Lorentzian polynomials

Abstract

We study the class of Lorentzian polynomials. The class contains homogeneous stable polynomials as well as volume polynomials of convex bodies and projective varieties. We prove that the Hessian of a nonzero Lorentzian polynomial has exactly one positive eigenvalue at any point on the positive orthant. This property can be seen as an analog of the Hodge–Riemann relations for Lorentzian polynomials.

Lorentzian polynomials are intimately connected to matroid theory and negative dependence properties. We show that matroids, and more generally $\mathrm {M}$-convex sets, are characterized by the Lorentzian property, and develop a theory around Lorentzian polynomials. In particular, we provide a large class of linear operators that preserve the Lorentzian property and prove that Lorentzian measures enjoy several negative dependence properties. We also prove that the class of tropicalized Lorentzian polynomials coincides with the class of $\mathrm {M}$-convex functions in the sense of discrete convex analysis. The tropical connection is used to produce Lorentzian polynomials from $\mathrm {M}$-convex functions.

We give two applications of the general theory. First, we prove that\nonbreakingspace the homogenized multivariate Tutte polynomial of a matroid is Lorentzian whenever the parameter $q$ satisfies $0\lt q \leq 1$. Consequences are proofs of the strongest Mason’s conjecture from 1972 and negative dependence properties of the random cluster model in statistical physics. Second, we prove that the multivariate characteristic polynomial of an $\mathrm {M}$-matrix is Lorentzian. This refines a result of Holtz who proved that the coefficients of the characteristic polynomial of an $\mathrm {M}$-matrix form an ultra log-concave sequence.

  • [AHK] Go to document K. Adiprasito, J. Huh, and E. Katz, "Hodge theory for combinatorial geometries," Ann. of Math. (2), vol. 188, iss. 2, pp. 381-452, 2018.
    @ARTICLE{AHK,
      author = {Adiprasito, Karim and Huh, June and Katz, Eric},
      title = {Hodge theory for combinatorial geometries},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {188},
      year = {2018},
      number = {2},
      pages = {381--452},
      issn = {0003-486X},
      mrclass = {05B35 (05E99 14C25 14T05)},
      mrnumber = {3862944},
      mrreviewer = {Zvi Rosen},
      doi = {10.4007/annals.2018.188.2.1},
      url = {https://doi.org/10.4007/annals.2018.188.2.1},
      zblnumber = {06921184},
      }
  • [AGV] Go to document N. Anari, S. Oveis Gharan, and C. Vinzant, "Log-concave polynomialS, entropy and a deterministic Approximation Algorithm for counting bases of matroids," in 59th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2018, 2018, pp. 35-46.
    @INPROCEEDINGS{AGV,
      author = {Anari, Nima and Oveis Gharan, Shayan and Vinzant, Cynthia},
      title = {Log-concave polynomialS, entropy and a deterministic Approximation Algorithm for counting bases of matroids},
      booktitle = {59th {A}nnual {IEEE} {S}ymposium on {F}oundations of {C}omputer {S}cience---{FOCS} 2018},
      year = {2018},
      pages = {35--46},
      MRCLASS = {68W25 (05A15 05B35)},
      MRNUMBER = {3899575},
      DOI = {10.1109/FOCS.2018.00013},
      URL = {https://doi.org/10.1109/FOCS.2018.00013},
      zblnumber = {},
      }
  • [ALGVII] Go to document N. Anari, K. Liu, S. O. Gharan, and C. Vinzant, "Log-concave polynomials II: High-dimensional walks and an FPRAS for counting bases of a matroid," in STOC’19—Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, pp. 1-12.
    @INPROCEEDINGS{ALGVII,
      author = {Anari, Nima and Liu, Kuikui and Gharan, Shayan Oveis and Vinzant, Cynthia},
      title = {Log-concave polynomials {II}: {H}igh-dimensional walks and an {FPRAS} for counting bases of a matroid},
      booktitle = {S{TOC}'19---{P}roceedings of the 51st {A}nnual {ACM} {SIGACT} {S}ymposium on {T}heory of {C}omputing},
      pages = {1--12},
      publisher = {ACM, New York},
      year = {2019},
      mrclass = {68W25 (68W20)},
      mrnumber = {4003314},
      doi = {10.1145/3313276.3316385},
      url = {https://doi.org/10.1145/3313276.3316385},
      zblnumber = {1433.68606},
      }
  • [ALGVIII] N. Anari, K. Liu, S. O. Gharan, and C. Vinzant, Log-Concave Polynomials III: Mason’s Ultra-Log-Concavity Conjecture for Independent Sets of Matroids, 2018.
    @MISC{ALGVIII,
      author = {Anari, Nima and Liu, Kuikui and Gharan, Shayan Oveis and Vinzant, Cynthia},
      title = {Log-Concave Polynomials {III: M}ason's Ultra-Log-Concavity Conjecture for Independent Sets of Matroids},
      year = {2018},
      arxiv = {1811.01600},
      }
  • [BR] Go to document R. B. Bapat and T. E. S. Raghavan, Nonnegative Matrices and Applications, Cambridge University Press, Cambridge, 1997, vol. 64.
    @BOOK{BR,
      author = {Bapat, R. B. and Raghavan, T. E. S.},
      title = {Nonnegative Matrices and Applications},
      series = {Encyclopedia Math. Appl.},
      volume = {64},
      publisher = {Cambridge University Press, Cambridge},
      year = {1997},
      pages = {xiv+336},
      isbn = {0-521-57167-7},
      mrclass = {15A48 (90A14 90C08)},
      mrnumber = {1449393},
      mrreviewer = {J. Parida},
      doi = {10.1017/CBO9780511529979},
      url = {https://doi.org/10.1017/CBO9780511529979},
      zblnumber = {0879.15015},
      }
  • [BCR] Go to document C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Springer-Verlag, New York, 1984, vol. 100.
    @BOOK{BCR,
      author = {Berg, Christian and Christensen, Jens Peter Reus and Ressel, Paul},
      title = {Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions},
      series = {Grad. Texts in Math.},
      volume = {100},
      publisher = {Springer-Verlag, New York},
      year = {1984},
      pages = {x+289},
      isbn = {0-387-90925-7},
      mrclass = {43-02 (43A35 60B15 60E15)},
      mrnumber = {0747302},
      mrreviewer = {Walter Schempp},
      doi = {10.1007/978-1-4612-1128-0},
      url = {https://doi.org/10.1007/978-1-4612-1128-0},
      zblnumber = {0619.43001},
      }
  • [BP] Go to document A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, vol. 9.
    @BOOK{BP,
      author = {Berman, Abraham and Plemmons, Robert J.},
      title = {Nonnegative Matrices in the Mathematical Sciences},
      series = {Classics Appl. Math.},
      volume = {9},
      note = {Revised reprint of the 1979 original},
      publisher = {Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA},
      year = {1994},
      pages = {xx+340},
      isbn = {0-89871-321-8},
      mrclass = {15A48 (15-02 60J10 90C33)},
      mrnumber = {1298430},
      doi = {10.1137/1.9781611971262},
      url = {https://doi.org/10.1137/1.9781611971262},
      zblnumber = {0815.15016},
      }
  • [BB08] Go to document J. Borcea and P. Brändén, "Applications of stable polynomials to mixed determinants: Johnson’s conjectures, unimodality, and symmetrized Fischer products," Duke Math. J., vol. 143, iss. 2, pp. 205-223, 2008.
