Ax-Schanuel for Shimura varieties

Abstract

We prove the Ax-Schanuel theorem for a general (pure) Shimura variety. A basic version of the theorem concerns the transcendence of the uniformization map from a bounded Hermitian symmetric space to a Shimura variety. We then prove a version of the theorem with derivatives in the setting of jet spaces, and finally a version in the setting of differential fields.

Our method of proof builds on previous work, combined with a new approach that uses higher-order contact conditions to place varieties yielding intersections of excessive dimension in natural algebraic families.

  • [Mo99] Go to document N. Mok, "$G$-structures on irreducible Hermitian symmetric spaces of rank $\geq 2$ and deformation rigidity," in Complex Geometric Analysis in Pohang (1997), Amer. Math. Soc., Providence, RI, 1999, vol. 222, pp. 81-107.
    @INCOLLECTION{Mo99,
      author = {Mok, Ngaiming},
      title = {{$G$}-structures on irreducible {H}ermitian symmetric spaces of rank {$\geq 2$} and deformation rigidity},
      booktitle = {Complex Geometric Analysis in {P}ohang (1997)},
      series = {Contemp. Math.},
      volume = {222},
      pages = {81--107},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1999},
      mrclass = {32G05 (32M15 53C24)},
      mrnumber = {1653044},
      mrreviewer = {I-Hsun Tsai},
      doi = {10.1090/conm/222/03174},
      url = {https://doi.org/10.1090/conm/222/03174},
      zblnumber = {0929.53022},
      }
  • [SEIDENBERGA] Go to document A. Seidenberg, "Abstract differential algebra and the analytic case," Proc. Amer. Math. Soc., vol. 9, pp. 159-164, 1958.
    @ARTICLE{SEIDENBERGA,
      author = {Seidenberg, A.},
      title = {Abstract differential algebra and the analytic case},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {9},
      year = {1958},
      pages = {159--164},
      issn = {0002-9939},
      mrclass = {12.80},
      mrnumber = {0093655},
      mrreviewer = {E. R. Kolchin},
      doi = {10.2307/2033416},
      url = {https://doi.org/10.2307/2033416},
      zblnumber = {0186.07502},
      }
  • [ANDRE] Go to document Y. André, "Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part," Compositio Math., vol. 82, iss. 1, pp. 1-24, 1992.
    @ARTICLE{ANDRE,
      author = {André,
      Yves},
      title = {Mumford-{T}ate groups of mixed {H}odge structures and the theorem of the fixed part},
      journal = {Compositio Math.},
      fjournal = {Compositio Mathematica},
      volume = {82},
      year = {1992},
      number = {1},
      pages = {1--24},
      issn = {0010-437X},
      mrclass = {14D07 (14C30)},
      mrnumber = {1154159},
      mrreviewer = {Min Ho Lee},
      url = {http://www.numdam.org/item?id=CM_1992__82_1_1_0},
      zblnumber = {0770.14003},
      }
  • [ACZ] Y. André, P. Corvaja, and U. Zannier, The Betti map associated to a section of an abelian scheme, with an appendix by Z. Gao, 2018.
    @MISC{ACZ,
      author = {André,
      Yves and Corvaja, P. and Zannier, U.},
      title = {The {B}etti map associated to a section of an abelian scheme, with an appendix by {Z. G}ao},
      year = {2018},
      arxiv = {1802.03204},
      zblnumber = {},
      }
  • [AX] Go to document J. Ax, "On Schanuel’s conjectures," Ann. of Math. (2), vol. 93, pp. 252-268, 1971.
    @ARTICLE{AX,
      author = {Ax, James},
      title = {On {S}chanuel's conjectures},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {93},
      year = {1971},
      pages = {252--268},
      issn = {0003-486X},
      mrclass = {10.32 (12.00)},
      mrnumber = {0277482},
      mrreviewer = {J. L. Johnson},
      doi = {10.2307/1970774},
      url = {https://doi.org/10.2307/1970774},
      zblnumber = {0232.10026},
      }
  • [BT] Go to document B. Bakker and J. Tsimerman, "The Ax-Schanuel conjecture for variations of Hodge structures," Invent. Math., 2019.
