An asymptotic formula for integer points on Markoff-Hurwitz varieties

Abstract

We establish an asymptotic formula for the number of integer solutions to the Markoff-Hurwitz equation \[ x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2}=ax_{1}x_{2}\cdots x_{n}+k. \] When $n\geq 4$, the previous best result is by Baragar (1998) that gives an exponential rate of growth with exponent $\beta $ that is not in general an integer when $n\geq 4$. We give a new interpretation of this exponent of growth in terms of the unique parameter for which there exists a certain conformal measure on projective space.

  • [AHS2] Go to document A. Avila, P. Hubert, and A. Skripchenko, "Diffusion for chaotic plane sections of 3-periodic surfaces," Invent. Math., vol. 206, iss. 1, pp. 109-146, 2016.
    @ARTICLE{AHS2,
      author = {Avila, Artur and Hubert, Pascal and Skripchenko, Alexandra},
      title = {Diffusion for chaotic plane sections of 3-periodic surfaces},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {206},
      year = {2016},
      number = {1},
      pages = {109--146},
      issn = {0020-9910},
      mrclass = {37B50 (37C85 37D40)},
      mrnumber = {3556526},
      mrreviewer = {Khosro Tajbakhsh},
      doi = {10.1007/s00222-016-0650-z},
      url = {https://doi.org/10.1007/s00222-016-0650-z},
      zblnumber = {1376.37030},
     }
  • [AHS1] Go to document A. Avila, P. Hubert, and A. Skripchenko, "On the Hausdorff dimension of the Rauzy gasket," Bull. Soc. Math. France, vol. 144, iss. 3, pp. 539-568, 2016.
    @ARTICLE{AHS1,
      author = {Avila, Artur and Hubert, Pascal and Skripchenko, Alexandra},
      title = {On the {H}ausdorff dimension of the {R}auzy gasket},
      journal = {Bull. Soc. Math. France},
      fjournal = {Bulletin de la Société Mathématique de France},
      volume = {144},
      year = {2016},
      number = {3},
      pages = {539--568},
      issn = {0037-9484},
      mrclass = {37B50 (28A80 37C45)},
      mrnumber = {3558432},
      mrreviewer = {Paul Surer},
      doi = {10.24033/bsmf.2722},
      url = {https://doi.org/10.24033/bsmf.2722},
      zblnumber = {1356.37018},
      }
  • [AIGNER] Go to document M. Aigner, Markov’s Theorem and 100 Years of the Uniqueness Conjecture: A Mathematical Journey from Irrational Numbers to Perfect Matchings, Springer, Cham, 2013.
    @BOOK{AIGNER,
      author = {Aigner, Martin},
      title = {Markov's Theorem and 100 Years of the Uniqueness Conjecture: A Mathematical Journey from Irrational Numbers to Perfect Matchings},
      publisher = {Springer, Cham},
      year = {2013},
      pages = {x+257},
      isbn = {978-3-319-00887-5; 978-3-319-00888-2},
      mrclass = {11-03 (11J06 20E05 20H10 68R15)},
      mrnumber = {3098784},
      mrreviewer = {Thomas A. Schmidt},
      doi = {10.1007/978-3-319-00888-2},
      url = {https://doi.org/10.1007/978-3-319-00888-2},
      zblnumber = {1276.00006},
      }
  • [AS] Go to document P. Arnoux and Štěpán. Starosta, "The Rauzy gasket," in Further Developments in Fractals and Related Fields, Birkhäuser/Springer, New York, 2013, pp. 1-23.
    @INCOLLECTION{AS,
      author = {Arnoux, Pierre and Starosta, {Š}t{ě}p{\'{a}}n},
      title = {The {R}auzy gasket},
      booktitle = {Further Developments in Fractals and Related Fields},
      series = {Trends Math.},
      pages = {1--23},
      publisher = {Birkhäuser/Springer, New York},
      year = {2013},
      mrclass = {28A80},
      mrnumber = {3184185},
      mrreviewer = {Pieter C. Allaart},
      doi = {10.1007/978-0-8176-8400-6_1},
      url = {https://doi.org/10.1007/978-0-8176-8400-6_1},
      zblnumber = {1268.28007},
      }
  • [BALADI] Go to document V. Baladi, Positive Transfer Operators and Decay of Correlations, World Scientific Publishing Co., Inc., River Edge, NJ, 2000, vol. 16.
    @BOOK{BALADI,
      author = {Baladi, Viviane},
      title = {Positive Transfer Operators and Decay of Correlations},
      series = {Adv. Ser. Nonlinear Dynam.},
      volume = {16},
      publisher = {World Scientific Publishing Co., Inc., River Edge, NJ},
      year = {2000},
      pages = {x+314},
      isbn = {981-02-3328-0},
      mrclass = {37C30 (37-02 37A25 37D20 47B38)},
      mrnumber = {1793194},
      mrreviewer = {Jérôme Buzzi},
      doi = {10.1142/9789812813633},
      url = {https://doi.org/10.1142/9789812813633},
      zblnumber = {1012.37015},
      }
  • [BARAGAR2] Go to document A. Baragar, "Asymptotic growth of Markoff-Hurwitz numbers," Compositio Math., vol. 94, iss. 1, pp. 1-18, 1994.
