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Ax-Schanuel for Shimura varieties

By Ngaiming Mok, Jonathan Pila, and Jacob Tsimerman

Abstract

We prove the Ax-Schanuel theorem for a general (pure) Shimura vari-

ety. A basic version of the theorem concerns the transcendence of the uni-

formization map from a bounded Hermitian symmetric space to a Shimura

variety. We then prove a version of the theorem with derivatives in the set-

ting of jet spaces, and finally a version in the setting of differential fields.

Our method of proof builds on previous work, combined with a new ap-

proach that uses higher-order contact conditions to place varieties yielding

intersections of excessive dimension in natural algebraic families.
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1. Introduction

Let Ω be a bounded Hermitian symmetric domain corresponding to a

semisimple arithmetic group G, and let Γ ⊂ G(Z) be a finite index subgroup.

Then X = Γ\Ω has the structure of a quasi-projective algebraic variety. A

variety X arising in this way is called a (connected, pure) Shimura variety .

We refer to [8], [9] or [22] for a detailed introduction to Shimura varieties. A

Shimura variety X is endowed with a collection of weakly special subvarieties.

(There is a smaller collection of special subvarieties, where a special subvariety

is precisely a weakly special subvariety that contains a special point ; these play

no role in this paper.) For a description of these, see, e.g., [18].

Let q : Ω → X be the natural projection map, and let D ⊂ Ω × X be

the graph of q. Recall that Ω sits naturally as an open subset in its compact

dual “Ω, which has the structure of a projective variety. By an irreducible

algebraic subvariety W ⊂ Ω × X we mean a complex-analytically irreducible

component of Ŵ ∩ (Ω×X) for some algebraic subvariety Ŵ ⊂ “Ω×X. By an

algebraic subvariety of Ω ×X we mean a finite union of irreducible algebraic

subvarieties of Ω×X. In the sequel, dimU denotes the complex dimension of

a complex analytic set. Though at some points we will refer implicitly to sets

in real Euclidean spaces, any reference to real dimensions will be specifically

noted.

Our basic result is the following.

Theorem 1.1. With notation as above, let W ⊂ Ω × X be an algebraic

subvariety such that W = Ŵ ∩ (Ω ×X) for some irreducible subvariety Ŵ ⊂“Ω×X . Let U be an irreducible component of W ∩D whose dimension is larger

than expected, that is,

(∗) codimU < codimW + codimD,

the codimensions being in Ω×X or, equivalently,

(∗∗) dimW < dimU + dimX.

Then the projection of U to X is contained in a proper weakly special subvariety

of X .

If one takes q : Ω→ X to be the map

exp : Cn → (C×)n,

namely, the Cartesian power of the complex exponential, then the statement

is an equivalent form of the Ax-Schanuel theorem of Ax [3]. In this form it is

given a new proof in [36]. Note, however, that (C×)n is a “mixed” Shimura

variety but not a “pure” one, so this case is not formally covered by the above

theorem.
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One expects equality in (∗) and (∗∗) above, on dimensional considerations,

and such a component U always has dimension at least dimW − dimX (see,

e.g.,  Lojasiewicz [19, III.4.6]). Thus the theorem asserts that all components of

such intersections that are atypical in dimension are accounted for by weakly

special subvarieties.

Since weakly special varieties are “bi-algebraic” in the sense of [18], they

do indeed give rise to atypical intersections. For example, in the extreme case

that W = Ω1 × X1, where X1 is a weakly special subvariety of X and Ω1 a

connected component of its preimage in Ω, we get dimW = dimU + dimX1.

Upon taking W to be a product variety in Theorem 1.1, we recover the

following 2-sorted version.

Theorem 1.2. Let X,Ω be as in Theorem 1.1. Let Y ⊂ Ω be an irre-

ducible complex-analytic subset. We let Y WS ⊂ Ω be the smallest weakly special

subvariety containing Y . Then

dimY zar + dim q(Y )zar ≥ dimY + dimY WS,

where Y zar and q(Y )zar denote the Zariski closures of Y and q(Y ) respectively.

As in earlier papers [36], [18], [31], the proof combines arguments from com-

plex geometry (Hwang-To), the geometry/group theory underlying Shimura

varieties, o-minimality, and monodromy (Deligne-André). The ingredients

from o-minimality include the counting theorem of Pila-Wilkie, and results

of Peterzil-Starchenko giving powerful “definable” versions of the classical the-

orems of Remmert-Stein and Chow.

What these ingredients end up giving is the invariance of W under a non-

trivial arithmetic subgroup H ⊂ G. However, in order to use H to reduce to

a smaller bounded Hermitian symmetric domain one needs to know that H is

normal, and this is where one encounters difficulties with previous methods.

The crucial new ingredient in this paper is the observation that one may

put W in a natural algebraic family of varieties with similar intersection prop-

erties with respect to D. We then leverage the algebraicity to realize strong

monodromy restrictions on the invariance subgroup H and thereby establish

its normality. We establish the algebraicity by way of the results of Peterzil-

Starchenko. However, there is also a purely complex analytic approach, which

we allude to in Section 3; see the remark at the end of Section 3.

We expect that Theorem 1.1, which is sometimes called the “hyperbolic

Ax-Schanuel conjecture” [7], will find applications to the Zilber-Pink conjec-

ture,1 where it can play a role analogous to that of the “Ax-Lindemann theo-

rem,” which it generalizes, in proving cases of the André-Oort conjecture; see,

1In the Zilber-Pink conjecture, it is really the 2-sorted Theorem 1.2 that is used.
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e.g., [30]. One such application has been given by Daw-Ren [7]. An applica-

tion in a different direction is given in [2]. A generalization of Theorem 1.1 to

variations of Hodge structures is given by Bakker-Tsimerman [4].

We will prove a strengthening of Theorem 1.1 involving the uniformizing

function together with its derivatives, along the same lines as the result of

Pila-Tsimerman [30] for Cartesian powers of the j-function. For this we first

observe the following generalization of a result of Bertrand-Zudilin [5] in the

case of the Siegel modular varieties. (But note that their result holds over any

algebraically closed subfield of C; we do not have any control over the field of

definition of the differential equations.) The following result is established in

Section 9 as Corollary 9.3. Let N+ ⊂ G be the unipotent radical of an opposite

parabolic subgroup of the complex parabolic subgroup B ⊂ G defining the

symmetric space “Ω (= G(C)/B(C)).

Theorem 1.3. Let z1, . . . , zn be an N+(C)-invariant algebraic coordinate

system on Ω. Let {φ1, . . . , φN} be a C-basis of modular functions. Then the

field generated by {φi} and their partial derivatives with respect to the zj up to

order k ≥ 2 has transcendence degree over C equal to dimG. Furthermore, the

transcendence degree is the same over C(z1, . . . , zn).

As an example, one may consider the Shimura Variety Ag, the moduli

space of principally polarized abelian varieties of dimension g. In this case,

Ω = Hg is Siegel upper half space, and G = Sp2g. Recall that Hg consists of

symmetric g× g complex matrices whose imaginary parts are positive definite.

Let zij be the natural matrix co-ordinates on Hg, which are an N+(C)-invariant

set of algebraic co-ordinates forN+ being the strictly upper triangular elements

of G. Then one may take the φi to be a basis of Siegel modular functions, and

Theorem 1.3 applies to this case, recovering the result of Bertrand-Zudilin [5]

(though only over C).

To frame our result we need to study the form of the differential equations

satisfied by the uniformization map, for which in Sections 7 and 8 we introduce

and study the Schwarzian derivative for a Hermitian symmetric domain. Dif-

ferential equations associated with covering maps are studied by Scanlon [34],

who shows under quite general assumptions that one gets algebraic differential

equations. A key ingredient there, as here, is definability and the results of

Peterzil-Starchenko. However, our focus is on getting more specific information

(such as Theorem 1.3) in the special case of Shimura varieties. On this circle

of differential ideas, see also Buium [6]. For a description of the Schwarzian

for PSLm, see [38].

