Martin’s Maximum${}^{++}$ implies Woodin’s axiom $(*)$

Abstract

We show that Martin’s Maximum${}^{++}$ implies Woodin’s ${\mathbb P}_{\rm max}$ axiom $(*)$. This answers a question from the 1990s and amalgamates two prominent axioms of set theory which were both known to imply that there are $\aleph _2$ many real numbers.

  • [stevo] Go to document S. Todorvcević, The power set of $\omega_1$ and the continuum problem.
    @MISC{stevo,
      author = {Todor\v{c}ević,
      Stevo},
      title = {The power set of $\omega_1$ and the continuum problem},
      url = {http://logic.harvard.edu/Todorcevic_Structure4.pdf},
      zblnumber = {},
      sortyear={2022},
      }
  • [ARS] Go to document U. Abraham, M. Rubin, and S. Shelah, "On the consistency of some partition theorems for continuous colorings, and the structure of $\aleph_1$-dense real order types," Ann. Pure Appl. Logic, vol. 29, iss. 2, pp. 123-206, 1985.
    @ARTICLE{ARS,
      author = {Abraham, Uri and Rubin, Matatyahu and Shelah, Saharon},
      title = {On the consistency of some partition theorems for continuous colorings, and the structure of {$\aleph_1$}-dense real order types},
      journal = {Ann. Pure Appl. Logic},
      fjournal = {Annals of Pure and Applied Logic},
      volume = {29},
      year = {1985},
      number = {2},
      pages = {123--206},
      issn = {0168-0072},
      mrclass = {03E35 (03E05 06A05 54A35)},
      mrnumber = {0801036},
      mrreviewer = {J. M. Henle},
      doi = {10.1016/0168-0072(84)90024-1},
      url = {https://doi.org/10.1016/0168-0072(84)90024-1},
      zblnumber = {0585.03019},
      }
  • [david-ralf] Go to document D. Asperó and R. Schindler, "Bounded Martin’s Maximum with an asterisk," Notre Dame J. Form. Log., vol. 55, iss. 3, pp. 333-348, 2014.
    @ARTICLE{david-ralf,
      author = {Asperó,
      David and Schindler, Ralf},
      title = {Bounded {M}artin's {M}aximum with an asterisk},
      journal = {Notre Dame J. Form. Log.},
      fjournal = {Notre Dame Journal of Formal Logic},
      volume = {55},
      year = {2014},
      number = {3},
      pages = {333--348},
      issn = {0029-4527},
      mrclass = {03E57 (03E35 03E55 03E60)},
      mrnumber = {3263531},
      mrreviewer = {Peter Holy},
      doi = {10.1215/00294527-2688051},
      url = {https://doi.org/10.1215/00294527-2688051},
      zblnumber = {1338.03101},
      }
  • [baumgartner] Go to document J. E. Baumgartner, "All $\aleph _{1}$-dense sets of reals can be isomorphic," Fund. Math., vol. 79, iss. 2, pp. 101-106, 1973.
    @ARTICLE{baumgartner,
      author = {Baumgartner, James E.},
      title = {All {$\aleph \sb{1}$}-dense sets of reals can be isomorphic},
      journal = {Fund. Math.},
      fjournal = {Polska Akademia Nauk. Fundamenta Mathematicae},
      volume = {79},
      year = {1973},
      number = {2},
      pages = {101--106},
      issn = {0016-2736},
      mrclass = {02K05 (06A05)},
      mrnumber = {0317934},
      mrreviewer = {John Hickman},
      doi = {10.4064/fm-79-2-101-106},
      url = {https://doi.org/10.4064/fm-79-2-101-106},
      zblnumber = {0274.02037},
      }
  • [cantor] Go to document H. Cantor, "Über eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen," J. Reine Angew. Math., vol. 77, pp. 258-262, 1874.
    @ARTICLE{cantor,
      author = {Cantor, Herrn},
      title = {Über eine {E}igenschaft des {I}nbegriffs aller reellen algebraischen {Z}ahlen},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {77},
      year = {1874},
      pages = {258--262},
      issn = {0075-4102},
      mrclass = {DML},
      mrnumber = {1579605},
      doi = {10.1515/crll.1874.77.258},
      url = {https://doi.org/10.1515/crll.1874.77.258},
      zblnumber = {},
      }
  • [cs] Go to document B. Claverie and R. Schindler, "Increasing $u_2$ by a stationary set preserving forcing," J. Symbolic Logic, vol. 74, iss. 1, pp. 187-200, 2009.
    @ARTICLE{cs,
      author = {Claverie, Benjamin and Schindler, Ralf},
      title = {Increasing {$u_2$} by a stationary set preserving forcing},
      journal = {J. Symbolic Logic},
      fjournal = {The Journal of Symbolic Logic},
      volume = {74},
      year = {2009},
      number = {1},
      pages = {187--200},
      issn = {0022-4812},
      mrclass = {03E35 (03E40)},
      mrnumber = {2499426},
      mrreviewer = {Renling Jin},
      doi = {10.2178/jsl/1231082308},
      url = {https://doi.org/10.2178/jsl/1231082308},
      zblnumber = {1163.03026},
      }
  • [cs2] Go to document B. Claverie and R. Schindler, "Woodin’s axiom $(\ast)$, bounded forcing axioms, and precipitous ideals on $\omega_1$," J. Symbolic Logic, vol. 77, iss. 2, pp. 475-498, 2012.
