Green functions and Glauberman degree-divisibility

Abstract

The Glauberman correspondence is a fundamental bijection in the character theory of finite groups. In 1994, Hartley and Turull established a degree-divisibility property for characters related by that correspondence, subject to a congruence condition which should hold for the Green functions of finite groups of Lie type, as defined by Deligne and Lusztig. Here, we present a general argument for completing the proof of that congruence condition. Consequently, the degree-divisibility property holds in complete generality.

  • [bbd] Go to document A. A. Beuilinson, J. Bernstein, and P. Deligne, "Faisceaux pervers," in Analysis and Topology on Singular Spaces, I, Soc. Math. France, Paris, 1982, vol. 100, pp. 5-171.
    @INCOLLECTION{bbd,
      author = {Beĭlinson, A. A. and Bernstein, J. and Deligne, P.},
      title = {Faisceaux pervers},
      booktitle = {Analysis and Topology on Singular Spaces, {I}},
      venue = {{L}uminy, 1981},
      series = {Astérisque},
      volume = {100},
      pages = {5--171},
      publisher = {Soc. Math. France, Paris},
      year = {1982},
      mrclass = {32C38},
      mrnumber = {0751966},
      mrreviewer = {Zoghman Mebkhout},
      zblnumber = {0536.14011},
      url = {http://www.numdam.org/issues/AST_1982__100__1_0/},
      }
  • [BeSp] Go to document W. M. Beynon and N. Spaltenstein, "Green functions of finite Chevalley groups of type $E_{n}$ $(n=6,\,7,\,8)$," J. Algebra, vol. 88, iss. 2, pp. 584-614, 1984.
    @ARTICLE{BeSp,
      author = {Beynon, W. M. and Spaltenstein, N.},
      title = {Green functions of finite {C}hevalley groups of type {$E\sb{n}$} {$(n=6,\,7,\,8)$}},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {88},
      year = {1984},
      number = {2},
      pages = {584--614},
      issn = {0021-8693},
      mrclass = {20G40 (20C15)},
      mrnumber = {0747534},
      mrreviewer = {Toshiaki Shoji},
      doi = {10.1016/0021-8693(84)90084-X},
      url = {https://doi.org/10.1016/0021-8693(84)90084-X},
      zblnumber = {0539.20025},
      }
  • [C2] R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley & Sons, Ltd., Chichester, 1993.
    @BOOK{C2,
      author = {Carter, Roger W.},
      title = {Finite Groups of {L}ie Type: Conjugacy {C}lasses and Complex Characters},
      series = {Wiley Classics Library},
      note = {reprint of the 1985 original, A Wiley-Interscience Publ.},
      publisher = {John Wiley \& Sons, Ltd., Chichester},
      year = {1993},
      pages = {xii+544},
      isbn = {0-471-94109-3},
      mrclass = {20C33 (20-02 20G40)},
      mrnumber = {1266626},
      zblnumber = {0567.20023},
      }
  • [DeLu] Go to document P. Deligne and G. Lusztig, "Representations of reductive groups over finite fields," Ann. of Math. (2), vol. 103, iss. 1, pp. 103-161, 1976.
    @ARTICLE{DeLu,
      author = {Deligne, P. and Lusztig, G.},
      title = {Representations of reductive groups over finite fields},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {103},
      year = {1976},
      number = {1},
      pages = {103--161},
      issn = {0003-486X},
      mrclass = {20G05 (14M15)},
      mrnumber = {0393266},
      mrreviewer = {S. I. Gel\cprime fand},
      doi = {10.2307/1971021},
      url = {https://doi.org/10.2307/1971021},
      zblnumber = {0336.20029},
      }
  • [aver] Go to document M. Geck, "On the average values of the irreducible characters of finite groups of Lie type on geometric unipotent classes," Doc. Math., vol. 1, p. no. 15, 293-317, 1996.
    @ARTICLE{aver,
      author = {Geck, Meinolf},
      title = {On the average values of the irreducible characters of finite groups of {L}ie type on geometric unipotent classes},
      journal = {Doc. Math.},
      fjournal = {Documenta Mathematica},
      volume = {1},
      year = {1996},
      pages = {No. 15, 293--317},
      issn = {1431-0635},
      mrclass = {20G05 (20C33)},
      mrnumber = {1418951},
      mrreviewer = {Demetris I. Deriziotis},
      zblnumber = {0873.20011},
      url = {https://www.math.uni-bielefeld.de/documenta/vol-01/15.html},
      }
  • [first] Go to document M. Geck, "A first guide to the character theory of finite groups of Lie type," in Local representation theory and simple groups, Eur. Math. Soc., Zürich, 2018, pp. 63-106.
