The group of disjoint 2-spheres in 4-space

Abstract

We compute the group $\mathrm {LM}_{2,2}^4$ of link homotopy classes of link maps of two 2-spheres into 4-space. It turns out to be free abelian, generated by geometric constructions applied to the Fenn–Rolfsen link map and detected by two self-intersection invariants introduced by Kirk in this setting. As a corollary, we show that any link map with one topologically embedded component is link homotopic to the unlink. \par Our proof introduces a new basic link homotopy, which we call a Whitney homotopy, that shrinks an embedded Whitney sphere constructed from four copies of a Whitney disk. Freedman’s disk embedding theorem is applied to get the necessary embedded Whitney disks, after constructing sufficiently many accessory spheres as algebraic duals for immersed Whitney disks. To construct these accessory spheres and immersed Whitney disks we use the algebra of metabolic forms over the group ring $\mathbb {Z}[\mathbb {Z}]$, and we introduce a number of new 4-dimensional constructions, including maneuvers involving the boundary arcs of Whitney disks.

  • [AC] Go to document J. J. Andrews and M. L. Curtis, "Knotted $2$-spheres in the $4$-sphere," Ann. of Math. (2), vol. 70, pp. 565-571, 1959.
    @ARTICLE{AC,
      author = {Andrews, J. J. and Curtis, M. L.},
      TITLE = {Knotted $2$-spheres in the $4$-sphere},
      JOURNAL = {Ann. of Math. (2)},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {70},
      YEAR = {1959},
      PAGES = {565--571},
      ISSN = {0003-486X},
      MRCLASS = {55.00},
      MRNUMBER = {0107239},
      MRREVIEWER = {H. Terasaka},
      DOI = {10.2307/1970330},
      URL = {https://doi.org/10.2307/1970330},
      ZBLNUMBER = {0105.17406},
      }
  • [A] Go to document E. Artin, "Zur Isotopie zweidimensionaler Flächen im $R_4$," Abh. Math. Sem. Univ. Hamburg, vol. 4, iss. 1, pp. 174-177, 1925.
    @ARTICLE{A,
      author = {Artin, Emil},
      title = {Zur {I}sotopie zweidimensionaler {F}lächen im {$R_4$}},
      journal = {Abh. Math. Sem. Univ. Hamburg},
      fjournal = {Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg},
      volume = {4},
      year = {1925},
      number = {1},
      pages = {174--177},
      issn = {0025-5858},
      mrclass = {DML},
      mrnumber = {3069446},
      doi = {10.1007/BF02950724},
      url = {https://doi.org/10.1007/BF02950724},
      zblnumber = {51.0450.02},
      }
  • [Bass] Go to document H. Bass, "Libération des modules projectifs sur certains anneaux de polynômes," in Séminaire Bourbaki, 26e année (1973/1974), Exp. No. 448, , 1975, pp. 228-354. lecture notes in math., vol. 431.
    @INCOLLECTION{Bass,
      author = {Bass, Hyman},
      title = {Libération des modules projectifs sur certains anneaux de polynômes},
      booktitle = {Séminaire {B}ourbaki, 26e année (1973/1974), {E}xp. {N}o. 448},
      pages = {228--354. Lecture Notes in Math., Vol. 431},
      year = {1975},
      mrclass = {14F05 (13A15)},
      mrnumber = {0472826},
      zblnumber = {0304.13012},
      doi = {10.1007/BFb0066373},
      URL = {https://doi.org/10.1007/BFb0066373},
      }
  • [BT] Go to document A. Bartels and P. Teichner, "All two dimensional links are null homotopic," Geom. Topol., vol. 3, pp. 235-252, 1999.
    @ARTICLE{BT,
      author = {Bartels, Arthur and Teichner, Peter},
      title = {All two dimensional links are null homotopic},
      journal = {Geom. Topol.},
      fjournal = {Geometry and Topology},
      volume = {3},
      year = {1999},
      pages = {235--252},
      issn = {1465-3060},
      mrclass = {57Q45 (57M07 57Q60)},
      mrnumber = {1714911},
      mrreviewer = {J. S. Birman},
      doi = {10.2140/gt.1999.3.235},
      url = {https://doi.org/10.2140/gt.1999.3.235},
      zblnumber = {0927.57023},
      }
  • [BHV] Go to document M. Boege, G. Hinojosa, and A. Verjovsky, "Wild knots in higher dimensions as limit sets of Kleinian groups," Conform. Geom. Dyn., vol. 13, pp. 197-216, 2009.
