = {117},
      year = {2020},
      number = {40},
      pages = {24757--24763},
      issn = {0027-8424},
      mrclass = {55Q45 (14F42 55T15)},
      mrnumber = {4250190},
      doi = {10.1073/pnas.2012335117},
      url = {https://doi.org/10.1073/pnas.2012335117},
      zblnumber = {},
      }
  • [Krause] Go to document A. Krause, Periodicity in motivic homotopy theory and over $BP_*BP$, 2018.
    @MISC{Krause,
      author = {Krause, Achim},
      title = {Periodicity in motivic homotopy theory and over {$BP_*BP$}},
      note = {Bonn University thesis},
      year = {2018},
      url = {https://hdl.handle.net/20.500.11811/7592},
      zblnumber = {},
      }
  • [Kylling] J. Kylling, Algebraic cobordism of number fields, 2019.
    @MISC{Kylling,
      author = {Kylling, Jonas~Irgens},
      title = {Algebraic cobordism of number fields},
      year = {2019},
      arxiv = {1901.04031},
      zblnumber = {},
      }
  • [levine2001techniques] M. Levine, "Techniques of localization in the theory of algebraic cycles," J. Algebraic Geom., vol. 10, iss. 2, pp. 299-363, 2001.
    @ARTICLE{levine2001techniques,
      author = {Levine, Marc},
      title = {Techniques of localization in the theory of algebraic cycles},
      journal = {J. Algebraic Geom.},
      fjournal = {Journal of Algebraic Geometry},
      volume = {10},
      year = {2001},
      number = {2},
      pages = {299--363},
      issn = {1056-3911},
      mrclass = {14C25 (14F42 19E15)},
      mrnumber = {1811558},
      mrreviewer = {Tam\'{a}s Szamuely},
      zblnumber = {1077.14509},
      }
  • [HA] J. Lurie, Higher algebra.
    @MISC{HA, key={Lur17},
      author = {Lurie, Jacob},
      title = {Higher algebra},
      note = {September 2017, available on author's webpage},
      sortyear = {2017},
      }
  • [HTT] Go to document J. Lurie, Higher Topos Theory, Princeton Univ. Press, Princeton, NJ, 2009, vol. 170.
    @BOOK{HTT,
      author = {Lurie, Jacob},
      title = {Higher Topos Theory},
      series = {Ann. of Math. Stud.},
      volume = {170},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {2009},
      pages = {xviii+925},
      isbn = {978-0-691-14049-0; 0-691-14049-9},
      mrclass = {18-02 (18B25 18E35 18G30 18G55 55U40)},
      mrnumber = {2522659},
      mrreviewer = {Mark Hovey},
      doi = {10.1515/9781400830558},
      url = {https://doi.org/10.1515/9781400830558},
      zblnumber = {1175.18001},
      }
  • [SAG] J. Lurie, Spectral algebraic geometry.
    @MISC{SAG,
      author = {Lurie, Jacob},
      key={Lur18},
      title = {Spectral algebraic geometry},
      note = {February 2018, available on author's webpage},
      sortyear = {2018},
      zblnumber = {},
      }
  • [levine2019algebraic] Go to document M. Levine, Y. Yang, G. Zhao, and J. Riou, "Algebraic elliptic cohomology theory and flops I," Math. Ann., vol. 375, iss. 3-4, pp. 1823-1855, 2019.
    @ARTICLE{levine2019algebraic,
      author = {Levine, Marc and Yang, Yaping and Zhao, Gufang and Riou, Joël},
      title = {Algebraic elliptic cohomology theory and flops {I}},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {375},
      year = {2019},
      number = {3-4},
      pages = {1823--1855},
      issn = {0025-5831},
      mrclass = {14E30 (55N22 55N34)},
      mrnumber = {4023393},
      mrreviewer = {Lennart Meier},
      doi = {10.1007/s00208-019-01880-x},
      url = {https://doi.org/10.1007/s00208-019-01880-x},
      zblnumber = {1433.14015},
      }
  • [mantovani2021localizations] L. Mantovani, Localizations and completions of stable $\infty$-categories, 2021.
    @MISC{mantovani2021localizations,
      author = {Mantovani, Lorenzo},
      title = {Localizations and completions of stable $\infty$-categories},
      year = {2021},
      arxiv = {2105.02285},
      zblnumber = {},
      }
  • [Miller] H. R. Miller, Some Algebraic Aspects of the Adams–Novikov Spectral Sequence, ProQuest LLC, Ann Arbor, MI, 1975.