Our Ax-Schanuel theorem for q and its derivatives (Theorem 9.1) is most

naturally stated in the setting of jet spaces. These are introduced in Sections 5

and 6. Here we give the following jet-space-free consequence of Theorem 9.1.
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Theorem 1.4. Let V ⊂ Ω be an irreducible complex analytic variety, not

contained in a proper weakly special subvariety. Let {zi, i = 1, . . . , n} be an

algebraic coordinate system on Ω. Let {φ(ν)
j } consist of a basis φ1, . . . , φN of

modular functions, all defined at at least one point of V , together with their

partial derivatives with respect to the zj up to order k ≥ 2. Then

tr.deg.CC
Ä
{zi}, {φ(ν)

j }
ä
≥ dimG+ dimV,

where all functions are considered restricted to V .

We also give, in Section 12, a version of Ax-Schanuel in the setting of a

differential field, and we show that in turn it directly implies the jet version.

This depends on the fact that all solutions of the relevant differential system

are G(C)-translates of q, and this is due to the provenance of the system in

properties of the Schwarzian associated with G and Ω.

Let (K,D, C) be a differential field with a finite set D of commuting

derivations and constant field C. We consider K-points (z, x, y) of suitable

varieties over C and establish a differential algebraic condition under which

such a point corresponds to a locus z in “Ω, whose dimension equals the rank

of z, a corresponding locus x in X under some G(C)-translate Q of q, and the

restrictions y of suitable derivatives of Q to the locus x.

The precise definition of such a uniformized locus of rank k in K is given in

Section 12, after the differential algebraic condition is established in Section 11.

Under suitable identifications, we can also speak of x being contained in a

proper weakly special subvariety of X. With these notions, the differential

version of Ax-Schanuel may be stated as follows.

Theorem 1.5 (Differential Ax-Schanuel). Let G, q, (K,D, C) be as above.

Let (z, x, y) be a uniformized locus. Then

tr.deg.CC(z, x, y) ≥ rank(z) + dimG

unless x is contained in a proper weakly special subvariety.

Part I. Basic Ax-Schanuel

This part is devoted to the proof of Theorem 1.1.

2. Preliminaries

We gather some preliminary remarks, definitions, and results.

2.1. Shimura varieties. According to the definition given, a Shimura va-

riety X may not be smooth, and the covering q : Ω → X may be ramified, if

Γ contains elliptic elements. For example, j : H → C is ramified at SL2(Z)i
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and SL2(Z)ρ, where ρ = exp(2πi/3), even though in this case the quotient C
is still smooth.

By passing to a finite index subgroup we may always assume that the

uniformization is unramified and the Shimura variety is smooth, and hence a

complex manifold. This does not affect the validity of Theorem 1.1. Hence

we may and do assume throughout that X is smooth and that q : Ω → X is

unramified.

2.2. Definability. The definition and basic results on o-minimal structures

over a real closed field may be found in [28]. In this paper, “definable” will

mean “definable in the o-minimal structure Ran,exp.” However, the results of

Section 2 hold more generally.

Let F be the classical Siegel domain for the action of Γ on Ω. Then the

uniformization q : Ω → X restricted to F is definable in the o-minimal struc-

ture Ran,exp; see [11] and [10], where the o-minimality of Ran,exp is established,

building on [37]. For a general Shimura variety, this result is due to Klingler-

Ullmo-Yafaev [18], generalizing results of Peterzil-Starchenko [29] for moduli

spaces of abelian varieties.

We shall need the following results, which can be see as definable gener-

alizations of GAGA-type theorems.

Theorem 2.1 (“Definable Remmert-Stein” [28, Th. 5.3]). Let M be a

definable complex manifold and E a definable complex analytic subset of M .

If A is a definable, complex analytic subset of M\E, then its closure A is a

complex analytic subset of M . �

The following is a slight generalization of a theorem stated by Peterzil-

Starchenko [28, Th. 4.5], which may be proved by combining their statement

with “Definable Remmert-Stein” above. This strengthening has also been ob-

served by Scanlon [34, Th. 2.11] and, in a slightly less general form, in [30].

Theorem 2.2 (“Definable Chow”). Let Y be a quasiprojective algebraic

variety, and let A ⊂ Y be definable, complex analytic, and closed in Y . Then

A is algebraic.

Proof. We follow the proof in [30]. By taking an affine open set in Y , it

suffices to consider the case where Y is an affine subset of projective space.

Then Y is a definable, complex analytic subset ofM\E, whereM is a projective

variety and E is a closed algebraic subset of M . Then, by “Definable Remmert-

Stein” above, the closure of A in M is a definable, complex analytic subset

of M , hence complex analytic in the ambient projective space. Thus A must

be algebraic by Chow’s theorem, or by the Peterzil-Starchenko version [28,

Th. 4.5]. �



AX-SCHANUEL FOR SHIMURA VARIETIES 951

We say that a set is “constructible complex analytic” if it is in the Boolean

algebra generated by closed, complex analytic varieties.

Corollary 2.3. Let Y be a quasiprojective algebraic variety, and let

A ⊂ Y be definable, constructible complex analytic. Then A is constructible

algebraic.

Proof. Let B = A\A. Then B is definable, constructible complex analytic,

and has dimB < dimA. By induction, B is constructible algebraic. Since Ā

is closed, it follows from Theorem 2.2 that Ā is constructible algebraic. Thus

A is constructible algebraic. �

3. Some algebraicity results

We have the uniformization q : Ω → X in which X is a quasi-projective

variety, and the map q is complex analytic and surjective. It is further invariant

under the action of some discrete group Γ of holomorphic automorphisms of

Ω, and as noted above the restriction of q to a suitable fundamental domain

F for this action is definable.

Suppose that V ⊂ X is a relatively closed algebraic subvariety. Then

q−1(V ) ⊂ Ω is a closed complex analytic set that is Γ-invariant and definable

on a fundamental domain F . The same statement holds for the uniformization

q × id : Ω×X → X ×X

and V ⊂ X×X, that is invariant under Γ×{id}, where now q× id is definable

on F ×X. We observe that the converse holds.

Theorem 3.1. Let A ⊂ Ω×X be a closed, complex analytic set which is

Γ×{id}-invariant, and such that A∩ (F ×X) is definable. Then (q× id)(A) ⊂
X ×X is a closed algebraic subset.

Proof. The image (q × id)(A) is closed and complex analytic in X × X.

Since (q × id)(A) = (q × id)(A ∩ (F × X)), it is also definable, and so it is

algebraic by “Definable Chow” (Theorem 2.2). �

Corollary 3.2. Let A ⊂ Ω × X be a closed, constructible complex an-

alytic set that is Γ × {id}-invariant, and such that A ∩ (F × X) is definable.

Then (q × id)(A) ⊂ X ×X is a constructible algebraic subset.

Proof. It follows from Corollary 2.3 as above. �

3.1. Descending Hilbert scheme loci. For the purposes of proving Theo-

rem 1.1, we need to work with a family of varieties containing W that is both

closed under the action of G(C) and proper. (The latter assumption is made
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for reasons that are somewhat technical, and might be removable with more ef-

fort.) A convenient, well-known family to work with is provided by the theory

of the Hilbert scheme, and so that is the context in which we work.

Fix a smooth, projective compactification “X of X. Now we fix some

algebraic subvariety W ⊂ Ω×X such that W = Ŵ ∩Ω×X for some irreducible

algebraic subvariety Ŵ ⊂ “Ω×X, and we let U be an irreducible component of

W ∩D. We make no assumptions here on the dimension of U . By the Hilbert

polynomial P = PW (ν) of W we mean the Hilbert polynomial of Ŵ .