    @ARTICLE{cs2,
      author = {Claverie, Benjamin and Schindler, Ralf},
      title = {Woodin's axiom {$(\ast)$},
      bounded forcing axioms, and precipitous ideals on {$\omega_1$}},
      journal = {J. Symbolic Logic},
      fjournal = {The Journal of Symbolic Logic},
      volume = {77},
      year = {2012},
      number = {2},
      pages = {475--498},
      issn = {0022-4812},
      mrclass = {03E35 (03E45 03E57)},
      mrnumber = {2963017},
      mrreviewer = {A. Kanamori},
      doi = {10.2178/jsl/1333566633},
      url = {https://doi.org/10.2178/jsl/1333566633},
      zblnumber = {1250.03111},
      }
  • [cohen] P. J. Cohen, Set Theory and the Continuum Hypothesis, W. A. Benjamin, Inc., New York-Amsterdam, 1966.
    @BOOK{cohen,
      author = {Cohen, Paul J.},
      title = {Set Theory and the Continuum Hypothesis},
      publisher = {W. A. Benjamin, Inc., New York-Amsterdam},
      year = {1966},
      pages = {vi+154},
      mrclass = {02.65},
      mrnumber = {0232676},
      mrreviewer = {A. Lévy},
      zblnumber = {0182.01301},
      }
  • [ds] Go to document P. Doebler and R. Schindler, "$\Pi_2$ consequences of BMM plus NS is precipitous and the semiproperness of stationary set preserving forcings," Math. Res. Lett., vol. 16, iss. 5, pp. 797-815, 2009.
    @ARTICLE{ds,
      author = {Doebler, Philipp and Schindler, Ralf},
      title = {{$\Pi_2$} consequences of {B}{M}{M} plus {N}{S} is precipitous and the semiproperness of stationary set preserving forcings},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {16},
      year = {2009},
      number = {5},
      pages = {797--815},
      issn = {1073-2780},
      mrclass = {03E57 (03E05 03E35 03E40)},
      mrnumber = {2576698},
      doi = {10.4310/MRL.2009.v16.n5.a4},
      url = {https://doi.org/10.4310/MRL.2009.v16.n5.a4},
      zblnumber = {1206.03044},
      }
  • [ds2] P. Doebler and R. Schindler, "The extender algebra and vagaries of $\Sigma^2_1$ absoluteness," Münster J. Math., vol. 6, iss. 1, pp. 117-166, 2013.
    @ARTICLE{ds2,
      author = {Doebler, Philipp and Schindler, Ralf},
      title = {The extender algebra and vagaries of {$\Sigma^2_1$} absoluteness},
      journal = {Münster J. Math.},
      fjournal = {Münster Journal of Mathematics},
      volume = {6},
      year = {2013},
      number = {1},
      pages = {117--166},
      issn = {1867-5778},
      mrclass = {03E55 (03E35 03E40 03E45)},
      mrnumber = {3148210},
      mrreviewer = {Radek Honz\'ık},
      zblnumber = {1348.03050},
      }
  • [Farah] Go to document I. Farah, "All automorphisms of the Calkin algebra are inner," Ann. of Math. (2), vol. 173, iss. 2, pp. 619-661, 2011.
    @ARTICLE{Farah,
      author = {Farah, Ilijas},
      title = {All automorphisms of the {C}alkin algebra are inner},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {173},
      year = {2011},
      number = {2},
      pages = {619--661},
      issn = {0003-486X},
      mrclass = {03E35 (46L05)},
      mrnumber = {2776359},
      mrreviewer = {Edward Azoff},
      doi = {10.4007/annals.2011.173.2.1},
      url = {https://doi.org/10.4007/annals.2011.173.2.1},
      zblnumber = {1250.03094},
      }
  • [new?] Go to document S. Feferman, H. M. Friedman, P. Maddy, and J. R. Steel, "Does mathematics need new axioms?," Bull. Symbolic Logic, vol. 6, iss. 4, pp. 401-446, 2000.
    @ARTICLE{new?,
      author = {Feferman, Solomon and Friedman, Harvey M. and Maddy, Penelope and Steel, John R.},
      title = {Does mathematics need new axioms?},
      journal = {Bull. Symbolic Logic},
      fjournal = {The Bulletin of Symbolic Logic},
      volume = {6},
      year = {2000},
      number = {4},
      pages = {401--446},
      issn = {1079-8986},
      mrclass = {03A05 (00A30 03E55)},
      mrnumber = {1814122},
      mrreviewer = {E. Mendelson},
      doi = {10.2307/420965},
      url = {https://doi.org/10.2307/420965},
      zblnumber = {0977.03002},
      }
  • [FMW] Go to document Q. Feng, M. Magidor, and H. Woodin, "Universally Baire sets of reals," in Set Theory of the Continuum, Springer, New York, 1992, vol. 26, pp. 203-242.
    @INCOLLECTION{FMW,
      author = {Feng, Qi and Magidor, Menachem and Woodin, Hugh},
      title = {Universally {B}aire sets of reals},
      booktitle = {Set Theory of the Continuum},
      venue = {{B}erkeley, {CA},
      1989},
      series = {Math. Sci. Res. Inst. Publ.},
      volume = {26},
      pages = {203--242},
      publisher = {Springer, New York},
      year = {1992},
      mrclass = {03E15 (03E55)},
      mrnumber = {1233821},
      mrreviewer = {Jakub Jasiński},
      doi = {10.1007/978-1-4613-9754-0\_15},
      url = {https://doi.org/10.1007/978-1-4613-9754-0_15},
      zblnumber = {0781.03034},
      }
  • [FMS] Go to document M. Foreman, M. Magidor, and S. Shelah, "Martin’s maximum, saturated ideals, and nonregular ultrafilters. I," Ann. of Math. (2), vol. 127, iss. 1, pp. 1-47, 1988.