    @ARTICLE{BB08,
      author = {Borcea, Julius and Brändén, Petter},
      title = {Applications of stable polynomials to mixed determinants: {J}ohnson's conjectures, unimodality, and symmetrized {F}ischer products},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {143},
      year = {2008},
      number = {2},
      pages = {205--223},
      issn = {0012-7094},
      mrclass = {15A15 (30C15 32A60)},
      mrnumber = {2420507},
      mrreviewer = {Julio Ben\'ıtez},
      doi = {10.1215/00127094-2008-018},
      url = {https://doi.org/10.1215/00127094-2008-018},
      zblnumber = {1151.15013},
      }
  • [BBI] Go to document J. Borcea and P. Brändén, "The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability," Invent. Math., vol. 177, iss. 3, pp. 541-569, 2009.
    @ARTICLE{BBI,
      author = {Borcea, Julius and Brändén, Petter},
      title = {The {L}ee-{Y}ang and {P}ólya-{S}chur programs. {I}. {L}inear operators preserving stability},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {177},
      year = {2009},
      number = {3},
      pages = {541--569},
      issn = {0020-9910},
      mrclass = {47B38 (33C45 82B26)},
      mrnumber = {2534100},
      mrreviewer = {Roland K. W. Roeder},
      doi = {10.1007/s00222-009-0189-3},
      url = {https://doi.org/10.1007/s00222-009-0189-3},
      zblnumber = {1175.47032},
      }
  • [BB10] Go to document J. Borcea and P. Brändén, "Multivariate Pólya-Schur classification problems in the Weyl algebra," Proc. Lond. Math. Soc. (3), vol. 101, iss. 1, pp. 73-104, 2010.
    @ARTICLE{BB10,
      author = {Borcea, Julius and Brändén, Petter},
      title = {Multivariate {P}ólya-{S}chur classification problems in the {W}eyl algebra},
      journal = {Proc. Lond. Math. Soc. (3)},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {101},
      year = {2010},
      number = {1},
      pages = {73--104},
      issn = {0024-6115},
      mrclass = {47B37 (15A15 16S32 32A17 32A60)},
      mrnumber = {2661242},
      mrreviewer = {Vania D. Mascioni},
      doi = {10.1112/plms/pdp049},
      url = {https://doi.org/10.1112/plms/pdp049},
      zblnumber = {1196.47028},
      }
  • [BBL] Go to document J. Borcea, P. Brändén, and T. M. Liggett, "Negative dependence and the geometry of polynomials," J. Amer. Math. Soc., vol. 22, iss. 2, pp. 521-567, 2009.
    @ARTICLE{BBL,
      author = {Borcea, Julius and Brändén, Petter and Liggett, Thomas M.},
      title = {Negative dependence and the geometry of polynomials},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the Amer. Math. Soc.},
      volume = {22},
      year = {2009},
      number = {2},
      pages = {521--567},
      issn = {0894-0347},
      mrclass = {62H20 (05B35 60E05 60E15 60K35 82B31)},
      mrnumber = {2476782},
      mrreviewer = {Lutz Peter Klotz},
      doi = {10.1090/S0894-0347-08-00618-8},
      url = {https://doi.org/10.1090/S0894-0347-08-00618-8},
      zblnumber = {1206.62096},
      }
  • [Branden] Go to document P. Brändén, "Polynomials with the half-plane property and matroid theory," Adv. Math., vol. 216, iss. 1, pp. 302-320, 2007.
    @ARTICLE{Branden,
      author = {Br{ä}nd{é}n, Petter},
      title = {Polynomials with the half-plane property and matroid theory},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {216},
      year = {2007},
      number = {1},
      pages = {302--320},
      issn = {0001-8708},
      mrclass = {05B35 (32E20 32F17 52A99)},
      mrnumber = {2353258},
      mrreviewer = {David G. Wagner},
      doi = {10.1016/j.aim.2007.05.011},
      url = {https://doi.org/10.1016/j.aim.2007.05.011},
      zblnumber = {1128.05014},
      }
  • [SIAM] Go to document P. Brändén, "Discrete concavity and the half-plane property," SIAM J. Discrete Math., vol. 24, iss. 3, pp. 921-933, 2010.
    @ARTICLE{SIAM,
      author = {Br{ä}nd{é}n, Petter},
      title = {Discrete concavity and the half-plane property},
      journal = {SIAM J. Discrete Math.},
      fjournal = {SIAM Journal on Discrete Mathematics},
      volume = {24},
      year = {2010},
      number = {3},
      pages = {921--933},
      issn = {0895-4801},
      mrclass = {90C27 (15A42 30C15)},
      mrnumber = {2680224},
      doi = {10.1137/090758738},
      url = {https://doi.org/10.1137/090758738},
      zblnumber = {1228.90091},
      }
  • [BH] P. Brändén and J. Huh, Hodge–Riemann relations for Potts model partition functions, 2018.
    @MISC{BH,
      author = {Br{ä}nd{é}n, Petter and Huh, June},
      title = {Hodge--{R}iemann relations for {P}otts model partition functions},
      year = {2018},
      arxiv = {1811.01696},
      zblnumber = {},
      }
  • [Brualdi] Go to document R. A. Brualdi, Combinatorial Matrix Classes, Cambridge University Press, Cambridge, 2006, vol. 108.
    @BOOK{Brualdi,
      author = {Brualdi, Richard A.},
      title = {Combinatorial Matrix Classes},
      series = {Encycl. Math. Appl.},
      volume = {108},
      publisher = {Cambridge University Press, Cambridge},
      year = {2006},
      pages = {x+544},
      isbn = {978-0-521-86565-4; 0-521-86565-4},
      mrclass = {05B20 (05C50 15A36 15A57)},
      mrnumber = {2266203},
      mrreviewer = {Thomas Britz},
      doi = {10.1017/CBO9780511721182},
      url = {https://doi.org/10.1017/CBO9780511721182},
      zblnumber = {1106.05001},
      }
  • [CLZ] F. Castillo, Y. Cid Ruiz, B. Li, J. Montaño, and N. Zhang, When are multidegrees positive?.
    @MISC{CLZ,
      author = {Castillo, Federico and Cid Ruiz, Yairon and Li, Binglin and Monta{\~{n}}o, Jonathan and Zhang, Naizhen},
      title = {When are multidegrees positive?},
      arxiv = {2005.07808},
      note = {{\em Adv. Math.},
      to appear},
      }
  • [COSW] Go to document Y. Choe, J. G. Oxley, A. D. Sokal, and D. G. Wagner, "Homogeneous multivariate polynomials with the half-plane property," Adv. in Appl. Math., vol. 32, iss. 1-2, pp. 88-187, 2004.
    @article{COSW,
      author = {Choe, Young-Bin and Oxley, James G. and Sokal, Alan D. and Wagner, David G.},
      title = {Homogeneous multivariate polynomials with the half-plane property},
      titlenote = {Special issue on the Tutte polynomial},
      journal = {Adv. in Appl. Math.},
      fjournal = {Advances in Applied Mathematics},
      volume = {32},
      year = {2004},
      number = {1-2},
      pages = {88--187},
      issn = {0196-8858},
      mrclass = {05B35},
      mrnumber = {2037144},
      mrreviewer = {Gordon F. Royle},
      doi = {10.1016/S0196-8858(03)00078-2},
      url = {https://doi.org/10.1016/S0196-8858(03)00078-2},
      zblnumber = {1054.05024},
      }
  • [DMS] Go to document C. Dellacherie, S. Martinez, and J. San Martin, Inverse $M$-Matrices and Ultrametric Matrices, Springer, Cham, 2014, vol. 2118.