    @ARTICLE{BARAGAR2,
      author = {Baragar, Arthur},
      title = {Asymptotic growth of {M}arkoff-{H}urwitz numbers},
      journal = {Compositio Math.},
      fjournal = {Compositio Mathematica},
      volume = {94},
      year = {1994},
      number = {1},
      pages = {1--18},
      issn = {0010-437X},
      mrclass = {11D72 (11J06)},
      mrnumber = {1302308},
      mrreviewer = {Joseph H. Silverman},
      url = {http://www.numdam.org/item?id=CM_1994__94_1_1_0},
      zblnumber = {0813.11014},
      }
  • [BARAGAR1] Go to document A. Baragar, "Integral solutions of Markoff-Hurwitz equations," J. Number Theory, vol. 49, iss. 1, pp. 27-44, 1994.
    @ARTICLE{BARAGAR1,
      author = {Baragar, Arthur},
      title = {Integral solutions of {M}arkoff-{H}urwitz equations},
      journal = {J. Number Theory},
      fjournal = {Journal of Number Theory},
      volume = {49},
      year = {1994},
      number = {1},
      pages = {27--44},
      issn = {0022-314X},
      mrclass = {11J06},
      mrnumber = {1295950},
      mrreviewer = {Thomas W. Cusick},
      doi = {10.1006/jnth.1994.1078},
      url = {https://doi.org/10.1006/jnth.1994.1078},
      zblnumber = {0820.11016},
      }
  • [BARAGAR3] Go to document A. Baragar, "The exponent for the Markoff-Hurwitz equations," Pacific J. Math., vol. 182, iss. 1, pp. 1-21, 1998.
    @ARTICLE{BARAGAR3,
      author = {Baragar, Arthur},
      title = {The exponent for the {M}arkoff-{H}urwitz equations},
      journal = {Pacific J. Math.},
      fjournal = {Pacific Journal of Mathematics},
      volume = {182},
      year = {1998},
      number = {1},
      pages = {1--21},
      issn = {0030-8730},
      mrclass = {11D72 (11J06)},
      mrnumber = {1610610},
      mrreviewer = {Mary E. Flahive},
      doi = {10.2140/pjm.1998.182.1},
      url = {https://doi.org/10.2140/pjm.1998.182.1},
      zblnumber = {0892.11009},
      }
  • [BELYI] Go to document G. V. Belyi, "Markov’s Numbers and Quadratic Forms," J. Math. Sci. (New York), vol. 106, iss. 4, pp. 3087-3097, 2001.
    @ARTICLE{BELYI,
      author = {Belyi, G. V.},
      title = {Markov's Numbers and Quadratic Forms},
      venue = {Pontryagin Conference, 8, Algebra (Moscow, 1998)},
      journal = {J. Math. Sci. (New York)},
      fjournal = {Journal of Mathematical Sciences (New York)},
      volume = {106},
      year = {2001},
      number = {4},
      pages = {3087--3097},
      issn = {1072-3374},
      mrclass = {11J06 (11D09 11J04 11J70)},
      mrnumber = {1871135},
      mrreviewer = {Serge Perrine},
      doi = {10.1023/A:1011316920093},
      url = {https://doi.org/10.1023/A:1011316920093},
      zblnumber = {1168.11315},
      }
  • [BOMBIERI] Go to document E. Bombieri, "Continued fractions and the Markoff tree," Expo. Math., vol. 25, iss. 3, pp. 187-213, 2007.
    @ARTICLE{BOMBIERI,
      author = {Bombieri, Enrico},
      title = {Continued fractions and the {M}arkoff tree},
      journal = {Expo. Math.},
      fjournal = {Expositiones Mathematicae},
      volume = {25},
      year = {2007},
      number = {3},
      pages = {187--213},
      issn = {0723-0869},
      mrclass = {11J06 (11J70)},
      mrnumber = {2345177},
      mrreviewer = {Michel Laurent},
      doi = {10.1016/j.exmath.2006.10.002},
      url = {https://doi.org/10.1016/j.exmath.2006.10.002},
      zblnumber = {1153.11030},
      }
  • [Bo1] Go to document D. W. Boyd, "The disk-packing constant," Aequationes Math., vol. 7, pp. 182-193, 1971.
    @ARTICLE{Bo1,
      author = {Boyd, David W.},
      title = {The disk-packing constant},
      journal = {Aequationes Math.},
      fjournal = {Aequationes Mathematicae},
      volume = {7},
      year = {1971},
      pages = {182--193},
      issn = {0001-9054},
      mrclass = {52A45},
      mrnumber = {0303420},
      mrreviewer = {J. B. Wilker},
      doi = {10.1007/BF01818512},
      url = {https://doi.org/10.1007/BF01818512},
      zblnumber = {0229.52012},
      }
  • [Bo2] Go to document D. W. Boyd, "Improved bounds for the disk-packing constant," Aequationes Math., vol. 9, pp. 99-106, 1973.
    @ARTICLE{Bo2,
      author = {Boyd, David W.},
      title = {Improved bounds for the disk-packing constant},
      journal = {Aequationes Math.},
      fjournal = {Aequationes Mathematicae},
      volume = {9},
      year = {1973},
      pages = {99--106},
      issn = {0001-9054},
      mrclass = {52A45},
      mrnumber = {0317180},
      mrreviewer = {J. B. Wilker},
      doi = {10.1007/BF01838194},
      url = {https://doi.org/10.1007/BF01838194},
      zblnumber = {0255.52006},
      }
  • [Bo3] Go to document D. W. Boyd, "The sequence of radii of the Apollonian packing," Math. Comp., vol. 39, iss. 159, pp. 249-254, 1982.
