Uniform Manin-Mumford for a family of genus 2 curves

Abstract

We introduce a general strategy for proving quantitative and uniform bounds on the number of common points of height zero for a pair of inequivalent height functions on $\mathbb {P}^1(\overline {\mathbb {Q}}).$ We apply this strategy to prove a conjecture of Bogomolov, Fu, and Tschinkel asserting uniform bounds on the number of common torsion points of elliptic curves in the case of two Legendre curves over $\mathbb {C}$. As a consequence, we obtain two uniform bounds for a two-dimensional family of genus 2 curves: a uniform Manin-Mumford bound for the family over $\mathbb {C}$, and a uniform Bogomolov bound for the family over $\overline {\mathbb {Q}}.$

Authors

Laura DeMarco

Northwestern University, Evanston, IL, USA

Holly Krieger

University of Cambridge, Cambridge, UK

Hexi Ye

Zhejiang University, Hangzhou, China