    @BOOK{Miller,
      author = {Miller, Haynes Robert},
      title = {Some Algebraic Aspects of the {A}dams--{N}ovikov Spectral Sequence},
      note = {Thesis (Ph.D.)--Princeton University},
      publisher = {ProQuest LLC, Ann Arbor, MI},
      year = {1975},
      pages = {103},
      mrclass = {Thesis},
      mrnumber = {2625232},
      zblnumber = {},
      }
  • [mathew2017nilpotence] Go to document A. Mathew, N. Naumann, and J. Noel, "Nilpotence and descent in equivariant stable homotopy theory," Adv. Math., vol. 305, pp. 994-1084, 2017.
    @ARTICLE{mathew2017nilpotence,
      author = {Mathew, Akhil and Naumann, Niko and Noel, Justin},
      title = {Nilpotence and descent in equivariant stable homotopy theory},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {305},
      year = {2017},
      pages = {994--1084},
      issn = {0001-8708},
      mrclass = {55P91 (55P42)},
      mrnumber = {3570153},
      mrreviewer = {Gregory Z. Arone},
      doi = {10.1016/j.aim.2016.09.027},
      url = {https://doi.org/10.1016/j.aim.2016.09.027},
      zblnumber = {1420.55024},
      }
  • [Morava] Go to document J. Morava, "Noetherian localisations of categories of cobordism comodules," Ann. of Math. (2), vol. 121, iss. 1, pp. 1-39, 1985.
    @ARTICLE{Morava,
      author = {Morava, Jack},
      title = {Noetherian localisations of categories of cobordism comodules},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {121},
      year = {1985},
      number = {1},
      pages = {1--39},
      issn = {0003-486X},
      mrclass = {55N22 (14L05 14L15 57R77)},
      mrnumber = {0782555},
      mrreviewer = {Douglas C. Ravenel},
      doi = {10.2307/1971192},
      url = {https://doi.org/10.2307/1971192},
      zblnumber = {0572.55005},
      }
  • [Morel0line] F. Morel, "$\Bbb A^1$-algebraic topology," in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1035-1059.
    @INCOLLECTION{Morel0line,
      author = {Morel, Fabien},
      title = {{$\Bbb A^1$}-algebraic topology},
      booktitle = {International {C}ongress of {M}athematicians. {V}ol. {II}},
      pages = {1035--1059},
      publisher = {Eur. Math. Soc., Zürich},
      year = {2006},
      mrclass = {14F35 (19E15 55P99)},
      mrnumber = {2275634},
      mrreviewer = {Oliver Röndigs},
      zblnumber = {1097.14014},
      }
  • [lecture-notes-mot-cohom] C. Mazza, V. Voevodsky, and C. Weibel, Lecture Notes on Motivic Cohomology, Amer. Math. Soc., Providence, RI, 2006, vol. 2.
    @book{lecture-notes-mot-cohom,
      author = {Mazza, Carlo and Voevodsky, Vladimir and Weibel, Charles},
      title = {Lecture {N}otes on {M}otivic {C}ohomology},
      series = {Clay Mathematics Monographs},
      volume = {2},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2006},
      pages = {xiv+216},
      ISBN = {978-0-8218-3847-1; 9-8218-3847-4},
      mrclass = {14F42 (19E15)},
      mrnumber = {2242284},
      mrreviewer = {Thomas Geisser},
      zblnumber = {1115.14010},
      }
  • [neeman2014triangulated] Go to document A. Neeman, Triangulated Categories, Princeton Univ. Press, Princeton, NJ, 2001, vol. 148.
    @BOOK{neeman2014triangulated,
      author = {Neeman, Amnon},
      title = {Triangulated Categories},
      series = {Ann. of Math. Stud.},
      volume = {148},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {2001},
      pages = {viii+449},
      isbn = {0-691-08685-0; 0-691-08686-9},
      mrclass = {18E30 (55-02 55N20 55U35)},
      mrnumber = {1812507},
      mrreviewer = {Stanis\l aw Betley},
      doi = {10.1515/9781400837212},
      url = {https://doi.org/10.1515/9781400837212},
      zblnumber = {0974.18008},
      }
  • [Novikov] Go to document S. P. Novikov, "Methods of algebraic topology from the point of view of cobordism theory," Izv. Akad. Nauk SSSR Ser. Mat., vol. 31, iss. 4, pp. 855-951, 1967.