    @ARTICLE{Bo3,
      author = {Boyd, David W.},
      title = {The sequence of radii of the {A}pollonian packing},
      journal = {Math. Comp.},
      fjournal = {Mathematics of Computation},
      volume = {39},
      year = {1982},
      number = {159},
      pages = {249--254},
      issn = {0025-5718},
      mrclass = {52A45},
      mrnumber = {0658230},
      mrreviewer = {J. B. Wilker},
      doi = {10.2307/2007636},
      url = {https://doi.org/10.2307/2007636},
      zblnumber = {0492.52009},
      }
  • [CASSELS] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, New York, 1957, vol. 45.
    @BOOK{CASSELS,
      author = {Cassels, J. W. S.},
      title = {An Introduction to {D}iophantine Approximation},
      series = {Cambridge Tracts in Math. and Math. Phys.},
      volume = {45},
      publisher = {Cambridge University Press, New York},
      year = {1957},
      pages = {x+166},
      mrclass = {10.3X},
      mrnumber = {0087708},
      mrreviewer = {H. Davenport},
      zblnumber = {0077.04801},
      }
  • [CAYLEY] Go to document A. Cayley, "A memoir on cubic surfaces," Philos. Trans. R. Soc. Lond., vol. 159, pp. 231-326, 1869.
    @ARTICLE{CAYLEY,
      author = {Cayley, Arthur},
      title = {A memoir on cubic surfaces},
      fjournal = {Philosophical Transactions of the Royal Society of London},
      journal = {Philos. Trans. R. Soc. Lond.},
      volume = {159},
      pages = {231--326},
      year = {1869},
      publisher = {The Royal Society of London, London},
      doi = {10.1098/rstl.1869.0010},
      url = {https://doi.org/10.1098/rstl.1869.0010},
      }
  • [DELEO2] R. De Leo, On a generalized Sierpinski fractal in $\mathbb{R}\mathrm{P}^n$, 2008.
    @MISC{DELEO2,
      author = {De Leo, Roberto},
      title = {On a generalized {S}ierpinski fractal in {$\mathbb{R}\mathrm{P}^n$}},
      arxiv = {0804.1154},
      year = {2008},
      zblnumber = {},
      }
  • [DL] Go to document R. De Leo, "A conjecture on the Hausdorff dimension of attractors of real self-projective iterated function systems," Exp. Math., vol. 24, iss. 3, pp. 270-288, 2015.
    @ARTICLE{DL,
      author = {De Leo, Roberto},
      title = {A conjecture on the {H}ausdorff dimension of attractors of real self-projective iterated function systems},
      journal = {Exp. Math.},
      fjournal = {Experimental Mathematics},
      volume = {24},
      year = {2015},
      number = {3},
      pages = {270--288},
      issn = {1058-6458},
      mrclass = {28A80 (20M20 28A78 53A20)},
      mrnumber = {3359215},
      mrreviewer = {Esa Järvenpää},
      doi = {10.1080/10586458.2014.987884},
      url = {https://doi.org/10.1080/10586458.2014.987884},
      zblnumber = {1404.28009},
      }
  • [DD] Go to document R. DeLeo and I. A. Dynnikov, "Geometry of plane sections of the infinite regular skew polyhedron $\{4,6\mid 4\}$," Geom. Dedicata, vol. 138, pp. 51-67, 2009.
    @ARTICLE{DD,
      author = {DeLeo, Roberto and Dynnikov, Ivan A.},
      title = {Geometry of plane sections of the infinite regular skew polyhedron {$\{4,6\mid 4\}$}},
      journal = {Geom. Dedicata},
      fjournal = {Geometriae Dedicata},
      volume = {138},
      year = {2009},
      pages = {51--67},
      issn = {0046-5755},
      mrclass = {37E35 (28A80 51M20)},
      mrnumber = {2469987},
      doi = {10.1007/s10711-008-9298-1},
      url = {https://doi.org/10.1007/s10711-008-9298-1},
      zblnumber = {1165.28006},
      }
  • [GAUSS] C. F. Gauss, Brief an Laplace vom 30 Jan. 1812, Werke $X_1$, 1812.
    @MISC{GAUSS,
      author = {Gauss, Carl Friedrich},
      title = {Brief an {L}aplace vom 30 {J}an. 1812, {W}erke $X_1$},
      year = {1812},
      pages = {371--374},
      zblnumber = {},
      }
  • [GMROLD] A. Gamburd, M. Magee, and R. Ronan, An asymptotic formula for integer points on Markoff-Hurwitz varieties, 2018.
    @MISC{GMROLD,
      author = {Gamburd, A. and Magee, M. and Ronan, R.},
      title = {An asymptotic formula for integer points on {M}arkoff-{H}urwitz varieties},
      arxiv = {1603.06267v3},
      year = {2018},
      zblnumber = {},
      }
  • [GOLDMAN] Go to document W. M. Goldman, "The modular group action on real ${ SL}(2)$-characters of a one-holed torus," Geom. Topol., vol. 7, pp. 443-486, 2003.
    @ARTICLE{GOLDMAN,
      author = {Goldman, William M.},
      title = {The modular group action on real {${\rm SL}(2)$}-characters of a one-holed torus},
      journal = {Geom. Topol.},
      fjournal = {Geometry and Topology},
      volume = {7},
      year = {2003},
      pages = {443--486},
      issn = {1465-3060},
      mrclass = {57M05 (20H10 30F60)},
      mrnumber = {2026539},
      mrreviewer = {Bruno P. Zimmermann},
      doi = {10.2140/gt.2003.7.443},
      url = {https://doi.org/10.2140/gt.2003.7.443},
      zblnumber = {1037.57001},
      }
  • [GSMARKOFF] A. Ghosh and P. Sarnak, Integral points on Markoff type cubic surfaces, 2017.