    @ARTICLE{BT,
      author = {Bakker, B. and Tsimerman, J.},
      title = {The {A}x-{S}chanuel conjecture for variations of {H}odge structures},
      year = {2019},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      note = {First online: 08 February 2019},
      zblnumber = {},
      doi = {10.1007/s00222-019-00863-8},
      url = {https://doi.org/10.1007/s00222-019-00863-8},
      }
  • [BEZU] Go to document D. Bertrand and W. Zudilin, "On the transcendence degree of the differential field generated by Siegel modular forms," J. Reine Angew. Math., vol. 554, pp. 47-68, 2003.
    @ARTICLE{BEZU,
      author = {Bertrand, D. and Zudilin, W.},
      title = {On the transcendence degree of the differential field generated by {S}iegel modular forms},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {554},
      year = {2003},
      pages = {47--68},
      issn = {0075-4102},
      mrclass = {11F46 (12H05)},
      mrnumber = {1952168},
      mrreviewer = {Vladimir G. Zhuravlev},
      doi = {10.1515/crll.2003.008},
      url = {https://doi.org/10.1515/crll.2003.008},
      zblnumber = {1130.11020},
      }
  • [BUIUM] Go to document A. Buium, "Geometry of differential polynomial functions. III. Moduli spaces," Amer. J. Math., vol. 117, iss. 1, pp. 1-73, 1995.
    @ARTICLE{BUIUM,
      author = {Buium, Alexandru},
      title = {Geometry of differential polynomial functions. {III}. {M}oduli spaces},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {117},
      year = {1995},
      number = {1},
      pages = {1--73},
      issn = {0002-9327},
      mrclass = {14K10 (11G10 12H05)},
      mrnumber = {1314457},
      mrreviewer = {Daniel Bertrand},
      doi = {10.2307/2375035},
      url = {https://doi.org/10.2307/2375035},
      zblnumber = {0829.14020},
      }
  • [DAWREN] Go to document C. Daw and J. Ren, "Applications of the hyperbolic Ax-Schanuel conjecture," Compos. Math., vol. 154, iss. 9, pp. 1843-1888, 2018.
    @ARTICLE{DAWREN,
      author = {Daw, Christopher and Ren, Jinbo},
      title = {Applications of the hyperbolic {A}x-{S}chanuel conjecture},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {154},
      year = {2018},
      number = {9},
      pages = {1843--1888},
      issn = {0010-437X},
      mrclass = {11G18 (14G35)},
      mrnumber = {3867286},
      doi = {10.1112/s0010437x1800725x},
      url = {https://doi.org/10.1112/s0010437x1800725x},
      zblnumber = {07036917},
     }
  • [DELIGNET] Go to document P. Deligne, "Travaux de Shimura," in Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, Springer, Berlin, 1971, pp. 123-165. lecture notes in math., vol. 244.
    @incollection{DELIGNET,
      author = {Deligne, Pierre},
      title = {Travaux de {S}himura},
      booktitle = {Séminaire {B}ourbaki, 23ème année (1970/71), {E}xp. {N}o. 389},
      pages = {123--165. Lecture Notes in Math., Vol. 244},
      publisher = {Springer, Berlin},
      year = {1971},
      mrclass = {14G25 (10D25 14K15)},
      mrnumber = {0498581},
      mrreviewer = {Author's review},
      zblnumber = {0225.14007},
      doi = {10.1007/BFb0058700},
      }
  • [DELIGNEV] P. Deligne, "Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques," in Automorphic Forms, Representations and $L$-Functions, Amer. Math. Soc., Providence, R.I., 1979, vol. 33, pp. 247-289.
    @INCOLLECTION{DELIGNEV,
      author = {Deligne, Pierre},
      title = {Variétés de {S}himura: interprétation modulaire, et techniques de construction de modèles canoniques},
      booktitle = {Automorphic Forms, Representations and {$L$}-Functions},
      venue = {{P}roc. {S}ympos. {P}ure {M}ath., {O}regon {S}tate {U}niv., {C}orvallis, {O}re., 1977), {P}art 2},
      series = {Proc. Sympos. Pure Math.},
      volume = {33},
      pages = {247--289},
      publisher = {Amer. Math. Soc., Providence, R.I.},
      year = {1979},
      mrclass = {10D20 (14D20 14G25 14K15)},
      mrnumber = {0546620},
      mrreviewer = {J. S. Milne},
      zblnumber = {0437.14012},
      }
  • [DMM] Go to document L. van den Dries, A. Macintyre, and D. Marker, "The elementary theory of restricted analytic fields with exponentiation," Ann. of Math. (2), vol. 140, iss. 1, pp. 183-205, 1994.
