On the $K$-theory of pullbacks

Abstract

To any pullback square of ring spectra we associate a new ring spectrum and use it to describe the failure of excision in algebraic $K$-theory. The construction of this new ring spectrum is categorical and hence allows us to determine the failure of excision for any localizing invariant in place of $K$-theory.

As immediate consequences we obtain an improved version of Suslin’s excision result in $K$-theory, generalizations of results of Geisser and Hesselholt on torsion in (bi)relative $K$-groups, and a generalized version of pro-excision for $K$-theory. Furthermore, we show that any truncating invariant satisfies excision, nilinvariance, and cdh-descent. Examples of truncating invariants include the fibre of the cyclotomic trace, the fibre of the rational Goodwillie–Jones Chern character, periodic cyclic homology in characteristic zero, and homotopy $K$-theory.

Various of the results we obtain have been known previously, though most of them in weaker forms and with less direct proofs.

  • [AHW] Go to document A. Asok, M. Hoyois, and M. Wendt, "Affine representability results in $\Bbb A^1$-homotopy theory, I: Vector bundles," Duke Math. J., vol. 166, iss. 10, pp. 1923-1953, 2017.
    @ARTICLE{AHW,
      author = {Asok, Aravind and Hoyois, Marc and Wendt, Matthias},
      title = {Affine representability results in {$\Bbb A^1$}-homotopy theory, {I}: {V}ector bundles},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {166},
      year = {2017},
      number = {10},
      pages = {1923--1953},
      issn = {0012-7094},
      mrclass = {14F42 (55R15)},
      mrnumber = {3679884},
      mrreviewer = {Kyle M. Ormsby},
      doi = {10.1215/00127094-0000014X},
      url = {https://doi.org/10.1215/00127094-0000014X},
      zblnumber = {1401.14118},
      }
  • [Andre] Go to document M. André, Homologie des Algèbres Commutatives, Springer-Verlag, New York, 1974, vol. 206.
    @BOOK{Andre,
      author = {André,
      Michel},
      title = {Homologie des Algèbres Commutatives},
      series = {Grundlehren Math. Wiss.},
      volume = {206},
      publisher = {Springer-Verlag, New York},
      year = {1974},
      pages = {xv+341},
      mrclass = {18H20 (14D15 13DXX 12GXX)},
      mrnumber = {0352220},
      mrreviewer = {R. M. Fossum},
      zblnumber = {0284.18009},
      doi = {10.1007/978-3-642-51449-4},
      url = {https://doi.org/10.1007/978-3-642-51449-4},
      }
  • [AR] Go to document C. Ausoni and J. Rognes, "Rational algebraic $K$-theory of topological $K$-theory," Geom. Topol., vol. 16, iss. 4, pp. 2037-2065, 2012.
    @ARTICLE{AR,
      author = {Ausoni, Christian and Rognes, John},
      title = {Rational algebraic {$K$}-theory of topological {$K$}-theory},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {16},
      year = {2012},
      number = {4},
      pages = {2037--2065},
      issn = {1465-3060},
      mrclass = {19Lxx},
      mrnumber = {2975299},
      mrreviewer = {Carla Farsi},
      doi = {10.2140/gt.2012.16.2037},
      url = {https://doi.org/10.2140/gt.2012.16.2037},
      zblnumber = {1260.19004},
      }
  • [Bass] H. Bass, Algebraic $K$-Theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
    @BOOK{Bass,
      author = {Bass, Hyman},
      title = {Algebraic {$K$}-Theory},
      publisher = {W. A. Benjamin, Inc., New York-Amsterdam},
      year = {1968},
      pages = {xx+762},
      mrclass = {18.20},
      mrnumber = {0249491},
      mrreviewer = {A. Heller},
      zblnumber = {0174.30302},
      }
  • [BousfieldFriedlander] Go to document A. K. Bousfield and E. M. Friedlander, "Homotopy theory of $\Gamma $-spaces, spectra, and bisimplicial sets," in Geometric Applications of Homotopy Theory, II, Springer, Berlin, 1978, vol. 658, pp. 80-130.
    @INCOLLECTION{BousfieldFriedlander,
      author = {Bousfield, A. K. and Friedlander, E. M.},
      title = {Homotopy theory of {$\Gamma $}-spaces, spectra, and bisimplicial sets},
      booktitle = {Geometric Applications of Homotopy Theory, {II}},
      venue = {{P}roc. {C}onf., {E}vanston, {IL},
      1977},
      series = {Lecture Notes in Math.},
      volume = {658},
      pages = {80--130},
      publisher = {Springer, Berlin},
      year = {1978},
      mrclass = {55P65 (55P42)},
      mrnumber = {0513569},
      mrreviewer = {D. W. Anderson},
      zblnumber = {0405.55021},
      doi = {10.1007/BFb0068711},
      url = {https://doi.org/10.1007/BFb0068711},
      }
  • [BGT] Go to document A. J. Blumberg, D. Gepner, and G. Tabuada, "A universal characterization of higher algebraic $K$-theory," Geom. Topol., vol. 17, iss. 2, pp. 733-838, 2013.