    @INCOLLECTION{first,
      author = {Geck, Meinolf},
      title = {A first guide to the character theory of finite groups of {L}ie type},
      booktitle = {Local representation theory and simple groups},
      series = {EMS Ser. Lect. Math.},
      pages = {63--106},
      publisher = {Eur. Math. Soc., Zürich},
      year = {2018},
      mrclass = {20C33 (20C15 20G05)},
      mrnumber = {3821138},
      mrreviewer = {Jay Taylor},
      zblnumber = {1430.20014},
      doi = {10.4171/185-1/3},
      url = {https://doi.org/10.4171/185-1/3},
      }
  • [pbad] Go to document M. Geck, "On the values of unipotent characters in bad characteristic," Rend. Semin. Mat. Univ. Padova, vol. 141, pp. 37-63, 2019.
    @ARTICLE{pbad,
      author = {Geck, Meinolf},
      title = {On the values of unipotent characters in bad characteristic},
      journal = {Rend. Semin. Mat. Univ. Padova},
      fjournal = {Rendiconti del Seminario Matematico della Università di Padova},
      volume = {141},
      year = {2019},
      pages = {37--63},
      issn = {0041-8994},
      mrclass = {20C33 (20G40)},
      mrnumber = {3962820},
      mrreviewer = {Gerhard Hiss},
      doi = {10.4171/RSMUP/14},
      url = {https://doi.org/10.4171/RSMUP/14},
      zblnumber = {07083123},
      }
  • [small] Go to document M. Geck, Computing Green functions in small characteristic.
    @MISC{small,
      author = {Geck, Meinolf},
      title = {Computing {G}reen functions in small characteristic},
      note = {\emph{J. Algebra} (2020), available online 15 January 2020},
      doi = {10.1016/j.jalgebra.2019.12.016},
      zblnumber = {},
      sortyear={2020},
      }
  • [GKP] Go to document M. Geck, S. Kim, and G. Pfeiffer, "Minimal length elements in twisted conjugacy classes of finite Coxeter groups," J. Algebra, vol. 229, iss. 2, pp. 570-600, 2000.
    @ARTICLE{GKP,
      author = {Geck, Meinolf and Kim, Sungsoon and Pfeiffer, Götz},
      title = {Minimal length elements in twisted conjugacy classes of finite {C}oxeter groups},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {229},
      year = {2000},
      number = {2},
      pages = {570--600},
      issn = {0021-8693},
      mrclass = {20F55 (20C08 20E45)},
      mrnumber = {1769289},
      mrreviewer = {Andrew R. Francis},
      doi = {10.1006/jabr.1999.8253},
      url = {https://doi.org/10.1006/jabr.1999.8253},
      zblnumber = {1042.20026},
      }
  • [Glau] Go to document G. Glauberman, "Correspondences of characters for relatively prime operator groups," Canadian J. Math., vol. 20, pp. 1465-1488, 1968.
    @ARTICLE{Glau,
      author = {Glauberman, George},
      title = {Correspondences of characters for relatively prime operator groups},
      journal = {Canadian J. Math.},
      fjournal = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
      volume = {20},
      year = {1968},
      pages = {1465--1488},
      issn = {0008-414X},
      mrclass = {20.80},
      mrnumber = {0232866},
      mrreviewer = {I. M. Isaacs},
      doi = {10.4153/CJM-1968-148-x},
      url = {https://doi.org/10.4153/CJM-1968-148-x},
      zblnumber = {0167.02602},
      }
  • [HaTu] Go to document B. Hartley and A. Turull, "On characters of coprime operator groups and the Glauberman character correspondence," J. Reine Angew. Math., vol. 451, pp. 175-219, 1994.