    @BOOK{DMS,
      author = {Dellacherie, Claude and Martinez, Servet and San Martin, Jaime},
      title = {Inverse {$M$}-Matrices and Ultrametric Matrices},
      series = {Lecture Notes in Math.},
      volume = {2118},
      publisher = {Springer, Cham},
      year = {2014},
      pages = {x+236},
      isbn = {978-3-319-10297-9; 978-3-319-10298-6},
      mrclass = {15-02 (15B48 15B51 31C20 60J45)},
      mrnumber = {3289211},
      doi = {10.1007/978-3-319-10298-6},
      url = {https://doi.org/10.1007/978-3-319-10298-6},
      zblnumber = {1311.15002},
      }
  • [Dowling] Go to document T. A. Dowling, "On the independent set numbers of a finite matroid," Ann. Discrete Math., vol. 8, pp. 21-28, 1980.
    @ARTICLE{Dowling,
      author = {Dowling, T. A.},
      title = {On the independent set numbers of a finite matroid},
      journal = {Ann. Discrete Math.},
      fjournal = {Annals of Discrete Mathematics},
      volume = {8},
      year = {1980},
      pages = {21--28},
      mrclass = {05B35 (05A15 05A17)},
      mrnumber = {0597151},
      mrreviewer = {John H. Mason},
      doi = {10.1016/S0167-5060(08)70842-2},
      url = {https://doi.org/10.1016/S0167-5060(08)70842-2},
      zblnumber = {0462.05020},
      }
  • [EurHuh] Go to document C. Eur and J. Huh, "Logarithmic concavity for morphisms of matroids," Adv. Math., vol. 367, p. 107094, 2020.
    @ARTICLE{EurHuh,
      author = {Eur, Christopher and Huh, June},
      title = {Logarithmic concavity for morphisms of matroids},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {367},
      year = {2020},
      pages = {107094, 19},
      issn = {0001-8708},
      mrclass = {05B35 (52B40)},
      mrnumber = {4078485},
      doi = {10.1016/j.aim.2020.107094},
      url = {https://doi.org/10.1016/j.aim.2020.107094},
      zblnumber = {07190386},
      }
  • [FM] Go to document T. Feder and M. Mihail, "Balanced matroids," in Proceedings of the 24th Annual ACM Symposium on Theory of Computing, 1992, pp. 26-38.
    @INPROCEEDINGS{FM,
      author = {Feder, T. and Mihail, Milena},
      title = {Balanced matroids},
      booktitle = {Proceedings of the 24th Annual ACM Symposium on Theory of Computing},
      pages = {26--38},
      publisher = {ACM Press},
      year = {1992},
      doi = {10.1145/129712.129716},
      url = {https://doi.org/10.1145/129712.129716},
      zblnumber = {},
      }
  • [FK] Go to document C. M. Fortuin and P. W. Kasteleyn, "On the random-cluster model. I. Introduction and relation to other models," Physica, vol. 57, iss. 4, pp. 536-564, 1972.
    @ARTICLE{FK,
      author = {Fortuin, C. M. and Kasteleyn, P. W.},
      title = {On the random-cluster model. {I}. {I}ntroduction and relation to other models},
      journal = {Physica},
      fjournal = {Physica},
      volume = {57},
      year = {1972},
      number = {4},
      pages = {536--564},
      issn = {0031-8914},
      mrclass = {82.60},
      mrnumber = {0359655},
      mrreviewer = {S. V. Temko},
      doi = {10.1016/0031-8914(72)90045-6},
      url = {https://doi.org/10.1016/0031-8914(72)90045-6},
      zblnumber = {},
      }
  • [Fujishige] S. Fujishige, Submodular Functions and Optimization, Second ed., Elsevier B. V., Amsterdam, 2005, vol. 58.
    @BOOK{Fujishige,
      author = {Fujishige, Satoru},
      title = {Submodular Functions and Optimization},
      series = {Ann. Discrete Math.},
      volume = {58},
      edition = {Second},
      publisher = {Elsevier B. V., Amsterdam},
      year = {2005},
      pages = {xiv+395},
      isbn = {0-444-52086-4},
      mrclass = {90C10 (05A18 05B35 52A41 90C27 90C35 90C57)},
      mrnumber = {2171629},
      zblnumber = {1119.90044},
      }
  • [Toric] Go to document W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, NJ, 1993, vol. 131.
    @BOOK{Toric,
      author = {Fulton, William},
      title = {Introduction to Toric Varieties},
      series = {Ann. Math. Stud.},
      volume = {131},
      note = {The William H. Roever Lectures in Geometry},
      publisher = {Princeton University Press, Princeton, NJ},
      year = {1993},
      pages = {xii+157},
      isbn = {0-691-00049-2},
      mrclass = {14M25 (14-02 14J30)},
      mrnumber = {1234037},
      mrreviewer = {T. Oda},
      doi = {10.1515/9781400882526},
      url = {https://doi.org/10.1515/9781400882526},
      zblnumber = {0813.14039},
      }
  • [Fulton] Go to document W. Fulton, Intersection Theory, Second ed., Springer-Verlag, Berlin, 1998, vol. 2.
    @BOOK{Fulton,
      author = {Fulton, William},
      title = {Intersection Theory},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {2},
      edition = {Second},
      publisher = {Springer-Verlag, Berlin},
      year = {1998},
      pages = {xiv+470},
      isbn = {3-540-62046-X; 0-387-98549-2},
      mrclass = {14C17 (14-02)},
      mrnumber = {1644323},
      doi = {10.1007/978-1-4612-1700-8},
      url = {https://doi.org/10.1007/978-1-4612-1700-8},
      zblnumber = {0885.14002},
      }
  • [GKL1] Go to document P. Galashin, S. N. Karp, and T. Lam, "The totally nonnegative Grassmannian is a ball," Sém. Lothar. Combin., vol. 80B, p. 23, 2018.
    @ARTICLE{GKL1,
      author = {Galashin, Pavel and Karp, Steven N. and Lam, Thomas},
      title = {The totally nonnegative {G}rassmannian is a ball},
      journal = {Sém. Lothar. Combin.},
      fjournal = {Séminaire Lotharingien de Combinatoire},
      volume = {80B},
      year = {2018},
      pages = {Art. 23, 12},
      mrclass = {14M15 (05C90 15B48 52B12 52B40)},
      mrnumber = {3940598},
      mrreviewer = {Felipe Zald\'ıvar},
      url = {https://www.mat.univie.ac.at/~slc/},
      zblnumber = {1417.05253},
      }
  • [GKL2] Go to document P. Galashin, S. N. Karp, and T. Lam, "The totally nonnegative part of $G/P$ is a ball," Adv. Math., vol. 351, pp. 614-620, 2019.
    @ARTICLE{GKL2,
      author = {Galashin, Pavel and Karp, Steven N. and Lam, Thomas},
      title = {The totally nonnegative part of {$G/P$} is a ball},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {351},
      year = {2019},
      pages = {614--620},
      issn = {0001-8708},
      mrclass = {14M15 (15B48 20Gxx)},
      mrnumber = {3954040},
      mrreviewer = {Lucas Fresse},
      doi = {10.1016/j.aim.2019.05.009},
      url = {https://doi.org/10.1016/j.aim.2019.05.009},
      zblnumber = {07078817},
      }
  • [Gregor] J. Gregor, "On quadratic Hurwitz forms. I," Apl. Mat., vol. 26, iss. 2, pp. 142-153, 1981.
    @ARTICLE{Gregor,
      author = {Gregor, Ji\v{r}\'ı},
      title = {On quadratic {H}urwitz forms. {I}},
      note = {With a loose Russian summary},
      journal = {Apl. Mat.},
      fjournal = {\v{C}eskoslovensk\'{a} Akademie Věd. Aplikace Matematiky},
      volume = {26},
      year = {1981},
      number = {2},
      pages = {142--153},
      issn = {0373-6725},
      mrclass = {94C05 (15A63 93D20)},
      mrnumber = {0612670},
      mrreviewer = {M. Peters},
      zblnumber = {0457.15016},
      }
  • [Grimmett] Go to document G. Grimmett, The Random-Cluster Model, Springer-Verlag, Berlin, 2006, vol. 333.
