Abstract
The Glauberman correspondence is a fundamental bijection in the character theory of finite groups. In 1994, Hartley and Turull established a degree-divisibility property for characters related by that correspondence, subject to a congruence condition which should hold for the Green functions of finite groups of Lie type, as defined by Deligne and Lusztig. Here, we present a general argument for completing the proof of that congruence condition. Consequently, the degree-divisibility property holds in complete generality.
-
[bbd]
A. A. Beuilinson, J. Bernstein, and P. Deligne, "Faisceaux pervers," in Analysis and Topology on Singular Spaces, I, Soc. Math. France, Paris, 1982, vol. 100, pp. 5-171.
@INCOLLECTION{bbd,
author = {Beĭlinson, A. A. and Bernstein, J. and Deligne, P.},
title = {Faisceaux pervers},
booktitle = {Analysis and Topology on Singular Spaces, {I}},
venue = {{L}uminy, 1981},
series = {Astérisque},
volume = {100},
pages = {5--171},
publisher = {Soc. Math. France, Paris},
year = {1982},
mrclass = {32C38},
mrnumber = {0751966},
mrreviewer = {Zoghman Mebkhout},
zblnumber = {0536.14011},
url = {http://www.numdam.org/issues/AST_1982__100__1_0/},
} -
[BeSp]
W. M. Beynon and N. Spaltenstein, "Green functions of finite Chevalley groups of type $E_{n}$ $(n=6,\,7,\,8)$," J. Algebra, vol. 88, iss. 2, pp. 584-614, 1984.
@ARTICLE{BeSp,
author = {Beynon, W. M. and Spaltenstein, N.},
title = {Green functions of finite {C}hevalley groups of type {$E\sb{n}$} {$(n=6,\,7,\,8)$}},
journal = {J. Algebra},
fjournal = {Journal of Algebra},
volume = {88},
year = {1984},
number = {2},
pages = {584--614},
issn = {0021-8693},
mrclass = {20G40 (20C15)},
mrnumber = {0747534},
mrreviewer = {Toshiaki Shoji},
doi = {10.1016/0021-8693(84)90084-X},
url = {https://doi.org/10.1016/0021-8693(84)90084-X},
zblnumber = {0539.20025},
} -
[C2] R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley & Sons, Ltd., Chichester, 1993.
@BOOK{C2,
author = {Carter, Roger W.},
title = {Finite Groups of {L}ie Type: Conjugacy {C}lasses and Complex Characters},
series = {Wiley Classics Library},
note = {reprint of the 1985 original, A Wiley-Interscience Publ.},
publisher = {John Wiley \& Sons, Ltd., Chichester},
year = {1993},
pages = {xii+544},
isbn = {0-471-94109-3},
mrclass = {20C33 (20-02 20G40)},
mrnumber = {1266626},
zblnumber = {0567.20023},
} -
[DeLu]
P. Deligne and G. Lusztig, "Representations of reductive groups over finite fields," Ann. of Math. (2), vol. 103, iss. 1, pp. 103-161, 1976.
@ARTICLE{DeLu,
author = {Deligne, P. and Lusztig, G.},
title = {Representations of reductive groups over finite fields},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {103},
year = {1976},
number = {1},
pages = {103--161},
issn = {0003-486X},
mrclass = {20G05 (14M15)},
mrnumber = {0393266},
mrreviewer = {S. I. Gel\cprime fand},
doi = {10.2307/1971021},
url = {https://doi.org/10.2307/1971021},
zblnumber = {0336.20029},
} -
[aver]
M. Geck, "On the average values of the irreducible characters of finite groups of Lie type on geometric unipotent classes," Doc. Math., vol. 1, p. no. 15, 293-317, 1996.