    @ARTICLE{HaTu,
      author = {Hartley, Brian and Turull, Alexandre},
      title = {On characters of coprime operator groups and the {G}lauberman character correspondence},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {451},
      year = {1994},
      pages = {175--219},
      issn = {0075-4102},
      mrclass = {20C15},
      mrnumber = {1277300},
      mrreviewer = {I. M. Isaacs},
      zblnumber = {0797.20007},
      doi = {10.1515/crll.1994.451.175},
      url = {https://doi.org/10.1515/crll.1994.451.175},
      }
  • [LiSe] Go to document M. W. Liebeck and G. M. Seitz, Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras, Amer. Math. Soc., Providence, RI, 2012, vol. 180.
    @BOOK{LiSe,
      author = {Liebeck, Martin W. and Seitz, Gary M.},
      title = {Unipotent and Nilpotent Classes in Simple Algebraic Groups and {L}ie Algebras},
      series = {Math. Surveys Monogr.},
      volume = {180},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2012},
      pages = {xii+380},
      isbn = {978-0-8218-6920-8},
      mrclass = {20G15 (17B08)},
      mrnumber = {2883501},
      mrreviewer = {Jorge A. Vargas},
      doi = {10.1090/surv/180},
      url = {https://doi.org/10.1090/surv/180},
      zblnumber = {1251.20001},
      }
  • [cbms] Go to document G. Lusztig, Representations of Finite Chevalley Groups, Amer. Math. Soc., Providence, R.I., 1978, vol. 39.
    @BOOK{cbms,
      author = {Lusztig, George},
      title = {Representations of Finite {C}hevalley Groups},
      series = {CBMS Reg. Conf. Ser. Math.},
      volume = {39},
      titlenote = {({e}xpository lectures from the CBMS Regional Conference held at Madison, Wis., August 8--12, 1977)},
      publisher = {Amer. Math. Soc., Providence, R.I.},
      year = {1978},
      pages = {v+48},
      isbn = {0-8218-1689-6},
      mrclass = {20G05},
      mrnumber = {0518617},
      mrreviewer = {David B. Surowski},
      zblnumber = {0418.20037},
      doi = {10.1090/cbms/039},
      url = {https://doi.org/10.1090/cbms/039},
      }
  • [L1] Go to document G. Lusztig, Characters of Reductive Groups over a Finite Field, Princeton Univ. Press, Princeton, NJ, 1984, vol. 107.
    @BOOK{L1,
      author = {Lusztig, George},
      title = {Characters of Reductive Groups over a Finite Field},
      series = {Ann. of Math. Stud.},
      volume = {107},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {1984},
      pages = {xxi+384},
      isbn = {0-691-08350-9; 0-691-08351-7},
      mrclass = {20G05 (14L20 20C15)},
      mrnumber = {0742472},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.1515/9781400881772},
      url = {https://doi.org/10.1515/9781400881772},
      zblnumber = {0556.20033},
      }
  • [LuIC] Go to document G. Lusztig, "Intersection cohomology complexes on a reductive group," Invent. Math., vol. 75, iss. 2, pp. 205-272, 1984.
    @ARTICLE{LuIC,
      author = {Lusztig, George},
      title = {Intersection cohomology complexes on a reductive group},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {75},
      year = {1984},
      number = {2},
      pages = {205--272},
      issn = {0020-9910},
      mrclass = {20G05 (20C30 20G10 20G40)},
      mrnumber = {0732546},
      mrreviewer = {Toshiaki Shoji},
      doi = {10.1007/BF01388564},
      url = {https://doi.org/10.1007/BF01388564},
      zblnumber = {0547.20032},
      }
  • [L2a] Go to document G. Lusztig, "Character sheaves. I," Adv. in Math., vol. 56, iss. 3, pp. 193-237, 1985.
    @ARTICLE{L2a,
      author = {Lusztig, George},
      title = {Character sheaves. {I}},
      journal = {Adv. in Math.},
      fjournal = {Advances in Mathematics},
      volume = {56},
      year = {1985},
      number = {3},
      pages = {193--237},
      issn = {0001-8708},
      mrclass = {20G05 (32C38)},
      mrnumber = {0792706},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.1016/0001-8708(85)90034-9},
      url = {https://doi.org/10.1016/0001-8708(85)90034-9},
      zblnumber = {0586.20018},
      }
  • [L2b] Go to document G. Lusztig, "Character sheaves. II," Adv. in Math., vol. 57, iss. 3, pp. 226-265, 1985.