    @ARTICLE{Novikov,
      author = {Novikov, S. P.},
      title = {Methods of algebraic topology from the point of view of cobordism theory},
      journal = {Izv. Akad. Nauk SSSR Ser. Mat.},
      fjournal = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
      volume = {31},
      number = {4},
      year = {1967},
      pages = {855--951},
      issn = {0373-2436},
      mrclass = {55.52 (57.00)},
      mrnumber = {0221509},
      mrreviewer = {A. Liulevicius},
      doi = {10.1070/IM1967v001n04ABEH000591},
      url = {https://doi.org/10.1070/IM1967v001n04ABEH000591},
      zblnumber = {0169.54503},
      }
  • [nikolaus2017presentably] Go to document T. Nikolaus and S. Sagave, "Presentably symmetric monoidal $\infty$-categories are represented by symmetric monoidal model categories," Algebr. Geom. Topol., vol. 17, iss. 5, pp. 3189-3212, 2017.
    @ARTICLE{nikolaus2017presentably,
      author = {Nikolaus, Thomas and Sagave, Steffen},
      title = {Presentably symmetric monoidal {$\infty$}-categories are represented by symmetric monoidal model categories},
      journal = {Algebr. Geom. Topol.},
      fjournal = {Algebraic \& Geometric Topology},
      volume = {17},
      year = {2017},
      number = {5},
      pages = {3189--3212},
      issn = {1472-2747},
      mrclass = {55U35 (18D10 18G55)},
      mrnumber = {3704256},
      mrreviewer = {Josué Remedios},
      doi = {10.2140/agt.2017.17.3189},
      url = {https://doi.org/10.2140/agt.2017.17.3189},
      zblnumber = {1380.55018},
      }
  • [naumann2009motivic] N. Naumann, M. Spitzweck, and P. A. Østvaer, "Motivic Landweber exactness," Doc. Math., vol. 14, pp. 551-593, 2009.
    @ARTICLE{naumann2009motivic,
      author = {Naumann, Niko and Spitzweck, Markus and {\O}stv{æ}r, Paul Arne},
      title = {Motivic {L}andweber exactness},
      journal = {Doc. Math.},
      fjournal = {Documenta Mathematica},
      volume = {14},
      year = {2009},
      pages = {551--593},
      issn = {1431-0635},
      mrclass = {55N22 (14A20 14F42 19E08 55P42)},
      mrnumber = {2565902},
      zblnumber = {1230.55005},
      }
  • [nenashev2006oriented] Go to document A. Nenashev and K. Zainoulline, "Oriented cohomology and motivic decompositions of relative cellular spaces," J. Pure Appl. Algebra, vol. 205, iss. 2, pp. 323-340, 2006.
    @ARTICLE{nenashev2006oriented,
      author = {Nenashev, A. and Zainoulline, K.},
      title = {Oriented cohomology and motivic decompositions of relative cellular spaces},
      journal = {J. Pure Appl. Algebra},
      fjournal = {Journal of Pure and Applied Algebra},
      volume = {205},
      year = {2006},
      number = {2},
      pages = {323--340},
      issn = {0022-4049},
      mrclass = {14F43 (14F42)},
      mrnumber = {2203620},
      mrreviewer = {Jens Hornbostel},
      doi = {10.1016/j.jpaa.2005.06.021},
      url = {https://doi.org/10.1016/j.jpaa.2005.06.021},
      zblnumber = {1101.14025},
      }
  • [pstrkagowski2018synthetic] P. Pstrągowski, Synthetic spectra and the cellular motivic category, 2018.
    @MISC{pstrkagowski2018synthetic,
      author = {Pstr{\k{a}}gowski, Piotr},
      title = {Synthetic spectra and the cellular motivic category},
      year = {2018},
      arxiv = {1803.01804},
      zblnumber = {},
      }
  • [quillen1976projective] Go to document D. Quillen, "Projective modules over polynomial rings," Invent. Math., vol. 36, pp. 167-171, 1976.
    @ARTICLE{quillen1976projective,
      author = {Quillen, Daniel},
      title = {Projective modules over polynomial rings},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {36},
      year = {1976},
      pages = {167--171},
      issn = {0020-9910},
      mrclass = {13C10},
      mrnumber = {0427303},
      mrreviewer = {Daniel Lazard},
      doi = {10.1007/BF01390008},
      url = {https://doi.org/10.1007/BF01390008},
      zblnumber = {0337.13011},
      }
  • [riehl2014categorical] Go to document E. Riehl, Categorical Homotopy Theory, Cambridge Univ. Press, Cambridge, 2014, vol. 24.