@ARTICLE{aver,
author = {Geck, Meinolf},
title = {On the average values of the irreducible characters of finite groups of {L}ie type on geometric unipotent classes},
journal = {Doc. Math.},
fjournal = {Documenta Mathematica},
volume = {1},
year = {1996},
pages = {No. 15, 293--317},
issn = {1431-0635},
mrclass = {20G05 (20C33)},
mrnumber = {1418951},
mrreviewer = {Demetris I. Deriziotis},
zblnumber = {0873.20011},
url = {https://www.math.uni-bielefeld.de/documenta/vol-01/15.html},
} -
[first]
M. Geck, "A first guide to the character theory of finite groups of Lie type," in Local representation theory and simple groups, Eur. Math. Soc., Zürich, 2018, pp. 63-106.
@INCOLLECTION{first,
author = {Geck, Meinolf},
title = {A first guide to the character theory of finite groups of {L}ie type},
booktitle = {Local representation theory and simple groups},
series = {EMS Ser. Lect. Math.},
pages = {63--106},
publisher = {Eur. Math. Soc., Zürich},
year = {2018},
mrclass = {20C33 (20C15 20G05)},
mrnumber = {3821138},
mrreviewer = {Jay Taylor},
zblnumber = {1430.20014},
doi = {10.4171/185-1/3},
url = {https://doi.org/10.4171/185-1/3},
} -
[pbad]
M. Geck, "On the values of unipotent characters in bad characteristic," Rend. Semin. Mat. Univ. Padova, vol. 141, pp. 37-63, 2019.
@ARTICLE{pbad,
author = {Geck, Meinolf},
title = {On the values of unipotent characters in bad characteristic},
journal = {Rend. Semin. Mat. Univ. Padova},
fjournal = {Rendiconti del Seminario Matematico della Università di Padova},
volume = {141},
year = {2019},
pages = {37--63},
issn = {0041-8994},
mrclass = {20C33 (20G40)},
mrnumber = {3962820},
mrreviewer = {Gerhard Hiss},
doi = {10.4171/RSMUP/14},
url = {https://doi.org/10.4171/RSMUP/14},
zblnumber = {07083123},
} -
@MISC{small,
author = {Geck, Meinolf},
title = {Computing {G}reen functions in small characteristic},
note = {\emph{J. Algebra} (2020), available online 15 January 2020},
doi = {10.1016/j.jalgebra.2019.12.016},
zblnumber = {},
sortyear={2020},
} -
[GKP]
M. Geck, S. Kim, and G. Pfeiffer, "Minimal length elements in twisted conjugacy classes of finite Coxeter groups," J. Algebra, vol. 229, iss. 2, pp. 570-600, 2000.
@ARTICLE{GKP,
author = {Geck, Meinolf and Kim, Sungsoon and Pfeiffer, Götz},
title = {Minimal length elements in twisted conjugacy classes of finite {C}oxeter groups},
journal = {J. Algebra},
fjournal = {Journal of Algebra},
volume = {229},
year = {2000},
number = {2},
pages = {570--600},
issn = {0021-8693},
mrclass = {20F55 (20C08 20E45)},
mrnumber = {1769289},
mrreviewer = {Andrew R. Francis},
doi = {10.1006/jabr.1999.8253},
url = {https://doi.org/10.1006/jabr.1999.8253},
zblnumber = {1042.20026},
} -
[Glau]
G. Glauberman, "Correspondences of characters for relatively prime operator groups," Canadian J. Math., vol. 20, pp. 1465-1488, 1968.
@ARTICLE{Glau,
author = {Glauberman, George},
title = {Correspondences of characters for relatively prime operator groups},
journal = {Canadian J. Math.},
fjournal = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
volume = {20},
year = {1968},
pages = {1465--1488},
issn = {0008-414X},
mrclass = {20.80},
mrnumber = {0232866},
mrreviewer = {I. M. Isaacs},
doi = {10.4153/CJM-1968-148-x},
url = {https://doi.org/10.4153/CJM-1968-148-x},
zblnumber = {0167.02602},
} -
[HaTu]
B. Hartley and A. Turull, "On characters of coprime operator groups and the Glauberman character correspondence," J. Reine Angew. Math., vol. 451, pp. 175-219, 1994.
