The rectangular peg problem

Abstract

For every smooth Jordan curve $\gamma $ and rectangle $R$ in the Euclidean plane, we show that there exists a rectangle similar to $R$ whose vertices lie on $\gamma $. The proof relies on the theorem of Shevchishin and Nemirovski that the Klein bottle does not admit a smooth Lagrangian embedding in $\mathbb{C}^2$.

  • [batson] Go to document J. Batson, "Nonorientable slice genus can be arbitrarily large," Math. Res. Lett., vol. 21, iss. 3, pp. 423-436, 2014.
    @ARTICLE{batson,
      author = {Batson, Joshua},
      title = {Nonorientable slice genus can be arbitrarily large},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {21},
      year = {2014},
      number = {3},
      pages = {423--436},
      issn = {1073-2780},
      mrclass = {57M27 (57M25 57R58)},
      mrnumber = {3272020},
      mrreviewer = {Brendan E. Owens},
      doi = {10.4310/MRL.2014.v21.n3.a1},
      url = {https://doi.org/10.4310/MRL.2014.v21.n3.a1},
      zblnumber = {1308.57004},
      }
  • [hamil_group_action] Go to document S. Dwivedi, J. Herman, L. C. Jeffrey, and T. van den Hurk, Hamiltonian group actions and equivariant cohomology, Springer, Cham, 2019.
    @BOOK{hamil_group_action,
      author = {Dwivedi, Shubham and Herman, Jonathan and Jeffrey, Lisa C. and van den Hurk, Theo},
      title = {Hamiltonian group actions and equivariant cohomology},
      series = {SpringerBriefs in Mathematics},
      publisher = {Springer, Cham},
      year = {2019},
      pages = {xi+132},
      isbn = {978-3-030-27226-5; 978-3-030-27227-2},
      mrclass = {57R17 (57R91)},
      mrnumber = {3970272},
      mrreviewer = {Eduardo A. Gonzalez},
      doi = {10.1007/978-3-030-27227-2},
      url = {https://doi.org/10.1007/978-3-030-27227-2},
      zblnumber = {1447.53002},
      }
  • [emch1913] Go to document A. Emch, "Some Properties of Closed Convex Curves in a Plane," Amer. J. Math., vol. 35, iss. 4, pp. 407-412, 1913.
    @ARTICLE{emch1913,
      author = {Emch, Arnold},
      title = {Some {P}roperties of {C}losed {C}onvex {C}urves in a {P}lane},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {35},
      year = {1913},
      number = {4},
      pages = {407--412},
      issn = {0002-9327},
      mrclass = {DML},
      mrnumber = {1506193},
      doi = {10.2307/2370404},
      url = {https://doi.org/10.2307/2370404},
      jfmnumber = {44.0561.01},
      }
  • [fellergolla] P. Feller and M. Golla, Non-orientable slice surfaces and inscribed rectangles, 2020.
    @MISC{fellergolla,
      author = {Feller, P. and Golla, M.},
      title = {Non-orientable slice surfaces and inscribed rectangles},
      arxiv = {2003.01590},
      year = {2020},
      zblnumber = {},
      }
  • [griffiths1991] Go to document H. B. Griffiths, "The topology of square pegs in round holes," Proc. London Math. Soc. (3), vol. 62, iss. 3, pp. 647-672, 1991.
    @ARTICLE{griffiths1991,
      author = {Griffiths, H. B.},
      title = {The topology of square pegs in round holes},
      journal = {Proc. London Math. Soc. (3)},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {62},
      year = {1991},
      number = {3},
      pages = {647--672},
      issn = {0024-6115},
      mrclass = {55M20 (52A37)},
      mrnumber = {1095236},
      mrreviewer = {Roger Fenn},
      doi = {10.1112/plms/s3-62.3.647},
      url = {https://doi.org/10.1112/plms/s3-62.3.647},
      zblnumber = {0696.55003},
      }
  • [hugelmeyer2018] C. Hugelmeyer, Every smooth Jordan curve has an inscribed rectangle with aspect ratio equal to $\sqrt{3}$, 2018.
    @MISC{hugelmeyer2018,
      author = {Hugelmeyer, C.},
      title = {Every smooth {J}ordan curve has an inscribed rectangle with aspect ratio equal to $\sqrt{3}$},
      arxiv = {1803.07417},
      year = {2018},
      zblnumber = {},
      }