    @BOOK{Grimmett,
      author = {Grimmett, Geoffrey},
      title = {The Random-Cluster Model},
      series = {Grundlehren Math. Wiss.},
      volume = {333},
      publisher = {Springer-Verlag, Berlin},
      year = {2006},
      pages = {xiv+377},
      isbn = {978-3-540-32890-2; 3-540-32890-4},
      mrclass = {60K35 (60-02 82-02 82B20 82B43)},
      mrnumber = {2243761},
      mrreviewer = {Olivier Garet},
      doi = {10.1007/978-3-540-32891-9},
      url = {https://doi.org/10.1007/978-3-540-32891-9},
      zblnumber = {1122.60087},
      }
  • [GW] Go to document G. R. Grimmett and S. N. Winkler, "Negative association in uniform forests and connected graphs," Random Structures Algorithms, vol. 24, iss. 4, pp. 444-460, 2004.
    @ARTICLE{GW,
      author = {Grimmett, G. R. and Winkler, S. N.},
      title = {Negative association in uniform forests and connected graphs},
      journal = {Random Structures Algorithms},
      fjournal = {Random Structures \& Algorithms},
      volume = {24},
      year = {2004},
      number = {4},
      pages = {444--460},
      issn = {1042-9832},
      mrclass = {60C05 (05C80)},
      mrnumber = {2060630},
      doi = {10.1002/rsa.20012},
      url = {https://doi.org/10.1002/rsa.20012},
      zblnumber = {1048.60007},
      }
  • [GurvitsL] Go to document L. Gurvits, "On multivariate Newton-like inequalities," in Advances in Combinatorial Mathematics, Springer, Berlin, 2009, pp. 61-78.
    @INCOLLECTION{GurvitsL,
      author = {Gurvits, Leonid},
      title = {On multivariate {N}ewton-like inequalities},
      booktitle = {Advances in Combinatorial Mathematics},
      pages = {61--78},
      publisher = {Springer, Berlin},
      year = {2009},
      mrclass = {26D07 (05A20 26B25)},
      mrnumber = {2683227},
      doi = {10.1007/978-3-642-03562-3_4},
      url = {https://doi.org/10.1007/978-3-642-03562-3_4},
      zblnumber = {1196.26020},
      }
  • [HS] Go to document Y. O. Hamidoune and I. Salaün, "On the independence numbers of a matroid," J. Combin. Theory Ser. B, vol. 47, iss. 2, pp. 146-152, 1989.
    @ARTICLE{HS,
      author = {Hamidoune, Yahya Ould and Salaün, Isabelle},
      title = {On the independence numbers of a matroid},
      journal = {J. Combin. Theory Ser. B},
      fjournal = {Journal of Combinatorial Theory. Series B},
      volume = {47},
      year = {1989},
      number = {2},
      pages = {146--152},
      issn = {0095-8956},
      mrclass = {05B35},
      mrnumber = {1047782},
      mrreviewer = {Ulrich Faigle},
      doi = {10.1016/0095-8956(89)90015-4},
      url = {https://doi.org/10.1016/0095-8956(89)90015-4},
      zblnumber = {0629.05020},
      }
  • [Hartshorne] Go to document R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977, vol. 52.
    @BOOK{Hartshorne,
      author = {Hartshorne, Robin},
      title = {Algebraic Geometry},
      note = {Grad. Texts in Math.},
      volume = {52},
      publisher = {Springer-Verlag, New York},
      year = {1977},
      pages = {xvi+496},
      isbn = {0-387-90244-9},
      mrclass = {14-01},
      mrnumber = {0463157},
      mrreviewer = {Robert Speiser},
      doi = {10.1007/978-1-4757-3849-0},
      url = {https://doi.org/10.1007/978-1-4757-3849-0},
      zblnumber = {0367.14001},
      }
  • [Heine] Go to document R. Heine, "Der Wertvorrat der gemischten Inhalte von zwei, drei und vier ebenen Eibereichen," Math. Ann., vol. 115, iss. 1, pp. 115-129, 1938.
    @ARTICLE{Heine,
      author = {Heine, Rudolf},
      title = {Der {W}ertvorrat der gemischten {I}nhalte von zwei, drei und vier ebenen {E}ibereichen},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {115},
      year = {1938},
      number = {1},
      pages = {115--129},
      issn = {0025-5831},
      mrclass = {DML},
      mrnumber = {1513176},
      doi = {10.1007/BF01448930},
      url = {https://doi.org/10.1007/BF01448930},
      zblnumber = {0017.23003},
      }
  • [HH] Go to document J. Herzog and T. Hibi, "Discrete polymatroids," J. Algebraic Combin., vol. 16, iss. 3, pp. 239-268, 2002.
    @ARTICLE{HH,
      author = {Herzog, Jürgen and Hibi, Takayuki},
      title = {Discrete polymatroids},
      journal = {J. Algebraic Combin.},
      fjournal = {Journal of Algebraic Combinatorics. An International Journal},
      volume = {16},
      year = {2002},
      number = {3},
      pages = {239--268},
      issn = {0925-9899},
      mrclass = {52B40 (05B35 13H10 14M25)},
      mrnumber = {1957102},
      mrreviewer = {Edward B. Swartz},
      doi = {10.1023/A:1021852421716},
      url = {https://doi.org/10.1023/A:1021852421716},
      zblnumber = {1012.05046},
      }
  • [Holtz] Go to document O. Holtz, "$M$-matrices satisfy Newton’s inequalities," Proc. Amer. Math. Soc., vol. 133, iss. 3, pp. 711-717, 2005.
    @ARTICLE{Holtz,
      author = {Holtz, Olga},
      title = {{$M$}-matrices satisfy {N}ewton's inequalities},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the Amer. Math. Soc.},
      volume = {133},
      year = {2005},
      number = {3},
      pages = {711--717},
      issn = {0002-9939},
      mrclass = {15A42 (05A10 05E05 15A48)},
      mrnumber = {2113919},
      mrreviewer = {Raphael Loewy},
      doi = {10.1090/S0002-9939-04-07576-8},
      url = {https://doi.org/10.1090/S0002-9939-04-07576-8},
      zblnumber = {1067.15018},
      }
  • [HJ] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1994.
    @BOOK{HJ,
      author = {Horn, Roger A. and Johnson, Charles R.},
      title = {Topics in Matrix Analysis},
      note = {corrected reprint of the 1991 original},
      publisher = {Cambridge University Press, Cambridge},
      year = {1994},
      pages = {viii+607},
      isbn = {0-521-46713-6},
      mrclass = {15-02 (15-01 65-02 65Fxx)},
      mrnumber = {1288752},
      zblnumber = {0801.15001},
      }
  • [Huh] Go to document J. Huh, "Combinatorial applications of the Hodge-Riemann relations," in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited Lectures, 2019, pp. 3093-3111.
    @INPROCEEDINGS{Huh,
      author = {Huh, June},
      title = {Combinatorial applications of the {H}odge-{R}iemann relations},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians---{R}io de {J}aneiro 2018. {V}ol. {IV}. {I}nvited {L}ectures},
      pages = {3093--3111},
      publisher = {World Sci. Publ., Hackensack, NJ},
      year = {2019},
      mrclass = {05A20},
      mrnumber = {3966524},
      doi = {10.1142/9789813272880_0173},
      url = {https://doi.org/10.1142/9789813272880_0173},
      zblnumber = {07250596},
      }
  • [HK] Go to document J. Huh and E. Katz, "Log-concavity of characteristic polynomials and the Bergman fan of matroids," Math. Ann., vol. 354, iss. 3, pp. 1103-1116, 2012.