Let M be the Hilbert scheme of all subvarieties of “Ω × “X with Hilbert

polynomial P . Then M also has the structure of an algebraic variety. Cor-

responding to y ∈ M we have the subvariety Wy ⊂ Ω × X, and we have the

incidence variety (universal family)

B = {(z, x, y) ∈ Ω×X ×M : (z, x) ∈Wy}

and the family of the intersections of its fibres over M with D, namely,

A = {(z, x, y) ∈ Ω×X ×M : (z, x) ∈Wy ∩D}.

Then A is a closed complex analytic subset of Ω × X ×M . It has natural

projection θ : A → M , with (z, x, y) 7→ y. Then, for each natural number k,

the set

A(k) = {(z, x, y) ∈ Ω×X ×M : dim(z,x) θ
−1θ(z, x, y) ≥ k},

the dimension being the dimension at (z, x) of the fibre of the projection in A,

is closed and complex analytic; see, e.g., the proof of [27, Lemma 8.2] and

references therein.

Now we have the projection ψ : Ω×X ×M → Ω×X, and we consider

Z = Z(k) = ψ(A(k)).

Then, as M is compact, ψ is proper and so Z is closed in Ω×X. Note that Z

is Γ-invariant and Z ∩ (F ×X) is definable.

Lemma 3.3. Let T = (q×id)(Z). Then T ⊂ X×X is closed and algebraic.

Proof. Since Z is Γ-invariant and Z ∩ (F ×X) is definable, this follows as

in Theorem 3.1. �

Remark. One may also prove Lemma 3.3 by more geometric methods

along the lines of the argument in [24], which uses the method of compactifica-

tion of complete Kähler manifolds of finite volume of [25] based on L2-estimates

of ∂.
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4. Proof of Theorem 1.1

Proof. We argue by induction, in the first instance (upward) on dim Ω.

For a given dim Ω, we argue (upward) on dimW − dimU . Finally, we argue

by induction (downward) on dimU .

We now establish the base cases for the above inductions: First, if dim Ω

= 0 then the statement is tautologically true as all varieties are dimension 0.

Now, if dimU = dimW , then W ⊂ D, and the projection q(W ) has the

same dimension as W . It follows that W is a component of the pre-image

q−1(q(W )), and thus invariant under the monodromy group of q(W ). Now,

assume q(W ) is not contained in a proper weakly special subvariety of X, and

thus by André-Deligne [1, §5, Th. 1] the monodromy group of q(W ) is Zariski

dense in G. It follows that W is invariant under G(R)+, which contradicts the

assumption that W ⊂ D. Finally, assume dimU = dimX. Then W has to

contain all of D, and thus W is invariant under G(Z). Since W is algebraic, it

follows that W is invariant under all of G(R)+, and hence that W = Ω ×X,

which contradicts the assumptions on dimension. This completes the analysis

of the base cases.

We carry out the constructions of Section 3.1 with k = dimU and keep the

notation there. Let A(k)′ ⊂ A(k) be the irreducible component that contains

U × [W ], where [W ] is the moduli point of W in M . Let Z ′ = ψ(A(k)′) ⊂ Z

be the corresponding irreducible component of Z, and let V = (q × id)(Z ′) be

the irreducible component of T , which is therefore algebraic by Lemma 3.3.

Now, by assumption, V contains (q× id)(U), and so it is not contained in any

proper weakly special of the diagonal ∆X , and thus its monodromy group is

Zariski-dense in G by André-Deligne [1, §5, Th. 1].

Consider the family F0 of algebraic varieties corresponding to A(k)′. Let

Γ0 ⊂ Γ be the subgroup of elements γ such that every member of F0 is invariant

by γ. For any µ ∈ Γ, define Eµ ⊂ F0 to be the subset corresponding to algebraic

subvarieties invariant under µ. Then, for µ ∈ Γ− Γ0, Eµ ( F0 is an algebraic

subvariety. Hence, a very general2 element W ′ of F0 is invariant by exactly

the subset Γ0 of Γ. Let Θ be the connected component of the Zariski closure

of Γ0 in G.

Lemma 4.1. Θ is a normal subgroup of G.

Proof. Note that there is an action of Γ on A(k) given by γ · (z, x, [W ]) =

(γz, x, [γW ]), and the map A(k)→ Z is equivariant with respect to this action.

Since A(k) → Z is proper and the action of Γ is discrete, it follows that

Γ\A(k)→ Γ\Z ∼= T is a proper map of analytic varieties.

2In the sense of being in the complement of countably many proper subvarieties.
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Let Γ\A(k)′ denote the image of A(k)′ in Γ\A(k). Then φ : Γ\A(k)′ → V

is a proper map of analytic varieties, and thus the fibers of φ have only finitely

many components. Let Γ1 be the image of π1(Γ\A(k)′) → π1(V ) → Γ. Then

π1(A(k)′) has finite index image in the monodromy group of V , and thus Γ1 is

Zariski-dense in G by André-Deligne [1, §5, Th. 1].

It is clear that F0 is invariant under Γ1.

Now, letting stab(W ′) denote the stabilizer of W ′, we have stab(γ ·W ′) =

γ · stab(W ′) · γ−1. It follows that Γ0, and hence also Θ is invariant under

conjugation by Γ1, and hence under its Zariski closure, which is all of G. This

completes the proof. �

Lemma 4.2. Θ is the identity subgroup.

Proof. We argue by contradiction. Without loss of generality we may

assume that W is a very general member of F0 and hence it is invariant by

exactly Θ. Since Θ is a Q-group by construction, it follows that G is isogenous

to Θ × Θ′ and we have a splitting Ω = ΩΘ × ΩΘ′ of Hermitian symmetric

domains. Replacing Γ by a finite index subgroup we also have a splitting

X ∼= XΘ ×XΘ′ .

Now, as W is invariant under Θ, it is of the form ΩΘ ×W1 where W1 ⊂
ΩΘ′ ×XΘ′ ×XΘ. Moreover, D splits as DΘ ×DΘ′ . Let U1 be the projection

of U to W1. Since the map from DΘ to XΘ has discrete pre-images, it follows

that dimU = dimU1.

Now let W ′ be the projection of W1 to ΩΘ′ ×XΘ′ . Then letting U ′ be a

component of W ′∩DΘ′ we easily see that U ′ is the projection of U to ΩΘ′×XΘ′ .

Then the projection of U ′ to XΘ′ is not contained in a proper weakly special

subvariety of XΘ′ . Now let W ′′ be the Zariski closure of U ′. It follows by

induction on dim Ω that

dimU ′ + dimXΘ′ ≤ dimW ′′.

Now for the projection map ψ : W1 → W ′, the generic fiber dimension

over W ′′ ⊂W ′ is the same as the generic fiber dimension over U ′, and thus

dimU1 + dimXΘ′ ≤ dimψ−1(W ′′) ≤ dimW1,

from which it follows that

dimU + dimX ≤ dimW,

contradicting the hypothesis dimW < dimU + dimX as in the statement of

Theorem 1.1, as desired. �

It follows that W is not invariant by any infinite subgroup of Γ. The

following lemma thus reaches a contradiction, and completes the proof.

Lemma 4.3. W is invariant by an infinite subgroup of Γ.
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Proof. As before, let F be a fundamental domain for Γ on which the map

q is definable, and consider the definable set

I = {γ ∈ G(R) | dimR
Ä
(γ ·W ) ∩D ∩ (F ×X)

ä
= dimR U}.

Clearly, I contains γ ∈ Γ whenever U intersects γF ×X.