    @ARTICLE{L2b,
      author = {Lusztig, George},
      title = {Character sheaves. {II}},
      journal = {Adv. in Math.},
      fjournal = {Advances in Mathematics},
      volume = {57},
      year = {1985},
      number = {3},
      pages = {226--265},
      issn = {0001-8708},
      mrclass = {20G05 (22E47)},
      mrnumber = {0806210},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.1016/0001-8708(85)90064-7},
      url = {https://doi.org/10.1016/0001-8708(85)90064-7},
      zblnumber = {0586.20019},
      }
  • [L2c] Go to document G. Lusztig, "Character sheaves. III," Adv. in Math., vol. 57, iss. 3, pp. 266-315, 1985.
    @ARTICLE{L2c,
      author = {Lusztig, George},
      title = {Character sheaves. {III}},
      journal = {Adv. in Math.},
      fjournal = {Advances in Mathematics},
      volume = {57},
      year = {1985},
      number = {3},
      pages = {266--315},
      issn = {0001-8708},
      mrclass = {20G05 (22E47)},
      mrnumber = {0806210},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.1016/0001-8708(85)90064-7},
      url = {https://doi.org/10.1016/0001-8708(85)90065-9},
      zblnumber = {0594.20031},
      }
  • [L2d] Go to document G. Lusztig, "Character sheaves. IV," Adv. in Math., vol. 59, iss. 1, pp. 1-63, 1986.
    @ARTICLE{L2d,
      author = {Lusztig, George},
      title = {Character sheaves. {IV}},
      journal = {Adv. in Math.},
      fjournal = {Advances in Mathematics},
      volume = {59},
      year = {1986},
      number = {1},
      pages = {1--63},
      issn = {0001-8708},
      mrclass = {20G05 (22E47)},
      mrnumber = {0825086},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.1016/0001-8708(86)90036-8},
      url = {https://doi.org/10.1016/0001-8708(86)90036-8},
      zblnumber = {0602.20035},
      }
  • [L2e] Go to document G. Lusztig, "Character sheaves. V," Adv. in Math., vol. 61, iss. 2, pp. 103-155, 1986.
    @ARTICLE{L2e,
      author = {Lusztig, George},
      title = {Character sheaves. {V}},
      journal = {Adv. in Math.},
      fjournal = {Advances in Mathematics},
      volume = {61},
      year = {1986},
      number = {2},
      pages = {103--155},
      issn = {0001-8708},
      mrclass = {20G05 (22E47)},
      mrnumber = {0849848},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.1016/0001-8708(86)90071-X},
      url = {https://doi.org/10.1016/0001-8708(86)90071-X},
      zblnumber = {0602.20036},
      }
  • [L5] Go to document G. Lusztig, "Green functions and character sheaves," Ann. of Math. (2), vol. 131, iss. 2, pp. 355-408, 1990.
    @ARTICLE{L5,
      author = {Lusztig, George},
      title = {Green functions and character sheaves},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {131},
      year = {1990},
      number = {2},
      pages = {355--408},
      issn = {0003-486X},
      mrclass = {20G05},
      mrnumber = {1043271},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.2307/1971496},
      url = {https://doi.org/10.2307/1971496},
      zblnumber = {0695.20024},
      }
  • [Ldisc4] Go to document G. Lusztig, "Character sheaves on disconnected groups. IV," Represent. Theory, vol. 8, pp. 145-178, 2004.
    @ARTICLE{Ldisc4,
      author = {Lusztig, George},
      title = {Character sheaves on disconnected groups. {IV}},
      journal = {Represent. Theory},
      fjournal = {Representation Theory. An Electronic Journal of the Amer. Math. Soc.},
      volume = {8},
      year = {2004},
      pages = {145--178},
      mrclass = {20G99 (20G05 22E40)},
      mrnumber = {2048590},
      mrreviewer = {Jean Michel},
      doi = {10.1090/S1088-4165-04-00240-7},
      url = {https://doi.org/10.1090/S1088-4165-04-00240-7},
      zblnumber = {1075.20013},
      }
  • [L10] Go to document G. Lusztig, "On the cleanness of cuspidal character sheaves," Mosc. Math. J., vol. 12, iss. 3, pp. 621-631, 669, 2012.