    @ARTICLE{HK,
      author = {Huh, June and Katz, Eric},
      title = {Log-concavity of characteristic polynomials and the {B}ergman fan of matroids},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {354},
      year = {2012},
      number = {3},
      pages = {1103--1116},
      issn = {0025-5831},
      mrclass = {05B35},
      mrnumber = {2983081},
      mrreviewer = {Talmage J. Reid},
      doi = {10.1007/s00208-011-0777-6},
      url = {https://doi.org/10.1007/s00208-011-0777-6},
      zblnumber = {1258.05021},
      }
  • [HSW] J. Huh, B. Schröter, and B. Wang, Correlation bounds for fields and matroids, 2018.
    @MISC{HSW,
      author = {Huh, June and Schröter, Benjamin and Wang, Botong},
      title = {Correlation bounds for fields and matroids},
      year = {2018},
      arxiv = {1806.02675},
      zblnumber = {},
      }
  • [HW] Go to document J. Huh and B. Wang, "Enumeration of points, lines, planes, etc," Acta Math., vol. 218, iss. 2, pp. 297-317, 2017.
    @ARTICLE{HW,
      author = {Huh, June and Wang, Botong},
      title = {Enumeration of points, lines, planes, etc},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {218},
      year = {2017},
      number = {2},
      pages = {297--317},
      issn = {0001-5962},
      mrclass = {05A15 (52C10)},
      mrnumber = {3733101},
      doi = {10.4310/ACTA.2017.v218.n2.a2},
      url = {https://doi.org/10.4310/ACTA.2017.v218.n2.a2},
      zblnumber = {1386.05021},
      }
  • [HMMS] J. Huh, J. P. Matherne, K. Mészáros, and A. St. Dizier, Logarithmic concavity of Schur and related polynomials, 2019.
    @MISC{HMMS,
      author = {Huh, June and Matherne, Jacob P. and Mészáros, Karola and St. Dizier, Avery},
      title = {Logarithmic concavity of {S}chur and related polynomials},
      year = {2019},
      arxiv = {1906.09633},
      zblnumber = {},
      }
  • [Kahn] Go to document J. Kahn, "A normal law for matchings," Combinatorica, vol. 20, iss. 3, pp. 339-391, 2000.
    @ARTICLE{Kahn,
      author = {Kahn, Jeff},
      title = {A normal law for matchings},
      journal = {Combinatorica},
      fjournal = {Combinatorica. An International Journal on Combinatorics and the Theory of Computing},
      volume = {20},
      year = {2000},
      number = {3},
      pages = {339--391},
      issn = {0209-9683},
      mrclass = {05C70 (05B35 05C65 60F05)},
      mrnumber = {1774843},
      mrreviewer = {P. Mark Kayll},
      doi = {10.1007/PL00009835},
      url = {https://doi.org/10.1007/PL00009835},
      zblnumber = {0963.05111},
      }
  • [KN10] Go to document J. Kahn and M. Neiman, "Negative correlation and log-concavity," Random Structures Algorithms, vol. 37, iss. 3, pp. 367-388, 2010.
    @ARTICLE{KN10,
      author = {Kahn, J. and Neiman, M.},
      title = {Negative correlation and log-concavity},
      journal = {Random Structures Algorithms},
      fjournal = {Random Structures \& Algorithms},
      volume = {37},
      year = {2010},
      number = {3},
      pages = {367--388},
      issn = {1042-9832},
      mrclass = {60G09 (60C05 60E99)},
      mrnumber = {2724667},
      mrreviewer = {Thierry Edmond Huillet},
      doi = {10.1002/rsa.20292},
      url = {https://doi.org/10.1002/rsa.20292},
      zblnumber = {1211.62098},
      }
  • [KN11] Go to document J. Kahn and M. Neiman, "A strong log-concavity property for measures on Boolean algebras," J. Combin. Theory Ser. A, vol. 118, iss. 6, pp. 1749-1760, 2011.
    @ARTICLE{KN11,
      author = {Kahn, J. and Neiman, M.},
      title = {A strong log-concavity property for measures on {B}oolean algebras},
      journal = {J. Combin. Theory Ser. A},
      fjournal = {Journal of Combinatorial Theory. Series A},
      volume = {118},
      year = {2011},
      number = {6},
      pages = {1749--1760},
      issn = {0097-3165},
      mrclass = {60A10 (06E25 28C99)},
      mrnumber = {2793607},
      mrreviewer = {Marta Vr\'{a}belov\'{a}},
      doi = {10.1016/j.jcta.2011.02.007},
      url = {https://doi.org/10.1016/j.jcta.2011.02.007},
      zblnumber = {1227.60005},
      }
  • [Karlin] Go to document S. Karlin, Total Positivity. Vol. I, Stanford University Press, Stanford, Calif, 1968.
    @BOOK{Karlin,
      author = {Karlin, Samuel},
      title = {Total Positivity. {V}ol. {I}},
      publisher = {Stanford University Press, Stanford, Calif},
      year = {1968},
      pages = {xii+576},
      mrclass = {46.00 (41.00)},
      mrnumber = {0230102},
      mrreviewer = {I. I. Hirschman, Jr.},
      doi = {10.1017/S0013091500009305},
      url = {https://doi.org/10.1017/S0013091500009305},
      zblnumber = {0219.47030},
      }
  • [KMT] Go to document Y. Kobayashi, K. Murota, and K. Tanaka, "Operations on M-convex functions on jump systems," SIAM J. Discrete Math., vol. 21, iss. 1, pp. 107-129, 2007.
    @ARTICLE{KMT,
      author = {Kobayashi, Yusuke and Murota, Kazuo and Tanaka, Ken'ichiro},
      title = {Operations on {M}-convex functions on jump systems},
      journal = {SIAM J. Discrete Math.},
      fjournal = {SIAM Journal on Discrete Mathematics},
      volume = {21},
      year = {2007},
      number = {1},
      pages = {107--129},
      issn = {0895-4801},
      mrclass = {90C10 (90C25 90C27 90C35)},
      mrnumber = {2299698},
      mrreviewer = {Klaus Hofstedt},
      doi = {10.1137/060652841},
      url = {https://doi.org/10.1137/060652841},
      zblnumber = {1144.90015},
      }
  • [Lazarsfeld] Go to document R. Lazarsfeld, Positivity in Algebraic Geometry I. Classical Setting: Line Bundles and Linear Series, Springer-Verlag, Berlin, 2004, vol. 48.
    @BOOK{Lazarsfeld,
      author = {Lazarsfeld, Robert},
      title = {Positivity in Algebraic Geometry {I}. Classical Setting: Line Bundles and Linear Series},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {48},
      publisher = {Springer-Verlag, Berlin},
      year = {2004},
      pages = {xviii+387},
      isbn = {3-540-22533-1},
      mrclass = {14-02 (14C20)},
      mrnumber = {2095471},
      mrreviewer = {Mihnea Popa},
      doi = {10.1007/978-3-642-18808-4},
      url = {https://doi.org/10.1007/978-3-642-18808-4},
      zblnumber = {1093.14501},
      }
  • [Lenz] Go to document M. Lenz, "The $f$-vector of a representable-matroid complex is log-concave," Adv. in Appl. Math., vol. 51, iss. 5, pp. 543-545, 2013.