We claim that the dimR U -dimensional volume of
Ä
(γ ·W )∩D∩(F×X)

ä
is uniformly bounded over γ ∈ I. To see this, we proceed as in the work of

Klingler-Ullmo-Yafaev [18, Lemma 5.8]. They show that using Siegel coordi-

nates one can cover F by a finite union of sets Σ that embed into a product

of 1-dimensional sets
∏m
i=1 Ji, and that there are (1,1)-volume forms ωi on Ji

such that
∑
i ωi dominates the Kähler form of an invariant hyperbolic met-

ric, and
∫
Ji
ωi < ∞. For a subset I ⊂ {1, . . . ,m} containing d = dimR U

elements, let JI =
∏
i∈I Ji. Thus, it suffices to show that the projections ofÄ

(γ ·W )∩D∩(F×X)
ä
∩Σ onto JI have finite fibers of uniformly bounded car-

dinality. However, this is an immediate consequence of the definability, which

establishes the claim.

By the work of Hwang–To [14, Th. 2], the volume of γ ·W ∩ X ∩ B(R)

grows exponentially with R, where B(R) is a hyperbolic ball of radius R.

Thus, as in [31], it follows that I contains at least a polynomial number of

integer matrices.3 It follows by the Pila-Wilkie theorem [32] that I contains

irreducible real algebraic curves C containing arbitrarily many integer points,

in particular, containing at least two integer points.

Write Wc := c ·W . If Wc is constant in c, then W is stable under C ·C−1.

Since C contains at least two integer points, it follows that W is stabilized by

a non-identity integer point, completing the proof that W is invariant under

an infinite group (since Γ is torsion free). So we assume that Wc varies with

c ∈ C. Since C contains an integer point, it follows from our assumption on U

that (q × id)(Wc ∩ D) is not contained in a proper weakly special subvariety

for at least one c ∈ C, and thus for all but a countable subset of C (since there

are only countably many families of weakly special subvarieties).

We now have two cases to consider. First, suppose that U ⊂ Wc for all

c ∈ C. Then we may replace W by Wc ∩Wc′ for generic c, c′ ∈ C and lower

dimW , contradicting our induction hypothesis on dimW − dimU .

On the other hand, if it is not true that U ⊂Wc for all c ∈ C, then Wc∩D
varies with C, and so we may set W ′ to be the Zariski closure of C ·W . This

increases the dimension of W by 1, but then dimW ′ ∩D = dimU + 1 as well,

and thus we again contradict our induction hypothesis, this time on dimU .

This completes the proof. �

This contradiction completes the proof of Theorem 1.1. �

3Ordered by height, there are at least T δ integer points of height at most T for some fixed

δ > 0 and arbitrarily large T .
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Part II. Ax-Schanuel with derivatives

In this part we establish versions of Ax-Schanuel for q together with its

derivatives. The result is formulated in the setting of jet spaces. For back-

ground on jet spaces, see [12, §16.7] or [33] for a more differential-geometric

perspective.

5. Jet Spaces

5.1. Definition. Let X be a smooth complex algebraic variety and k, g ≥ 1

be positive integers. Set

Dgk = SpecC[ε1, . . . , εg]/M
k+1,

where M is the ideal (ε1, ε2, . . . , εg). We define the jet space of order k to be4

JgkX := Hom(Dgk, X).

Note that Jg0X = X and that J1
1X is the tangent bundle of X. It is evident

that Jgk is a functor and also that there are natural projection maps Jgk → Jgr
whenever k > r. As a matter of notation, we simply write JkX to denote

JdimX
k X.

5.2. Maps between Jet Spaces. For a, b > 0, there is a natural map

π#
a,b : C[ε1, . . . , εg]/M

a+b+1 → C[t1, . . . , tg]/M
a+1 ⊗ C[s1, . . . , sg]/M

b+1

defined by π#
a,b(εi) = 1 ⊗ si + ti ⊗ 1. This induces a map πa,b : Dga × Dgb →

Dga+b, which is just the truncation of the addition map. Now there are natural

identifications

JdimX
a JbX ∼= Hom(Dga,Hom(Dgb , X)) ∼= Hom(Dga × Dgb , X),

and therefore φ induces a natural map

πa,b : Ja+bX → JdimX
a JbX.

Since π#
a+b is injective as a map of rings, πa,b is injective on the level of points.

Moreover, since Ja+b is postcomposition and πa,b is precomposition, it is

easy to see that they commute. In other words, for a map f : X → Y , we have

(1) πa,b ◦ Ja+bf = JdimX
a (Jbf) ◦ πa,b.

To see this, consider the following diagram:

Dga × Dgb → Dga+b → X → Y.

4 This may also be naturally defined as a scheme representing the functor Y → Hom(Dgk×
Y,X) on the category of C-schemes.
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6. Differential equations

6.1. The jet space formulation. Suppose φ : Cg → Cg is a holomorphic

function that satisfies an algebraic differential equation of degree m given by

a set of polynomials in the derivatives of the components of φ, which we may

write as ~F (
∂|J|φj
∂zJ

)|J |<m,j≤g = 0. We record this geometrically as follows. Con-

sider the natural section idm : Cg → JmCg given by idm(z) : Dm → Cg, where

the latter is given by

idm(z)(ε1, . . . , εg) = (z + ε1, . . . , z + εg)

and the corresponding map on sheaves is given by

idm(z)#(Z1, . . . , Zg) = (z1 + ε1, . . . , zg + εg).

Then, in the natural coordinates for JmX, the partial derivatives of φ are the

coordinates of Jmφ ◦ idm : Cg → JkCg.
We may record our differential equation in the following way. We stipulate

that Jmφ ◦ idm(Cg) ⊂ W for a specific subvariety W ⊂ JmCg. Of course, we

may then replace the target Cg with any space X and formulate a differential

equation by picking a subvariety W ⊂ JmX without having to pick local

coordinates on the image.

6.2. Differentiating a differential equation. If f(z) satisfies f ′(z)=R(f(z)),

then it also satisfies f ′′(z)=f ′(z)R′(f(z)) = R(f(z))R′(f(z)). We explain now

how to derive such relations geometrically.

Returning now to the case z ∈ Cg, we first note that Jga idb ◦ ida(z) is the

local map s 7→ (t 7→ z + t+ s). Thus, we see that

(2) Jga idb ◦ ida = πa,b ◦ ida+b.

Now suppose that φ : Cg → X satisfies ImJgb φ ◦ idb ⊂ W . For any a > 0,

we have

πa,b ◦ Ja+bφ ◦ ida+b = Jga (Jbφ) ◦ πa,b ◦ ida+b by (1)

= Jga (Jbφ) ◦ Jga idb ◦ ida by (2)

⊂ JaW ⊂ JgaJbX.

Thus, we learn that ImJa+bφ ◦ ida+b is contained in π−1
a,b(JaW ).

6.2.1. Example. Suppose that φ′(z) = R(φ(z)). Let X = C, so J1X can

be identified with A2
z,r by the maps t 7→ z + rt. Let W ⊂ J1X be defined by

the relation r = R(z), so that ImJ1φ ◦ id1 ⊂ W . Now J1
1J1X can be defined

by (z, r, z1, r1) by

s 7→ (t 7→ z + rt+ sz1 + str1).
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Now an element of J1W has the form s 7→ (z+ es,R(z) + eR′(z)s) and so

it maps to

s 7→ (t 7→ z + es+ tR(z) + teR′(z)s).

Now the image π1,1J2X in J1
1J1X consists of those elements that are functions

of s+ t in the ring C[s, t]/(s2, t2). Thus, we need the s and t-coefficients to be

the same, so we must have e = R(z), and we get the map

s+ t→ z +R(z)(s+ t) +
1

2
R(z)R′(z)(s+ t)2.

Note that this exactly records the relation φ′′(z) = R(φ(z))R′((φ(z)) as desired.