    @ARTICLE{DMM,
      author = {van den Dries, Lou and Macintyre, Angus and Marker, David},
      title = {The elementary theory of restricted analytic fields with exponentiation},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {140},
      year = {1994},
      number = {1},
      pages = {183--205},
      issn = {0003-486X},
      mrclass = {12L12 (03C10 03C62)},
      mrnumber = {1289495},
      mrreviewer = {Thanases Pheidas},
      doi = {10.2307/2118545},
      url = {https://doi.org/10.2307/2118545},
      zblnumber = {0837.12006},
      }
  • [DM] Go to document L. van den Dries and C. Miller, "On the real exponential field with restricted analytic functions," Israel J. Math., vol. 85, iss. 1-3, pp. 19-56, 1994.
    @ARTICLE{DM,
      author = {van den Dries, Lou and Miller, Chris},
      title = {On the real exponential field with restricted analytic functions},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {85},
      year = {1994},
      number = {1-3},
      pages = {19--56},
      issn = {0021-2172},
      mrclass = {03C10 (03C62 12J15)},
      mrnumber = {1264338},
      mrreviewer = {A. J. Wilkie},
      doi = {10.1007/BF02758635},
      url = {https://doi.org/10.1007/BF02758635},
      zblnumber = {0823.03017},
      }
  • [EGA] Go to document A. Grothendieck, "Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de Jean Dieudonné.," Publ. Math. IHES, vol. 32, pp. 5-361, 1967.
    @ARTICLE{EGA,
      author = {Grothendieck, A.},
      title = {{Éléments de géométrie algébrique. IV: \'{E}tude locale des schémas et des morphismes de schémas ({Q}uatrième partie). {R}édigé avec la colloboration de {J}ean {D}ieudonné.}},
      journal = {Publ. Math. IHES},
      fjournal = {Publ. Math., Inst. Hautes Étud. Sci.},
      volume = {32},
      year = {1967},
      pages = {5--361},
      zblnumber = {0153.22301},
      mrnumber = {0238860},
      doi = {10.1007/BF02732123},
      url = {https://doi.org/10.1007/BF02732123},
      }
  • [HM01] Go to document J. Hwang and N. Mok, "Cartan-Fubini type extension of holomorphic maps for Fano manifolds of Picard number 1," J. Math. Pures Appl. (9), vol. 80, iss. 6, pp. 563-575, 2001.
    @ARTICLE{HM01,
      author = {Hwang, Jun-Muk and Mok, Ngaiming},
      title = {Cartan-{F}ubini type extension of holomorphic maps for {F}ano manifolds of {P}icard number 1},
      journal = {J. Math. Pures Appl. (9)},
      fjournal = {Journal de Mathématiques Pures et Appliquées. Neuvième Série},
      volume = {80},
      year = {2001},
      number = {6},
      pages = {563--575},
      issn = {0021-7824},
      mrclass = {32Q15 (14J45 32J27)},
      mrnumber = {1842290},
      mrreviewer = {I-Hsun Tsai},
      doi = {10.1016/S0021-7824(00)01200-9},
      url = {https://doi.org/10.1016/S0021-7824(00)01200-9},
      zblnumber = {1033.32013},
      }
  • [HT] Go to document J. Hwang and W. To, "Volumes of complex analytic subvarieties of Hermitian symmetric spaces," Amer. J. Math., vol. 124, iss. 6, pp. 1221-1246, 2002.
    @ARTICLE{HT,
      author = {Hwang, Jun-Muk and To, Wing-Keung},
      title = {Volumes of complex analytic subvarieties of {H}ermitian symmetric spaces},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {124},
      year = {2002},
      number = {6},
      pages = {1221--1246},
      issn = {0002-9327},
      mrclass = {32Q15 (53C55)},
      mrnumber = {1939785},
      mrreviewer = {Khalid Koufany},
      doi = {10.1353/ajm.2002.0038},
      url = {https://doi.org/10.1353/ajm.2002.0038},
      zblnumber = {1024.32013},
      }
  • [KAZHDANA] D. Kazhdan, "Arithmetic varieties and their fields of quasi-definition," in Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris, 1971, pp. 321-325.