    @ARTICLE{BGT,
      author = {Blumberg, Andrew J. and Gepner, David and Tabuada, Gonçalo},
      title = {A universal characterization of higher algebraic {$K$}-theory},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {17},
      year = {2013},
      number = {2},
      pages = {733--838},
      issn = {1465-3060},
      mrclass = {19D10 (18D20 19D25 19D55 55N15 55U40)},
      mrnumber = {3070515},
      mrreviewer = {Ross Staffeldt},
      doi = {10.2140/gt.2013.17.733},
      url = {https://doi.org/10.2140/gt.2013.17.733},
      zblnumber = {1267.19001},
      }
  • [BM] Go to document A. J. Blumberg and M. A. Mandell, "Localization theorems in topological Hochschild homology and topological cyclic homology," Geom. Topol., vol. 16, iss. 2, pp. 1053-1120, 2012.
    @ARTICLE{BM,
      author = {Blumberg, Andrew J. and Mandell, Michael A.},
      title = {Localization theorems in topological {H}ochschild homology and topological cyclic homology},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {16},
      year = {2012},
      number = {2},
      pages = {1053--1120},
      issn = {1465-3060},
      mrclass = {19D55 (14F43)},
      mrnumber = {2928988},
      mrreviewer = {Guillermo Corti\~{n}as},
      doi = {10.2140/gt.2012.16.1053},
      url = {https://doi.org/10.2140/gt.2012.16.1053},
      zblnumber = {1282.19004},
      }
  • [MR2415380] Go to document G. Cortiñas, C. Haesemeyer, M. Schlichting, and C. Weibel, "Cyclic homology, cdh-cohomology and negative $K$-theory," Ann. of Math. (2), vol. 167, iss. 2, pp. 549-573, 2008.
    @ARTICLE{MR2415380, key={CHSW08},
      author = {Corti\~{n}as, Guillermo and Haesemeyer, C. and Schlichting, M. and Weibel, C.},
      title = {Cyclic homology, cdh-cohomology and negative {$K$}-theory},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {167},
      year = {2008},
      number = {2},
      pages = {549--573},
      issn = {0003-486X},
      mrclass = {19E08 (14C35)},
      mrnumber = {2415380},
      mrreviewer = {Christian Voigt},
      doi = {10.4007/annals.2008.167.549},
      url = {https://doi.org/10.4007/annals.2008.167.549},
      zblnumber = {1191.19003},
      }
  • [Cisinski] Go to document D. Cisinski, "Descente par éclatements en $K$-théorie invariante par homotopie," Ann. of Math. (2), vol. 177, iss. 2, pp. 425-448, 2013.
    @ARTICLE{Cisinski,
      author = {Cisinski, Denis-Charles},
      title = {Descente par éclatements en {$K$}-théorie invariante par homotopie},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {177},
      year = {2013},
      number = {2},
      pages = {425--448},
      issn = {0003-486X},
      mrclass = {19E08 (14C35)},
      mrnumber = {3010804},
      mrreviewer = {Claudio Pedrini},
      doi = {10.4007/annals.2013.177.2.2},
      url = {https://doi.org/10.4007/annals.2013.177.2.2},
      zblnumber = {1264.19003},
      }
  • [CMM] D. Clausen, A. Mathew, and M. Morrow, $K$-theory and topological cyclic homology of henselian pairs, 2018.
    @MISC{CMM,
      author = {Clausen, D. and Mathew, A. and Morrow, M.},
      title = {{$K$}-theory and topological cyclic homology of henselian pairs},
      arxiv = {1803.10897},
      year = {2018},
      zblnumber = {},
      }
  • [CMNN] D. Clausen, A. Mathew, N. Naumann, and J. Noel, Descent in algebraic K-theory and a conjecture of Ausoni-Rognes, 2016.
    @MISC{CMNN,
      author = {Clausen, D. and Mathew, A. and Naumann, N. and Noel, J.},
      title = {Descent in algebraic \textit{K}-theory and a conjecture of {A}usoni-{R}ognes},
      note = {{\em J. Eur. Math. Soc. (JEMS)},
      to appear},
      arxiv = {1606.03328},
      year={2016},
      }
  • [Cortinas] Go to document G. Cortiñas, "The obstruction to excision in $K$-theory and in cyclic homology," Invent. Math., vol. 164, iss. 1, pp. 143-173, 2006.
    @ARTICLE{Cortinas, key={Cor06},
      author = {Corti\~{n}as, Guillermo},
      title = {The obstruction to excision in {$K$}-theory and in cyclic homology},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {164},
      year = {2006},
      number = {1},
      pages = {143--173},
      issn = {0020-9910},
      mrclass = {19D50 (16E20 18G60 19D55)},
      mrnumber = {2207785},
      mrreviewer = {Charles Weibel},
      doi = {10.1007/s00222-005-0473-9},
      url = {https://doi.org/10.1007/s00222-005-0473-9},
      zblnumber = {1092.19001},
      }
  • [CQ] Go to document J. Cuntz and D. Quillen, "Excision in bivariant periodic cyclic cohomology," Invent. Math., vol. 127, iss. 1, pp. 67-98, 1997.
    @ARTICLE{CQ,
      author = {Cuntz, Joachim and Quillen, Daniel},
      title = {Excision in bivariant periodic cyclic cohomology},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {127},
      year = {1997},
      number = {1},
      pages = {67--98},
      issn = {0020-9910},
      mrclass = {19D55 (46L80 46L85)},
      mrnumber = {1423026},
      mrreviewer = {Jacek Brodzki},
      doi = {10.1007/s002220050115},
      url = {https://doi.org/10.1007/s002220050115},
      zblnumber = {0889.46054},
      }
  • [CortinasThom] Go to document G. Cortiñas and A. Thom, "Bivariant algebraic $K$-theory," J. Reine Angew. Math., vol. 610, pp. 71-123, 2007.