    @BOOK{riehl2014categorical,
      author = {Riehl, Emily},
      title = {Categorical Homotopy Theory},
      series = {New Math. Monogr.},
      volume = {24},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2014},
      pages = {xviii+352},
      isbn = {978-1-107-04845-4},
      mrclass = {18G55 (18D20 55U35)},
      mrnumber = {3221774},
      mrreviewer = {David A. Blanc},
      doi = {10.1017/CBO9781107261457},
      url = {https://doi.org/10.1017/CBO9781107261457},
      zblnumber = {1317.18001},
      }
  • [Riou04] Go to document J. Riou, "Dualité de Spanier-Whitehead en géométrie algébrique," C. R. Math. Acad. Sci. Paris, vol. 340, iss. 6, pp. 431-436, 2005.
    @ARTICLE{Riou04,
      author = {Riou, Joël},
      title = {Dualité de {S}panier-{W}hitehead en géométrie algébrique},
      journal = {C. R. Math. Acad. Sci. Paris},
      fjournal = {Comptes Rendus Mathématique. Académie des Sciences. Paris},
      volume = {340},
      year = {2005},
      number = {6},
      pages = {431--436},
      issn = {1631-073X},
      mrclass = {14F35 (55P25)},
      mrnumber = {2135324},
      mrreviewer = {Feng-Wen An},
      doi = {10.1016/j.crma.2005.02.002},
      url = {https://doi.org/10.1016/j.crma.2005.02.002},
      zblnumber = {1068.14021},
      }
  • [rondigs2019first] Go to document O. Röndigs, M. Spitzweck, and P. A. Østvaer, "The first stable homotopy groups of motivic spheres," Ann. of Math. (2), vol. 189, iss. 1, pp. 1-74, 2019.
    @ARTICLE{rondigs2019first,
      author = {Röndigs, Oliver and Spitzweck, Markus and {\O}stv{æ}r, Paul Arne},
      title = {The first stable homotopy groups of motivic spheres},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {189},
      year = {2019},
      number = {1},
      pages = {1--74},
      issn = {0003-486X},
      mrclass = {14F42 (55Q45)},
      mrnumber = {3898173},
      mrreviewer = {Markus Szymik},
      doi = {10.4007/annals.2019.189.1.1},
      url = {https://doi.org/10.4007/annals.2019.189.1.1},
      zblnumber = {1406.14018},
      }
  • [sechin-landweber-equiv] Go to document P. Sechin, Landweber-equivariant Grothendieck motives: a toy example of non-oriented phenomena, 2020.
    @MISC{sechin-landweber-equiv,
      author = {Sechin, Pavel},
      title = {Landweber-equivariant {G}rothendieck motives: a toy example of non-oriented phenomena},
      year = {2020},
      note = {{S}eminar on {$\Bbb A^1$}-topology, motives and {K}-theory},
      url = {https://indico.eimi.ru/event/127/},
      zblnumber = {},
      }
  • [sosnilo2017theorem] V. Sosnilo, "Theorem of the heart in negative $K$-theory for weight structures," Doc. Math., vol. 24, pp. 2137-2158, 2019.
    @ARTICLE{sosnilo2017theorem,
      author = {Sosnilo, Vladimir},
      title = {Theorem of the heart in negative {$K$}-theory for weight structures},
      journal = {Doc. Math.},
      fjournal = {Documenta Mathematica},
      volume = {24},
      year = {2019},
      pages = {2137--2158},
      issn = {1431-0635},
      mrclass = {18E05 (14F42 18G80 19D35 19E99)},
      mrnumber = {4033821},
      mrreviewer = {Jens Hornbostel},
      zblnumber = {1441.18008},
      }
  • [spitzweck2010relations] Go to document M. Spitzweck, "Relations between slices and quotients of the algebraic cobordism spectrum," Homology Homotopy Appl., vol. 12, iss. 2, pp. 335-351, 2010.
    @ARTICLE{spitzweck2010relations,
      author = {Spitzweck, Markus},
      title = {Relations between slices and quotients of the algebraic cobordism spectrum},
      journal = {Homology Homotopy Appl.},
      fjournal = {Homology, Homotopy and Applications},
      volume = {12},
      year = {2010},
      number = {2},
      pages = {335--351},
      issn = {1532-0073},
      mrclass = {14F42 (19E20 55N22 55P42)},
      mrnumber = {2771593},
      mrreviewer = {Niko Naumann},
      doi = {10.4310/HHA.2010.v12.n2.a11},
      url = {https://doi.org/10.4310/HHA.2010.v12.n2.a11},
      zblnumber = {1209.14019},
      }
  • [spitzweck2012commutative] Go to document M. Spitzweck, "A commutative $\Bbb P^1$-spectrum representing motivic cohomology over Dedekind domains," Mém. Soc. Math. Fr. (N.S.), iss. 157, p. 110, 2018.