@ARTICLE{HaTu,
author = {Hartley, Brian and Turull, Alexandre},
title = {On characters of coprime operator groups and the {G}lauberman character correspondence},
journal = {J. Reine Angew. Math.},
fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
volume = {451},
year = {1994},
pages = {175--219},
issn = {0075-4102},
mrclass = {20C15},
mrnumber = {1277300},
mrreviewer = {I. M. Isaacs},
zblnumber = {0797.20007},
doi = {10.1515/crll.1994.451.175},
url = {https://doi.org/10.1515/crll.1994.451.175},
} -
[LiSe]
M. W. Liebeck and G. M. Seitz, Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras, Amer. Math. Soc., Providence, RI, 2012, vol. 180.
@BOOK{LiSe,
author = {Liebeck, Martin W. and Seitz, Gary M.},
title = {Unipotent and Nilpotent Classes in Simple Algebraic Groups and {L}ie Algebras},
series = {Math. Surveys Monogr.},
volume = {180},
publisher = {Amer. Math. Soc., Providence, RI},
year = {2012},
pages = {xii+380},
isbn = {978-0-8218-6920-8},
mrclass = {20G15 (17B08)},
mrnumber = {2883501},
mrreviewer = {Jorge A. Vargas},
doi = {10.1090/surv/180},
url = {https://doi.org/10.1090/surv/180},
zblnumber = {1251.20001},
} -
[cbms]
G. Lusztig, Representations of Finite Chevalley Groups, Amer. Math. Soc., Providence, R.I., 1978, vol. 39.
@BOOK{cbms,
author = {Lusztig, George},
title = {Representations of Finite {C}hevalley Groups},
series = {CBMS Reg. Conf. Ser. Math.},
volume = {39},
titlenote = {({e}xpository lectures from the CBMS Regional Conference held at Madison, Wis., August 8--12, 1977)},
publisher = {Amer. Math. Soc., Providence, R.I.},
year = {1978},
pages = {v+48},
isbn = {0-8218-1689-6},
mrclass = {20G05},
mrnumber = {0518617},
mrreviewer = {David B. Surowski},
zblnumber = {0418.20037},
doi = {10.1090/cbms/039},
url = {https://doi.org/10.1090/cbms/039},
} -
[L1]
G. Lusztig, Characters of Reductive Groups over a Finite Field, Princeton Univ. Press, Princeton, NJ, 1984, vol. 107.
@BOOK{L1,
author = {Lusztig, George},
title = {Characters of Reductive Groups over a Finite Field},
series = {Ann. of Math. Stud.},
volume = {107},
publisher = {Princeton Univ. Press, Princeton, NJ},
year = {1984},
pages = {xxi+384},
isbn = {0-691-08350-9; 0-691-08351-7},
mrclass = {20G05 (14L20 20C15)},
mrnumber = {0742472},
mrreviewer = {Bhama Srinivasan},
doi = {10.1515/9781400881772},
url = {https://doi.org/10.1515/9781400881772},
zblnumber = {0556.20033},
} -
[LuIC]