    @ARTICLE{CortinasThom, key={CT07},
      author = {Corti\~{n}as, Guillermo and Thom, Andreas},
      title = {Bivariant algebraic {$K$}-theory},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {610},
      year = {2007},
      pages = {71--123},
      issn = {0075-4102},
      mrclass = {19K35 (19D99 46L80)},
      mrnumber = {2359851},
      mrreviewer = {Christian Voigt},
      doi = {10.1515/CRELLE.2007.068},
      url = {https://doi.org/10.1515/CRELLE.2007.068},
      zblnumber = {1152.19002},
      }
  • [Cuntz] J. Cuntz, "$K$-theory and $C^{\ast} $-algebras," in Algebraic $K$-Theory, Number Theory, Geometry and Analysis, Springer, Berlin, 1984, vol. 1046, pp. 55-79.
    @INCOLLECTION{Cuntz,
      author = {Cuntz, Joachim},
      title = {{$K$}-theory and {$C\sp{\ast} $}-algebras},
      booktitle = {Algebraic {$K$}-Theory, Number Theory, Geometry and Analysis},
      venue = {{B}ielefeld, 1982},
      series = {Lecture Notes in Math.},
      volume = {1046},
      pages = {55--79},
      publisher = {Springer, Berlin},
      year = {1984},
      mrclass = {46L80 (18F25 19K33 46M20 55R50)},
      mrnumber = {0750677},
      mrreviewer = {G. A. Elliott},
      zblnumber = {0548.46056},
      }
  • [DGM] Go to document I. B. Dundas, T. G. Goodwillie, and R. McCarthy, The Local Structure of Algebraic K-Theory, Springer-Verlag London, Ltd., London, 2013, vol. 18.
    @BOOK{DGM,
      author = {Dundas, B. Ian and Goodwillie, Thomas G. and McCarthy, Randy},
      title = {The Local Structure of Algebraic {K}-Theory},
      series = {Algebr. Appl.},
      volume = {18},
      publisher = {Springer-Verlag London, Ltd., London},
      year = {2013},
      pages = {xvi+435},
      isbn = {978-1-4471-4392-5; 978-1-4471-4393-2},
      mrclass = {19-02 (16E40 19D55 55-02 55N99)},
      mrnumber = {3013261},
      mrreviewer = {Charles Weibel},
      zblnumber = {1272.55002},
      doi = {10.1007/978-1-4471-4393-2_1},
      url = {https://doi.org/10.1007/978-1-4471-4393-2_1},
      }
  • [DK1] Go to document B. I. Dundas and H. &. Kittang, "Excision for $K$-theory of connective ring spectra," Homology Homotopy Appl., vol. 10, iss. 1, pp. 29-39, 2008.
    @ARTICLE{DK1,
      author = {Dundas, Bjørn Ian and Kittang, Harald Øyen},
      title = {Excision for {$K$}-theory of connective ring spectra},
      journal = {Homology Homotopy Appl.},
      fjournal = {Homology, Homotopy and Applications},
      volume = {10},
      year = {2008},
      number = {1},
      pages = {29--39},
      issn = {1532-0073},
      mrclass = {19D55 (19D10 55P43)},
      mrnumber = {2369021},
      mrreviewer = {Tyler D. Lawson},
      doi = {10.4310/HHA.2008.v10.n1.a2},
      URL = {https://doi.org/10.4310/HHA.2008.v10.n1.a2},
      zblnumber = {1145.19002},
      }
  • [DK2] Go to document B. I. Dundas and H. &. Kittang, "Integral excision for $K$-theory," Homology Homotopy Appl., vol. 15, iss. 1, pp. 1-25, 2013.
    @ARTICLE{DK2,
      author = {Dundas, Bjørn Ian and Kittang, Harald Øyen},
      title = {Integral excision for {$K$}-theory},
      journal = {Homology Homotopy Appl.},
      fjournal = {Homology, Homotopy and Applications},
      volume = {15},
      year = {2013},
      number = {1},
      pages = {1--25},
      issn = {1532-0073},
      mrclass = {19D55 (55P43)},
      mrnumber = {3031812},
      mrreviewer = {Tyler D. Lawson},
      doi = {10.4310/HHA.2013.v15.n1.a1},
      url = {https://doi.org/10.4310/HHA.2013.v15.n1.a1},
      zblnumber = {1269.19002},
      }
  • [GH] Go to document T. Geisser and L. Hesselholt, "Bi-relative algebraic $K$-theory and topological cyclic homology," Invent. Math., vol. 166, iss. 2, pp. 359-395, 2006.
    @ARTICLE{GH,
      author = {Geisser, Thomas and Hesselholt, Lars},
      title = {Bi-relative algebraic {$K$}-theory and topological cyclic homology},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {166},
      year = {2006},
      number = {2},
      pages = {359--395},
      issn = {0020-9910},
      mrclass = {19D55 (19D50)},
      mrnumber = {2249803},
      mrreviewer = {J. P. C. Greenlees},
      doi = {10.1007/s00222-006-0515-y},
      url = {https://doi.org/10.1007/s00222-006-0515-y},
      zblnumber = {1107.19002},
      }
  • [GH3] Go to document T. Geisser and L. Hesselholt, "On the vanishing of negative $K$-groups," Math. Ann., vol. 348, iss. 3, pp. 707-736, 2010.