  • [hugelmeyer2019] Go to document C. Hugelmeyer, "Inscribed rectangles in a smooth Jordan curve attain at least one third of all aspect ratios," Ann. of Math. (2), vol. 194, iss. 2, pp. 497-508, 2021.
    @ARTICLE{hugelmeyer2019,
      author = {Hugelmeyer, C.},
      title = {Inscribed rectangles in a smooth {J}ordan curve attain at least one third of all aspect ratios},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {194},
      number = {2},
      year = {2021},
      pages = {497--508},
      doi={10.4007/annals.2021.194.2.3},
      zblnumber = {},
      }
  • [kleewagon] V. Klee and S. Wagon, Old and new unsolved problems in plane geometry and number theory, Mathematical Association of America, Washington, DC, 1991, vol. 11.
    @BOOK{kleewagon,
      author = {Klee, Victor and Wagon, Stan},
      title = {Old and new unsolved problems in plane geometry and number theory},
      series = {The Dolciani Mathematical Expositions},
      volume = {11},
      publisher = {Mathematical Association of America, Washington, DC},
      year = {1991},
      pages = {xvi+333},
      isbn = {0-88385-315-9},
      mrclass = {00A07 (01A05 11-02 51-02)},
      mrnumber = {1133201},
      mrreviewer = {F. -J. Papp},
      zblnumber = {0784.51002},
      }
  • [makwu] Go to document C. Y. Mak and W. Wu, "Dehn twist exact sequences through Lagrangian cobordism," Compos. Math., vol. 154, iss. 12, pp. 2485-2533, 2018.
    @ARTICLE{makwu,
      author = {Mak, Cheuk Yu and Wu, Weiwei},
      title = {Dehn twist exact sequences through {L}agrangian cobordism},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {154},
      year = {2018},
      number = {12},
      pages = {2485--2533},
      issn = {0010-437X},
      mrclass = {53D40 (53D12 53D37 57R90)},
      mrnumber = {3873526},
      mrreviewer = {Georgios Dimitroglou Rizell},
      doi = {10.1112/s0010437x18007479},
      url = {https://doi.org/10.1112/s0010437x18007479},
      zblnumber = {07036911},
      }
  • [matschke2014] Go to document B. Matschke, "A survey on the square peg problem," Notices Amer. Math. Soc., vol. 61, iss. 4, pp. 346-352, 2014.
    @ARTICLE{matschke2014,
      author = {Matschke, Benjamin},
      title = {A survey on the square peg problem},
      journal = {Notices Amer. Math. Soc.},
      fjournal = {Notices of the American Mathematical Society},
      volume = {61},
      year = {2014},
      number = {4},
      pages = {346--352},
      issn = {0002-9920},
      mrclass = {51M04},
      mrnumber = {3184501},
      mrreviewer = {Zdenka Kolar-Begović},
      doi = {10.1090/noti1100},
      url = {https://doi.org/10.1090/noti1100},
      zblnumber = {1338.51017},
      }
  • [meyerson1981] M. D. Meyerson, "Balancing acts," Topology Proc., vol. 6, iss. 1, pp. 59-75, 1981.
    @ARTICLE{meyerson1981,
      author = {Meyerson, Mark D.},
      title = {Balancing acts},
      journal = {Topology Proc.},
      fjournal = {Topology Proceedings},
      volume = {6},
      year = {1981},
      number = {1},
      pages = {59--75},
      issn = {0146-4124},
      mrclass = {52A40 (52A99)},
      mrnumber = {0650481},
      mrreviewer = {Jože Vrabec},
      zblnumber = {0493.57003},
      }
  • [nemirovski2] Go to document Y. S. Nemirovskiui, "The homology class of a Lagrangian Klein bottle," Izv. Ross. Akad. Nauk Ser. Mat., vol. 73, iss. 4, pp. 37-48, 2009.
    @ARTICLE{nemirovski2,
      author = {Nemirovskiĭ,
      S. Yu.},
      title = {The homology class of a {L}agrangian {K}lein bottle},
      journal = {Izv. Ross. Akad. Nauk Ser. Mat.},
      fjournal = {Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya},
      volume = {73},
      year = {2009},
      number = {4},
      pages = {37--48},
      issn = {1607-0046},
      mrclass = {53D12},
      mrnumber = {2583965},
      mrreviewer = {Alex Degtyarev},
      doi = {10.1070/IM2009v073n04ABEH002462},
      url = {https://doi.org/10.1070/IM2009v073n04ABEH002462},
      zblnumber = {},
      }
  • [pak] I. Pak, The discrete square peg problem, 2008.