    @ARTICLE{FMS,
      author = {Foreman, M. and Magidor, M. and Shelah, S.},
      title = {Martin's maximum, saturated ideals, and nonregular ultrafilters. {I}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {127},
      year = {1988},
      number = {1},
      pages = {1--47},
      issn = {0003-486X},
      mrclass = {03E50 (03E35 03E40 03E55)},
      mrnumber = {0924672},
      mrreviewer = {F. R. Drake},
      doi = {10.2307/1971415},
      url = {https://doi.org/10.2307/1971415},
      zblnumber = {0645.03028},
      }
  • [goedel] Go to document K. Gödel, "The consistency of the axiom of choice and the generalized continuum hypothesis," Proc. Nat. Acad. U.S.A., vol. 24, iss. 12, pp. 556-557, 1938.
    @ARTICLE{goedel,
      author = {Gödel, Kurt},
      title = {The consistency of the axiom of choice and the generalized continuum hypothesis},
      journal = {Proc. Nat. Acad. U.S.A.},
      volume = {24},
      year = {1938},
      number = {12},
      pages = {556--557},
      doi = {10.1073/pnas.24.12.556},
      url = {https://doi.org/10.1073/pnas.24.12.556},
      zblnumber = {0020.29701},
      }
  • [what_is_ch] Go to document K. Gödel, "What is Cantor’s continuum problem?," Amer. Math. Monthly, vol. 54, pp. 515-525, 1947.
    @ARTICLE{what_is_ch,
      author = {Gödel, Kurt},
      title = {What is {C}antor's continuum problem?},
      journal = {Amer. Math. Monthly},
      fjournal = {American Mathematical Monthly},
      volume = {54},
      year = {1947},
      pages = {515--525},
      issn = {0002-9890},
      mrclass = {02.0X},
      mrnumber = {0023780},
      mrreviewer = {B. Jónsson},
      doi = {10.2307/2304666},
      url = {https://doi.org/10.2307/2304666},
      zblnumber = {0038.03003},
      }
  • [goedel-feferman] K. Gödel, Collected Works. Vol. II, The Clarendon Press, Oxford Univ. Press, New York, 1990.
    @BOOK{goedel-feferman,
      author = {Gödel, Kurt},
      title = {Collected Works. {V}ol. {II}},
      note = {publications 1938--1974; edited and with a preface by Solomon Feferman},
      publisher = {The Clarendon Press, Oxford Univ. Press, New York},
      year = {1990},
      pages = {xviii+407},
      isbn = {0-19-503972-6},
      mrclass = {01A75 (03-03)},
      mrnumber = {1032517},
      mrreviewer = {Pierre Kerszberg},
      zblnumber = {0698.01023},
      }
  • [godel_nonCH] K. Gödel, "Some considerations leading to the probable conclusion that the true power of the continuum is $\aleph_2$," in Collected Works. Vol. II, The Clarendon Press, Oxford Univ. Press, New York, 1990, pp. 420-422.
    @INCOLLECTION{godel_nonCH,
      author = {Gödel, Kurt},
      title = {Some considerations leading to the probable conclusion that the true power of the continuum is $\aleph_2$},
      booktitle = {Collected Works. {V}ol. {II}},
      pages = {420--422},
      note = {publications 1938--1974; edited and with a preface by Solomon Feferman et al.},
      publisher = {The Clarendon Press, Oxford Univ. Press, New York},
      year = {1990},
      isbn = {0-19-503972-6},
      mrclass = {01A75 (03-03)},
      mrnumber = {1032517},
      mrreviewer = {Pierre Kerszberg},
      zblnumber = {},
      }
  • [hilbert] D. Hilbert, "Mathematische Probleme," Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. Klasse (Göttinger Nachrichten), vol. 3, pp. 253-297, 1900.
    @ARTICLE{hilbert,
      author = {Hilbert, D.},
      title = {Mathematische Probleme},
      journal = {Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. Klasse (Göttinger Nachrichten)},
      volume = {3},
      year = {1900},
      pages = {253--297},
      zblnumber = {31.0068.03},
      }
  • [jech] Go to document T. Jech, Set theory, Springer-Verlag, Berlin, 2003.
    @book {jech,
      author = {Jech, Thomas},
      TITLE = {Set theory},
      SERIES = {Springer Monographs in Mathematics},
      NOTE = {The third millennium edition, revised and expanded},
      PUBLISHER = {Springer-Verlag, Berlin},
      YEAR = {2003},
      PAGES = {xiv+769},
      ISBN = {3-540-44085-2},
      MRCLASS = {03Exx (03-01 03-02)},
      MRNUMBER = {1940513},
      MRREVIEWER = {Eva Coplakova},
      doi = {10.1007/3-540-44761-X},
      url = {https://doi.org/10.1007/3-540-44761-X},
      zblnumber = {1007.03002},
      }
  • [ronald_l_forcing] R. Jensen, $\mathcal{L}$-forcing.
    @MISC{ronald_l_forcing,
      author = {Jensen, Ronald},
      title = {{$\mathcal{L}$}-forcing},
      note = {handwritten notes; available on author's webpage},
      zblnumber = {},
      sortyear={2022},
      }
  • [stacking] Go to document R. Jensen, E. Schimmerling, R. Schindler, and J. Steel, "Stacking mice," J. Symbolic Logic, vol. 74, iss. 1, pp. 315-335, 2009.