    @ARTICLE{Lenz,
      author = {Lenz, Matthias},
      title = {The {$f$}-vector of a representable-matroid complex is log-concave},
      journal = {Adv. in Appl. Math.},
      fjournal = {Advances in Applied Mathematics},
      volume = {51},
      year = {2013},
      number = {5},
      pages = {543--545},
      issn = {0196-8858},
      mrclass = {05B35 (05A20 05C31 05E45)},
      mrnumber = {3118543},
      mrreviewer = {John J. Watkins},
      doi = {10.1016/j.aam.2013.07.001},
      url = {https://doi.org/10.1016/j.aam.2013.07.001},
      zblnumber = {1301.05382},
      }
  • [LiebSokal] Go to document E. H. Lieb and A. D. Sokal, "A general Lee-Yang theorem for one-component and multicomponent ferromagnets," Comm. Math. Phys., vol. 80, iss. 2, pp. 153-179, 1981.
    @ARTICLE{LiebSokal,
      author = {Lieb, Elliott H. and Sokal, Alan D.},
      title = {A general {L}ee-{Y}ang theorem for one-component and multicomponent ferromagnets},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {80},
      year = {1981},
      number = {2},
      pages = {153--179},
      issn = {0010-3616},
      mrclass = {82A05 (28A12 32A40)},
      mrnumber = {0623156},
      mrreviewer = {Francesco Guerra},
      doi = {10.1007/BF01213009},
      url = {https://doi.org/10.1007/BF01213009},
      zblnumber = {},
      }
  • [Liggett] Go to document T. M. Liggett, "Ultra logconcave sequences and negative dependence," J. Combin. Theory Ser. A, vol. 79, iss. 2, pp. 315-325, 1997.
    @ARTICLE{Liggett,
      author = {Liggett, Thomas M.},
      title = {Ultra logconcave sequences and negative dependence},
      journal = {J. Combin. Theory Ser. A},
      fjournal = {Journal of Combinatorial Theory. Series A},
      volume = {79},
      year = {1997},
      number = {2},
      pages = {315--325},
      issn = {0097-3165},
      mrclass = {60E05 (60C05 60K99 62H20)},
      mrnumber = {1462561},
      mrreviewer = {Przemys\l aw Matu\l a},
      doi = {10.1006/jcta.1997.2790},
      url = {https://doi.org/10.1006/jcta.1997.2790},
      zblnumber = {0888.60013},
      }
  • [Liggett10] Go to document T. M. Liggett, Continuous Time Markov Processes. An Introduction, Amer. Math. Soc., Providence, RI, 2010, vol. 113.
    @BOOK{Liggett10,
      author = {Liggett, Thomas M.},
      title = {Continuous Time {M}arkov Processes. An Introduction},
      series = {Grad. Stud. Math.},
      volume = {113},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2010},
      pages = {xii+271},
      isbn = {978-0-8218-4949-1},
      mrclass = {60J25 (35J05 60J27 60J35 60J65 60K35)},
      mrnumber = {2574430},
      mrreviewer = {Eliane R. Rodrigues},
      doi = {10.1090/gsm/113},
      url = {https://doi.org/10.1090/gsm/113},
      zblnumber = {1205.60002},
      }
  • [MS] Go to document D. Maclagan and B. Sturmfels, Introduction to Tropical Geometry, Amer. Math. Soc., Providence, RI, 2015, vol. 161.
    @BOOK{MS,
      author = {Maclagan, Diane and Sturmfels, Bernd},
      title = {Introduction to Tropical Geometry},
      series = {Grad. Stud. Math.},
      volume = {161},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2015},
      pages = {xii+363},
      isbn = {978-0-8218-5198-2},
      mrclass = {14T05 (05B35 14M25 15A80 52B70)},
      mrnumber = {3287221},
      mrreviewer = {Patrick Popescu-Pampu},
      doi = {10.1090/gsm/161},
      url = {https://doi.org/10.1090/gsm/161},
      zblnumber = {1321.14048},
      }
  • [Mahoney] Go to document C. Mahoney, "On the unimodality of the independent set numbers of a class of matroids," J. Combin. Theory Ser. B, vol. 39, iss. 1, pp. 77-85, 1985.
    @ARTICLE{Mahoney,
      author = {Mahoney, Carolyn},
      title = {On the unimodality of the independent set numbers of a class of matroids},
      journal = {J. Combin. Theory Ser. B},
      fjournal = {Journal of Combinatorial Theory. Series B},
      volume = {39},
      year = {1985},
      number = {1},
      pages = {77--85},
      issn = {0095-8956},
      mrclass = {05B35 (51D20)},
      mrnumber = {0805457},
      mrreviewer = {W. Dörfler},
      doi = {10.1016/0095-8956(85)90038-3},
      url = {https://doi.org/10.1016/0095-8956(85)90038-3},
      zblnumber = {0554.05016},
      }
  • [Marker] D. Marker, Model Theory. An Introduction, Springer-Verlag, New York, 2002, vol. 217.
    @BOOK{Marker,
      author = {Marker, David},
      title = {Model Theory. An Introduction},
      series = {Grad. Texts in Math.},
      volume = {217},
      note = {},
      publisher = {Springer-Verlag, New York},
      year = {2002},
      pages = {viii+342},
      isbn = {0-387-98760-6},
      mrclass = {03Cxx (03-01 03-02 20A15)},
      mrnumber = {1924282},
      mrreviewer = {H. Dugald Macpherson},
      zblnumber = {1003.03034},
      }
  • [Mason] J. H. Mason, "Matroids: unimodal conjectures and Motzkin’s theorem," in Combinatorics, 1972, pp. 207-220.
    @INPROCEEDINGS{Mason,
      author = {Mason, J. H.},
      title = {Matroids: unimodal conjectures and {M}otzkin's theorem},
      booktitle = {Combinatorics},
      venue = {{P}roc. {C}onf. {C}ombinatorial {M}ath., {M}ath. {I}nst., {O}xford, 1972},
      pages = {207--220},
      year = {1972},
      mrclass = {05B35},
      mrnumber = {0349445},
      mrreviewer = {W. Dorfler},
      zblnumber = {},
      }
  • [Menon] Go to document K. V. Menon, "On the convolution of logarithmically concave sequences," Proc. Amer. Math. Soc., vol. 23, pp. 439-441, 1969.
    @ARTICLE{Menon,
      author = {Menon, K. V.},
      title = {On the convolution of logarithmically concave sequences},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the Amer. Math. Soc.},
      volume = {23},
      year = {1969},
      pages = {439--441},
      issn = {0002-9939},
      mrclass = {40.10},
      mrnumber = {0246012},
      mrreviewer = {F. P. Cass},
      doi = {10.2307/2037189},
      url = {https://doi.org/10.2307/2037189},
      zblnumber = {0193.02302},
      }
  • [Murota] Go to document K. Murota, Discrete Convex Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.
    @BOOK{Murota,
      author = {Murota, Kazuo},
      title = {Discrete Convex Analysis},
      series = {SIAM Monogr. Discrete Math. Appl.},
      publisher = {Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA},
      year = {2003},
      pages = {xxii+389},
      isbn = {0-89871-540-7},
      mrclass = {90-02 (52-02 90C27 90C46 91B02)},
      mrnumber = {1997998},
      mrreviewer = {Ulrich Faigle},
      doi = {10.1137/1.9780898718508},
      url = {https://doi.org/10.1137/1.9780898718508},
      zblnumber = {1029.90055},
      }
  • [Nuij] Go to document W. Nuij, "A note on hyperbolic polynomials," Math. Scand., vol. 23, pp. 69-72 (1969), 1968.