7. Schwarzians for Hermitian symmetric spaces

7.1. Setup. Let Ω be a Hermitian symmetric space of dimension n. We

may write Ω as G(R)/K for a semisimple group G and maximal compact

real subgroup K inside it. Then Ω sits naturally inside the flag manifold“Ω := G(C)/B for a complex parabolic subgroup B. Now the Lie algebra of

G(C) decomposes as g = n− ⊕ kC ⊕ n+giving g a Hodge structure of weight 0,

where k is the Lie algebra of K and b = n− ⊕ kC is the Lie algebra of B. Let

N−, N+ be the corresponding (abelian) unipotent groups. Picking a base-point

o ∈ X, we may give coordinates on an open subset of “Ω by identifying it with

N+ by ν → ν · o. Fixing an identification Cn → N+ of vector spaces once and

for all, we get sections idm : N+ → JmN
+ that are compatible and invariant

under N+.

We would like to characterize those functions F : “Ω → “Ω which look like

F (z) = g · z for an element g ∈ G(C). As such, we define the Schwarzian

differential equation to be

Wm := G(C) · idm(N+) = G(C) · idm(o) ⊂ Jm“Ω.
Definition. We define Jnd,r

k Y ⊂ JrkY to be all those infinitesimal maps

which are surjective on tangent spaces. Note that this is only non-empty for

r ≥ dimY .

7.1.1. Example. Consider G = PSL2,Ω = H, o = 0 ∈ C. Let N− be the

strictly lower triangular matrices and N+ the strictly upper triangular matri-

ces. Then J3C can naturally be given coordinates (z, a, b, c) corresponding to

the map t→ z+ at+ bt2

2 + ct3

6 . Note that W3 is G(C)-invariant. In particular,

since W3 is N+-invariant, it must be cut out by a function of a, b, c, and it

is sufficient to consider it at z = 0, which is fixed by all of the lower trian-

gular matrices. Acting first by a diagonal element we transform (0, a, b, c) to

(0, 1, b/a, c/a) via z → z/a. Now acting by a lower triangular matrix z → z
b
2a
z+1
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we get

t+ b
2a t

2 + c
6a t

3

1 + b
2a t+ b2

4a2
t2 + bc

12a2
t3

= t+

Ç
c

6a
− b2

4a2

å
t3,

which transforms (0, 1, b/a, c/a) to (0, 1, 0, c6a −
b2

4a2
). Thus we recover the

classical Schwarzian in this setting.

7.2. Fixing the order 2 infinitesimal neighborhood. We have the following

lemma.

Lemma 7.1. The subgroup of B that fixes id1(o) is N−.

Proof. We are looking for elements that act trivially on the tangent space

at o, To“Ω ∼= g/b. The action of B on this space is induced the adjoint action.

We first claim that N− acts trivially. To see this, note that the Lie bracket

respects the Hodge grading on g, so [n−, n−] = 0 and [n−, k] ⊂ n−, from which

the claim follows.

Since B = KCN
+, to finish the proof it suffices to show that no element

of KC acts trivially. Conjugation by KC preserves n+ so if an element k ∈ KC
acts trivially on To“Ω, it must also act trivially on n+ and thus commute with

N+. Since N+o is open, and since k fixes o, it must be the case that k acts

trivially on all of “Ω and thus be the identity, as desired. �

Proposition 7.2. The group G(C) acts freely on id2(o), and thus on all

of Jnd
k
“Ω for k ≥ 2.

Proof. By Lemma 7.1 we need only show that no element of N− fixes

id2(o). Let N ⊂ N− be the stabilizer of id2(o), and note that N is normal

in B. Since KC contains a maximal Cartan algebra, the Lie algebra of N must

be a direct sum of root spaces. Assuming N is not trivial, we let α be one of

those roots and Nα be the corresponding 1-dimensional subgroup. Now there

is a map SL2(R) → G(R) that sends SO(2) to K and the roots of SL2(R)

(which lie in SL2(C)) to Nα and its conjugate N−α. This map induces a map

of symmetric spaces H→ Ω and P1(C)→ “Ω. Moreover, this map is evidently

holomorphic. We have thus reduced the claim to the case of SL2(C), where it

may be easily checked by hand, since z
1+az = z − az2 +O(z3). �

Note that it follows from the proposition that Wm is closed in Jnd
m for

m ≥ 2.

Corollary 7.3. If F : “Ω→ “Ω satisfies J3F ◦ id3(N+) ⊂W3, then there

exists g ∈ G(C) such that F (z) = gz.

Proof. By Proposition 7.2, the variety W3 projects bijectively onto W2.

Thus, in local coordinates, we may write equations for all the third order

derivatives of F in terms of its lower order derivatives. Differentiating further
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gives us the full power series expansion of F and thus characterizes it com-

pletely. This completes the proof. �

7.3. Lowering the order of the differential equation. In this section we

improve over Corollary 7.3 in the following ways.

Theorem 7.4. Let n ≥ 2, Ω = Bn, G(C) = PGL(n + 1;C). If f :

(“Ω;x0) → (“Ω; y0) satisfies J2f ◦ id2(N+) ⊂ W2, then there exists g ∈ G(C)

such that f(z) = gz wherever f is defined.

Theorem 7.5. Let Ω be an irreducible bounded symmetric domain of rank

≥ 2, G(C) = Aut(“Ω). If f : (“Ω;x) → (“Ω; y) satisfies J1f ◦ id1(N+) ⊂ W1,

then there exists g ∈ G(C) such that f(z) = gz wherever f is defined.

Both Theorems 7.4 and 7.5 follow from known results, Theorem 7.4 from

a local version (for holomorphic maps) of the Fundamental Theorem of Projec-

tive Geometry in the case of the complex field, and Theorem 7.5 from Ochiai’s

Theorem characterizing automorphisms of S-structures (Ochiai [26]) for S be-

ing an irreducible Hermitian symmetric space of the compact type of rank ≥ 2.

They can be stated as follows.

Theorem A. Let n ≥ 2, Ω = Bn, G(C) = PGL(n + 1;C), and let Bn b
Cn ⊂ “Bn = Pn be the standard embeddings. Suppose U ⊂ Cn is a convex open

set and f : U
∼=−→ V is a biholomorphism onto an open subset V ⊂ Pn such

that, for any nonempty (connected) intersection ` ∩ U of an affine line ` with

U , we have f(` ∩ U) ⊂ `′ for some affine line `′ on Cn. Then, f extends to a

biholomorphic automorphism F : Pn → Pn, i.e., F ∈ PGL(n+ 1;C).

A proof of this is given in Mok [23, §(2.3)]. For the formulation of Ochai’s

Theorem, recall that an irreducible Hermitian symmetric space of the compact

type is given by S = G/B, where G is a simple complex Lie group and B ⊂ G
is some maximal parabolic subgroup. For any point x ∈ S, let Bx ⊂ G be the

isotropy (parabolic) subgroup at x. Let Bx = U ·L be the Levi decomposition

of Bx, where U ⊂ Bx is the unipotent radical and L ⊂ Bx is a Levi factor. As

is well known, for any υ ∈ U , dυ(x) = idTx(X), hence the map Φ(γ) = dγ(x)

defines a representation of L = Bx/U on Tx(X) that is independent of the

choice of the Levi decomposition. We denote by Wx ⊂ PTx(X) the highest

weight orbit of the action of L on PTx(X). Then, Ochiai’s Theorem can be

formulated as follows.