    @incollection {KAZHDANA,
      author = {Kazhdan, David},
      TITLE = {Arithmetic varieties and their fields of quasi-definition},
      BOOKTITLE = {Actes du {C}ongrès {I}nternational des {M}athématiciens ({N}ice, 1970), {T}ome 2},
      PAGES = {321--325},
      PUBLISHER = {Gauthier-Villars, Paris},
      YEAR = {1971},
      MRCLASS = {14G25},
      MRNUMBER = {0435081},
      MRREVIEWER = {Yasutaka Ihara},
      ZBLNUMBER = {0223.14025},
      }
  • [KAZHDANB] D. Kazhdan, "On arithmetic varieties," in Lie Groups and their Representations, Halsted, New York, 1975, pp. 151-217.
    @incollection{KAZHDANB,
      author = {Kazhdan, David},
      title = {On arithmetic varieties},
      booktitle = {Lie Groups and their Representations},
      venue={{P}roc. {S}ummer {S}chool, {B}olyai {J}\'{a}nos {M}ath. {S}oc., {B}udapest, 1971},
      pages = {151--217},
      publisher = {Halsted, New York},
      year = {1975},
      mrclass = {22E40 (10D99 14D20)},
      mrnumber = {0486316},
      mrreviewer = {M. S. Raghunathan},
      zblnumber = {0308.14007},
      }
  • [KAZHDANC] Go to document D. Kazhdan, "On arithmetic varieties. II," Israel J. Math., vol. 44, iss. 2, pp. 139-159, 1983.
    @ARTICLE{KAZHDANC,
      author = {Kazhdan, David},
      title = {On arithmetic varieties. {II}},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {44},
      year = {1983},
      number = {2},
      pages = {139--159},
      issn = {0021-2172},
      mrclass = {22E40 (14D20 32M15 32N10)},
      mrnumber = {0693357},
      mrreviewer = {M. S. Raghunathan},
      doi = {10.1007/BF02760617},
      url = {https://doi.org/10.1007/BF02760617},
      zblnumber = {0543.14030},
      }
  • [KUY] Go to document B. Klingler, E. Ullmo, and A. Yafaev, "The hyperbolic Ax-Lindemann-Weierstrass conjecture," Publ. Math. Inst. Hautes Études Sci., vol. 123, pp. 333-360, 2016.
    @ARTICLE{KUY,
      author = {Klingler, B. and Ullmo, E. and Yafaev, A.},
      title = {The hyperbolic {A}x-{L}indemann-{W}eierstrass conjecture},
      journal = {Publ. Math. Inst. Hautes \'{E}tudes Sci.},
      fjournal = {Publications Mathématiques. Institut de Hautes \'{E}tudes Scientifiques},
      volume = {123},
      year = {2016},
      pages = {333--360},
      issn = {0073-8301},
      mrclass = {14G35 (03C64 11J91 14P10 32H02 32M15)},
      mrnumber = {3502100},
      mrreviewer = {G. K. Sankaran},
      doi = {10.1007/s10240-015-0078-9},
      url = {https://doi.org/10.1007/s10240-015-0078-9},
      zblnumber = {1372.14016},
      }
  • [LOJASIEWICZ] Go to document S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser Verlag, Basel, 1991.
    @BOOK{LOJASIEWICZ,
      author = {{\L}ojasiewicz, Stanis{\l}aw},
      title = {Introduction to Complex Analytic Geometry},
      note = {translated from the {P}olish by {M}aciej {K}limek},
      publisher = {Birkhäuser Verlag, Basel},
      year = {1991},
      pages = {xiv+523},
      isbn = {3-7643-1935-6},
      mrclass = {32-02 (32Bxx 32C25)},
      mrnumber = {1131081},
      doi = {10.1007/978-3-0348-7617-9},
      url = {https://doi.org/10.1007/978-3-0348-7617-9},
      zblnumber = {0747.32001},
      }
  • [MILNEKAZHDANA] Go to document J. S. Milne, "The action of an automorphism of ${\bf C}$ on a Shimura variety and its special points," in Arithmetic and Geometry, Vol. I, Birkhäuser Boston, Boston, MA, 1983, vol. 35, pp. 239-265.