    @ARTICLE{BHV,
      author = {Boege, Margareta and Hinojosa, Gabriela and Verjovsky, Alberto},
      title = {Wild knots in higher dimensions as limit sets of {K}leinian groups},
      journal = {Conform. Geom. Dyn.},
      fjournal = {Conformal Geometry and Dynamics. An Electronic Journal of the American Mathematical Society},
      volume = {13},
      year = {2009},
      pages = {197--216},
      issn = {1088-4173},
      mrclass = {57M30 (30F40 57Q45)},
      mrnumber = {2540704},
      mrreviewer = {Ken-ichi Ohshika},
      doi = {10.1090/S1088-4173-09-00198-2},
      url = {https://doi.org/10.1090/S1088-4173-09-00198-2},
      zblnumber = {1197.57015},
      }
  • [COP] Go to document J. C. Cha, K. E. Orr, and M. Powell, "Whitney towers and abelian invariants of knots," Mathematische Zeitschrift, 2019.
    @article{COP,
      author = {Cha, J. C. and Orr, K. E. and Powell, M.},
      title = {Whitney towers and abelian \hbox{invariants} of knots},
      journal = {Mathematische Zeitschrift},
      year = {2019},
      doi = {10.1007/s00209-019-02293-x},
      url = {https://doi.org/10.1007/s00209-019-02293-x},
      }
  • [Co] Go to document T. D. Cochran, "Geometric invariants of link cobordism," Comment. Math. Helv., vol. 60, iss. 2, pp. 291-311, 1985.
    @ARTICLE{Co,
      author = {Cochran, Tim D.},
      title = {Geometric invariants of link cobordism},
      journal = {Comment. Math. Helv.},
      fjournal = {Commentarii Mathematici Helvetici},
      volume = {60},
      year = {1985},
      number = {2},
      pages = {291--311},
      issn = {0010-2571},
      mrclass = {57Q45},
      mrnumber = {0800009},
      mrreviewer = {Michel Boileau},
      doi = {10.1007/BF02567416},
      url = {https://doi.org/10.1007/BF02567416},
      zblnumber = {0574.57008},
      }
  • [CST0] Go to document J. Conant, R. Schneiderman, and P. Teichner, "Higher-order intersections in low-dimensional topology," Proc. Natl. Acad. Sci. USA, vol. 108, iss. 20, pp. 8131-8138, 2011.
    @ARTICLE{CST0,
      author = {Conant, James and Schneiderman, Rob and Teichner, Peter},
      title = {Higher-order intersections in low-dimensional topology},
      journal = {Proc. Natl. Acad. Sci. USA},
      fjournal = {Proceedings of the National Academy of Sciences of the United States of America},
      volume = {108},
      year = {2011},
      number = {20},
      pages = {8131--8138},
      issn = {0027-8424},
      mrclass = {57N13 (57M25 57N70 57R80)},
      mrnumber = {2806650},
      mrreviewer = {Marko Kranjc},
      doi = {10.1073/pnas.1018581108},
      url = {https://doi.org/10.1073/pnas.1018581108},
      zblnumber = {1256.57017},
      }
  • [CST1] Go to document J. Conant, R. Schneiderman, and P. Teichner, "Whitney tower concordance of classical links," Geom. Topol., vol. 16, iss. 3, pp. 1419-1479, 2012.
    @ARTICLE{CST1,
      author = {Conant, James and Schneiderman, Rob and Teichner, Peter},
      title = {Whitney tower concordance of classical links},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {16},
      year = {2012},
      number = {3},
      pages = {1419--1479},
      issn = {1465-3060},
      mrclass = {57M27 (57N10)},
      mrnumber = {2967057},
      mrreviewer = {Stefan K. Friedl},
      doi = {10.2140/gt.2012.16.1419},
      url = {https://doi.org/10.2140/gt.2012.16.1419},
      zblnumber = {1257.57005},
      }
  • [F] Go to document Low Dimensional Topology, Fenn, R., Ed., Cambridge Univ. Press, Cambridge, 1985, vol. 95.
    @BOOK{F, Editor = {Fenn, Roger},
      title = {Low {D}imensional {T}opology},
      note = {Third Topology Seminar of the University of Sussex, Chelwood Gate, August 2--6, 1982},
      series = {London Math. Soc. Lect. Note Ser.},
      volume = {95},
      pages = {258 pp.},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1985},
      mrnumber = {0827295},
      zblnumber = {0561.00016},
      doi = {10.1017/CBO9780511662744},
      URL = {https://doi.org/10.1017/CBO9780511662744},
      }
  • [FR] Go to document R. Fenn and D. Rolfsen, "Spheres may link homotopically in $4$-space," J. London Math. Soc. (2), vol. 34, iss. 1, pp. 177-184, 1986.