    @ARTICLE{GH3,
      author = {Geisser, Thomas and Hesselholt, Lars},
      title = {On the vanishing of negative {$K$}-groups},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {348},
      year = {2010},
      number = {3},
      pages = {707--736},
      issn = {0025-5831},
      mrclass = {19D35 (14C35 19D55)},
      mrnumber = {2677901},
      mrreviewer = {Claudio Pedrini},
      doi = {10.1007/s00208-010-0500-z},
      url = {https://doi.org/10.1007/s00208-010-0500-z},
      zblnumber = {1203.19001},
      }
  • [GH2] Go to document T. Geisser and L. Hesselholt, "On relative and bi-relative algebraic $K$-theory of rings of finite characteristic," J. Amer. Math. Soc., vol. 24, iss. 1, pp. 29-49, 2011.
    @ARTICLE{GH2,
      author = {Geisser, Thomas and Hesselholt, Lars},
      title = {On relative and bi-relative algebraic {$K$}-theory of rings of finite characteristic},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {24},
      year = {2011},
      number = {1},
      pages = {29--49},
      issn = {0894-0347},
      mrclass = {19D55 (18G50)},
      mrnumber = {2726598},
      mrreviewer = {Christian Voigt},
      doi = {10.1090/S0894-0347-2010-00682-0},
      url = {https://doi.org/10.1090/S0894-0347-2010-00682-0},
      zblnumber = {1247.19003},
      }
  • [Goodwillie2] Go to document T. G. Goodwillie, "Cyclic homology, derivations, and the free loopspace," Topology, vol. 24, iss. 2, pp. 187-215, 1985.
    @ARTICLE{Goodwillie2,
      author = {Goodwillie, Thomas G.},
      title = {Cyclic homology, derivations, and the free loopspace},
      journal = {Topology},
      fjournal = {Topology. An International Journal of Mathematics},
      volume = {24},
      year = {1985},
      number = {2},
      pages = {187--215},
      issn = {0040-9383},
      mrclass = {18F25 (18G15 19D55 55P35)},
      mrnumber = {0793184},
      mrreviewer = {Ross Staffeldt},
      doi = {10.1016/0040-9383(85)90055-2},
      url = {https://doi.org/10.1016/0040-9383(85)90055-2},
      zblnumber = {0569.16021},
      }
  • [Goodwillie] Go to document T. G. Goodwillie, "Relative algebraic $K$-theory and cyclic homology," Ann. of Math. (2), vol. 124, iss. 2, pp. 347-402, 1986.
    @ARTICLE{Goodwillie,
      author = {Goodwillie, Thomas G.},
      title = {Relative algebraic {$K$}-theory and cyclic homology},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {124},
      year = {1986},
      number = {2},
      pages = {347--402},
      issn = {0003-486X},
      mrclass = {18F25 (19D55 19E20 55P35)},
      mrnumber = {0855300},
      mrreviewer = {V. P. Snaith},
      doi = {10.2307/1971283},
      url = {https://doi.org/10.2307/1971283},
      zblnumber = {0627.18004},
      }
  • [Haesemeyer] Go to document C. Haesemeyer, "Descent properties of homotopy $K$-theory," Duke Math. J., vol. 125, iss. 3, pp. 589-620, 2004.
    @ARTICLE{Haesemeyer,
      author = {Haesemeyer, Christian},
      title = {Descent properties of homotopy {$K$}-theory},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {125},
      year = {2004},
      number = {3},
      pages = {589--620},
      issn = {0012-7094},
      mrclass = {19D35 (14E15 19E08)},
      mrnumber = {2166754},
      mrreviewer = {Claudio Pedrini},
      doi = {10.1215/S0012-7094-04-12534-5},
      url = {https://doi.org/10.1215/S0012-7094-04-12534-5},
      zblnumber = {1079.19001},
      }
  • [HM] Go to document L. Hesselholt and I. Madsen, "Cyclic polytopes and the $K$-theory of truncated polynomial algebras," Invent. Math., vol. 130, iss. 1, pp. 73-97, 1997.
    @ARTICLE{HM,
      author = {Hesselholt, Lars and Madsen, Ib},
      title = {Cyclic polytopes and the {$K$}-theory of truncated polynomial algebras},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {130},
      year = {1997},
      number = {1},
      pages = {73--97},
      issn = {0020-9910},
      mrclass = {19D55 (19D50 55N15)},
      mrnumber = {1471886},
      mrreviewer = {Jerry Lodder},
      doi = {10.1007/s002220050178},
      url = {https://doi.org/10.1007/s002220050178},
      zblnumber = {0884.19004},
      }
  • [Hoyois] M. Hoyois, The homotopy fixed points of the circle action on Hochschild homology, 2015.
    @MISC{Hoyois,
      author = {Hoyois, M.},
      title = {The homotopy fixed points of the circle action on {H}ochschild homology},
      arxiv = {1506.07123},
      year = {2015},
      zblnumber = {},
      }
  • [OWR-TC] Go to document L. Hesselholt and P. Scholze, "Topological cyclic homology," Oberwolfach Rep., vol. 15, iss. 2, pp. 805-940, 2018.
    @ARTICLE{OWR-TC,
      author = {Hesselholt, Lars and Scholze, P.},
      title = {{T}opological cyclic homology},
      journal = {Oberwolfach Rep.},
      fjournal = {Oberwolfach Reports},
      volume = {15},
      year = {2018},
      number = {2},
      pages = {805--940},
      issn = {1660-8933},
      mrclass = {19D55 (14F30 19D50)},
      mrnumber = {3941522},
      doi = {10.4171/OWR/2018/15},
      url = {https://doi.org/10.4171/OWR/2018/15},
      zblnumber = {1409.00093},
      }
  • [HoyoisScherotzkeSibilla] Go to document M. Hoyois, S. Scherotzke, and N. Sibilla, "Higher traces, noncommutative motives, and the categorified Chern character," Adv. Math., vol. 309, pp. 97-154, 2017.