    @ARTICLE{L10,
      author = {Lusztig, George},
      title = {On the cleanness of cuspidal character sheaves},
      journal = {Mosc. Math. J.},
      fjournal = {Moscow Mathematical Journal},
      volume = {12},
      year = {2012},
      number = {3},
      pages = {621--631, 669},
      issn = {1609-3321},
      mrclass = {20G05},
      mrnumber = {3024826},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.17323/1609-4514-2012-12-3-621-631},
      url = {https://doi.org/10.17323/1609-4514-2012-12-3-621-631},
      zblnumber = {1263.20044},
      }
  • [Miz2] Go to document K. Mizuno, "The conjugate classes of unipotent elements of the Chevalley groups $E_{7}$ and $E_{8}$," Tokyo J. Math., vol. 3, iss. 2, pp. 391-461, 1980.
    @ARTICLE{Miz2,
      author = {Mizuno, Kenzo},
      title = {The conjugate classes of unipotent elements of the {C}hevalley groups {$E\sb{7}$} and {$E\sb{8}$}},
      journal = {Tokyo J. Math.},
      fjournal = {Tokyo Journal of Mathematics},
      volume = {3},
      year = {1980},
      number = {2},
      pages = {391--461},
      issn = {0387-3870},
      mrclass = {20G05 (20G40)},
      mrnumber = {0605099},
      mrreviewer = {James F. Hurley},
      doi = {10.3836/tjm/1270473003},
      url = {https://doi.org/10.3836/tjm/1270473003},
      zblnumber = {0454.20046},
      }
  • [Nav1] Go to document G. Navarro, "Some open problems on coprime action and character correspondences," Bull. London Math. Soc., vol. 26, iss. 6, pp. 513-522, 1994.
    @ARTICLE{Nav1,
      author = {Navarro, Gabriel},
      title = {Some open problems on coprime action and character correspondences},
      journal = {Bull. London Math. Soc.},
      fjournal = {The Bulletin of the London Mathematical Society},
      volume = {26},
      year = {1994},
      number = {6},
      pages = {513--522},
      issn = {0024-6093},
      mrclass = {20C15},
      mrnumber = {1315600},
      mrreviewer = {Roderick Gow},
      doi = {10.1112/blms/26.6.513},
      url = {https://doi.org/10.1112/blms/26.6.513},
      zblnumber = {0829.20013},
      }
  • [Nav] Go to document G. Navarro, Character Theory and the McKay Conjecture, Cambridge Univ. Press, Cambridge, 2018, vol. 175.
    @BOOK{Nav,
      author = {Navarro, Gabriel},
      title = {Character Theory and the {M}c{K}ay Conjecture},
      series = {Cambridge Stud. Adv. Math.},
      volume = {175},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2018},
      pages = {xviii+234},
      isbn = {978-1-108-42844-6},
      mrclass = {20-01 (20C15 20C20 20C33)},
      mrnumber = {3753712},
      mrreviewer = {Thomas Philip Wakefield},
      doi = {10.1017/9781108552790},
      url = {https://doi.org/10.1017/9781108552790},
      zblnumber = {06854290},
      }
  • [S1] T. Shoji, "Green functions of reductive groups over a finite field," in The Arcata Conference on Representations of Finite Groups, Amer. Math. Soc., Providence, RI, 1987, vol. 47, pp. 289-301.
    @INCOLLECTION{S1,
      author = {Shoji, Toshiaki},
      title = {Green functions of reductive groups over a finite field},
      booktitle = {The {A}rcata {C}onference on {R}epresentations of {F}inite {G}roups},
      venue = {{A}rcata, {C}alif., 1986},
      series = {Proc. Sympos. Pure Math.},
      volume = {47},
      pages = {289--301},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1987},
      mrclass = {20C15 (20G05 20G40)},
      mrnumber = {0933366},
      mrreviewer = {Naohisa Shimomura},
      zblnumber = {0648.20047},
      }
  • [S2] Go to document T. Shoji, "Character sheaves and almost characters of reductive groups. I," Adv. Math., vol. 111, iss. 2, pp. 244-313, 1995.
    @ARTICLE{S2,
      author = {Shoji, Toshiaki},
      title = {Character sheaves and almost characters of reductive groups. {I}},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {111},
      year = {1995},
      number = {2},
      pages = {244--313},
      issn = {0001-8708},
      mrclass = {20G05},
      mrnumber = {1318530},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.1006/aima.1995.1024},
      url = {https://doi.org/10.1006/aima.1995.1024},
      zblnumber = {0832.20065},
      }
  • [S3] Go to document T. Shoji, "Character sheaves and almost characters of reductive groups. II," Adv. Math., vol. 111, iss. 2, pp. 314-354, 1995.