G. Lusztig, "Intersection cohomology complexes on a reductive group," Invent. Math., vol. 75, iss. 2, pp. 205-272, 1984.
@ARTICLE{LuIC,
author = {Lusztig, George},
title = {Intersection cohomology complexes on a reductive group},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {75},
year = {1984},
number = {2},
pages = {205--272},
issn = {0020-9910},
mrclass = {20G05 (20C30 20G10 20G40)},
mrnumber = {0732546},
mrreviewer = {Toshiaki Shoji},
doi = {10.1007/BF01388564},
url = {https://doi.org/10.1007/BF01388564},
zblnumber = {0547.20032},
} -
@ARTICLE{L2a,
author = {Lusztig, George},
title = {Character sheaves. {I}},
journal = {Adv. in Math.},
fjournal = {Advances in Mathematics},
volume = {56},
year = {1985},
number = {3},
pages = {193--237},
issn = {0001-8708},
mrclass = {20G05 (32C38)},
mrnumber = {0792706},
mrreviewer = {Bhama Srinivasan},
doi = {10.1016/0001-8708(85)90034-9},
url = {https://doi.org/10.1016/0001-8708(85)90034-9},
zblnumber = {0586.20018},
} -
@ARTICLE{L2b,
author = {Lusztig, George},
title = {Character sheaves. {II}},
journal = {Adv. in Math.},
fjournal = {Advances in Mathematics},
volume = {57},
year = {1985},
number = {3},
pages = {226--265},
issn = {0001-8708},
mrclass = {20G05 (22E47)},
mrnumber = {0806210},
mrreviewer = {Bhama Srinivasan},
doi = {10.1016/0001-8708(85)90064-7},
url = {https://doi.org/10.1016/0001-8708(85)90064-7},
zblnumber = {0586.20019},
} -
@ARTICLE{L2c,
author = {Lusztig, George},
title = {Character sheaves. {III}},
journal = {Adv. in Math.},
fjournal = {Advances in Mathematics},
volume = {57},
year = {1985},
number = {3},
pages = {266--315},
issn = {0001-8708},
mrclass = {20G05 (22E47)},
mrnumber = {0806210},
mrreviewer = {Bhama Srinivasan},
doi = {10.1016/0001-8708(85)90064-7},
url = {https://doi.org/10.1016/0001-8708(85)90065-9},
zblnumber = {0594.20031},
} -
@ARTICLE{L2d,
author = {Lusztig, George},
title = {Character sheaves. {IV}},
journal = {Adv. in Math.},
fjournal = {Advances in Mathematics},
volume = {59},
year = {1986},
number = {1},
pages = {1--63},
issn = {0001-8708},
mrclass = {20G05 (22E47)},
mrnumber = {0825086},
mrreviewer = {Bhama Srinivasan},
doi = {10.1016/0001-8708(86)90036-8},
url = {https://doi.org/10.1016/0001-8708(86)90036-8},
zblnumber = {0602.20035},
} -
@ARTICLE{L2e,
author = {Lusztig, George},
title = {Character sheaves. {V}},
journal = {Adv. in Math.},
fjournal = {Advances in Mathematics},
volume = {61},
year = {1986},
number = {2},
pages = {103--155},
issn = {0001-8708},
mrclass = {20G05 (22E47)},
mrnumber = {0849848},
mrreviewer = {Bhama Srinivasan},
doi = {10.1016/0001-8708(86)90071-X},
url = {https://doi.org/10.1016/0001-8708(86)90071-X},
zblnumber = {0602.20036},
} -
[L5]
G. Lusztig, "Green functions and character sheaves," Ann. of Math. (2), vol. 131, iss. 2, pp. 355-408, 1990.
@ARTICLE{L5,
author = {Lusztig, George},
title = {Green functions and character sheaves},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {131},
year = {1990},
number = {2},
pages = {355--408},
issn = {0003-486X},
mrclass = {20G05},
mrnumber = {1043271},
mrreviewer = {Bhama Srinivasan},
doi = {10.2307/1971496},
url = {https://doi.org/10.2307/1971496},
zblnumber = {0695.20024},
} -
[Ldisc4]