    @ARTICLE{FR,
      author = {Fenn, Roger and Rolfsen, Dale},
      title = {Spheres may link homotopically in {$4$}-space},
      journal = {J. London Math. Soc. (2)},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      publisher = {Cambridge Univ. Press, Cambridge},
      volume = {34},
      year = {1986},
      number = {1},
      pages = {177--184},
      issn = {0024-6107},
      mrclass = {57Q45 (57Q35)},
      mrnumber = {0859159},
      mrreviewer = {Sergej V. Matveev},
      doi = {10.1112/jlms/s2-34.1.177},
      url = {https://doi.org/10.1112/jlms/s2-34.1.177},
      zblnumber = {0603.57011},
      }
  • [FQ] Go to document M. H. Freedman and F. Quinn, Topology of 4-Manifolds, Princeton Univ. Press, Princeton, NJ, 1990, vol. 39.
    @BOOK{FQ,
      author = {Freedman, Michael H. and Quinn, Frank},
      title = {Topology of 4-Manifolds},
      series = {Princeton Math.Series},
      volume = {39},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {1990},
      pages = {viii+259},
      isbn = {0-691-08577-3},
      mrclass = {57N13 (57-02)},
      mrnumber = {1201584},
      mrreviewer = {Ian Hambleton},
      zblnumber = {0705.57001},
      doi = {10.1515/9781400861064},
      url = {https://doi.org/10.1515/9781400861064},
      }
  • [GS] Go to document R. E. Gompf and A. I. Stipsicz, $4$-manifolds and Kirby Calculus, Amer. Math. Soc., Providence, RI, 1999, vol. 20.
    @BOOK{GS,
      author = {Gompf, Robert E. and Stipsicz, Andr\'{a}s I.},
      title = {{$4$}-manifolds and {K}irby Calculus},
      series = {Grad. Studies in Math.},
      volume = {20},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1999},
      pages = {xvi+558},
      isbn = {0-8218-0994-6},
      mrclass = {57N13 (14J80 32Q55 57-02 57R17 57R57 57R65)},
      mrnumber = {1707327},
      mrreviewer = {Nikolai N. Saveliev},
      doi = {10.1090/gsm/020},
      url = {https://doi.org/10.1090/gsm/020},
      zblnumber = {0933.57020},
      }
  • [HK] Go to document N. Habegger and U. Kaiser, "Link homotopy in the $2$-metastable range," Topology, vol. 37, iss. 1, pp. 75-94, 1998.
    @ARTICLE{HK,
      author = {Habegger, N. and Kaiser, U.},
      title = {Link homotopy in the {$2$}-metastable range},
      journal = {Topology},
      fjournal = {Topology. An International Journal of Mathematics},
      volume = {37},
      year = {1998},
      number = {1},
      pages = {75--94},
      issn = {0040-9383},
      mrclass = {57Q45 (55Q52)},
      mrnumber = {1480878},
      mrreviewer = {Laurence R. Taylor},
      doi = {10.1016/S0040-9383(97)00010-4},
      url = {https://doi.org/10.1016/S0040-9383(97)00010-4},
      zblnumber = {0890.57036},
      }
  • [J] Go to document G. T. Jin, "The Cochran sequences of semi-boundary links," Pacific J. Math., vol. 149, iss. 2, pp. 293-302, 1991.
    @ARTICLE{J,
      author = {Jin, Gyo Taek},
      title = {The {C}ochran sequences of semi-boundary links},
      journal = {Pacific J. Math.},
      fjournal = {Pacific Journal of Mathematics},
      volume = {149},
      year = {1991},
      number = {2},
      pages = {293--302},
      issn = {0030-8730},
      mrclass = {57M25},
      mrnumber = {1105699},
      mrreviewer = {Masayuki Yamasaki},
      doi = {10.2140/pjm.1991.149.293},
      url = {https://doi.org/10.2140/pjm.1991.149.293},
      zblnumber = {0728.57006},
      }
  • [Ki] Go to document P. A. Kirk, "Link maps in the four sphere," in Differential Topology, Springer, Berlin, 1988, vol. 1350, pp. 31-43.