    @ARTICLE{Nuij,
      author = {Nuij, Wim},
      title = {A note on hyperbolic polynomials},
      journal = {Math. Scand.},
      fjournal = {Mathematica Scandinavica},
      volume = {23},
      year = {1968},
      pages = {69--72 (1969)},
      issn = {0025-5521},
      mrclass = {47.65 (35.00)},
      mrnumber = {0250128},
      mrreviewer = {B. Hellwig},
      doi = {10.7146/math.scand.a-10898},
      url = {https://doi.org/10.7146/math.scand.a-10898},
      zblnumber = {0189.40803},
      }
  • [Oxley] Go to document J. Oxley, Matroid Theory, Second ed., Oxford University Press, Oxford, 2011, vol. 21.
    @BOOK{Oxley,
      author = {Oxley, James},
      title = {Matroid Theory},
      series = {Oxford Grad. Texts in Math.},
      volume = {21},
      edition = {Second},
      publisher = {Oxford University Press, Oxford},
      year = {2011},
      pages = {xiv+684},
      isbn = {978-0-19-960339-8},
      mrclass = {05-01 (05B35 90C27)},
      mrnumber = {2849819},
      mrreviewer = {Maruti M. Shikare},
      doi = {10.1093/acprof:oso/9780198566946.001.0001},
      url = {https://doi.org/10.1093/acprof:oso/9780198566946.001.0001},
      zblnumber = {1254.05002},
      }
  • [Pem] Go to document R. Pemantle, "Towards a theory of negative dependence," J. Math. Phys., vol. 41, iss. 3, pp. 1371-1390, 2000.
    @ARTICLE{Pem,
      author = {Pemantle, Robin},
      title = {Towards a theory of negative dependence},
      titlenote = {Probabilistic techniques in equilibrium and nonequilibrium statistical physics},
      journal = {J. Math. Phys.},
      fjournal = {Journal of Mathematical Physics},
      volume = {41},
      year = {2000},
      number = {3},
      pages = {1371--1390},
      issn = {0022-2488},
      mrclass = {62H20 (60E05 82B31)},
      mrnumber = {1757964},
      mrreviewer = {T. M. Liggett},
      doi = {10.1063/1.533200},
      url = {https://doi.org/10.1063/1.533200},
      zblnumber = {1052.62518},
      }
  • [Pemantle] Go to document R. Pemantle, "Hyperbolicity and stable polynomials in combinatorics and probability," in Current Developments in Mathematics, 2011, Int. Press, Somerville, MA, 2012, pp. 57-123.
    @INCOLLECTION{Pemantle,
      author = {Pemantle, Robin},
      title = {Hyperbolicity and stable polynomials in combinatorics and probability},
      booktitle = {Current Developments in Mathematics, 2011},
      pages = {57--123},
      publisher = {Int. Press, Somerville, MA},
      year = {2012},
      mrclass = {62H20 (05A15 26C10 30C15)},
      mrnumber = {3098077},
      mrreviewer = {Marius R\u{a}dulescu},
      doi = {10.4310/CDM.2011.v2011.n1.a2},
      url = {https://doi.org/10.4310/CDM.2011.v2011.n1.a2},
      zblnumber = {1316.62078},
      }
  • [Postnikov] Go to document A. Postnikov, "Permutohedra, associahedra, and beyond," Int. Math. Res. Not. IMRN, iss. 6, pp. 1026-1106, 2009.
    @ARTICLE{Postnikov,
      author = {Postnikov, Alexander},
      title = {Permutohedra, associahedra, and beyond},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2009},
      number = {6},
      pages = {1026--1106},
      issn = {1073-7928},
      mrclass = {05E30},
      mrnumber = {2487491},
      doi = {10.1093/imrn/rnn153},
      url = {https://doi.org/10.1093/imrn/rnn153},
      zblnumber = {1162.52007},
      }
  • [Schneider] Go to document R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, expanded ed., Cambridge University Press, Cambridge, 2014, vol. 151.
    @BOOK{Schneider,
      author = {Schneider, Rolf},
      title = {Convex Bodies: the {B}runn-{M}inkowski Theory},
      series = {Encyclopedia Math. Appl.},
      volume = {151},
      edition = {expanded},
      publisher = {Cambridge University Press, Cambridge},
      year = {2014},
      pages = {xxii+736},
      isbn = {978-1-107-60101-7},
      mrclass = {52-02 (52A20 52A39)},
      mrnumber = {3155183},
      mrreviewer = {Andrea Colesanti},
      zblnumber = {1287.52001},
      doi = {10.1017/CBO9781139003858},
      url = {https://doi.org/10.1017/CBO9781139003858},
     }
  • [Sch2] Go to document I. J. Schoenberg, "Metric spaces and positive definite functions," Trans. Amer. Math. Soc., vol. 44, iss. 3, pp. 522-536, 1938.
    @ARTICLE{Sch2,
      author = {Schoenberg, I. J.},
      title = {Metric spaces and positive definite functions},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the Amer. Math. Soc.},
      volume = {44},
      year = {1938},
      number = {3},
      pages = {522--536},
      issn = {0002-9947},
      mrclass = {42A82 (43A35 46B99 54E35)},
      mrnumber = {1501980},
      doi = {10.2307/1989894},
      url = {https://doi.org/10.2307/1989894},
      zblnumber = {0019.41502},
      }
  • [Serre] Go to document D. Serre, Matrices, Second ed., Springer, New York, 2010, vol. 216.
    @BOOK{Serre,
      author = {Serre, Denis},
      title = {Matrices},
      series = {Grad. Texts in Math.},
      volume = {216},
      edition = {Second},
      note = {Theory and applications},
      publisher = {Springer, New York},
      year = {2010},
      pages = {xiv+289},
      isbn = {978-1-4419-7682-6},
      mrclass = {15-01},
      mrnumber = {2744852},
      doi = {10.1007/978-1-4419-7683-3},
      url = {https://doi.org/10.1007/978-1-4419-7683-3},
      zblnumber = {1206.15001},
      }
  • [Seymour] P. Seymour, Matroids, hypergraphs, and the max-flow min-cut theorem, 1975.
    @MISC{Seymour,
      author = {Seymour, P.},
      title = {Matroids, hypergraphs, and the max-flow min-cut theorem},
      note = {thesis, University of Oxford},
      year = {1975},
      zblnumber = {},
      }
  • [SW] Go to document P. D. Seymour and D. J. A. Welsh, "Combinatorial applications of an inequality from statistical mechanics," Math. Proc. Cambridge Philos. Soc., vol. 77, pp. 485-495, 1975.
    @ARTICLE{SW,
      author = {Seymour, P. D. and Welsh, D. J. A.},
      title = {Combinatorial applications of an inequality from statistical mechanics},
      journal = {Math. Proc. Cambridge Philos. Soc.},
      fjournal = {Mathematical Proceedings of the Cambridge Philosophical Society},
      volume = {77},
      year = {1975},
      pages = {485--495},
      issn = {0305-0041},
      mrclass = {05A20 (94A20)},
      mrnumber = {0376378},
      mrreviewer = {J. E. Graver},
      doi = {10.1017/S0305004100051306},
      url = {https://doi.org/10.1017/S0305004100051306},
      zblnumber = {0345.05004},
      }
  • [Shephard] Go to document G. C. Shephard, "Inequalities between mixed volumes of convex sets," Mathematika, vol. 7, pp. 125-138, 1960.
    @ARTICLE{Shephard,
      author = {Shephard, G. C.},
      title = {Inequalities between mixed volumes of convex sets},
      journal = {Mathematika},
      fjournal = {Mathematika. A Journal of Pure and Applied Mathematics},
      volume = {7},
      year = {1960},
      pages = {125--138},
      issn = {0025-5793},
      mrclass = {52.30},
      mrnumber = {0146736},
      mrreviewer = {B. Grünbaum},
      doi = {10.1112/S0025579300001674},
      url = {https://doi.org/10.1112/S0025579300001674},
      zblnumber = {0108.35203},
      }
  • [Shioura] Go to document A. Shioura, "Matroid rank functions and discrete concavity," Jpn. J. Ind. Appl. Math., vol. 29, iss. 3, pp. 535-546, 2012.