    @MISC{GSMARKOFF,
      author = {Ghosh, A. and Sarnak, P.},
      title = {Integral points on {M}arkoff type cubic surfaces},
      arxiv = {1706.06712v1},
      year = {2017},
      zblnumber = {},
      }
  • [GURWOOD] Go to document C. Gurwood, Diophantine Approximation and the Markov Chain, ProQuest LLC, Ann Arbor, MI, 1976.
    @BOOK{GURWOOD,
      author = {Gurwood, Christopher},
      title = {Diophantine Approximation and the {M}arkov Chain},
      note = { Ph.D. thesis, New York University},
      publisher = {ProQuest LLC, Ann Arbor, MI},
      year = {1976},
      pages = {68},
      mrclass = {Thesis},
      mrnumber = {2626553},
      url = {http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:7705407},
      zblnumber = {},
      }
  • [HN] Go to document Y. Huang and P. Norbury, "Simple geodesics and Markoff quads," Geom. Dedicata, vol. 186, pp. 113-148, 2017.
    @ARTICLE{HN,
      author = {Huang, Yi and Norbury, Paul},
      title = {Simple geodesics and {M}arkoff quads},
      journal = {Geom. Dedicata},
      fjournal = {Geometriae Dedicata},
      volume = {186},
      year = {2017},
      pages = {113--148},
      issn = {0046-5755},
      mrclass = {32G15 (30F60 58D27)},
      mrnumber = {3602888},
      mrreviewer = {Athanase Papadopoulos},
      doi = {10.1007/s10711-016-0182-0},
      url = {https://doi.org/10.1007/s10711-016-0182-0},
      zblnumber = {1360.30040},
      }
  • [Horowitz] Go to document R. D. Horowitz, "Induced automorphisms on Fricke characters of free groups," Trans. Amer. Math. Soc., vol. 208, pp. 41-50, 1975.
    @ARTICLE{Horowitz,
      author = {Horowitz, Robert D.},
      title = {Induced automorphisms on {F}ricke characters of free groups},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {208},
      year = {1975},
      pages = {41--50},
      issn = {0002-9947},
      mrclass = {20E35 (10D10)},
      mrnumber = {0369540},
      mrreviewer = {S. Andreadakis},
      doi = {10.2307/1997274},
      url = {https://doi.org/10.2307/1997274},
      zblnumber = {0306.20027},
      }
  • [HPZ] Go to document H. Hu, S. P. Tan, and Y. Zhang, "Polynomial automorphisms of $\Bbb C^n$ preserving the Markoff-Hurwitz polynomial," Geom. Dedicata, vol. 192, pp. 207-243, 2018.
    @ARTICLE{HPZ,
      author = {Hu, Hengnan and Tan, Ser Peow and Zhang, Ying},
      title = {Polynomial automorphisms of {$\Bbb C^n$} preserving the {M}arkoff-{H}urwitz polynomial},
      journal = {Geom. Dedicata},
      fjournal = {Geometriae Dedicata},
      volume = {192},
      year = {2018},
      pages = {207--243},
      issn = {0046-5755},
      mrclass = {32H99 (20H10 30F60 32G15 37F30 57M05)},
      mrnumber = {3749429},
      mrreviewer = {Daniel Matei},
      doi = {10.1007/s10711-017-0235-z},
      url = {https://doi.org/10.1007/s10711-017-0235-z},
      zblnumber = {1387.32027},
      }
  • [HURWITZ] Go to document A. Hurwitz, "Über eine Aufgabe der unbestimmten Analysis," Archiv. Math. Phys., vol. 3, pp. 185-196, 1907.
    @ARTICLE{HURWITZ,
      author = {Hurwitz, A.},
      title = {{Ü}ber eine {A}ufgabe der unbestimmten {A}nalysis},
      journal = {Archiv. Math. Phys.},
      volume = {3},
      pages = {185--196},
      year = {1907},
      note = {also: {\em Mathematisch Werke} {\bf 2},
      Chap. LXX (1933 and 1962), 410--421},
      jfmnumber = {38.0246.01},
      doi = {10.1007/978-3-0348-4160-3_27},
      }
  • [IT-M] Go to document C. T. Ionescu Tulcea and G. Marinescu, "Théorie ergodique pour des classes d’opérations non complètement continues," Ann. of Math. (2), vol. 52, pp. 140-147, 1950.
    @ARTICLE{IT-M,
      author = {Ionescu Tulcea, C. T. and Marinescu, G.},
      title = {Théorie ergodique pour des classes d'opérations non complètement continues},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {52},
      year = {1950},
      pages = {140--147},
      issn = {0003-486X},
      mrclass = {46.3X},
      mrnumber = {0037469},
      mrreviewer = {N. Dunford},
      doi = {10.2307/1969514},
      url = {https://doi.org/10.2307/1969514},
      zblnumber = {0040.06502},
      }
  • [KATO] Go to document T. Kato, Perturbation Theory for Linear Operators, Second ed., Springer-Verlag, New York, 1976, vol. 132.