    @INCOLLECTION{Ki,
      author = {Kirk, Paul A.},
      title = {Link maps in the four sphere},
      booktitle = {Differential Topology},
      venue = {{S}iegen, 1987},
      series = {Lecture Notes in Math.},
      volume = {1350},
      pages = {31--43},
      publisher = {Springer, Berlin},
      year = {1988},
      mrclass = {57Q45},
      mrnumber = {0979332},
      mrreviewer = {Roger Fenn},
      doi = {10.1007/BFb0081467},
      url = {https://doi.org/10.1007/BFb0081467},
      zblnumber = {0662.57012},
      }
  • [Ko] Go to document U. Koschorke, "Link maps and the geometry of their invariants," Manuscripta Math., vol. 61, iss. 4, pp. 383-415, 1988.
    @ARTICLE{Ko,
      author = {Koschorke, Ulrich},
      title = {Link maps and the geometry of their invariants},
      journal = {Manuscripta Math.},
      fjournal = {Manuscripta Mathematica},
      volume = {61},
      year = {1988},
      number = {4},
      pages = {383--415},
      issn = {0025-2611},
      mrclass = {57Q45},
      mrnumber = {0952086},
      mrreviewer = {Elmer G. Rees},
      doi = {10.1007/BF01258596},
      url = {https://doi.org/10.1007/BF01258596},
      zblnumber = {0689.57016},
      }
  • [Ko2] Go to document U. Koschorke, "On link maps and their homotopy classification," Math. Ann., vol. 286, iss. 4, pp. 753-782, 1990.
    @ARTICLE{Ko2,
      author = {Koschorke, Ulrich},
      title = {On link maps and their homotopy classification},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {286},
      year = {1990},
      number = {4},
      pages = {753--782},
      issn = {0025-5831},
      mrclass = {57Q45},
      mrnumber = {1045401},
      mrreviewer = {Donald M. Davis},
      doi = {10.1007/BF01453601},
      url = {https://doi.org/10.1007/BF01453601},
      zblnumber = {0662.57013},
      }
  • [L1] Go to document G. Li, "An invariant of link homotopy in dimension four," Topology, vol. 36, iss. 4, pp. 881-897, 1997.
    @ARTICLE{L1,
      author = {Li, Gui-Song},
      title = {An invariant of link homotopy in dimension four},
      journal = {Topology},
      fjournal = {Topology. An International Journal of Mathematics},
      volume = {36},
      year = {1997},
      number = {4},
      pages = {881--897},
      issn = {0040-9383},
      mrclass = {57Q45},
      mrnumber = {1432426},
      mrreviewer = {Roger Fenn},
      doi = {10.1016/S0040-9383(96)00034-1},
      url = {https://doi.org/10.1016/S0040-9383(96)00034-1},
      zblnumber = {0870.57034},
      }
  • [Lightfoot] Go to document A. Lightfoot, "On invariants of link maps in dimension four," J. Knot Theory Ramifications, vol. 25, iss. 11, p. 1650060, 2016.
    @ARTICLE{Lightfoot,
      author = {Lightfoot, Ash},
      title = {On invariants of link maps in dimension four},
      journal = {J. Knot Theory Ramifications},
      fjournal = {Journal of Knot Theory and its Ramifications},
      volume = {25},
      year = {2016},
      number = {11},
      pages = {1650060, 18},
      issn = {0218-2165},
      mrclass = {57N35 (57Q45)},
      mrnumber = {3558419},
      mrreviewer = {Uwe Kaiser},
      doi = {10.1142/S0218216516500607},
      url = {https://doi.org/10.1142/S0218216516500607},
      zblnumber = {1354.57031},
      }
  • [M1] Go to document J. Milnor, "Link groups," Ann. of Math. (2), vol. 59, pp. 177-195, 1954.
    @ARTICLE{M1,
      author = {Milnor, John},
      title = {Link groups},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {59},
      year = {1954},
      pages = {177--195},
      issn = {0003-486X},
      mrclass = {55.0X},
      mrnumber = {0071020},
      mrreviewer = {R. H. Fox},
      doi = {10.2307/1969685},
      url = {https://doi.org/10.2307/1969685},
      zblnumber = {0055.16901},
      }
  • [M3] J. Milnor, Lectures on the $h$-Cobordism Theorem, Princeton Univ. Press, Princeton, N.J., 1965.