    @ARTICLE{HoyoisScherotzkeSibilla,
      author = {Hoyois, Marc and Scherotzke, Sarah and Sibilla, Nicolò},
      title = {Higher traces, noncommutative motives, and the categorified {C}hern character},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {309},
      year = {2017},
      pages = {97--154},
      issn = {0001-8708},
      mrclass = {14F05 (14F42 18D05 19D55)},
      mrnumber = {3607274},
      mrreviewer = {Satoshi Mochizuki},
      doi = {10.1016/j.aim.2017.01.008},
      url = {https://doi.org/10.1016/j.aim.2017.01.008},
      zblnumber = {1361.14014},
      }
  • [MR1828474] Go to document D. C. Isaksen, "A model structure on the category of pro-simplicial sets," Trans. Amer. Math. Soc., vol. 353, iss. 7, pp. 2805-2841, 2001.
    @ARTICLE{MR1828474,
      author = {Isaksen, Daniel C.},
      title = {A model structure on the category of pro-simplicial sets},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {353},
      year = {2001},
      number = {7},
      pages = {2805--2841},
      issn = {0002-9947},
      mrclass = {18G55 (55P55 55U35)},
      mrnumber = {1828474},
      mrreviewer = {Donald M. Davis},
      doi = {10.1090/S0002-9947-01-02722-2},
      url = {https://doi.org/10.1090/S0002-9947-01-02722-2},
      zblnumber = {0978.55014},
      }
  • [Karoubi-ai] Go to document M. Karoubi, "Localisation de formes quadratiques. I, II," Ann. Sci. École Norm. Sup. (4), vol. 7, pp. 359-403 (1975); ibid. (4) 8 (1975), 99, 1974.
    @ARTICLE{Karoubi-ai,
      author = {Karoubi, Max},
      title = {Localisation de formes quadratiques. {I},
      {II}},
      journal = {Ann. Sci. \'{E}cole Norm. Sup. (4)},
      fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
      volume = {7},
      year = {1974},
      pages = {359--403 (1975); ibid. (4) 8 (1975), 99--155},
      issn = {0012-9593},
      mrclass = {18F25 (10C05)},
      mrnumber = {0384894},
      mrreviewer = {Horst Pfeuffer},
      zblnumber = {0325.18011},
      doi = {10.24033/asens.1273},
      url = {https://doi.org/10.24033/asens.1273},
      }
  • [Keller] Go to document B. Keller, "On the cyclic homology of exact categories," J. Pure Appl. Algebra, vol. 136, iss. 1, pp. 1-56, 1999.
    @ARTICLE{Keller,
      author = {Keller, Bernhard},
      title = {On the cyclic homology of exact categories},
      journal = {J. Pure Appl. Algebra},
      fjournal = {Journal of Pure and Applied Algebra},
      volume = {136},
      year = {1999},
      number = {1},
      pages = {1--56},
      issn = {0022-4049},
      mrclass = {18G60 (18E10)},
      mrnumber = {1667558},
      mrreviewer = {Teimuraz Pirashvili},
      doi = {10.1016/S0022-4049(97)00152-7},
      url = {https://doi.org/10.1016/S0022-4049(97)00152-7},
      zblnumber = {0923.19004},
      }
  • [Khan] A. Khan, Descent by quasi-smooth blow-ups in algebraic $K$-theory, 2018.
    @MISC{Khan,
      author = {Khan, A.},
      title = {Descent by quasi-smooth blow-ups in algebraic {$K$}-theory},
      arxiv = {1810.12858},
      year = {2018},
      zblnumber = {},
      }
  • [KST] Go to document M. Kerz, F. Strunk, and G. Tamme, "Algebraic $K$-theory and descent for blow-ups," Invent. Math., vol. 211, iss. 2, pp. 523-577, 2018.
    @ARTICLE{KST,
      author = {Kerz, Moritz and Strunk, Florian and Tamme, Georg},
      title = {Algebraic {$K$}-theory and descent for blow-ups},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {211},
      year = {2018},
      number = {2},
      pages = {523--577},
      issn = {0020-9910},
      mrclass = {14C35 (19D35)},
      mrnumber = {3748313},
      mrreviewer = {Christoph Winges},
      doi = {10.1007/s00222-017-0752-2},
      url = {https://doi.org/10.1007/s00222-017-0752-2},
      zblnumber = {1391.19007},
      }
  • [LurieHTT] Go to document J. Lurie, Higher Topos Theory, Princeton Univ. Press, Princeton, NJ, 2009, vol. 170.
    @BOOK{LurieHTT,
      author = {Lurie, Jacob},
      title = {Higher Topos Theory},
      series = {Ann. of Math. Stud.},
      volume = {170},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {2009},
      pages = {xviii+925},
      isbn = {978-0-691-14049-0; 0-691-14049-9},
      mrclass = {18-02 (18B25 18E35 18G30 18G55 55U40)},
      mrnumber = {2522659},
      mrreviewer = {Mark Hovey},
      doi = {10.1515/9781400830558},
      url = {https://doi.org/10.1515/9781400830558},
      zblnumber = {1175.18001},
      }
  • [LurieHA] J. Lurie, Higher algebra, 2017.