    @MISC{pak,
      author = {Pak, I.},
      title = {The discrete square peg problem},
      arxiv = {0804.0657},
      year = {2008},
      zblnumber = {},
      }
  • [pozniak] M. Poźniak, Floer homology, Novikov rings and clean intersections, 1994.
    @MISC{pozniak,
      author = {Po{\'z}niak, M.},
      title = {Floer homology, {N}ovikov rings and clean intersections},
      note = {Ph.D. thesis, University of {W}arwick},
      year = {1994},
      zblnumber = {},
      }
  • [schnirelman1929] L. G. vSnirelcprime man, "On certain geometrical properties of closed curves," Uspehi Matem. Nauk, vol. 10, pp. 34-44, 1944.
    @ARTICLE{schnirelman1929,
      author = {Šnirel\cprime man, L. G.},
      title = {On certain geometrical properties of closed curves},
      journal = {Uspehi Matem. Nauk},
      fjournal = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
      volume = {10},
      year = {1944},
      pages = {34--44},
      issn = {0042-1316},
      mrclass = {56.0X},
      mrnumber = {0012531},
      mrreviewer = {L. Zippin},
      zblnumber = {0060.35107},
      }
  • [schwartz] Go to document R. E. Schwartz, "A trichotomy for rectangles inscribed in Jordan loops," Geom. Dedicata, vol. 208, pp. 177-196, 2020.
    @ARTICLE{schwartz,
      author = {Schwartz, Richard Evan},
      title = {A trichotomy for rectangles inscribed in {J}ordan loops},
      journal = {Geom. Dedicata},
      fjournal = {Geometriae Dedicata},
      volume = {208},
      year = {2020},
      pages = {177--196},
      issn = {0046-5755},
      mrclass = {53A99 (51F99)},
      mrnumber = {4142923},
      doi = {10.1007/s10711-020-00516-8},
      url = {https://doi.org/10.1007/s10711-020-00516-8},
      zblnumber = {1448.51008},
      }
  • [shevchishin2009] Go to document V. V. Shevchishin, "Lagrangian embeddings of the Klein bottle and the combinatorial properties of mapping class groups," Izv. Ross. Akad. Nauk Ser. Mat., vol. 73, iss. 4, pp. 153-224, 2009.
    @ARTICLE{shevchishin2009,
      author = {Shevchishin, V. V.},
      title = {Lagrangian embeddings of the {K}lein bottle and the combinatorial properties of mapping class groups},
      journal = {Izv. Ross. Akad. Nauk Ser. Mat.},
      fjournal = {Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya},
      volume = {73},
      year = {2009},
      number = {4},
      pages = {153--224},
      issn = {1607-0046},
      mrclass = {57R17 (57N05 57R40)},
      mrnumber = {2583968},
      mrreviewer = {Mustafa Korkmaz},
      doi = {10.1070/IM2009v073n04ABEH002465},
      url = {https://doi.org/10.1070/IM2009v073n04ABEH002465},
      zblnumber = {1196.57021},
      }
  • [tao] Go to document T. Tao, "An integration approach to the Toeplitz square peg problem," Forum Math. Sigma, vol. 5, p. 30, 2017.
    @ARTICLE{tao,
      author = {Tao, Terence},
      title = {An integration approach to the {T}oeplitz square peg problem},
      journal = {Forum Math. Sigma},
      fjournal = {Forum of Mathematics. Sigma},
      volume = {5},
      year = {2017},
      pages = {Paper No. e30, 63},
      mrclass = {52A10 (55N45)},
      mrnumber = {3731730},
      mrreviewer = {Alina Stancu},
      doi = {10.1017/fms.2017.23},
      url = {https://doi.org/10.1017/fms.2017.23},
      zblnumber = {1422.52001},
      }
  • [toeplitz1911] O. Toeplitz, "Ueber einige Aufgaben der Analysis situs," Verhandlungen der Schweizerischen Naturforschenden Gesellschaft,, iss. 4, p. 197, 1911.
    @ARTICLE{toeplitz1911,
      author = {Toeplitz, O.},
      title = {Ueber einige {A}ufgaben der {A}nalysis situs},
      journal = {Verhandlungen der {S}chweizerischen {N}aturforschenden {G}esellschaft,},
      number = {4},
      year = {1911},
      pages = {197},
      zblnumber = {},
      }

Authors

Joshua Evan Greene

Department of Mathematics, Boston College, USA

Andrew Lobb

Mathematical Sciences, Durham University, UK