    @BOOK{M3,
      author = {Milnor, John},
      title = {Lectures on the {$h$}-Cobordism Theorem},
      note = {notes by L. Siebenmann and J. Sondow},
      publisher = {Princeton Univ. Press, Princeton, N.J.},
      year = {1965},
      pages = {v+116},
      mrclass = {57.10},
      mrnumber = {0190942},
      mrreviewer = {P. E. Conner},
      zblnumber = {0161.20302},
      }
  • [Pilz] A. Pilz, Verschlingungshomotopie von 2-Sphären im 4-dimensionalen Raum, 1997.
    @MISC{Pilz,
      author = {Pilz, A.},
      title = {Verschlingungshomotopie von 2-{S}ph{ä}ren im 4-dimensionalen {R}aum},
      note = {Diploma thesis, University of Seigen},
      year = {1997},
      zblnumber = {},
      }
  • [Sc] Go to document G. P. Scott, "Homotopy links," Abh. Math. Sem. Univ. Hamburg, vol. 32, pp. 186-190, 1968.
    @ARTICLE{Sc,
      author = {Scott, G. P.},
      title = {Homotopy links},
      journal = {Abh. Math. Sem. Univ. Hamburg},
      fjournal = {Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg},
      volume = {32},
      year = {1968},
      pages = {186--190},
      issn = {0025-5858},
      mrclass = {55.20},
      mrnumber = {0236912},
      mrreviewer = {J. P. Levine},
      doi = {10.1007/BF02993127},
      url = {https://doi.org/10.1007/BF02993127},
      zblnumber = {0165.57102},
      }
  • [ST1] Go to document R. Schneiderman and P. Teichner, "Higher order intersection numbers of 2-spheres in 4-manifolds," Algebr. Geom. Topol., vol. 1, pp. 1-29, 2001.
    @ARTICLE{ST1,
      author = {Schneiderman, Rob and Teichner, Peter},
      title = {Higher order intersection numbers of 2-spheres in 4-manifolds},
      journal = {Algebr. Geom. Topol.},
      fjournal = {Algebraic \& Geometric Topology},
      volume = {1},
      year = {2001},
      pages = {1--29},
      issn = {1472-2747},
      mrclass = {57N13 (57N35)},
      mrnumber = {1790501},
      doi = {10.2140/agt.2001.1.1},
      url = {https://doi.org/10.2140/agt.2001.1.1},
      zblnumber = {0964.57022},
      }
  • [ST2] Go to document R. Schneiderman and P. Teichner, "Whitney towers and the Kontsevich integral," in Proceedings of the Casson Fest, 2004, pp. 101-134.
    @INPROCEEDINGS{ST2,
      author = {Schneiderman, Rob and Teichner, Peter},
      title = {Whitney towers and the {K}ontsevich integral},
      booktitle = {Proceedings of the {C}asson {F}est},
      series = {Geom. Topol. Monogr.},
      volume = {7},
      pages = {101--134},
      publisher = {Geom. Topol. Publ., Coventry},
      year = {2004},
      mrclass = {57N35 (57M27 57N13)},
      mrnumber = {2172480},
      doi = {10.2140/gtm.2004.7.101},
      url = {https://doi.org/10.2140/gtm.2004.7.101},
      zblnumber = {1090.57013},
      }
  • [Wa] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, New York, 1970, vol. 1.
    @BOOK{Wa,
      author = {Wall, C. T. C.},
      title = {Surgery on Compact Manifolds},
      note = {{\em London Math. Soc. Monogr}.},
      volume = {1},
      publisher = {Academic Press, New York},
      year = {1970},
      pages = {x+280},
      mrclass = {57D65},
      mrnumber = {0431216},
      mrreviewer = {J. Levine},
      zblnumber = {0219.57024},
      }
  • [Ya] Go to document M. Yamasaki, "Whitney’s trick for three $2$-dimensional homology classes of $4$-manifolds," Proc. Amer. Math. Soc., vol. 75, iss. 2, pp. 365-371, 1979.
    @ARTICLE{Ya,
      author = {Yamasaki, Masayuki},
      title = {Whitney's trick for three {$2$}-dimensional homology classes of {$4$}-manifolds},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {75},
      year = {1979},
      number = {2},
      pages = {365--371},
      issn = {0002-9939},
      mrclass = {57N15},
      mrnumber = {0532167},
      mrreviewer = {R. C. Kirby},
      doi = {10.2307/2042774},
      url = {https://doi.org/10.2307/2042774},
      zblnumber = {0412.57010},
      }

Authors

Rob Schneiderman

Lehman College, City University of New York, New York, NY, USA

Peter Teichner

University of California, Berkeley, CA, USA, and Max Planck Institute for Mathematics, Bonn, Germany