    @BOOK{KATO,
      author = {Kato, Tosio},
      title = {Perturbation Theory for Linear Operators},
      edition = {Second},
      series = {Grundlehren Math. Wissen.},
      volume = {132},
      publisher = {Springer-Verlag, New York},
      year = {1976},
      pages = {xxi+619},
      mrclass = {47-XX},
      mrnumber = {0407617},
      doi = {10.1007/978-3-642-66282-9},
      url = {https://doi.org/10.1007/978-3-642-66282-9},
      zblnumber = {0531.47014},
      }
  • [KO] Go to document A. Kontorovich and H. Oh, "Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds," J. Amer. Math. Soc., vol. 24, iss. 3, pp. 603-648, 2011.
    @ARTICLE{KO,
      author = {Kontorovich, Alex and Oh, Hee},
      title = {Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds},
      note = {With an appendix by Oh and Nimish Shah},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {24},
      year = {2011},
      number = {3},
      pages = {603--648},
      issn = {0894-0347},
      mrclass = {52C26 (22E40 57M50)},
      mrnumber = {2784325},
      mrreviewer = {David A. Glickenstein},
      doi = {10.1090/S0894-0347-2011-00691-7},
      url = {https://doi.org/10.1090/S0894-0347-2011-00691-7},
      zblnumber = {1235.22015},
      }
  • [KUZMIN] R. O. Kuzmin, "On a problem of Gauss," Atti del Congresso Internazionale dei Matematici, Bologna, vol. 6, pp. 83-89, 1932.
    @ARTICLE{KUZMIN,
      author = {Kuzmin, R. O.},
      title = {On a problem of {G}auss},
      journal = {Atti del Congresso Internazionale dei Matematici, Bologna},
      volume = {6},
      pages = {83--89},
      year = {1932},
      zblnumber = {},
      }
  • [LALLEY] Go to document S. P. Lalley, "Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits," Acta Math., vol. 163, iss. 1-2, pp. 1-55, 1989.
    @ARTICLE{LALLEY,
      author = {Lalley, Steven P.},
      title = {Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-{E}uclidean tessellations and their fractal limits},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {163},
      year = {1989},
      number = {1-2},
      pages = {1--55},
      issn = {0001-5962},
      mrclass = {58F20 (20H10 22E40 30F40 54F50 54H20 58F03 58F17)},
      mrnumber = {1007619},
      mrreviewer = {Caroline Series},
      doi = {10.1007/BF02392732},
      url = {https://doi.org/10.1007/BF02392732},
      zblnumber = {0701.58021},
      }
  • [LEVITT] Go to document G. Levitt, "La dynamique des pseudogroupes de rotations," Invent. Math., vol. 113, iss. 3, pp. 633-670, 1993.
    @ARTICLE{LEVITT,
      author = {Levitt, Gilbert},
      title = {La dynamique des pseudogroupes de rotations},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {113},
      year = {1993},
      number = {3},
      pages = {633--670},
      issn = {0020-9910},
      mrclass = {58H05 (57R30 58F18)},
      mrnumber = {1231840},
      mrreviewer = {P. Molino},
      doi = {10.1007/BF01244321},
      url = {https://doi.org/10.1007/BF01244321},
      zblnumber = {0791.58055},
      }
  • [LIVERANI] Go to document C. Liverani, "Decay of correlations," Ann. of Math. (2), vol. 142, iss. 2, pp. 239-301, 1995.
    @ARTICLE{LIVERANI,
      author = {Liverani, Carlangelo},
      title = {Decay of correlations},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {142},
      year = {1995},
      number = {2},
      pages = {239--301},
      issn = {0003-486X},
      mrclass = {58F11 (47B38 58F15)},
      mrnumber = {1343323},
      mrreviewer = {Nikolai Chernov},
      doi = {10.2307/2118636},
      url = {https://doi.org/10.2307/2118636},
      zblnumber = {0871.58059},
      }
  • [Mageecurves] Go to document M. Magee, "Counting one-sided simple closed geodesics on Fuchsian thrice punctured projective planes," Internat. Math. Res. Not., vol. 2018, iss. 06, pp. 1-16, 2018.
    @ARTICLE{Mageecurves,
      author = {Magee, M.},
      title = {{C}ounting one-sided simple closed geodesics on {F}uchsian thrice punctured projective planes},
      journal = {Internat. Math. Res. Not.},
      volume = {2018},
      number = {06},
      pages = {1--16},
      year = {2018},
      doi = {10.1093/imrn/rny112},
      url = {https://doi.org/10.1093/imrn/rny112},
      zblnumber = {},
      }
  • [Markoff0] Go to document A. Markoff, "Sur les formes binaires indéfinies," Math. Ann., vol. 15, iss. 3, pp. 381-406, 1879.
    @ARTICLE{Markoff0,
      author = {Markoff, A.},
      title = {Sur les formes binaires indéfinies},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {15},
      year = {1879},
      number = {3},
      pages = {381--406},
      issn = {0025-5831; 1432-1807/e},
      doi = {10.1007/BF02086269},
      url = {https://doi.org/10.1007/BF02086269},
      jfmnumber = {11.0147.01},
      zblnumber = {},
      }
  • [MARKOFF] Go to document A. Markoff, "Sur les formes quadratiques binaires indéfinies," Math. Ann., vol. 17, iss. 3, pp. 379-399, 1880.