    @ARTICLE{S3,
      author = {Shoji, Toshiaki},
      title = {Character sheaves and almost characters of reductive groups. {II}},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {111},
      year = {1995},
      number = {2},
      pages = {314--354},
      issn = {0001-8708},
      mrclass = {20G05},
      mrnumber = {1318530},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.1006/aima.1995.1024},
      url = {https://doi.org/10.1006/aima.1995.1024},
      zblnumber = {0832.20065},
      }
  • [S6a] Go to document T. Shoji, "Generalized Green functions and unipotent classes for finite reductive groups. I," Nagoya Math. J., vol. 184, pp. 155-198, 2006.
    @ARTICLE{S6a,
      author = {Shoji, Toshiaki},
      title = {Generalized {G}reen functions and unipotent classes for finite reductive groups. {I}},
      journal = {Nagoya Math. J.},
      fjournal = {Nagoya Mathematical Journal},
      volume = {184},
      year = {2006},
      pages = {155--198},
      issn = {0027-7630},
      mrclass = {20G05 (20G40)},
      mrnumber = {2285233},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.1017/S0027763000009338},
      url = {https://doi.org/10.1017/S0027763000009338},
      zblnumber = {1128.20033},
      }
  • [S6] Go to document T. Shoji, "Generalized Green functions and unipotent classes for finite reductive groups. II," Nagoya Math. J., vol. 188, pp. 133-170, 2007.
    @ARTICLE{S6,
      author = {Shoji, Toshiaki},
      title = {Generalized {G}reen functions and unipotent classes for finite reductive groups. {II}},
      journal = {Nagoya Math. J.},
      fjournal = {Nagoya Mathematical Journal},
      volume = {188},
      year = {2007},
      pages = {133--170},
      issn = {0027-7630},
      mrclass = {20G40 (20G05)},
      mrnumber = {2371771},
      mrreviewer = {Bhama Srinivasan},
      doi = {10.1017/S0027763000009478},
      url = {https://doi.org/10.1017/S0027763000009478},
      zblnumber = {1133.20036},
      }
  • [S7] Go to document T. Shoji, "Generalized Green functions associated to complex reflection groups," J. Algebra, vol. 558, pp. 677-707, 2020.
    @ARTICLE{S7,
      author = {Shoji, Toshiaki},
      title = {Generalized {G}reen functions associated to complex reflection groups},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {558},
      year = {2020},
      pages = {677--707},
      issn = {0021-8693},
      mrclass = {20C30 (05E05 20F55)},
      mrnumber = {4102108},
      doi = {10.1016/j.jalgebra.2019.04.020},
      url = {https://doi.org/10.1016/j.jalgebra.2019.04.020},
      zblnumber = {07203078},
      }
  • [St68] Go to document R. Steinberg, Endomorphisms of Linear Algebraic Groups, Amer. Math. Soc., Providence, R.I., 1968, vol. 80.
    @BOOK{St68,
      author = {Steinberg, Robert},
      title = {Endomorphisms of Linear Algebraic Groups},
      series = {Mem. Amer. Math. Soc.},
      volume = {80},
      publisher = {Amer. Math. Soc., Providence, R.I.},
      year = {1968},
      pages = {108},
      mrclass = {14.50 (22.00)},
      mrnumber = {0230728},
      mrreviewer = {E. Abe},
      zblnumber = {0164.02902},
      doi = {10.1090/memo/0080},
      url = {https://doi.org/10.1090/memo/0080},
      }
  • [Tay] Go to document J. Taylor, "On unipotent supports of reductive groups with a disconnected centre," J. Algebra, vol. 391, pp. 41-61, 2013.
    @ARTICLE{Tay,
      author = {Taylor, Jay},
      title = {On unipotent supports of reductive groups with a disconnected centre},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {391},
      year = {2013},
      pages = {41--61},
      issn = {0021-8693},
      mrclass = {20C33 (20G40)},
      mrnumber = {3081621},
      mrreviewer = {Luca Giuzzi},
      doi = {10.1016/j.jalgebra.2013.06.004},
      url = {https://doi.org/10.1016/j.jalgebra.2013.06.004},
      zblnumber = {1286.20060},
      }

Authors

Meinolf Geck

IAZ - Lehrstuhl für Algebra, Universität Stuttgart, Stuttgart, Germany