    @MISC{LurieHA,
      author = {Lurie, Jacob},
      title = {Higher algebra},
      note = {available at the author's homepage},
      year = {2017},
      }
  • [LurieSAG] J. Lurie, Spectral algebraic geometry, 2018.
    @MISC{LurieSAG,
      author = {Lurie, Jacob},
      title = {Spectral algebraic geometry},
      note = {available at the author's homepage},
      year = {2018},
      }
  • [Milne] Go to document J. S. Milne, Étale Cohomology, Princeton Univ. Press, Princeton, N.J., 1980, vol. 33.
    @BOOK{Milne,
      author = {Milne, James S.},
      title = {\'{E}tale Cohomology},
      series = {Princeton Math. Ser.},
      volume = {33},
      publisher = {Princeton Univ. Press, Princeton, N.J.},
      year = {1980},
      pages = {xiii+323},
      isbn = {0-691-08238-3},
      mrclass = {14-02 (14F20 18F99)},
      mrnumber = {0559531},
      mrreviewer = {G. Horrocks},
      zblnumber = {0433.14012},
      doi = {10.1515/9781400883981},
      url = {https://doi.org/10.1515/9781400883981},
      }
  • [Mor] Go to document M. Morrow, "Pro CDH-descent for cyclic homology and $K$-theory," J. Inst. Math. Jussieu, vol. 15, iss. 3, pp. 539-567, 2016.
    @ARTICLE{Mor,
      author = {Morrow, Matthew},
      title = {Pro {CDH}-descent for cyclic homology and {$K$}-theory},
      journal = {J. Inst. Math. Jussieu},
      fjournal = {Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l'Institut de Mathématiques de Jussieu},
      volume = {15},
      year = {2016},
      number = {3},
      pages = {539--567},
      issn = {1474-7480},
      mrclass = {19D55 (13D03 14F45)},
      mrnumber = {3505658},
      mrreviewer = {Jerry Lodder},
      doi = {10.1017/S1474748014000413},
      url = {https://doi.org/10.1017/S1474748014000413},
      zblnumber = {1366.19005},
      }
  • [Morrow-pro-unitality] Go to document M. Morrow, "Pro unitality and pro excision in algebraic $K$-theory and cyclic homology," J. Reine Angew. Math., vol. 736, pp. 95-139, 2018.
    @ARTICLE{Morrow-pro-unitality,
      author = {Morrow, Matthew},
      title = {Pro unitality and pro excision in algebraic {$K$}-theory and cyclic homology},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {736},
      year = {2018},
      pages = {95--139},
      issn = {0075-4102},
      mrclass = {19D55 (18G15 18G60)},
      mrnumber = {3769987},
      mrreviewer = {Charles Weibel},
      doi = {10.1515/crelle-2015-0007},
      url = {https://doi.org/10.1515/crelle-2015-0007},
      zblnumber = {1393.19003},
      }
  • [Neisendorfer] Go to document J. A. Neisendorfer, "Homotopy groups with coefficients," J. Fixed Point Theory Appl., vol. 8, iss. 2, pp. 247-338, 2010.
    @ARTICLE{Neisendorfer,
      author = {Neisendorfer, Joseph A.},
      title = {Homotopy groups with coefficients},
      journal = {J. Fixed Point Theory Appl.},
      fjournal = {Journal of Fixed Point Theory and Applications},
      volume = {8},
      year = {2010},
      number = {2},
      pages = {247--338},
      issn = {1661-7738},
      mrclass = {55P60 (13D07 55P05)},
      mrnumber = {2739026},
      mrreviewer = {Constanze Roitzheim},
      doi = {10.1007/s11784-010-0020-1},
      url = {https://doi.org/10.1007/s11784-010-0020-1},
      zblnumber = {1205.55001},
      }
  • [NS] Go to document T. Nikolaus and P. Scholze, "On topological cyclic homology," Acta Math., vol. 221, iss. 2, pp. 203-409, 2018.
    @ARTICLE{NS,
      author = {Nikolaus, Thomas and Scholze, Peter},
      title = {On topological cyclic homology},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {221},
      year = {2018},
      number = {2},
      pages = {203--409},
      issn = {0001-5962},
      mrclass = {55U35 (16E40 18E30 19D99)},
      mrnumber = {3904731},
      mrreviewer = {Geoffrey M. L. Powell},
      doi = {10.4310/ACTA.2018.v221.n2.a1},
      url = {https://doi.org/10.4310/ACTA.2018.v221.n2.a1},
      zblnumber = {07009201},
      }
  • [Oliver] Go to document R. Oliver, Whitehead Groups of Finite Groups, Cambridge Univ. Press, Cambridge, 1988, vol. 132.
    @BOOK{Oliver,
      author = {Oliver, Robert},
      title = {Whitehead Groups of Finite Groups},
      series = {London Math. Soc. Lect. Note Ser.},
      volume = {132},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1988},
      pages = {viii+349},
      isbn = {0-521-33646-5},
      mrclass = {18F25 (19-02 19B28 20J05)},
      mrnumber = {0933091},
      mrreviewer = {Roger C. Alperin},
      doi = {10.1017/CBO9780511600654},
      url = {https://doi.org/10.1017/CBO9780511600654},
      zblnumber = {0636.18001},
      }
  • [Quillen-Higher-K] Go to document D. Quillen, "Higher algebraic $K$-theory. I," in Algebraic $K$-Theory, I: Higher $K$-Theories, Springer, Berlin, 1973, vol. 341, pp. 85-147.