Theorem B (Ochiai [26]). Let S be an irreducible compact Hermitian

symmetric manifold of the compact type and of rank ≥ 2, let U, V ⊂ S be

connected open subsets, and let f : U
∼=−→ V be a biholomorphism. Sup-

pose that for every x ∈ U the differential df(x) : Tx(S) → Tf(x)(S) satisfies

[df(x)](Wx) =Wf(x). Then there exists F ∈ Aut(S) such that F
∣∣∣
U
≡ f .
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Ochiai [26] made use of Lie algebra cohomology. Observing thatWx agrees

with Cx(S), the variety of minimal rational tangents (VMRT) at x ∈ S con-

sisting of [α] ∈ PTx(X) tangent to minimal rational curves passing through

x ∈ X, Hwang-Mok [13] generalized Theorem B to Fano manifolds of Pi-

card number 1, proving analogously the Cartan-Fubini extension theorem for

VMRT-preserving germs of biholomorphisms between Fano manifolds of Picard

number 1 under mild geometric conditions. A differential-geometric proof of

Theorem B was given in Mok [23, §§(2.2)–(2.4)].

Deduction of Theorem 7.4 from Theorem A.

Proof of Theorem 7.4. Let U ⊂ Cn be a domain of definition of f : (“Ω;x0)

→ (“Ω; y0), which we may assume to be convex. By assumption, J2f ◦id2 ⊂W2.

In other words, for any x ∈ U , J2f(x) = J2γx(x) for some γx ∈ PGL(n+ 1;C)

such that γx(x) = y := f(x). Let ` ⊂ Pn be a projective line passing through

x. Then γx(`) =: `′ ⊂ Pn is a projective line passing through y, thus from the

assumption f(`) is tangent to `′ to the order ≥ 2.

On Pn there is a canonical projective structure, defined as follows. For each

projective line ` on Pn, denote by ̂̀⊂ PTPn the tautological lifting of ` obtained

as the image of the map associating the pair (`, t), t ∈ `, to PTt(`) ∈ PTt(Pn).

Then this gives a 1-dimensional (holomorphic) foliation F on the total space

PT (Pn) of the projective tangent bundle over Pn. We call F the canonical

projective structure on Pn. In the notation of the last paragraph, the germ

(f(`); y) is second order tangent to (γx(`); y). Lifting to PTPn , it means that the

tautological lifting Λ of the germ of holomorphic curve (f(`); y) is tangent (to

the order ≥ 1) to the lifting ̂̀′ of the unique projective line `′ = γx(`) passing

through y and tangent to f(`) at y. Let `0 ⊂ Pn be an arbitrary projective

line passing through x. We have proven that for some neighborhood V of

[df ](PTx0(`0)) ∈ PTy0(Pn), the tautological liftings of images of projective lines

under f define a holomorphic 1-dimensional foliation E = f∗F on V which is

tangent to the canonical projective structure F at every point [α] ∈ V. But F
itself is a 1-dimensional foliation, hence E , where defined, agrees with F . This

translates to the statement that f(` ∩ U) ⊂ `′, and we may apply Theorem A

to deduce that f : U
∼=−→ V extends to a biholomorphic automorphism F :

Pn
∼=−→ Pn, as desired. �

Deduction of Theorem 7.5 from Theorem B.

Proof of Theorem 7.5. In analogy to the proof of Theorem 7.4 we deduce

Theorem 7.5 from Theorem B (Ochiai’s Theorem) and the hypothesis J1f ◦
id1 ⊂W1 that given x ∈ U and ` a projective line passing through x, f(`∩U)

must be tangent to some projective line `′ = γx(`) at y = f(x) for some

γx ∈ G such that γx(x) = y. Thus [df ](C(S)|U ) = C(S)|V , and by Theorem B

f extends to a biholomorphic automorphism F ∈ Aut(S). �
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Theorems 7.4 and 7.5 when Ω is reducible. The analogue of Theorem 7.4

holds for any bounded symmetric domain Ω provided that there are no ir-

reducible factors biholomorphic to the disk B1. Likewise, the analogue of

Theorem 7.5 holds for any bounded symmetric domain Ω provided that each

irreducible factor of Ω is of rank ≥ 2. The proofs are small variations of the

irreducible case. (For Ω = Ω1 × · · · × Ωm, one considers the m moduli spaces

of projective lines K1, · · · ,Km of the compact duals “Ω1, · · · ,“Ωm.)

8. Connection formula and automorphic functions

8.1. Definition of Schwarzian variety. Notice that since N+ acts with an

open orbit on “Ω, it follows that

G(C)\Jk“Ω ∼= B\(Jk“Ω)o

birationally, where (Jk“Ω)o denotes the fiber above o. We define this latter

variety to be the k-th Schwarzian variety Sk(“Ω). Now for any rational map

F : “Ω→ “Ω we may define the Schwarzian of F to be

Sk(F )(z) = G · JkF (idk(z)) ∈ Sk(“Ω)

at any point z ∈ “Ω where F is a morphism. If we restrict to the upper half

plane and k = 3, then S3(P1(C)) may be identified with P1(C) and Sk(F )

becomes the usual Schwarzian.

We may define a rational map

ψk : Sk(“Ω)× (N+\Jk(“Ω))→ Sk(“Ω)

as follows. An element of Jk(“Ω) corresponds naturally to a point z ∈ “Ω and a

germ of a map F : “Ω → “Ω sending o to z. An element of Sk(“Ω) corresponds

to the germ at o of a map H : “Ω → “Ω sending o to o modulo terms of order

> k in the Taylor expansion of H at o and up to a left B-translation. If

z ∈ N+o, we let νz ∈ N+ be the element sending z to o, and we may consider

the composition H ◦ νz ◦ F as defining an element of Sk(“Ω). It is clear that

this is well defined.

For any positive integer d, we can naturally extend this to a map

ψk : Sk(“Ω)d × (N+\Jk(“Ω))d → Sk(“Ω)d.

8.2. Connection formula. For two maps F1, F2 : “Ω → “Ω, it follows that

JkF1 ◦ JkF2 = Jk(F1 ◦ F2), from which it follows that

ψk
(
Sk(F1)(F2(z)), JkF2(idk(z))

)
= Sk(F1 ◦ F2)(z).

We refer to this equation as the connection formula.
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8.3. Schwarzians of automorphic functions. Let Γ ⊂ G(R) be a discrete

subgroup such that X = Γ\Ω is a Shimura Variety. Consider a rational em-

bedding5 φ = (φ1, φ2) : X → “Ω2, and let pi = φi ◦ q : Ω→ “Ω. Set p = (p1, p2).

Writing the connection formula for pi, p
−1
i gives

ψk
(
Sk(p

−1
i (pi(z)), Jkpi(idk(z))

)
= Sk(id).

Now, inverting the action yields the relation

(∗) Sk(p
−1
i )(pi(z)) = ψk

(
Sk(id), Jkpi(idk(z))

−1
)
.

Since (∗) shows that
Ä
Sk(p

−1
1 )(p1z)), Sk(p

−1
2 )(p2(z))

ä
is definable on a fun-

damental domain, and it is clearly Γ invariant, it must be a (single-valued)

algebraic function of q(z). Since φ = (φ1, φ2) is a rational embedding, we

conclude the following:

Proposition 8.1. We have that
Ä
Sk(p

−1
1 )(φ1(x))), Sk(p

−1
2 )(φ2(x))

ä
is an

algebraic function Rk(x) for x ∈ X .

Theorem 8.2. Suppose that U ⊂ “Ω is a connected open set and F : U →
φ(X) ⊂ “Ω2 satisfies

ψ3

(
R3(φ−1(F (z))), J3F (id3(z))

)
= (S3(id), S3(id)) .

Then there exists g ∈ G(C) such that F (z) = p(gz).