    @INCOLLECTION{MILNEKAZHDANA,
      author = {Milne, J. S.},
      title = {The action of an automorphism of {${\bf C}$} on a {S}himura variety and its special points},
      booktitle = {Arithmetic and Geometry, {V}ol. {I}},
      series = {Progr. Math.},
      volume = {35},
      pages = {239--265},
      publisher = {Birkhäuser Boston, Boston, MA},
      year = {1983},
      mrclass = {11G18 (14K15 14K22)},
      mrnumber = {0717596},
      mrreviewer = {Paul B. Garrett},
      zblnumber = {0527.14035},
      doi = {10.1007/978-1-4757-9284-3_10},
      url = {https://doi.org/10.1007/978-1-4757-9284-3_10},
     }
  • [MILNEKAZHDANB] J. S. Milne, Kazhdan’s theorem on arithmetic varieties.
    @MISC{MILNEKAZHDANB,
      author = {Milne, J. S.},
      title = {Kazhdan's theorem on arithmetic varieties},
      note = {Te{X}ed version of 1983 handwritten notes, from website of author},
      zblnumber = {},
      }
  • [MILNE] J. S. Milne, "Introduction to Shimura varieties," in Harmonic Analysis, the Trace Formula, and Shimura Varieties, Amer. Math. Soc., Providence, RI, 2005, vol. 4, pp. 265-378.
    @INCOLLECTION{MILNE,
      author = {Milne, J. S.},
      title = {Introduction to {S}himura varieties},
      booktitle = {Harmonic Analysis, the Trace Formula, and {S}himura Varieties},
      series = {Clay Math. Proc.},
      volume = {4},
      pages = {265--378},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2005},
      mrclass = {11G18 (14G35)},
      mrnumber = {2192012},
      mrreviewer = {Ulrich Görtz},
      zblnumber = {1148.14011},
      }
  • [MOK] N. Mok, Zariski closures of images of algebraic subsets under the uniformization map of finite-volume quotients of the complex unit ball, 2017.
    @MISC{MOK,
      author = {Mok, Ngaiming},
      title = {Zariski closures of images of algebraic subsets under the uniformization map of finite-volume quotients of the complex unit ball},
      note = {web preprint},
      year = {2017},
      zblnumber = {},
      }
  • [MOKZHONG] Go to document N. Mok and J. Q. Zhong, "Compactifying complete Kähler-Einstein manifolds of finite topological type and bounded curvature," Ann. of Math. (2), vol. 129, iss. 3, pp. 427-470, 1989.
    @ARTICLE{MOKZHONG,
      author = {Mok, Ngaiming and Zhong, Jia Qing},
      title = {Compactifying complete {K}ähler-{E}instein manifolds of finite topological type and bounded curvature},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {129},
      year = {1989},
      number = {3},
      pages = {427--470},
      issn = {0003-486X},
      mrclass = {32J05 (22E40 32J20 32N05 53C55)},
      mrnumber = {0997309},
      mrreviewer = {Takeo Ohsawa},
      doi = {10.2307/1971513},
      url = {https://doi.org/10.2307/1971513},
      zblnumber = {0682.53065},
      }
  • [Oc70] Go to document T. Ochiai, "Geometry associated with semisimple flat homogeneous spaces," Trans. Amer. Math. Soc., vol. 152, pp. 159-193, 1970.
    @ARTICLE{Oc70,
      author = {Ochiai, Takushiro},
      title = {Geometry associated with semisimple flat homogeneous spaces},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {152},
      year = {1970},
      pages = {159--193},
      issn = {0002-9947},
      mrclass = {53.52},
      mrnumber = {0284936},
      mrreviewer = {Shoshichi Kobayashi},
      doi = {10.2307/1995645},
      url = {https://doi.org/10.2307/1995645},
      zblnumber = {0205.26004},
      }
  • [PSNEWTON] Go to document Y. Peterzil and S. Starchenko, "Complex analytic geometry in a nonstandard setting," in Model Theory with Applications to Algebra and Analysis. Vol. 1, Cambridge Univ. Press, Cambridge, 2008, vol. 349, pp. 117-165.