    @incollection{Quillen-Higher-K,
      author = {Quillen, Daniel},
      title = {Higher algebraic {$K$}-theory. {I}},
      booktitle = {Algebraic {$K$}-Theory, {I}: {H}igher {$K$}-Theories},
      venue={{P}roc. {C}onf., {B}attelle {M}emorial {I}nst., {S}eattle, {W}ash., 1972},
      pages = {85--147},
      series={Lecture Notes in Math.},
      volume={341},
      publisher = {Springer, Berlin},
      year = {1973},
      mrclass = {18F25},
      mrnumber = {0338129},
      mrreviewer = {Stephen M. Gersten},
      zblnumber = {0292.18004},
      doi = {10.1007/BFb0067053},
      url = {https://doi.org/10.1007/BFb0067053},
      }
  • [Suslin] A. A. Suslin, "Excision in integer algebraic $K$-theory," Trudy Mat. Inst. Steklov., vol. 208, iss. Teor. Chisel, Algebra i Algebr. Geom., pp. 290-317, 1995.
    @ARTICLE{Suslin,
      author = {Suslin, A. A.},
      title = {Excision in integer algebraic {$K$}-theory},
      note = {Dedicated to Academician Igor\cprime Rostislavovich Shafarevich on the occasion of his seventieth birthday (Russian)},
      journal = {Trudy Mat. Inst. Steklov.},
      fjournal = {Rossiĭskaya Akademiya Nauk. Trudy Matematicheskogo Instituta imeni V. A. Steklova},
      volume = {208},
      year = {1995},
      number = {Teor. Chisel, Algebra i Algebr. Geom.},
      pages = {290--317},
      issn = {0371-9685},
      mrclass = {19D99 (19C40)},
      mrnumber = {1730271},
      mrreviewer = {Stanis\l aw Betley},
      zblnumber = {0871.19002},
      }
  • [Suslin-Wod] Go to document A. A. Suslin and M. Wodzicki, "Excision in algebraic K-theory," Ann. of Math. (2), vol. 136, iss. 1, pp. 51-122, 1992.
    @ARTICLE{Suslin-Wod,
      author = {Suslin, Andrei A. and Wodzicki, Mariusz},
      title = {Excision in algebraic {K}-theory},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {136},
      year = {1992},
      number = {1},
      pages = {51--122},
      issn = {0003-486X},
      mrclass = {19D99 (46L80 55N15)},
      mrnumber = {1173926},
      mrreviewer = {Sue Geller},
      doi = {10.2307/2946546},
      url = {https://doi.org/10.2307/2946546},
      zblnumber = {0756.18008},
      }
  • [Swan] Go to document R. G. Swan, "Excision in algebraic $K$-theory," J. Pure Appl. Algebra, vol. 1, iss. 3, pp. 221-252, 1971.
    @ARTICLE{Swan,
      author = {Swan, Richard G.},
      title = {Excision in algebraic {$K$}-theory},
      journal = {J. Pure Appl. Algebra},
      fjournal = {Journal of Pure and Applied Algebra},
      volume = {1},
      year = {1971},
      number = {3},
      pages = {221--252},
      issn = {0022-4049},
      mrclass = {18F25},
      mrnumber = {0308240},
      mrreviewer = {H. Bass},
      doi = {10.1016/0022-4049(71)90020-X},
      url = {https://doi.org/10.1016/0022-4049(71)90020-X},
      zblnumber = {0262.16025},
      }
  • [MR3178252] G. Tabuada, "$E_n$-regularity implies $E_{n-1}$-regularity," Doc. Math., vol. 19, pp. 121-140, 2014.
    @ARTICLE{MR3178252,
      author = {Tabuada, Gonçalo},
      title = {{$E_n$}-regularity implies {$E_{n-1}$}-regularity},
      journal = {Doc. Math.},
      fjournal = {Documenta Mathematica},
      volume = {19},
      year = {2014},
      pages = {121--140},
      issn = {1431-0635},
      mrclass = {18E30 (14A15 18D20 19D55)},
      mrnumber = {3178252},
      mrreviewer = {Charles Weibel},
      zblnumber = {1291.14007},
      }
  • [Tabuada] Go to document G. Tabuada, "$\bold{A}^1$-homotopy theory of noncommutative motives," J. Noncommut. Geom., vol. 9, iss. 3, pp. 851-875, 2015.
    @ARTICLE{Tabuada,
      author = {Tabuada, Gonçalo},
      title = {{$\bold{A}^1$}-homotopy theory of noncommutative motives},
      journal = {J. Noncommut. Geom.},
      fjournal = {Journal of Noncommutative Geometry},
      volume = {9},
      year = {2015},
      number = {3},
      pages = {851--875},
      issn = {1661-6952},
      mrclass = {14A22 (14C15 19D55 55U35)},
      mrnumber = {3420534},
      mrreviewer = {Satoshi Mochizuki},
      doi = {10.4171/JNCG/210},
      url = {https://doi.org/10.4171/JNCG/210},
      zblnumber = {1345.14008},
      }
  • [Tamme:excision] Go to document G. Tamme, "Excision in algebraic $K$-theory revisited," Compos. Math., vol. 154, iss. 9, pp. 1801-1814, 2018.