Proof. Using the connection formula and Proposition 8.1, we see that

S(p−1 ◦ F ) = ψ3

(
S3(p−1)(F (z)), J3F (id3(z))

)
= ψ3

(
R3(φ−1(F (z))), J3F (id3(z))

)
= (S3(id), S3(id)).

But now Theorem 7.3 shows that (p−1 ◦ F )(z) = gz for some g ∈ G(C), which

completes the proof. �

Note that Theorem 7.4 shows that one may use R2(z) in Theorem 8.2 in

the case where Ω = Bn, n ≥ 2, and Theorem 7.5 shows that one may use R1(z)

in the case where Ω is irreducible and of rank ≥ 2, with obvious generalizations

to the reducible cases (cf. the last paragraph of Section 7).

5Since the complex function field of the n-dimensional projective variety X is always

isomorphic to that of an irreducible hypersurface in Pn+1 and since Ω̂ is rational, such an

embedding always exists, and we could deal with only a single function if X were rational,

as is the case of X(1) and the j-function.
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9. Ax-Schanuel with derivatives

9.1. Main theorem with derivatives.

Theorem 9.1. Let k ≥ 2 and r ≥ dimX be positive integers. With

notation as above, let W ⊂ Jnd,r
k Ω×Jnd,r

k X be an algebraic subvariety such that

W = Ŵ∩Jnd,r
k Ω×Jnd,r

k X for some irreducible subvariety Ŵ ⊂ Jnd,r
k
“Ω×Jnd,r

k X.

Let U be an irreducible component of W ∩ Jnd,r
k D whose dimension is larger

than expected, that is,

dimW < dimU + dimG.

Then the projection of U to X is contained in a proper weakly special subvariety

of X .

Here Jnd,r
k
“Ω×Jnd,r

k X inherits the structure of a quasi-projective manifold

resulting from a projective compactification6 of JrkY for a quasi-projective

manifold Y .

We first need to state a lemma.

Lemma 9.2. For k ≥ 2, consider the graph

Jnd,r
k D ⊂ Jnd,r

k Ω× Jnd,r
k X

of the projection map Jrkq : Jnd,r
k Ω→ Jnd,r

k X . Then G(C) · Jnd,r
k D is a closed,

algebraic subvariety, and it is the Zariski closure of Jnd,r
k D.

Proof. First, note that Jnd,r
k D is invariant under Γ, and therefore its

Zariski closure is invariant under G(C). Thus, it is sufficient to show that

Y := G(C) · Jnd,r
k D ⊂ Jnd,r

k
“Ω× Jnd,r

k X is a (closed) algebraic subvariety.

We claim that Y ⊂ Jnd,r
k
“Ω × Jnd,r

k X is constructible complex analytic.

Consider the holomorphic map Ψ0 : G(C) × Jnd,r
k
“Ω → Jnd,r

k
“Ω defined by

Ψ0(γ, ω) = γ · ω. Since G(C) acts algebraically on “Ω, there exist projective

compactifications G(C)′ of G(C) and (Jnd,r
k
“Ω)′ of Jnd,r

k
“Ω such that Ψ0 extends

to a rational map Ψ′0 : G(C)′× (Jnd,r
k
“Ω)′ → (Jnd,r

k
“Ω)′. Write Ψ = Ψ0× id, i.e.,

Ψ : (G(C)× (Jnd,r
k
“Ω))× Jnd,r

k X → Jnd,r
k
“Ω× Jnd,r

k X

is given by Ψ(γ, ω, ν) = (γ · ω, ν). Define

Ψ′ := Ψ′0 × id : (G(C)′ × (Jnd,r
k
“Ω)′)× Jnd,r

k X → (Jnd,r
k
“Ω)′ × Jnd,r

k X.

Applying the proper mapping theorem to the graph of the restriction of Ψ′ to

G(C)′×Jnd,r
k D ⊂ G(C)′×((Jnd,r

k
“Ω)′×Jnd,r

k X) and noting that Y is Γ-invariant,

6We postpone to Section 9.2 the construction of a projective compactification of JrkY as

a bundle of weighted projective spaces of a nonsingular projective compactification Ŷ of Y .
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we deduce that Y ⊂ Jnd,r
k
“Ω′ × Jnd,r

k X is a complex analytic subvariety, hence

Y ⊂ Y is constructible complex analytic.

Next, we argue that Y ⊂ Jnd,r
k
“Ω × Jnd,r

k X is a closed subset. Observe

by Proposition 7.2 that G(C) acts freely on Jnd,r
k
“Ω × Jnd,r

k X so that any

G-invariant constructible complex analytic subset of Jnd,r
k
“Ω× Jnd,r

k X is of di-

mension ≥ dimG. Now, note that Y is invariant under the automorphisms A

of the disc Drk and under the action of G(C). Moreover, these actions commute

and A×G(C) acts transitively on Jnd,r
k
“Ω. It follows that if we let Z = Y − Y

be the boundary of Y , then Z is equidimensional over the first factor Jnd,r
k
“Ω.

However, the pullback of Y to Jnd,r
k
“Ω× Jnd,r

k
“Ω is symmetric, and so Z is also

equidimensional over the second factor Jnd,r
k X. Note that the fibers of Y over

the second factor Jnd,r
k X are of dimension dimG. Now since dimZ < dimY ,

it follows that the dimension of the fibers of Z over the second factor Jnd,r
k X

are less than dimG, which means they are empty since Z is closed under the

action of G(C), proving the claim that Y ⊂ Jnd,r
k
“Ω× Jnd,r

k X is closed.

Since Y ⊂ Jnd,r
k
“Ω × Jnd,r

k X is closed and constructible complex analytic,

it must be a complex analytic subvariety. On the other hand, since Y is given

by G(C) acting on the restriction of Jnd,r
k D to Jnd,r

k F , it follows that it is

definable, and by Theorem 2.2, Y is an algebraic subvariety, as desired. �

Corollary 9.3. Let z1, . . . , zn be an N+-invariant algebraic coordinate

system on Ω. Let {φ1, . . . , φN} be a C-basis of modular functions. Then the

field generated by {φi} and their partial derivatives with respect to the zj up to

order k ≥ 2 has transcendence degree over C equal to dimG. Furthermore, the

transcendence degree is the same over C(z1, . . . , zn).

Proof. From Lemma 9.2 and Proposition 7.2 applied to r = dimX = n,

it follows that

tr.degCC({zi}, {φ(ν)
j }) = dimG+ n.

The algebraic independence will therefore follow as soon as we show that the

transcendence degree of C(z1, . . . , zn) is equal to dimG.

To see this, consider

V = Jk(id× q)(idk(Ω)) ⊂ Jnd,n
k D.

We have to show that the Zariski-closure W of the projection of V to Jnd,n
k X

has dimension dimG. Let p ∈ X be a point and, without loss of generality, let

o ∈ Ω be a pre-image.

Identifying N+\Jnd,n
k (N+o) with Jnd,n

k (idk(o)) by quotienting out by the

action of N+, we get a rational map ψ : G(C)→ Jnd,n
k (o) by ψ(g) = g · idk(o).

Now, the pre-image of p in W contains ψ(Γ) so it must contain ψ(G(C)).
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It follows that W contains q
Ä
G(C) · idk(o)

ä
, hence by definability it must

be equal to its closure (definable since we can restrict to a fundamental domain,

and its closure is complex analytic since it is algebraic in “Ω). Since G(C) acts

freely on Jnd,n
k
“Ω, by Proposition 7.2, it follows that dimG(C) · idk(o) = dimG,

as desired. �

Remark. The same argument shows that the projection

Jk+1q
Ä
G(C) · Jnd,n

k+1 (idk+1(o))
ä
→ Jkq

Ä
G(C) · Jnd,n

k (idk(o))
ä

is bijective for k ≥ 2 and that Jkq
Ä
G(C) · Jnd,n

k (idk(o))
ä

is the Zariski closure

of the graph of the ν-th partial derivatives of q for |ν| ≤ k. It follows that,

for k ≥ 2, the k-th partial derivatives of q are rational in the ν-th partial

derivatives of q for |ν| ≤ 2. In other words, the field generated by all the

partial derivatives of q is generated by the partial derivatives of order ≤ 2.