    @INCOLLECTION{PSNEWTON,
      author = {Peterzil, Ya'acov and Starchenko, Sergei},
      title = {Complex analytic geometry in a nonstandard setting},
      booktitle = {Model Theory with Applications to Algebra and Analysis. {V}ol. 1},
      series = {London Math. Soc. Lecture Note Ser.},
      volume = {349},
      pages = {117--165},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2008},
      mrclass = {03H05 (03C64 14P99)},
      mrnumber = {2441378},
      mrreviewer = {Fernando Sanz},
      doi = {10.1017/CBO9780511735226.008},
      url = {https://doi.org/10.1017/CBO9780511735226.008},
      zblnumber = {1160.03017},
      }
  • [PSICM] Go to document Y. Peterzil and S. Starchenko, "Tame complex analysis and o-minimality," in Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 58-81.
    @INCOLLECTION{PSICM,
      author = {Peterzil, Ya'acov and Starchenko, Sergei},
      title = {Tame complex analysis and o-minimality},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians. {V}olume {II}},
      pages = {58--81},
      publisher = {Hindustan Book Agency, New Delhi},
      year = {2010},
      mrclass = {03C64 (14P15 32B15 32C20)},
      mrnumber = {2827785},
      zblnumber = {1246.03061},
      doi = {10.1142/9789814324359_0040},
      }
  • [PSDMJ] Go to document Y. Peterzil and S. Starchenko, "Definability of restricted theta functions and families of abelian varieties," Duke Math. J., vol. 162, iss. 4, pp. 731-765, 2013.
    @ARTICLE{PSDMJ,
      author = {Peterzil, Ya'acov and Starchenko, Sergei},
      title = {Definability of restricted theta functions and families of abelian varieties},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {162},
      year = {2013},
      number = {4},
      pages = {731--765},
      issn = {0012-7094},
      mrclass = {03C64 (11F46 11G18 14G35 14K25)},
      mrnumber = {3039679},
      mrreviewer = {Jean-Philippe Rolin},
      doi = {10.1215/00127094-2080018},
      url = {https://doi.org/10.1215/00127094-2080018},
      zblnumber = {1284.03215},
      }
  • [PTAS] Go to document J. Pila and J. Tsimerman, "The André-Oort conjecture for the moduli space of abelian surfaces," Compos. Math., vol. 149, iss. 2, pp. 204-216, 2013.
    @ARTICLE{PTAS,
      author = {Pila, Jonathan and Tsimerman, Jacob},
      title = {The {A}ndré-{O}ort conjecture for the moduli space of abelian surfaces},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {149},
      year = {2013},
      number = {2},
      pages = {204--216},
      issn = {0010-437X},
      mrclass = {11G18 (03C64 14K10)},
      mrnumber = {3020307},
      mrreviewer = {Jae-Hyun Yang},
      doi = {10.1112/S0010437X12000589},
      url = {https://doi.org/10.1112/S0010437X12000589},
      zblnumber = {1304.11055},
      }
  • [PTAXJ] Go to document J. Pila and J. Tsimerman, "Ax-Schanuel for the $j$-function," Duke Math. J., vol. 165, iss. 13, pp. 2587-2605, 2016.
    @ARTICLE{PTAXJ,
      author = {Pila, Jonathan and Tsimerman, Jacob},
      title = {Ax-{S}chanuel for the {$j$}-function},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {165},
      year = {2016},
      number = {13},
      pages = {2587--2605},
      issn = {0012-7094},
      mrclass = {11G18 (03C98 14F10)},
      mrnumber = {3546969},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.1215/00127094-3620005},
      url = {https://doi.org/10.1215/00127094-3620005},
      zblnumber = {06650079},
      }
  • [PW] Go to document J. Pila and A. J. Wilkie, "The rational points of a definable set," Duke Math. J., vol. 133, iss. 3, pp. 591-616, 2006.
    @ARTICLE{PW,
      author = {Pila, Jonathan and Wilkie, A. J.},
      title = {The rational points of a definable set},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {133},
      year = {2006},
      number = {3},
      pages = {591--616},
      issn = {0012-7094},
      mrclass = {03C64 (11G99 11U09)},
      mrnumber = {2228464},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.1215/S0012-7094-06-13336-7},
      url = {https://doi.org/10.1215/S0012-7094-06-13336-7},
      zblnumber = {1217.11066},
      }
  • [SAUNDERS] Go to document D. J. Saunders, The Geometry of Jet Bundles, Cambridge University Press, Cambridge, 1989, vol. 142.