    @ARTICLE{stacking,
      author = {Jensen, Ronald and Schimmerling, Ernest and Schindler, Ralf and Steel, John},
      title = {Stacking mice},
      journal = {J. Symbolic Logic},
      fjournal = {The Journal of Symbolic Logic},
      volume = {74},
      year = {2009},
      number = {1},
      pages = {315--335},
      issn = {0022-4812},
      mrclass = {03E45 (03E55)},
      mrnumber = {2499432},
      mrreviewer = {Alessandro Andretta},
      doi = {10.2178/jsl/1231082314},
      url = {https://doi.org/10.2178/jsl/1231082314},
      zblnumber = {1161.03031},
      }
  • [kanamori] Go to document A. Kanamori, The Higher Infinite, Large Cardinals in Set Theory from Their Beginnings, 2nd ed. ed., Springer-Verlag, Berlin, 2003.
    @BOOK{kanamori,
      author = {Kanamori, Akihiro},
      title = {The {H}igher {I}nfinite, {L}arge {C}ardinals in {S}et {T}heory from {T}heir {B}eginnings},
      fjournal = {Springer Monographs in Mathematics},
      series= {Springer Monogr. Math.},
      issn = {1439-7382},
      edition = {2nd ed.},
      isbn = {3-540-00384-3/hbk},
      pages = {xxii + 536},
      year = {2003},
      Publisher = {Springer-Verlag, Berlin},
      zblnumber = {1022.03033},
      doi = {10.1007/978-3-540-88867-3},
      url = {https://doi.org/10.1007/978-3-540-88867-3},
      }
  • [kei71] J. H. Keisler, Model theory for Infinitary Logic. Logic with Countable Conjunctions and Finite Quantifiers, North-Holland Publishing Co., Amsterdam-London, 1971, vol. 62.
    @BOOK{kei71,
      author = {Keisler, H. Jerome},
      title = {Model theory for Infinitary Logic. {L}ogic with Countable Conjunctions and Finite Quantifiers},
      series = {Stud. Logic Found. Math.},
      volume = {62},
      publisher = {North-Holland Publishing Co., Amsterdam-London},
      year = {1971},
      pages = {x+208 pp. (loose erratum)},
      mrclass = {02H10 (02B25 02K15)},
      mrnumber = {0344115},
      mrreviewer = {Andreas Blass},
      zblnumber = {0222.02064},
      }
  • [kei73] J. H. Keisler, "Forcing and the omitting types theorem," in Studies in Model Theory, , 1973, vol. 8, pp. 96-133.
    @INCOLLECTION{kei73,
      author = {Keisler, H. Jerome},
      title = {Forcing and the omitting types theorem},
      booktitle = {Studies in Model Theory},
      pages = {96--133},
      series = {MAA Stud. Math.},
      volume = {8},
      year = {1973},
      mrclass = {02H05},
      mrnumber = {0337571},
      mrreviewer = {James H. Schmerl},
      zblnumber = {},
      }
  • [peter] Go to document P. Koellner, The Continuum Hypothesis, The Stanford Encyclopedia of Philosophy.
    @misc{peter,
      author = {Koellner, P.},
      title = {The {C}ontinuum {H}ypothesis, The {S}tanford {E}ncyclopedia of {P}hilosophy},
      note = {Spring 2019 Edition, E. N. Zalta (ed.)},
      url = {https://plato.stanford.edu/archives/spr2019/entries/continuum-hypothesis/ },
      zblnumber = {},
      }
  • [plarson] Go to document P. Larson, "Martin’s Maximum and the ${\Bbb P}_{ max}$ axiom ($*$)," Ann. Pure Appl. Logic, vol. 106, iss. 1-3, pp. 135-149, 2000.
    @ARTICLE{plarson,
      author = {Larson, Paul},
      title = {Martin's {M}aximum and the {${\Bbb P}_{\rm max}$} axiom ({$*$})},
      journal = {Ann. Pure Appl. Logic},
      fjournal = {Annals of Pure and Applied Logic},
      volume = {106},
      year = {2000},
      number = {1-3},
      pages = {135--149},
      issn = {0168-0072},
      mrclass = {03E35 (03E05 03E40 03E55 03E65)},
      mrnumber = {1785758},
      mrreviewer = {A. Kanamori},
      doi = {10.1016/S0168-0072(00)00020-8},
      url = {https://doi.org/10.1016/S0168-0072(00)00020-8},
      zblnumber = {0973.03068},
      }
  • [paul!] P. Larson, "Showing OCA in ${\Bbb P}_{ max}$-style extensions," Kobe J. Math., vol. 18, iss. 2, pp. 115-126, 2001.
    @ARTICLE{paul!,
      author = {Larson, Paul},
      title = {Showing {OCA} in {${\Bbb P}_{\rm max}$}-style extensions},
      journal = {Kobe J. Math.},
      fjournal = {Kobe Journal of Mathematics},
      volume = {18},
      year = {2001},
      number = {2},
      pages = {115--126},
      issn = {0289-9051},
      mrclass = {03E35 (03E40 03E45)},
      mrnumber = {1907668},
      mrreviewer = {Renling Jin},
      zblnumber = {1005.03045},
      }
  • [paul] Go to document P. B. Larson, The Stationary Tower. Notes on a Course by W. Hugh Woodin, Amer. Math. Soc., Providence, RI, 2004, vol. 32.
    @BOOK{paul,
      author = {Larson, Paul B.},
      title = {The Stationary Tower. Notes on a Course by W. Hugh Woodin},
      series = {Univ. Lecture Series},
      volume = {32},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2004},
      pages = {x+132},
      isbn = {0-8218-3604-8},
      mrclass = {03-02 (03E15 03E35 03E40 03E55 03E60)},
      mrnumber = {2069032},
      mrreviewer = {Miroslav Repick\'{y}},
      doi = {10.1090/ulect/032},
      url = {https://doi.org/10.1090/ulect/032},
      zblnumber = {1072.03031},
      }
  • [plarson2] Go to document P. B. Larson, "Martin’s Maximum and definability in $H(\aleph_2)$," Ann. Pure Appl. Logic, vol. 156, iss. 1, pp. 110-122, 2008.