    @ARTICLE{Shioura,
      author = {Shioura, Akiyoshi},
      title = {Matroid rank functions and discrete concavity},
      journal = {Jpn. J. Ind. Appl. Math.},
      fjournal = {Japan Journal of Industrial and Applied Mathematics},
      volume = {29},
      year = {2012},
      number = {3},
      pages = {535--546},
      issn = {0916-7005},
      mrclass = {05B35 (52B40 68Q25 90C27)},
      mrnumber = {2996517},
      mrreviewer = {Daniel Turz\'ık},
      doi = {10.1007/s13160-012-0082-0},
      url = {https://doi.org/10.1007/s13160-012-0082-0},
      zblnumber = {1254.90196},
      }
  • [Sokal] Go to document A. D. Sokal, "The multivariate Tutte polynomial (alias Potts model) for graphs and matroids," in Surveys in Combinatorics 2005, Cambridge Univ. Press, Cambridge, 2005, vol. 327, pp. 173-226.
    @INCOLLECTION{Sokal,
      author = {Sokal, Alan D.},
      title = {The multivariate {T}utte polynomial (alias {P}otts model) for graphs and matroids},
      booktitle = {Surveys in Combinatorics 2005},
      series = {London Math. Soc. Lecture Note Ser.},
      volume = {327},
      pages = {173--226},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2005},
      mrclass = {05B35 (05C15 82B20 82B23)},
      mrnumber = {2187739},
      mrreviewer = {Marc Noy},
      doi = {10.1017/CBO9780511734885.009},
      url = {https://doi.org/10.1017/CBO9780511734885.009},
      zblnumber = {1110.05020},
      }
  • [Sp] Go to document D. E. Speyer, "Horn’s problem, Vinnikov curves, and the hive cone," Duke Math. J., vol. 127, iss. 3, pp. 395-427, 2005.
    @ARTICLE{Sp,
      author = {Speyer, David E.},
      title = {Horn's problem, {V}innikov curves, and the hive cone},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {127},
      year = {2005},
      number = {3},
      pages = {395--427},
      issn = {0012-7094},
      mrclass = {14P99 (05E15 15A42)},
      mrnumber = {2132865},
      mrreviewer = {Thomas C. Craven},
      doi = {10.1215/S0012-7094-04-12731-0},
      url = {https://doi.org/10.1215/S0012-7094-04-12731-0},
      zblnumber = {1069.14037},
      }
  • [TV] Go to document A. F. Timan and I. A. Vestfrid, "Any separable ultrametric space is isometrically embeddable in $l_{2}$," Funktsional. Anal. i Prilozhen., vol. 17, iss. 1, pp. 85-86, 1983.
    @ARTICLE{TV,
      author = {Timan, A. F. and Vestfrid, I. A.},
      title = {Any separable ultrametric space is isometrically embeddable in {$l\sb{2}$}},
      journal = {Funktsional. Anal. i Prilozhen.},
      fjournal = {Akademiya Nauk SSSR. Funktsional\cprime nyĭ Analiz i ego Prilozheniya},
      volume = {17},
      year = {1983},
      number = {1},
      pages = {85--86},
      issn = {0374-1990},
      mrclass = {54E35 (46P05 54C25)},
      mrnumber = {0695109},
      url = {http://mi.mathnet.ru/eng/faa1525},
      zblnumber = {0522.46017},
      }
  • [Wagner05] Go to document D. G. Wagner, "Rank-three matroids are Rayleigh," Electron. J. Combin., vol. 12, p. 8, 2005.
    @ARTICLE{Wagner05,
      author = {Wagner, David G.},
      title = {Rank-three matroids are {R}ayleigh},
      journal = {Electron. J. Combin.},
      fjournal = {Electronic Journal of Combinatorics},
      volume = {12},
      year = {2005},
      pages = {Note 8, 11},
      mrclass = {05B35 (94C99)},
      mrnumber = {2134193},
      mrreviewer = {Andr\'{a}s Recski},
      doi = {10.37236/1975},
      url = {https://doi.org/10.37236/1975},
      zblnumber = {1075.05017},
      }
  • [Wagner08] Go to document D. G. Wagner, "Negatively correlated random variables and Mason’s conjecture for independent sets in matroids," Ann. Comb., vol. 12, iss. 2, pp. 211-239, 2008.
    @ARTICLE{Wagner08,
      author = {Wagner, David G.},
      title = {Negatively correlated random variables and {M}ason's conjecture for independent sets in matroids},
      journal = {Ann. Comb.},
      fjournal = {Annals of Combinatorics},
      volume = {12},
      year = {2008},
      number = {2},
      pages = {211--239},
      issn = {0218-0006},
      mrclass = {05B35 (60C05)},
      mrnumber = {2428906},
      doi = {10.1007/s00026-008-0348-z},
      url = {https://doi.org/10.1007/s00026-008-0348-z},
      zblnumber = {1145.05003},
      }
  • [Wagner11] Go to document D. G. Wagner, "Multivariate stable polynomials: theory and applications," Bull. Amer. Math. Soc. (N.S.), vol. 48, iss. 1, pp. 53-84, 2011.
    @ARTICLE{Wagner11,
      author = {Wagner, David G.},
      title = {Multivariate stable polynomials: theory and applications},
      journal = {Bull. Amer. Math. Soc. (N.S.)},
      fjournal = {Amer. Math. Soc.. Bulletin. New Series},
      volume = {48},
      year = {2011},
      number = {1},
      pages = {53--84},
      issn = {0273-0979},
      mrclass = {32A60 (05A20 05B35 15A45)},
      mrnumber = {2738906},
      doi = {10.1090/S0273-0979-2010-01321-5},
      url = {https://doi.org/10.1090/S0273-0979-2010-01321-5},
      zblnumber = {1207.32006},
      }
  • [Welsh] D. J. A. Welsh, Matroid Theory, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976, vol. 8.
    @BOOK{Welsh,
      author = {Welsh, D. J. A.},
      title = {Matroid Theory},
      series = {L. M. S. Monographs},
      volume = {8},
      publisher = {Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York},
      year = {1976},
      pages = {xi+433},
      mrclass = {05B35},
      mrnumber = {0427112},
      mrreviewer = {W. T. Tutte},
      zblnumber = {0343.05002},
      }
  • [Zhao] C. K. Zhao, "A conjecture on matroids," Neimenggu Daxue Xuebao, vol. 16, iss. 3, pp. 321-326, 1985.
    @ARTICLE{Zhao,
      author = {Zhao, Cui Kui},
      title = {A conjecture on matroids},
      journal = {Neimenggu Daxue Xuebao},
      fjournal = {Neimenggu Daxue Xuebao. Ziran Kexue Ban. Acta Scientiarum Naturalium Universitatis Intramongolicae. Journal of Inner Mongolia University. Natural Sciences},
      volume = {16},
      year = {1985},
      number = {3},
      pages = {321--326},
      issn = {1000-1638},
      mrclass = {05B35},
      mrnumber = {0827685},
      zblnumber = {1333.05070},
      }

Authors

Petter Brändén

KTH Royal Institute of Technology, Stockholm, Sweden

June Huh

Institute for Advanced Study and Princeton University, Princeton, NJ, USA, Korea Institute for Advanced Study, Seoul, Korea

Current address:

Stanford University, Stanford, CA, USA