    @ARTICLE{spitzweck2012commutative,
      author = {Spitzweck, Markus},
      title = {A commutative {$\Bbb P^1$}-spectrum representing motivic cohomology over {D}edekind domains},
      journal = {Mém. Soc. Math. Fr. (N.S.)},
      fjournal = {Mémoires de la Société Mathématique de France. Nouvelle Série},
      number = {157},
      year = {2018},
      pages = {110},
      issn = {0249-633X},
      isbn = {978-2-85629-890-9},
      mrclass = {14F42 (55P43)},
      mrnumber = {3865569},
      mrreviewer = {Daniel C. Isaksen},
      doi = {10.24033/msmf.465},
      url = {https://doi.org/10.24033/msmf.465},
      zblnumber = {1408.14081},
      }
  • [SpitzweckMGL] Go to document M. Spitzweck, "Algebraic cobordism in mixed characteristic," Homology Homotopy Appl., vol. 22, iss. 2, pp. 91-103, 2020.
    @ARTICLE{SpitzweckMGL,
      author = {Spitzweck, Markus},
      title = {Algebraic cobordism in mixed characteristic},
      journal = {Homology Homotopy Appl.},
      fjournal = {Homology, Homotopy and Applications},
      volume = {22},
      year = {2020},
      number = {2},
      pages = {91--103},
      issn = {1532-0073},
      mrclass = {14F42 (57R90)},
      mrnumber = {4093171},
      mrreviewer = {Daniel C. Isaksen},
      doi = {10.4310/hha.2020.v22.n2.a5},
      url = {https://doi.org/10.4310/hha.2020.v22.n2.a5},
      zblnumber = {1440.14126},
      }
  • [schwede2003stable] Go to document S. Schwede and B. Shipley, "Stable model categories are categories of modules," Topology, vol. 42, iss. 1, pp. 103-153, 2003.
    @ARTICLE{schwede2003stable,
      author = {Schwede, Stefan and Shipley, Brooke},
      title = {Stable model categories are categories of modules},
      journal = {Topology},
      fjournal = {Topology. An International Journal of Mathematics},
      volume = {42},
      year = {2003},
      number = {1},
      pages = {103--153},
      issn = {0040-9383},
      mrclass = {55U35 (18G55 55P42 55P43)},
      mrnumber = {1928647},
      mrreviewer = {Mark Hovey},
      doi = {10.1016/S0040-9383(02)00006-X},
      url = {https://doi.org/10.1016/S0040-9383(02)00006-X},
      zblnumber = {1013.55005},
      }
  • [schmidt2018stable] Go to document J. Schmidt and F. Strunk, "Stable $\Bbb A^1$-connectivity over Dedekind schemes," Ann. K-Theory, vol. 3, iss. 2, pp. 331-367, 2018.
    @ARTICLE{schmidt2018stable,
      author = {Schmidt, Johannes and Strunk, Florian},
      title = {Stable {$\Bbb A^1$}-connectivity over {D}edekind schemes},
      journal = {Ann. K-Theory},
      fjournal = {Annals of K-Theory},
      volume = {3},
      year = {2018},
      number = {2},
      pages = {331--367},
      issn = {2379-1683},
      mrclass = {14F42 (55P42)},
      mrnumber = {3781430},
      mrreviewer = {Satoshi Mochizuki},
      doi = {10.2140/akt.2018.3.331},
      url = {https://doi.org/10.2140/akt.2018.3.331},
      zblnumber = {1423.14158},
      }
  • [stacks-project] Go to document relax The Stacks Project Authors, Stacks Project, 2018.
    @MISC{stacks-project, key={Sta18},
      author = {{\relax The Stacks Project Authors}},
      title = {Stacks Project},
      url = {https://stacks.math.columbia.edu},
      year = {2018},
      zblnumber = {},
      }
  • [voevodsky2003motivic] Go to document V. Voevodsky, "Motivic cohomology with ${\bf Z}/2$-coefficients," Publ. Math. Inst. Hautes Études Sci., iss. 98, pp. 59-104, 2003.