    @ARTICLE{plarson2,
      author = {Larson, Paul B.},
      title = {Martin's {M}aximum and definability in {$H(\aleph_2)$}},
      journal = {Ann. Pure Appl. Logic},
      fjournal = {Annals of Pure and Applied Logic},
      volume = {156},
      year = {2008},
      number = {1},
      pages = {110--122},
      issn = {0168-0072},
      mrclass = {03E35 (03E40 03E55 03E65)},
      mrnumber = {2474445},
      mrreviewer = {John Krueger},
      doi = {10.1016/j.apal.2008.06.012},
      url = {https://doi.org/10.1016/j.apal.2008.06.012},
      zblnumber = {1153.03035},
      }
  • [larson-handbook] Go to document P. B. Larson, "Forcing over models of determinacy," in Handbook of Set Theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 2121-2177.
    @INCOLLECTION{larson-handbook,
      author = {Larson, Paul B.},
      title = {Forcing over models of determinacy},
      booktitle = {Handbook of Set Theory. {V}ols. 1, 2, 3},
      pages = {2121--2177},
      publisher = {Springer, Dordrecht},
      year = {2010},
      mrclass = {03E57 (03E35 03E45 03E55 03E60 03E65)},
      mrnumber = {2768703},
      mrreviewer = {Ralf-Dieter Schindler},
      doi = {10.1007/978-1-4020-5764-9\_25},
      url = {https://doi.org/10.1007/978-1-4020-5764-9_25},
      zblnumber = {1198.03063},
      }
  • [l-s] Go to document A. Lévy and R. M. Solovay, "Measurable cardinals and the continuum hypothesis," Israel J. Math., vol. 5, pp. 234-248, 1967.
    @ARTICLE{l-s,
      author = {Lévy, A. and Solovay, R. M.},
      title = {Measurable cardinals and the continuum hypothesis},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {5},
      year = {1967},
      pages = {234--248},
      issn = {0021-2172},
      mrclass = {02.68},
      mrnumber = {0224458},
      mrreviewer = {G. Fodor},
      doi = {10.1007/BF02771612},
      url = {https://doi.org/10.1007/BF02771612},
      zblnumber = {0289.02044},
      }
  • [luzin] N. Luzin, On some new results in descriptive function theory, 1935.
    @MISC{luzin,
      author = {Luzin, N.},
      title = {On some new results in descriptive function theory},
      note = {(in Russian), Moscow-Leningrad},
      year = {1935},
      zblnumber = {},
      }
  • [menachem] Go to document M. Magidor, Some set theories are more equal.
    @MISC{menachem,
      author = {Magidor, M.},
      title = {Some set theories are more equal},
      url = {logic.harvard.edu/EFI_Magidor.pdf},
      zblnumber = {},
      }
  • [martin-solovay] Go to document D. A. Martin and R. M. Solovay, "Internal Cohen extensions," Ann. Math. Logic, vol. 2, iss. 2, pp. 143-178, 1970.
    @ARTICLE{martin-solovay,
      author = {Martin, D. A. and Solovay, R. M.},
      title = {Internal {C}ohen extensions},
      journal = {Ann. Math. Logic},
      fjournal = {Annals of Mathematical Logic},
      volume = {2},
      year = {1970},
      number = {2},
      pages = {143--178},
      issn = {0003-4843},
      mrclass = {02.60},
      mrnumber = {0270904},
      mrreviewer = {L. Bukovsk\'{y}},
      doi = {10.1016/0003-4843(70)90009-4},
      url = {https://doi.org/10.1016/0003-4843(70)90009-4},
      zblnumber = {0222.02075},
      }
  • [proj-determinacy] Go to document D. A. Martin and J. R. Steel, "A proof of projective determinacy," J. Amer. Math. Soc., vol. 2, iss. 1, pp. 71-125, 1989.
    @ARTICLE{proj-determinacy,
      author = {Martin, Donald A. and Steel, John R.},
      title = {A proof of projective determinacy},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the Amer. Math. Soc.},
      volume = {2},
      year = {1989},
      number = {1},
      pages = {71--125},
      issn = {0894-0347},
      mrclass = {03E15 (03E55 03E60)},
      mrnumber = {0955605},
      mrreviewer = {Thomas J. Jech},
      doi = {10.2307/1990913},
      url = {https://doi.org/10.2307/1990913},
      zblnumber = {0668.03021},
      }
  • [justin] Go to document J. T. Moore, "Set mapping reflection," J. Math. Log., vol. 5, iss. 1, pp. 87-97, 2005.
    @ARTICLE{justin,
      author = {Moore, Justin Tatch},
      title = {Set mapping reflection},
      journal = {J. Math. Log.},
      fjournal = {Journal of Mathematical Logic},
      volume = {5},
      year = {2005},
      number = {1},
      pages = {87--97},
      issn = {0219-0613},
      mrclass = {03E65 (03E05 03E50)},
      mrnumber = {2151584},
      mrreviewer = {Andrzej Ros\l anowski},
      doi = {10.1142/S0219061305000407},
      url = {https://doi.org/10.1142/S0219061305000407},
      zblnumber = {1082.03042},
      }
  • [Moore5] Go to document J. T. Moore, "A five element basis for the uncountable linear orders," Ann. of Math. (2), vol. 163, iss. 2, pp. 669-688, 2006.