    @ARTICLE{MARKOFF,
      author = {Markoff, A.},
      title = {Sur les formes quadratiques binaires indéfinies},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {17},
      year = {1880},
      number = {3},
      pages = {379--399},
      issn = {0025-5831},
      mrclass = {DML},
      mrnumber = {1510073},
      doi = {10.1007/BF01446234},
      url = {https://doi.org/10.1007/BF01446234},
      jfmnumber = {12.0143.02},
      zblnumber = {},
      }
  • [MCSHANETHESIS] Go to document G. McShane, A Remarkable Identity for Lengths of Curves, ProQuest LLC, Ann Arbor, MI, 1991.
    @BOOK{MCSHANETHESIS,
      author = {McShane, Greg},
      title = {A Remarkable Identity for Lengths of Curves},
      note = {Ph.D. thesis, University of Warwick, UK},
      publisher = {ProQuest LLC, Ann Arbor, MI},
      year = {1991},
      pages = {1},
      mrclass = {Thesis},
      mrnumber = {3389436},
      url = {http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:U637636},
      zblnumber = {},
      }
  • [MCSHANEIDENTITY] Go to document G. McShane, "Simple geodesics and a series constant over Teichmuller space," Invent. Math., vol. 132, iss. 3, pp. 607-632, 1998.
    @ARTICLE{MCSHANEIDENTITY,
      author = {McShane, Greg},
      title = {Simple geodesics and a series constant over {T}eichmuller space},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {132},
      year = {1998},
      number = {3},
      pages = {607--632},
      issn = {0020-9910},
      mrclass = {32G15 (30F60 57M50)},
      mrnumber = {1625712},
      mrreviewer = {Thomas A. Schmidt},
      doi = {10.1007/s002220050235},
      url = {https://doi.org/10.1007/s002220050235},
      zblnumber = {0916.30039},
      }
  • [MIRZSIMPLE] Go to document M. Mirzakhani, "Growth of the number of simple closed geodesics on hyperbolic surfaces," Ann. of Math. (2), vol. 168, iss. 1, pp. 97-125, 2008.
    @ARTICLE{MIRZSIMPLE,
      author = {Mirzakhani, Maryam},
      title = {Growth of the number of simple closed geodesics on hyperbolic surfaces},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {168},
      year = {2008},
      number = {1},
      pages = {97--125},
      issn = {0003-486X},
      mrclass = {32G15},
      mrnumber = {2415399},
      mrreviewer = {Hsian-Hua Tseng},
      doi = {10.4007/annals.2008.168.97},
      url = {https://doi.org/10.4007/annals.2008.168.97},
      zblnumber = {1177.37036},
      }
  • [MIRZCOUTING] M. Mirzakhani, Counting Mapping Class group orbits on hyperbolic surfaces, 2016.
    @MISC{MIRZCOUTING,
      author = {Mirzakhani, Maryam},
      title = {Counting Mapping Class group orbits on hyperbolic surfaces},
      arxiv = {1601.03342},
      year = {2016},
      zblnumber = {},
      }
  • [MORDELL] Go to document L. J. Mordell, "On the integer solutions of the equation $x^2+y^2+z^2+2xyz=n$," J. London Math. Soc., vol. 28, pp. 500-510, 1953.
    @ARTICLE{MORDELL,
      author = {Mordell, L. J.},
      title = {On the integer solutions of the equation {$x^2+y^2+z\sp 2+2xyz=n$}},
      journal = {J. London Math. Soc.},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      volume = {28},
      year = {1953},
      pages = {500--510},
      issn = {0024-6107},
      mrclass = {10.0X},
      mrnumber = {0056619},
      mrreviewer = {I. Niven},
      doi = {10.1112/jlms/s1-28.4.500},
      url = {https://doi.org/10.1112/jlms/s1-28.4.500},
      zblnumber = {0051.27802},
      }
  • [RIVINMCSHANE] Go to document G. McShane and I. Rivin, "A norm on homology of surfaces and counting simple geodesics," Internat. Math. Res. Notices, iss. 2, pp. 61-69, 1995.
    @ARTICLE{RIVINMCSHANE,
      author = {McShane, Greg and Rivin, Igor},
      title = {A norm on homology of surfaces and counting simple geodesics},
      journal = {Internat. Math. Res. Notices},
      fjournal = {International Mathematics Research Notices},
      year = {1995},
      number = {2},
      pages = {61--69},
      issn = {1073-7928},
      mrclass = {57M50 (11J06 57N05)},
      mrnumber = {1317643},
      mrreviewer = {Lee Mosher},
      doi = {10.1155/S1073792895000055},
      url = {https://doi.org/10.1155/S1073792895000055},
      zblnumber = {0828.30023},
      }
  • [NOV] Go to document S. P. Novikov, "The Hamiltonian formalism and a multivalued analogue of Morse theory," Uspekhi Mat. Nauk, vol. 37, iss. 5(227), pp. 3-49, 248, 1982.
    @ARTICLE{NOV,
      author = {Novikov, S. P.},
      title = {The {H}amiltonian formalism and a multivalued analogue of {M}orse theory},
      journal = {Uspekhi Mat. Nauk},
      fjournal = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
      volume = {37},
      year = {1982},
      number = {5(227)},
      pages = {3--49, 248},
      issn = {0042-1316},
      mrclass = {58E05 (58E30 58F05)},
      mrnumber = {0676612},
      mrreviewer = {P. Ver Eecke},
      zblnumber = {0571.58011},
      doi = {10.1070/RM1982v037n05ABEH004020},
      url = {https://doi.org/10.1070/RM1982v037n05ABEH004020},
      }
  • [PATTERSON] Go to document S. J. Patterson, "The limit set of a Fuchsian group," Acta Math., vol. 136, iss. 3-4, pp. 241-273, 1976.