    @ARTICLE{Tamme:excision,
      author = {Tamme, Georg},
      title = {Excision in algebraic {$K$}-theory revisited},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {154},
      year = {2018},
      number = {9},
      pages = {1801--1814},
      issn = {0010-437X},
      mrclass = {18F25 (18E30 19D99)},
      mrnumber = {3867284},
      mrreviewer = {Christoph Winges},
      doi = {10.1112/s0010437x18007236},
      url = {https://doi.org/10.1112/s0010437x18007236},
      zblnumber = {1395.18013},
      }
  • [Temkin] Go to document M. Temkin, "Desingularization of quasi-excellent schemes in characteristic zero," Adv. Math., vol. 219, iss. 2, pp. 488-522, 2008.
    @ARTICLE{Temkin,
      author = {Temkin, Michael},
      title = {Desingularization of quasi-excellent schemes in characteristic zero},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {219},
      year = {2008},
      number = {2},
      pages = {488--522},
      issn = {0001-8708},
      mrclass = {14E15},
      mrnumber = {2435647},
      mrreviewer = {Ana Bravo},
      doi = {10.1016/j.aim.2008.05.006},
      url = {https://doi.org/10.1016/j.aim.2008.05.006},
      zblnumber = {1146.14009},
      }
  • [ThomasonTrobaugh] Go to document R. W. Thomason and T. Trobaugh, "Higher algebraic $K$-theory of schemes and of derived categories," in The Grothendieck Festschrift, Vol. III, Birkhäuser Boston, Boston, MA, 1990, vol. 88, pp. 247-435.
    @INCOLLECTION{ThomasonTrobaugh,
      author = {Thomason, R. W. and Trobaugh, Thomas},
      title = {Higher algebraic {$K$}-theory of schemes and of derived categories},
      booktitle = {The {G}rothendieck {F}estschrift, {V}ol. {III}},
      series = {Progr. Math.},
      volume = {88},
      pages = {247--435},
      publisher = {Birkhäuser Boston, Boston, MA},
      year = {1990},
      mrclass = {19E08 (14C35 19D10)},
      mrnumber = {1106918},
      mrreviewer = {Charles Weibel},
      doi = {10.1007/978-0-8176-4576-2_10},
      url = {https://doi.org/10.1007/978-0-8176-4576-2_10},
      zblnumber = {0731.14001},
      }
  • [Vorst] Go to document T. Vorst, "Localization of the $K$-theory of polynomial extensions," Math. Ann., vol. 244, iss. 1, pp. 33-53, 1979.
    @ARTICLE{Vorst,
      author = {Vorst, Ton},
      title = {Localization of the {$K$}-theory of polynomial extensions},
      note = {With an appendix by Wilberd van der Kallen},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {244},
      year = {1979},
      number = {1},
      pages = {33--53},
      issn = {0025-5831},
      mrclass = {18F25 (13F20)},
      mrnumber = {0550060},
      mrreviewer = {Daniel R. Grayson},
      doi = {10.1007/BF01420335},
      url = {https://doi.org/10.1007/BF01420335},
      zblnumber = {0415.13005},
      }
  • [Waldhausen] F. Waldhausen, "Algebraic $K$-theory of topological spaces. I," in Algebraic and Geometric Topology, Part 1, Amer. Math. Soc., Providence, R.I., 1978, pp. 35-60.
    @INCOLLECTION{Waldhausen,
      author = {Waldhausen, Friedhelm},
      title = {Algebraic {$K$}-theory of topological spaces. {I}},
      booktitle = {Algebraic and Geometric Topology, {P}art 1},
      venue = {{P}roc. {S}ympos. {P}ure {M}ath., {S}tanford {U}niv., {S}tanford, {C}alif., 1976},
      series = {Proc. Sympos. Pure Math., XXXII},
      pages = {35--60},
      publisher = {Amer. Math. Soc., Providence, R.I.},
      year = {1978},
      mrclass = {18F25 (57Q10 57Q20 57R90)},
      mrnumber = {0520492},
      mrreviewer = {Ross Staffeldt},
      zblnumber = {0414.18010},
      }
  • [Weibel] C. A. Weibel, The $K$-Book: An Introduction to Algebraic $K$-Theory, American Mathematical Society, Providence, RI, 2013, vol. 145.
    @BOOK{Weibel,
      author = {Weibel, Charles A.},
      title = {The {$K$}-Book: An Introduction to Algebraic $K$-Theory},
      series = {Grad. Stud. Math.},
      volume = {145},
      publisher = {American Mathematical Society, Providence, RI},
      year = {2013},
      pages = {xii+618},
      isbn = {978-0-8218-9132-2},
      mrclass = {19-01},
      mrnumber = {3076731},
      mrreviewer = {L. N. Vaserstein},
      zblnumber = {1273.19001},
      }
  • [Wodzicki] Go to document M. Wodzicki, "Excision in cyclic homology and in rational algebraic $K$-theory," Ann. of Math. (2), vol. 129, iss. 3, pp. 591-639, 1989.
    @ARTICLE{Wodzicki,
      author = {Wodzicki, Mariusz},
      title = {Excision in cyclic homology and in rational algebraic {$K$}-theory},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {129},
      year = {1989},
      number = {3},
      pages = {591--639},
      issn = {0003-486X},
      mrclass = {19D55 (19D50 55N15)},
      mrnumber = {0997314},
      mrreviewer = {Sue Geller},
      doi = {10.2307/1971518},
      url = {https://doi.org/10.2307/1971518},
      zblnumber = {0689.16013},
      }

Authors

Markus Land

Fakultät für Mathematik, Universität Regensburg, Regensburg, Germany

Georg Tamme

Fakultät für Mathematik, Universität Regensburg, Regensburg, Germany