    @ARTICLE{Moore5,
      author = {Moore, Justin Tatch},
      title = {A five element basis for the uncountable linear orders},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {163},
      year = {2006},
      number = {2},
      pages = {669--688},
      issn = {0003-486X},
      mrclass = {03E35 (03E05 03E40 03E55)},
      mrnumber = {2199228},
      mrreviewer = {Maxim R. Burke},
      doi = {10.4007/annals.2006.163.669},
      url = {https://doi.org/10.4007/annals.2006.163.669},
      zblnumber = {1143.03026},
      }
  • [moore] Go to document J. T. Moore, "What makes the continuum $\aleph_2$," in Foundations of Mathematics, Amer. Math. Soc., Providence, RI, 2017, vol. 690, pp. 259-287.
    @INCOLLECTION{moore,
      author = {Moore, Justin Tatch},
      title = {What makes the continuum {$\aleph_2$}},
      booktitle = {Foundations of Mathematics},
      series = {Contemp. Math.},
      volume = {690},
      pages = {259--287},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2017},
      mrclass = {03E50 (03E35 03E57 03E65)},
      mrnumber = {3656315},
      mrreviewer = {Matteo Viale},
      doi = {10.1090/conm/690},
      url = {https://doi.org/10.1090/conm/690},
      zblnumber = {1423.03194},
      }
  • [trang-sargsyan] G. Sargsyan and N. Trang, The largest Suslin Axiom.
    @MISC{trang-sargsyan,
      author = {Sargsyan, G. and Trang, N.},
      title = {The largest {S}uslin {A}xiom},
      note = {available on {N. T}rang's website},
      zblnumber = {},
      }
  • [mlq0002d] Go to document R. Schindler, "Semi-proper forcing, remarkable cardinals, and bounded Martin’s maximum," MLQ Math. Log. Q., vol. 50, iss. 6, pp. 527-532, 2004.
    @ARTICLE{mlq0002d,
      author = {Schindler, Ralf},
      title = {Semi-proper forcing, remarkable cardinals, and bounded {M}artin's maximum},
      journal = {MLQ Math. Log. Q.},
      fjournal = {MLQ. Mathematical Logic Quarterly},
      volume = {50},
      year = {2004},
      number = {6},
      pages = {527--532},
      issn = {0942-5616},
      mrclass = {03E35 (03E55)},
      mrnumber = {2096166},
      mrreviewer = {Tetsuya Ishiu},
      doi = {10.1002/malq.200410002},
      url = {https://doi.org/10.1002/malq.200410002},
      zblnumber = {1058.03052},
      }
  • [book] Go to document R. Schindler, Set Theory. Exploring Independence and Truth, Springer, Cham, 2014.
    @BOOK{book,
      author = {Schindler, Ralf},
      title = {Set Theory. Exploring Independence and Truth},
      series = {Universitext},
      publisher = {Springer, Cham},
      year = {2014},
      pages = {x+332},
      isbn = {978-3-319-06724-7; 978-3-319-06725-4},
      mrclass = {03-02 (03E02 03E35 03E55 03E60)},
      mrnumber = {3243739},
      mrreviewer = {A. Kanamori},
      doi = {10.1007/978-3-319-06725-4},
      url = {https://doi.org/10.1007/978-3-319-06725-4},
      zblnumber = {1296.03002},
      }
  • [both] Go to document R. Schindler, "Woodin’s axiom ($*$), or Martin’s Maximum, or both?," in Foundations of Mathematics, Amer. Math. Soc., Providence, RI, 2017, vol. 690, pp. 177-204.
    @INCOLLECTION{both,
      author = {Schindler, Ralf},
      title = {Woodin's axiom ({$*$}), or {M}artin's {M}aximum, or both?},
      booktitle = {Foundations of Mathematics},
      series = {Contemp. Math.},
      volume = {690},
      pages = {177--204},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2017},
      mrclass = {03E57 (03E45 03E55 03E60 03E65)},
      mrnumber = {3656312},
      mrreviewer = {Xianghui Shi},
      doi = {10.1090/conm/690},
      url = {https://doi.org/10.1090/conm/690/13868},
      zblnumber = {1423.03198},
      }
  • [scott] D. Scott, "Measurable cardinals and constructible sets," Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., vol. 9, pp. 521-524, 1961.
    @ARTICLE{scott,
      author = {Scott, Dana},
      title = {Measurable cardinals and constructible sets},
      journal = {Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.},
      fjournal = {Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques},
      volume = {9},
      year = {1961},
      pages = {521--524},
      issn = {0001-4117},
      mrclass = {02.68},
      mrnumber = {0143710},
      mrreviewer = {Andr\'{a}s Hajnal},
      zblnumber = {0154.00702},
      }
  • [Shelah-Whitehead] Go to document S. Shelah, "Infinite abelian groups, Whitehead problem and some constructions," Israel J. Math., vol. 18, pp. 243-256, 1974.
    @ARTICLE{Shelah-Whitehead,
      author = {Shelah, Saharon},
      title = {Infinite abelian groups, {W}hitehead problem and some constructions},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {18},
      year = {1974},
      pages = {243--256},
      issn = {0021-2172},
      mrclass = {02K05 (02K35 04A20 20K35)},
      mrnumber = {0357114},
      mrreviewer = {Paul C. Eklof},
      doi = {10.1007/BF02757281},
      url = {https://doi.org/10.1007/BF02757281},
      zblnumber = {0318.02053},
      }
  • [solovay] R. M. Solovay, "$2^{\aleph_0}$ can be anything it ought to be," in The Theory of Models. Proceedings of the 1963 International Symposium at Berkeley, North-Holland, Amsterdam, 1965, p. 435.
