Abstract
We construct arithmetic Kleinian groups that are profinitely rigid in the absolute sense: each is distinguished from all other finitely generated, residually finite groups by its set of finite quotients. The Bianchi group $\mathrm {PSL}(2,\mathbb {Z}[\omega ])$ with $\omega ^2+\omega +1=0$ is rigid in this sense. Other examples include the non-uniform lattice of minimal co-volume in ${\rm {PSL}}(2,\mathbb {C})$ and the fundamental group of the Weeks manifold (the closed hyperbolic $3$-manifold of minimal volume).
The Supplemental Magma code for this paper is available at the following location:
https://doi.org/10.4007/annals.2020.192.3.1.code