Inscribed rectangles in a smooth Jordan curve attain at least one third of all aspect ratios

Abstract

We prove that for every smooth Jordan curve $\gamma $, if $X$ is the set of all $r \in [0,1]$ so that there is an inscribed rectangle in $\gamma $ of aspect ratio ${\mathrm{tan}}(r\cdot \pi /4)$, then the Lebesgue measure of $X$ is at least $1/3$. To do this, we study sets of disjoint homologically nontrivial projective planes smoothly embedded in $\mathbb{R}\times \mathbb{R}P^3$. We prove that any such set of projective planes can be equipped with a natural total ordering. We then combine this total ordering with Kemperman’s theorem in $S^1$ to prove that $1/3$ is a sharp lower bound on the probability that a Möbius strip filling the $(2,1)$-torus knot in the solid torus times an interval will intersect its rotation by a uniformly random angle.

  • [Boy] Go to document W. Boy, "Über die Curvatura integra und die Topologie geschlossener Flächen," Math. Ann., vol. 57, iss. 2, pp. 151-184, 1903.
    @ARTICLE{Boy,
      author = {Boy, Werner},
      title = {Über die {C}urvatura integra und die {T}opologie geschlossener {F}lächen},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {57},
      year = {1903},
      number = {2},
      pages = {151--184},
      issn = {0025-5831},
      mrclass = {DML},
      mrnumber = {1511204},
      doi = {10.1007/BF01444342},
      url = {https://doi.org/10.1007/BF01444342},
      jfmnumber = {34.0537.07},
      }
  • [Me] C. Hugelmeyer, Every smooth Jordan curve has an inscribed rectangle of aspect ratio $\sqrt{3}$, 2018.
    @MISC{Me,
      author= {Hugelmeyer, C.},
      title = {Every smooth {J}ordan curve has an inscribed rectangle of aspect ratio $\sqrt{3}$},
      arxiv = {1803.07417},
      year = {2018},
      zblnumber = {},
      }
  • [Kemperman] Go to document J. H. B. Kemperman, "On products of sets in a locally compact group," Fund. Math., vol. 56, pp. 51-68, 1964.
    @ARTICLE{Kemperman,
      author = {Kemperman, J. H. B.},
      title = {On products of sets in a locally compact group},
      journal = {Fund. Math.},
      fjournal = {Polska Akademia Nauk. Fundamenta Mathematicae},
      volume = {56},
      year = {1964},
      pages = {51--68},
      issn = {0016-2736},
      mrclass = {22.20},
      mrnumber = {0202913},
      mrreviewer = {A. B. Paalman-de Miranda},
      doi = {10.4064/fm-56-1-51-68},
      url = {https://doi.org/10.4064/fm-56-1-51-68},
      zblnumber = {0125.28901},
      }
  • [Kirby] Go to document R. Kirby, "What is …Boy’s surface?," Notices Amer. Math. Soc., vol. 54, iss. 10, pp. 1306-1307, 2007.
    @ARTICLE{Kirby,
      author = {Kirby, R.},
      title = {What is ...{B}oy's surface?},
      journal = {Notices Amer. Math. Soc.},
      fjournal = {Notices of the American Mathematical Society},
      volume = {54},
      number = {10},
      pages = {1306--1307},
      year = {2007},
      url = {https://www.ams.org/journals/notices/200710/200710FullIssue.pdf},
      zblnumber = {1151.53306},
      }
  • [survey] Go to document B. Matschke, "A survey on the square peg problem," Notices Amer. Math. Soc., vol. 61, iss. 4, pp. 346-352, 2014.
    @ARTICLE{survey,
      author = {Matschke, Benjamin},
      title = {A survey on the square peg problem},
      journal = {Notices Amer. Math. Soc.},
      fjournal = {Notices of the American Mathematical Society},
      volume = {61},
      year = {2014},
      number = {4},
      pages = {346--352},
      issn = {0002-9920},
      mrclass = {51M04},
      mrnumber = {3184501},
      mrreviewer = {Zdenka Kolar-Begović},
      doi = {10.1090/noti1100},
      url = {https://doi.org/10.1090/noti1100},
      zblnumber = {1338.51017},
      }
  • [Raikov] Go to document D. Raikov, "On the addition of point-sets in the sense of Schnirelmann," Rec. Math. [Mat. Sbornik] N.S., vol. 5(47), pp. 425-440, 1939.
    @ARTICLE{Raikov,
      author = {Raikov, D.},
      title = {On the addition of point-sets in the sense of {S}chnirelmann},
      journal = {Rec. Math. [Mat. Sbornik] N.S.},
      volume = {5(47)},
      year = {1939},
      pages = {425--440},
      mrclass = {10.0X},
      mrnumber = {0001776},
      mrreviewer = {M. Kac},
      url = {http://mi.mathnet.ru/eng/msb/v47/i2/p425},
      zblnumber = {0022.21003},
      }
  • [Sch] L. G. vSnirel$’$man, "On certain geometrical properties of closed curves," Uspehi Matem. Nauk, vol. 10, pp. 34-44, 1944.
    @ARTICLE{Sch,
      author = {Šnirel$'$man, L. G.},
      title = {On certain geometrical properties of closed curves},
      journal = {Uspehi Matem. Nauk},
      fjournal = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
      volume = {10},
      year = {1944},
      pages = {34--44},
      issn = {0042-1316},
      mrclass = {56.0X},
      mrnumber = {0012531},
      mrreviewer = {L. Zippin},
      zblnumber = {0060.35107},
      }

Authors

Cole Hugelmeyer

Princeton University, Princeton, NJ