    @ARTICLE{PATTERSON,
      author = {Patterson, S. J.},
      title = {The limit set of a {F}uchsian group},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {136},
      year = {1976},
      number = {3-4},
      pages = {241--273},
      issn = {0001-5962},
      mrclass = {30A58 (10D10 20H10)},
      mrnumber = {0450547},
      mrreviewer = {B. Maskit},
      doi = {10.1007/BF02392046},
      url = {https://doi.org/10.1007/BF02392046},
      zblnumber = {0336.30005},
      }
  • [POLLICOTTRVZ] M. Pollicott, Apollonian circle packings, 2014.
    @MISC{POLLICOTTRVZ,
      author = {Pollicott, Mark},
      title = {Apollonian circle packings},
      note = {available at the author's homepage},
      year = {2014},
      zblnumber = {1338.52022},
      }
  • [POLLICOTTAP] M. Pollicott, Statistical properties of the Rauzy-Veech-Zorich map.
    @MISC{POLLICOTTAP,
      author = {Pollicott, Mark},
      title = {Statistical properties of the {R}auzy-{V}eech-{Z}orich map},
      note = {available at the author's homepage},
      sortyear = {2022},
      zblnumber = {},
      }
  • [POLLICOTT] Go to document M. Pollicott, "A complex Ruelle-Perron-Frobenius theorem and two counterexamples," Ergodic Theory Dynam. Systems, vol. 4, iss. 1, pp. 135-146, 1984.
    @ARTICLE{POLLICOTT,
      author = {Pollicott, Mark},
      title = {A complex {R}uelle-{P}erron-{F}robenius theorem and two counterexamples},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {4},
      year = {1984},
      number = {1},
      pages = {135--146},
      issn = {0143-3857},
      mrclass = {58F11 (28D99 58F20)},
      mrnumber = {0758899},
      mrreviewer = {Radu Nicolae Gologan},
      doi = {10.1017/S0143385700002327},
      url = {https://doi.org/10.1017/S0143385700002327},
      zblnumber = {0575.47009},
      }
  • [PP2] Go to document W. Parry and M. Pollicott, "An analogue of the prime number theorem for closed orbits of Axiom A flows," Ann. of Math. (2), vol. 118, iss. 3, pp. 573-591, 1983.
    @ARTICLE{PP2,
      author = {Parry, William and Pollicott, Mark},
      title = {An analogue of the prime number theorem for closed orbits of {A}xiom {A} flows},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {118},
      year = {1983},
      number = {3},
      pages = {573--591},
      issn = {0003-486X},
      mrclass = {58F22 (58F20)},
      mrnumber = {0727704},
      mrreviewer = {Peter Sarnak},
      doi = {10.2307/2006982},
      url = {https://doi.org/10.2307/2006982},
      zblnumber = {0537.58038},
      }
  • [PP] W. Parry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Soc. Math. France, Paris, 1990, vol. 187-188.
    @book{PP,
      author = {Parry, William and Pollicott, Mark},
      title = {Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics},
      series = {Astérisque},
      fjournal = {Astérisque},
      volume = {187-188},
      year = {1990},
      publisher={Soc. Math. France, Paris},
      pages = {268},
      issn = {0303-1179},
      mrclass = {58F20 (58F11 58F15)},
      mrnumber = {1085356},
      mrreviewer = {Nicolaĭ T. A. Haydn},
      zblnumber = {0726.58003},
      }
  • [PU] M. Pollicott M. Urbanski, Asymptotic counting in conformal dynamical systems, 2017.
    @MISC{PU,
      author = { Pollicott, M. Urbanski, M.},
      title = {Asymptotic counting in conformal dynamical systems},
      arxiv = {1704.06896},
      year = {2017},
      zblnumber = {},
      }
  • [SILVERMANBOOK] Go to document J. H. Silverman, "Integral points on curves and surfaces," in Number Theory, Springer, New York, 1989, vol. 1380, pp. 202-241.
    @INCOLLECTION{SILVERMANBOOK,
      author = {Silverman, Joseph H.},
      title = {Integral points on curves and surfaces},
      booktitle = {Number Theory},
      venue = {{U}lm, 1987},
      series = {Lecture Notes in Math.},
      volume = {1380},
      pages = {202--241},
      publisher = {Springer, New York},
      year = {1989},
      mrclass = {11G35 (11D99 14G25 14J20)},
      mrnumber = {1009803},
      mrreviewer = {Takeshi Ooe},
      doi = {10.1007/BFb0086555},
      url = {https://doi.org/10.1007/BFb0086555},
      zblnumber = {0723.14013},
      }
  • [Silverman] Go to document J. H. Silverman, "Counting Integer and Rational Points on Varieties," in Columbia University Number Theory Seminar, Math. Soc. France, Paris, 1995, vol. 228, p. 4, 223-236.
    @INCOLLECTION{Silverman,
      author = {Silverman, Joseph H.},
      title = {Counting Integer and Rational Points on Varieties},
      booktitle = {Columbia University Number Theory Seminar},
      venue = {New York, 1992},
      series = {Astérisque},
      publisher = {Math. Soc. France, Paris},
      volume = {228},
      year = {1995},
      pages = {4, 223--236},
      issn = {0303-1179},
      mrclass = {11G35 (11D72 14G05)},
      mrnumber = {1330936},
      mrreviewer = {Takeshi Ooe},
      zblnumber = {0834.11029},
      url = {http://www.numdam.org/item/AST_1995__228__223_0/},
     }
  • [SM] Go to document H. Schwartz and H. T. Muhly, "On a class of cubic Diophantine equations," J. London Math. Soc., vol. 32, pp. 379-382, 1957.