    @BOOK{SAUNDERS,
      author = {Saunders, D. J.},
      title = {The Geometry of Jet Bundles},
      series = {London Math. Soc. Lecture Note Ser.},
      volume = {142},
      publisher = {Cambridge University Press, Cambridge},
      year = {1989},
      pages = {viii+293},
      isbn = {0-521-36948-7},
      mrclass = {58A20},
      mrnumber = {0989588},
      mrreviewer = {J. Vanžura},
      doi = {10.1017/CBO9780511526411},
      url = {https://doi.org/10.1017/CBO9780511526411},
      zblnumber = {0665.58002},
      }
  • [SCANLON] Go to document T. Scanlon, "Algebraic differential equations from covering maps," Adv. Math., vol. 330, pp. 1071-1100, 2018.
    @ARTICLE{SCANLON,
      author = {Scanlon, Thomas},
      title = {Algebraic differential equations from covering maps},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {330},
      year = {2018},
      pages = {1071--1100},
      issn = {0001-8708},
      mrclass = {12H05 (03C64 14D05 32B20)},
      mrnumber = {3787564},
      mrreviewer = {Shanghua Zheng},
      doi = {10.1016/j.aim.2018.03.008},
      url = {https://doi.org/10.1016/j.aim.2018.03.008},
      zblnumber = {06893255},
      }
  • [JTAX] Go to document J. Tsimerman, "Ax-Schanuel and o-minimality," in O-minimality and Diophantine Geometry, Cambridge Univ. Press, Cambridge, 2015, vol. 421, pp. 216-221.
    @INCOLLECTION{JTAX,
      author = {Tsimerman, Jacob},
      title = {Ax-{S}chanuel and o-minimality},
      booktitle = {O-minimality and Diophantine Geometry},
      series = {London Math. Soc. Lecture Note Ser.},
      editors = {G. Jones and A. Wilkie},
      volume = {421},
      pages = {216--221},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2015},
      mrclass = {03C64 (11G05 11U09)},
      mrnumber = {3496448},
      mrreviewer = {Fabrizio Barroero},
      zblnumber = {1352.11061},
      doi = {10.1017/CBO9781316106839.010},
      }
  • [WILKIE] Go to document A. J. Wilkie, "Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function," J. Amer. Math. Soc., vol. 9, iss. 4, pp. 1051-1094, 1996.
    @ARTICLE{WILKIE,
      author = {Wilkie, A. J.},
      title = {Model completeness results for expansions of the ordered field of real numbers by restricted {P}faffian functions and the exponential function},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {9},
      year = {1996},
      number = {4},
      pages = {1051--1094},
      issn = {0894-0347},
      mrclass = {03C62 (03C60 03C65 14P15)},
      mrnumber = {1398816},
      mrreviewer = {Luc Bélair},
      doi = {10.1090/S0894-0347-96-00216-0},
      url = {https://doi.org/10.1090/S0894-0347-96-00216-0},
      zblnumber = {0892.03013},
      }
  • [YOSHIDA] Go to document M. Yoshida, Fuchsian Differential Equations, Friedr. Vieweg & Sohn, Braunschweig, 1987.
    @BOOK{YOSHIDA,
      author = {Yoshida, Masaaki},
      title = {Fuchsian Differential Equations},
      series = {Aspects of Mathematics, E11},
      note = {With special emphasis on the Gauss-Schwarz theory},
      publisher = {Friedr. Vieweg \& Sohn, Braunschweig},
      year = {1987},
      pages = {xiv+215},
      isbn = {3-528-08971-7},
      mrclass = {32G13 (14D05 22E40 32C40 32G20 34A30 35A30)},
      mrnumber = {0986252},
      mrreviewer = {Takeshi Sasaki},
      doi = {10.1007/978-3-663-14115-0},
      url = {https://doi.org/10.1007/978-3-663-14115-0},
      zblnumber = {0618.35001},
      }

Authors

Ngaiming Mok

The University of Hong Kong, Pokfulam, Hong Kong

Jonathan Pila

Mathematical Institute, University of Oxford, Oxford, United Kingdom

Jacob Tsimerman

University of Toronto Toronto, Ontario, Canada