    @incollection{solovay,
      author={Solovay, R. M.},
      title={$2^{\aleph_0}$ can be anything it ought to be},
      booktitle={The {T}heory of Models. Proceedings of the 1963 International Symposium at Berkeley},
      note={J. Addison et al.\, eds.)},
      series={Stud. Logic Found. Math.},
      publisher={North-Holland, Amsterdam},
      year={1965},
      pages={435},
      zblnumber = {0202.30701},
      }
  • [solovay-tennenbaum] Go to document R. M. Solovay and S. Tennenbaum, "Iterated Cohen extensions and Souslin’s problem," Ann. of Math. (2), vol. 94, pp. 201-245, 1971.
    @ARTICLE{solovay-tennenbaum,
      author = {Solovay, R. M. and Tennenbaum, S.},
      title = {Iterated {C}ohen extensions and {S}ouslin's problem},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {94},
      year = {1971},
      pages = {201--245},
      issn = {0003-486X},
      mrclass = {04A15},
      mrnumber = {0294139},
      mrreviewer = {Thomas J. Jech},
      doi = {10.2307/1970860},
      url = {https://doi.org/10.2307/1970860},
      zblnumber = {0244.02023},
      }
  • [john] Go to document J. R. Steel, "PFA implies ${ AD}^{L(\Bbb R)}$," J. Symbolic Logic, vol. 70, iss. 4, pp. 1255-1296, 2005.
    @ARTICLE{john,
      author = {Steel, John R.},
      title = {P{FA} implies {${\rm AD}^{L(\Bbb R)}$}},
      journal = {J. Symbolic Logic},
      fjournal = {The Journal of Symbolic Logic},
      volume = {70},
      year = {2005},
      number = {4},
      pages = {1255--1296},
      issn = {0022-4812},
      mrclass = {03E45 (03E55)},
      mrnumber = {2194247},
      mrreviewer = {A. Kanamori},
      doi = {10.2178/jsl/1129642125},
      url = {https://doi.org/10.2178/jsl/1129642125},
      zblnumber = {1103.03047},
      }
  • [forcing-free] Go to document J. R. Steel, "A stationary-tower-free proof of the derived model theorem," in Advances in Logic, Amer. Math. Soc., Providence, RI, 2007, vol. 425, pp. 1-8.
    @INCOLLECTION{forcing-free,
      author = {Steel, John R.},
      title = {A stationary-tower-free proof of the derived model theorem},
      booktitle = {Advances in Logic},
      series = {Contemp. Math.},
      volume = {425},
      pages = {1--8},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2007},
      mrclass = {03E45 (03E35 03E60)},
      mrnumber = {2322359},
      doi = {10.1090/conm/425/08113},
      url = {https://doi.org/10.1090/conm/425/08113},
      zblnumber = {1124.03024},
      }
  • [StVW] Go to document J. R. Steel and R. Van Wesep, "Two consequences of determinacy consistent with choice," Trans. Amer. Math. Soc., vol. 272, iss. 1, pp. 67-85, 1982.
    @ARTICLE{StVW,
      author = {Steel, John R. and Van Wesep, Robert},
      title = {Two consequences of determinacy consistent with choice},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the Amer. Math. Soc.},
      volume = {272},
      year = {1982},
      number = {1},
      pages = {67--85},
      issn = {0002-9947},
      mrclass = {03E35 (03E60)},
      mrnumber = {0656481},
      mrreviewer = {J. M. Henle},
      doi = {10.2307/1998951},
      url = {https://doi.org/10.2307/1998951},
      zblnumber = {0528.03033},
      }
  • [PWIM] Go to document J. R. Steel, "Projectively well-ordered inner models," Ann. Pure Appl. Logic, vol. 74, iss. 1, pp. 77-104, 1995.
    @ARTICLE{PWIM,
      author = {Steel, John R.},
      title = {Projectively well-ordered inner models},
      journal = {Ann. Pure Appl. Logic},
      fjournal = {Annals of Pure and Applied Logic},
      volume = {74},
      year = {1995},
      number = {1},
      pages = {77--104},
      issn = {0168-0072},
      mrclass = {03E45 (03E35 03E55)},
      mrnumber = {1336414},
      mrreviewer = {A. Kanamori},
      doi = {10.1016/0168-0072(94)00021-T},
      url = {https://doi.org/10.1016/0168-0072(94)00021-T},
      zblnumber = {0821.03023},
      }
  • [todo] Go to document S. Todorvcević, Partition Problems in Topology, Amer. Math. Soc., Providence, RI, 1989, vol. 84.
    @BOOK{todo,
      author = {Todor\v{c}ević,
      Stevo},
      title = {Partition Problems in Topology},
      series = {Contemp. Math.},
      volume = {84},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1989},
      pages = {xii+116},
      isbn = {0-8218-5091-1},
      mrclass = {04-02 (03E05 03E50 54A25)},
      mrnumber = {0980949},
      mrreviewer = {Eva Coplakova},
      doi = {10.1090/conm/084},
      url = {https://doi.org/10.1090/conm/084},
      zblnumber = {},
      }
  • [viale] Go to document M. Viale, "Category forcings, $\mathrm{MM}^{+++}$, and generic absoluteness for the theory of strong forcing axioms," J. Amer. Math. Soc., vol. 29, iss. 3, pp. 675-728, 2016.
    @ARTICLE{viale,
      author = {Viale, Matteo},
      title = {Category forcings, {$\mathrm{MM}^{+++}$},
      and generic absoluteness for the theory of strong forcing axioms},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the Amer. Math. Soc.},
      volume = {29},
      year = {2016},
      number = {3},
      pages = {675--728},
      issn = {0894-0347},
      mrclass = {03E35 (03E40 03E57)},
      mrnumber = {3486170},
      mrreviewer = {Chris Lambie-Hanson},
      doi = {10.1090/jams/844},
      url = {https://doi.org/10.1090/jams/844},
      zblnumber = {1403.03108},
      }
  • [hugh83] Go to document H. W. Woodin, "Some consistency results in ${ ZFC}$ using ${ AD}$," in Cabal Seminar 79–81, Springer, Berlin, 1983, vol. 1019, pp. 172-198.