    @ARTICLE{SM,
      author = {Schwartz, H. and Muhly, H. T.},
      title = {On a class of cubic {D}iophantine equations},
      journal = {J. London Math. Soc.},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      volume = {32},
      year = {1957},
      pages = {379--382},
      issn = {0024-6107},
      mrclass = {10.0X},
      mrnumber = {0091292},
      mrreviewer = {H. W. Brinkmann},
      doi = {10.1112/jlms/s1-32.3.379},
      url = {https://doi.org/10.1112/jlms/s1-32.3.379},
      zblnumber = {0080.26001},
      }
  • [SUL79] Go to document D. Sullivan, "The density at infinity of a discrete group of hyperbolic motions," Inst. Hautes Études Sci. Publ. Math., iss. 50, pp. 171-202, 1979.
    @ARTICLE{SUL79,
      author = {Sullivan, Dennis},
      title = {The density at infinity of a discrete group of hyperbolic motions},
      journal = {Inst. Hautes \'{E}tudes Sci. Publ. Math.},
      fjournal = {Institut des Hautes \'{E}tudes Scientifiques. Publications Mathématiques},
      number = {50},
      year = {1979},
      pages = {171--202},
      issn = {0073-8301},
      mrclass = {58F17 (22E40 28C10 30C85)},
      mrnumber = {0556586},
      mrreviewer = {Troels J\o rgensen},
      url = {http://www.numdam.org/item?id=PMIHES_1979__50__171_0},
      zblnumber = {0439.30034},
      }
  • [SUL84] Go to document D. Sullivan, "Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups," Acta Math., vol. 153, iss. 3-4, pp. 259-277, 1984.
    @ARTICLE{SUL84,
      author = {Sullivan, Dennis},
      title = {Entropy, {H}ausdorff measures old and new, and limit sets of geometrically finite {K}leinian groups},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {153},
      year = {1984},
      number = {3-4},
      pages = {259--277},
      issn = {0001-5962},
      mrclass = {58F11 (28D99 30F40)},
      mrnumber = {0766265},
      mrreviewer = {Caroline Series},
      doi = {10.1007/BF02392379},
      url = {https://doi.org/10.1007/BF02392379},
      zblnumber = {0566.58022},
      }
  • [WIELANDT] Go to document H. Wielandt, "Unzerlegbare, nicht negative Matrizen," Math. Z., vol. 52, pp. 642-648, 1950.
    @ARTICLE{WIELANDT,
      author = {Wielandt, Helmut},
      title = {Unzerlegbare, nicht negative {M}atrizen},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {52},
      year = {1950},
      pages = {642--648},
      issn = {0025-5874},
      mrclass = {09.0X},
      mrnumber = {0035265},
      doi = {10.1007/BF02230720},
      url = {https://doi.org/10.1007/BF02230720},
      zblnumber = {0035.29101},
      }
  • [WIRSING] Go to document E. Wirsing, "On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces," Acta Arith., vol. 24, pp. 507-528, 1973/74.
    @ARTICLE{WIRSING,
      author = {Wirsing, Eduard},
      title = {On the theorem of {G}auss-{K}usmin-{L}évy and a {F}robenius-type theorem for function spaces},
      note = {Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, V},
      journal = {Acta Arith.},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica},
      volume = {24},
      year = {1973/74},
      pages = {507--528},
      issn = {0065-1036},
      mrclass = {10K15 (10F10)},
      mrnumber = {0337868},
      mrreviewer = {M. S. Waterman},
      doi = {10.4064/aa-24-5-507-528},
      url = {https://doi.org/10.4064/aa-24-5-507-528},
      zblnumber = {0283.10032},
      }
  • [ZAGIER] Go to document D. Zagier, "On the number of Markoff numbers below a given bound," Math. Comp., vol. 39, iss. 160, pp. 709-723, 1982.
    @ARTICLE{ZAGIER,
      author = {Zagier, Don},
      title = {On the number of {M}arkoff numbers below a given bound},
      journal = {Math. Comp.},
      fjournal = {Mathematics of Computation},
      volume = {39},
      year = {1982},
      number = {160},
      pages = {709--723},
      issn = {0025-5718},
      mrclass = {10F20 (10A20 10B10)},
      mrnumber = {0669663},
      mrreviewer = {Richard T. Bumby},
      doi = {10.2307/2007348},
      url = {https://doi.org/10.2307/2007348},
      zblnumber = {0501.10015},
      }
  • [zorich] A. Zorich, "Flat surfaces," in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, pp. 437-583.
    @INCOLLECTION{zorich,
      author = {Zorich, Anton},
      title = {Flat surfaces},
      booktitle = {Frontiers in Number Theory, Physics, and Geometry. {I}},
      pages = {437--583},
      publisher = {Springer, Berlin},
      year = {2006},
      mrclass = {37D40 (30F30 32G15 37D50 57M50)},
      mrnumber = {2261104},
      mrreviewer = {Thomas A. Schmidt},
      arxiv = {math/0609392},
      zblnumber = {1129.32012},
      }

Authors

Alex Gamburd

CUNY Graduate Center, New York, NY, USA

Michael Magee

Durham University, Durham, UK

Ryan Ronan

Baruch College (CUNY), New York, NY, USA