G. Lusztig, "Character sheaves on disconnected groups. IV," Represent. Theory, vol. 8, pp. 145-178, 2004.
@ARTICLE{Ldisc4,
author = {Lusztig, George},
title = {Character sheaves on disconnected groups. {IV}},
journal = {Represent. Theory},
fjournal = {Representation Theory. An Electronic Journal of the Amer. Math. Soc.},
volume = {8},
year = {2004},
pages = {145--178},
mrclass = {20G99 (20G05 22E40)},
mrnumber = {2048590},
mrreviewer = {Jean Michel},
doi = {10.1090/S1088-4165-04-00240-7},
url = {https://doi.org/10.1090/S1088-4165-04-00240-7},
zblnumber = {1075.20013},
} -
[L10]
G. Lusztig, "On the cleanness of cuspidal character sheaves," Mosc. Math. J., vol. 12, iss. 3, pp. 621-631, 669, 2012.
@ARTICLE{L10,
author = {Lusztig, George},
title = {On the cleanness of cuspidal character sheaves},
journal = {Mosc. Math. J.},
fjournal = {Moscow Mathematical Journal},
volume = {12},
year = {2012},
number = {3},
pages = {621--631, 669},
issn = {1609-3321},
mrclass = {20G05},
mrnumber = {3024826},
mrreviewer = {Bhama Srinivasan},
doi = {10.17323/1609-4514-2012-12-3-621-631},
url = {https://doi.org/10.17323/1609-4514-2012-12-3-621-631},
zblnumber = {1263.20044},
} -
[Miz2]
K. Mizuno, "The conjugate classes of unipotent elements of the Chevalley groups $E_{7}$ and $E_{8}$," Tokyo J. Math., vol. 3, iss. 2, pp. 391-461, 1980.
@ARTICLE{Miz2,
author = {Mizuno, Kenzo},
title = {The conjugate classes of unipotent elements of the {C}hevalley groups {$E\sb{7}$} and {$E\sb{8}$}},
journal = {Tokyo J. Math.},
fjournal = {Tokyo Journal of Mathematics},
volume = {3},
year = {1980},
number = {2},
pages = {391--461},
issn = {0387-3870},
mrclass = {20G05 (20G40)},
mrnumber = {0605099},
mrreviewer = {James F. Hurley},
doi = {10.3836/tjm/1270473003},
url = {https://doi.org/10.3836/tjm/1270473003},
zblnumber = {0454.20046},
} -
[S1] T. Shoji, "Green functions of reductive groups over a finite field," in The Arcata Conference on Representations of Finite Groups, Amer. Math. Soc., Providence, RI, 1987, vol. 47, pp. 289-301.
@INCOLLECTION{S1,
author = {Shoji, Toshiaki},
title = {Green functions of reductive groups over a finite field},
booktitle = {The {A}rcata {C}onference on {R}epresentations of {F}inite {G}roups},
venue = {{A}rcata, {C}alif., 1986},
series = {Proc. Sympos. Pure Math.},
volume = {47},
pages = {289--301},
publisher = {Amer. Math. Soc., Providence, RI},
year = {1987},
mrclass = {20C15 (20G05 20G40)},
mrnumber = {0933366},
mrreviewer = {Naohisa Shimomura},
zblnumber = {0648.20047},
} -
[S2]
T. Shoji, "Character sheaves and almost characters of reductive groups. I," Adv. Math., vol. 111, iss. 2, pp. 244-313, 1995.
@ARTICLE{S2,
author = {Shoji, Toshiaki},
title = {Character sheaves and almost characters of reductive groups. {I}},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {111},
year = {1995},
number = {2},
pages = {244--313},
issn = {0001-8708},
mrclass = {20G05},
mrnumber = {1318530},
mrreviewer = {Bhama Srinivasan},
doi = {10.1006/aima.1995.1024},
url = {https://doi.org/10.1006/aima.1995.1024},
zblnumber = {0832.20065},
} -
[S3]
T. Shoji, "Character sheaves and almost characters of reductive groups. II," Adv. Math., vol. 111, iss. 2, pp. 314-354, 1995.