    @ARTICLE{voevodsky2003motivic,
      author = {Voevodsky, Vladimir},
      title = {Motivic cohomology with {${\bf Z}/2$}-coefficients},
      journal = {Publ. Math. Inst. Hautes \'{E}tudes Sci.},
      fjournal = {Publications Mathématiques. Institut de Hautes \'{E}tudes Scientifiques},
      number = {98},
      year = {2003},
      pages = {59--104},
      issn = {0073-8301},
      mrclass = {14F42 (12G05 19D45 19E15)},
      mrnumber = {2031199},
      mrreviewer = {Eric M. Friedlander},
      doi = {10.1007/s10240-003-0010-6},
      url = {https://doi.org/10.1007/s10240-003-0010-6},
      zblnumber = {1057.14028},
      }
  • [voevodsky2003reduced] Go to document V. Voevodsky, "Reduced power operations in motivic cohomology," Publ. Math. Inst. Hautes Études Sci., iss. 98, pp. 1-57, 2003.
    @ARTICLE{voevodsky2003reduced,
      author = {Voevodsky, Vladimir},
      title = {Reduced power operations in motivic cohomology},
      journal = {Publ. Math. Inst. Hautes \'{E}tudes Sci.},
      fjournal = {Publications Mathématiques. Institut de Hautes \'{E}tudes Scientifiques},
      number = {98},
      year = {2003},
      pages = {1--57},
      issn = {0073-8301},
      mrclass = {14F42 (12G05 19D45 19E15)},
      mrnumber = {2031198},
      mrreviewer = {Eric M. Friedlander},
      doi = {10.1007/s10240-003-0009-z},
      url = {https://doi.org/10.1007/s10240-003-0009-z},
      zblnumber = {1057.14027},
      }
  • [voevodsky2011motivic] Go to document V. Voevodsky, "On motivic cohomology with $\Bbb Z/l$-coefficients," Ann. of Math. (2), vol. 174, iss. 1, pp. 401-438, 2011.
    @ARTICLE{voevodsky2011motivic,
      author = {Voevodsky, Vladimir},
      title = {On motivic cohomology with {$\bold Z/l$}-coefficients},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {174},
      year = {2011},
      number = {1},
      pages = {401--438},
      issn = {0003-486X},
      mrclass = {14F42 (19D45)},
      mrnumber = {2811603},
      mrreviewer = {Matthias Wendt},
      doi = {10.4007/annals.2011.174.1.11},
      url = {https://doi.org/10.4007/annals.2011.174.1.11},
      zblnumber = {1236.14026},
      }
  • [wendt2010more] M. Wendt, More examples of motivic cell structures, 2010.
    @MISC{wendt2010more,
      author = {Wendt, Matthias},
      title = {More examples of motivic cell structures},
      year = {2010},
      arxiv = {1012.0454},
      zblnumber = {},
      }
  • [WilsonOst] Go to document G. M. Wilson and P. A. Østvaer, "Two-complete stable motivic stems over finite fields," Algebr. Geom. Topol., vol. 17, iss. 2, pp. 1059-1104, 2017.
    @ARTICLE{WilsonOst,
      author = {Wilson, Glen Matthew and {\O}stv{æ}r, Paul Arne},
      title = {Two-complete stable motivic stems over finite fields},
      journal = {Algebr. Geom. Topol.},
      fjournal = {Algebraic \& Geometric Topology},
      volume = {17},
      year = {2017},
      number = {2},
      pages = {1059--1104},
      issn = {1472-2747},
      mrclass = {14F42 (18G15 55T15)},
      mrnumber = {3623682},
      mrreviewer = {Daniel C. Isaksen},
      doi = {10.2140/agt.2017.17.1059},
      url = {https://doi.org/10.2140/agt.2017.17.1059},
      zblnumber = {1361.14020},
      }
  • [Xutalk] Z. Xu, Conference talk “Computing stable homotopy groups of spheres" at Homotopy Theory: Tools and Applications, 2017.
    @MISC{Xutalk,
      author = {Xu, Zhouli},
      title = {Conference talk ``{C}omputing stable homotopy groups of spheres" at {H}omotopy {T}heory: {T}ools and {A}pplications},
      note = {University of Illinois at Urbana-Champaign},
      year = {2017},
      zblnumber = {},
      }

Authors

Tom Bachmann

Mathematisches Institut, LMU Munich, Munich, Germany

Hana Jia Kong

School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA

Guozhen Wang

Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China

Zhouli Xu

University of California, San Diego, La Jolla, CA 92093, USA