    @INCOLLECTION{hugh83,
      author = {Woodin, W. Hugh},
      title = {Some consistency results in {${\rm ZFC}$} using {${\rm AD}$}},
      booktitle = {Cabal Seminar 79--81},
      series = {Lecture Notes in Math.},
      volume = {1019},
      pages = {172--198},
      publisher = {Springer, Berlin},
      year = {1983},
      mrclass = {03E35 (03E60)},
      mrnumber = {0730594},
      doi = {10.1007/BFb0071701},
      url = {https://doi.org/10.1007/BFb0071701},
      zblnumber = {0549.03048},
      }
  • [hugh] Go to document H. W. Woodin, The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, Walter de Gruyter & Co., Berlin, 1999, vol. 1.
    @BOOK{hugh,
      author = {Woodin, W. Hugh},
      title = {The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal},
      series = {De Gruyter Ser.Logic Appl.},
      volume = {1},
      publisher = {Walter de Gruyter \& Co., Berlin},
      year = {1999},
      pages = {vi+934},
      isbn = {3-11-015708-X},
      mrclass = {03-02 (03E05 03E15 03E35 03E45 03E55 03E60)},
      mrnumber = {1713438},
      mrreviewer = {A. Kanamori},
      doi = {10.1515/9783110804737},
      url = {https://doi.org/10.1515/9783110804737},
      zblnumber = {0954.03046},
      }
  • [hugh-ch1] H. W. Woodin, "The Continuum Hypothesis: Part I," Notices Amer. Math. Soc., vol. 48, iss. 6, pp. 567-576, 2001.
    @ARTICLE{hugh-ch1,
      author = {Woodin, W. Hugh},
      title = {The {C}ontinuum {H}ypothesis: {P}art {I}},
      journal = {Notices Amer. Math. Soc.},
      fjournal = {Notices of the Amer. Math. Soc.},
      volume = {48},
      year = {2001},
      number = {6},
      pages = {567--576},
      issn = {0002-9920},
      mrclass = {03E50 (03E05 03E15 03E35)},
      mrnumber = {1834351},
      mrreviewer = {Yehuda Rav},
      zblnumber = {0992.03063},
      }
  • [hugh-ch2] H. W. Woodin, "The Continuum Hypothesis: Part II," Notices Amer. Math. Soc., vol. 48, iss. 7, pp. 681-690, 2001.
    @ARTICLE{hugh-ch2,
      author = {Woodin, W. Hugh},
      title = {The {C}ontinuum {H}ypothesis: {P}art {II}},
      journal = {Notices Amer. Math. Soc.},
      fjournal = {Notices of the Amer. Math. Soc.},
      volume = {48},
      year = {2001},
      number = {7},
      pages = {681--690},
      issn = {0002-9920},
      mrclass = {03E50 (03A05 03E05 03E15 03E35)},
      mrnumber = {1842471},
      mrreviewer = {Yehuda Rav},
      zblnumber = {1047.03041},
      }
  • [ICM] Go to document H. W. Woodin, "Strong axioms of infinity and the search for $V$," in Proceedings of the International Congress of Mathematicians. Volume I, 2010, pp. 504-528.
    @INPROCEEDINGS{ICM,
      author = {Woodin, W. Hugh},
      title = {Strong axioms of infinity and the search for {$V$}},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians. {V}olume {I}},
      pages = {504--528},
      publisher = {Hindustan Book Agency, New Delhi},
      year = {2010},
      mrclass = {03-02 (03E05 03E15 03E25 03E35 03E40 03E60)},
      mrnumber = {2827903},
      doi = {10.1142/9789814324359_0023 },
      url = {https://doi.org/10.1142/9789814324359_0023},
      zblnumber = {1252.03001},
      }
  • [midrasha] Go to document H. W. Woodin, "In search of Ultimate-$L$: the 19th Midrasha Mathematicae Lectures," Bull. Symb. Log., vol. 23, iss. 1, pp. 1-109, 2017.
    @ARTICLE{midrasha,
      author = {Woodin, W. Hugh},
      title = {In search of {U}ltimate-{$L$}: the 19th {M}idrasha {M}athematicae {L}ectures},
      journal = {Bull. Symb. Log.},
      fjournal = {The Bulletin of Symbolic Logic},
      volume = {23},
      year = {2017},
      number = {1},
      pages = {1--109},
      issn = {1079-8986},
      mrclass = {03E45 (03E55 03E60)},
      mrnumber = {3632568},
      mrreviewer = {A. Kanamori},
      doi = {10.1017/bsl.2016.34},
      url = {https://doi.org/10.1017/bsl.2016.34},
      zblnumber = {},
      }
  • [hugh-preprint] H. W. Woodin, The equivalence of Axiom $(*)^+$ and Axiom $(*)^{++}$, 2020.
    @MISC{hugh-preprint,
      author = {Woodin, W. Hugh},
      title = {The equivalence of {A}xiom $(*)^+$ and {A}xiom $(*)^{++}$},
      note = {preprint},
      year = {2020},
      zblnumber = {},
      }

Authors

David Asperó

University of East Anglia, Norwich, Norfolk, UK

Ralf Schindler

Institut für Mathematische Logik und Grundlagenforschung, Universität Münster, Münster, FRG