@ARTICLE{S3,
author = {Shoji, Toshiaki},
title = {Character sheaves and almost characters of reductive groups. {II}},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {111},
year = {1995},
number = {2},
pages = {314--354},
issn = {0001-8708},
mrclass = {20G05},
mrnumber = {1318530},
mrreviewer = {Bhama Srinivasan},
doi = {10.1006/aima.1995.1024},
url = {https://doi.org/10.1006/aima.1995.1024},
zblnumber = {0832.20065},
} -
[S6a]
T. Shoji, "Generalized Green functions and unipotent classes for finite reductive groups. I," Nagoya Math. J., vol. 184, pp. 155-198, 2006.
@ARTICLE{S6a,
author = {Shoji, Toshiaki},
title = {Generalized {G}reen functions and unipotent classes for finite reductive groups. {I}},
journal = {Nagoya Math. J.},
fjournal = {Nagoya Mathematical Journal},
volume = {184},
year = {2006},
pages = {155--198},
issn = {0027-7630},
mrclass = {20G05 (20G40)},
mrnumber = {2285233},
mrreviewer = {Bhama Srinivasan},
doi = {10.1017/S0027763000009338},
url = {https://doi.org/10.1017/S0027763000009338},
zblnumber = {1128.20033},
} -
[S6]
T. Shoji, "Generalized Green functions and unipotent classes for finite reductive groups. II," Nagoya Math. J., vol. 188, pp. 133-170, 2007.
@ARTICLE{S6,
author = {Shoji, Toshiaki},
title = {Generalized {G}reen functions and unipotent classes for finite reductive groups. {II}},
journal = {Nagoya Math. J.},
fjournal = {Nagoya Mathematical Journal},
volume = {188},
year = {2007},
pages = {133--170},
issn = {0027-7630},
mrclass = {20G40 (20G05)},
mrnumber = {2371771},
mrreviewer = {Bhama Srinivasan},
doi = {10.1017/S0027763000009478},
url = {https://doi.org/10.1017/S0027763000009478},
zblnumber = {1133.20036},
} -
[S7]
T. Shoji, "Generalized Green functions associated to complex reflection groups," J. Algebra, vol. 558, pp. 677-707, 2020.
@ARTICLE{S7,
author = {Shoji, Toshiaki},
title = {Generalized {G}reen functions associated to complex reflection groups},
journal = {J. Algebra},
fjournal = {Journal of Algebra},
volume = {558},
year = {2020},
pages = {677--707},
issn = {0021-8693},
mrclass = {20C30 (05E05 20F55)},
mrnumber = {4102108},
doi = {10.1016/j.jalgebra.2019.04.020},
url = {https://doi.org/10.1016/j.jalgebra.2019.04.020},
zblnumber = {07203078},
} -
[St68]
R. Steinberg, Endomorphisms of Linear Algebraic Groups, Amer. Math. Soc., Providence, R.I., 1968, vol. 80.
@BOOK{St68,
author = {Steinberg, Robert},
title = {Endomorphisms of Linear Algebraic Groups},
series = {Mem. Amer. Math. Soc.},
volume = {80},
publisher = {Amer. Math. Soc., Providence, R.I.},
year = {1968},
pages = {108},
mrclass = {14.50 (22.00)},
mrnumber = {0230728},
mrreviewer = {E. Abe},
zblnumber = {0164.02902},
doi = {10.1090/memo/0080},
url = {https://doi.org/10.1090/memo/0080},
} -
[Tay]
J. Taylor, "On unipotent supports of reductive groups with a disconnected centre," J. Algebra, vol. 391, pp. 41-61, 2013.
@ARTICLE{Tay,
author = {Taylor, Jay},
title = {On unipotent supports of reductive groups with a disconnected centre},
journal = {J. Algebra},
fjournal = {Journal of Algebra},
volume = {391},
year = {2013},
pages = {41--61},
issn = {0021-8693},
mrclass = {20C33 (20G40)},
mrnumber = {3081621},
mrreviewer = {Luca Giuzzi},
doi = {10.1016/j.jalgebra.2013.06.004},
url = {https://doi.org/10.1016/j.jalgebra.2013.06.004},
zblnumber = {1286.20060},
}