9.2. Compactifying jet spaces. We shall require a compactification of jet

spaces to discuss Hilbert schemes. Thus, for a complex manifold Y , we define

BJrkY :=
Ä
Hom(Drk, Y )× A1

C
ä
/Gm,C,

where the action is defined via r · (t 7→ f(t), s) := (t 7→ f(rt), rs). It is easy to

see, by expanding into local coordinates given by Taylor series coefficients, that

BJrkY is a weighted projective space over Y and is thus a projective variety if Y

is projective. This then gives a functorial compactification of JrkY for Y projec-

tive. For Y quasi-projective, taking “Y ⊃ Y to be a nonsingular projective com-

pactification, BJrk
“Y ⊃ Jrk“Y ⊃ JrkY gives a projective compactification of JrkY .

9.3. Descending Hilbert scheme loci. Now we fix some algebraic subvariety

W ⊂ Jnd,r
k Ω× Jnd,r

k X, with Ŵ ⊂ BJrk“Ω×BJrk “X its Zariski closure, and U an

irreducible component of W ∩ Jnd,r
k D. We make no assumptions here on the

dimension of U .

Let M be the Hilbert scheme of all subvarieties of BJrk
“Ω × BJrk “X with

Hilbert polynomial P . Then M also has the structure of an algebraic variety.

Corresponding to y ∈ M we have the subvariety Wy ⊂ Jnd,r
k Ω × Jnd,r

k X, and

we have the incidence variety (universal family)

B = {(z, x, y) ∈ Jnd,r
k Ω× Jnd,r

k X ×M : (z, x) ∈Wy}

and the family of the intersections of its fibres over M with Jnd,r
k D, namely,

A = {(z, x, y) ∈ Jnd,r
k Ω× Jnd,r

k X ×M : (z, x) ∈Wy ∩ Jnd,r
k D}.

Then A is a closed complex analytic subset of Jnd,r
k Ω × Jnd,r

k X ×M . It has

natural projection θ : A → M , with (z, x, y) 7→ y. Then, for each natural
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number k, the set

A(k) = {(z, x, y) ∈ Jnd,r
k Ω× Jnd,r

k X ×M : dim(z,x) θ
−1θ(z, x, y) ≥ k},

the dimension being the dimension at (z, x) of the fibre of the projection in A,

is closed and complex analytic; see, e.g., the proof of [27, Lemma 8.2] and

references therein.

Now we have the projection ψ : Jnd,r
k Ω×Jnd,r

k X ×M → Jnd,r
k Ω×Jnd,r

k X,

and we consider

Z = Z(k) = ψ(A(k)).

Then as M is compact, ψ is proper and so Z is closed in Jnd,r
k Ω × Jnd,r

k X.

Note that Z is Γ-invariant and Z ∩ Jnd,r
k F × Jnd,r

k X is definable.

Lemma 9.4. Let T = (q × id)(Z). Then T ⊂ Jnd,r
k X × Jnd,r

k X is closed

and algebraic.

Proof. This is proven in the same way as Lemma 3.3. �

10. Proof of Theorem 9.1

Proof. We argue by induction, in the first instance (upward) on dim Ω.

For a given dim Ω, we argue (upward) on dimW − dimU . We then argue by

induction (downward) on dimU , and finally upward on r. The base cases are

established in a way similar to Theorem 1.1.

We carry out the constructions of Section 9.3 with k = dimU and keep

the notation there. We let A(k)′ ⊂ A(k) be the irreducible component that

contains U × [W ], Z ′ = ψ(A′(k)) ⊂ Z be the corresponding irreducible com-

ponent of Z, and V = (q× id)(Z ′) be the irreducible component of T , which is

therefore algebraic by Lemma 3.3. Now, by assumption V contains q(U), and

so it is not contained in any proper weakly special of the diagonal Jnd,r
k ∆X ,

and thus its monodromy group is Zariski-dense in G by [1, §1,Th. 5.1].

Consider the family F0 of algebraic varieties corresponding to A(k)′. Let

Γ0 ⊂ Γ be the subgroup of elements γ such that a very general member of F0

is invariant by γ. Note that a very general element W ′ of F0 is invariant by

exactly the subset Γ0 of Γ. Let Θ be the connected component of the Zariski

closure of Γ0 in G(R).

Lemma 10.1. Θ is a normal subgroup of G.

Proof. This is proven exactly as in Lemma 4.1. �

Lemma 10.2. Θ is the identity subgroup.

Proof. We argue by contradiction. Without loss of generality we may

assume that W is a very general member of F0, and hence it is invariant

by exactly Θ. Since Θ is a Q-group by construction, it follows that G is
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isogenous to Θ×Θ′ and we have a splitting of Hermitian symmetric domains

Ω = ΩΘ×ΩΘ′ . Replacing Γ by a finite index subgroup we also have a splitting

X ∼= XΘ ×XΘ′ . Moreover, D splits as DΘ ×DΘ′ .

By our induction on dimW , it follows from Lemma 9.2 that W ⊂ G(C) ·
Jnd,r
k D. Now, we let

W1 ⊂ Jnd,r
k ΩΘ′ × Jnd,r

k XΘ′ × Jnd,r
k XΘ

be the projection of W . Let U1 be the projection of U to W1. Since the map

from DΘ to XΘ has discrete pre-images, it follows that dimU = dimU1.

Now let W ′ be the projection of W1 to Jnd,r
k ΩΘ′ × Jnd,r

k XΘ′ and U ′ be

a component of W ′ ∩ DΘ′ . Since W ⊂ G(C) · Jnd,r
k D and W is closed under

Θ(R)+, we see that U ′ is the projection of U to Jnd,r
k ΩΘ′ × Jnd,r

k XΘ′ . Now let

W ′′ ⊂ W ′ be the Zariski closure of U ′. It follows by the induction hypothesis

that

dimU ′ + dim Θ′ ≤ dimW ′′.

Now for the projection map ψ : W1 → W ′, the generic fiber dimension of

W ′′ is the same as the generic fiber dimension over U ′, and thus

dimU1 + dim Θ′ ≤ dimψ−1(W ′′) ≤ dimW1.

Since W is invariant under Θ(C), it follows that

dimU + dimG ≤ dimW,

contradicting the hypothesis dimW < dimU + dimG as in the statement of

Theorem 9.1, as desired. �

It follows that W is not invariant by any infinite subgroup of Γ. The

following lemma thus gives a contradiction, and completes the proof.

Lemma 10.3. W is invariant by an infinite subgroup of Γ.

Proof. This is proven exactly as Lemma 4.3. �

This contradiction completes the proof of Theorem 9.1. �

As a corollary, we have the following concrete statement (stated as The-

orem 1.4) about transcendence degrees of modular functions and their deriva-

tives on analytic subvarieties.

Corollary 10.4. Let V ⊂ Ω be an irreducible complex analytic variety,

not contained in a proper weakly special subvariety. Let {zi, i = 1, . . . , n} be

an algebraic coordinate system on Ω. Let {φ(ν)
j } consist of a basis φ1, . . . , φN

of modular functions, all defined at at least one point of V , together with their

partial derivatives with respect to the zj up to order k ≥ 2. Then

tr.deg.CC
Ä
{zi}, {φ(ν)

j }
ä
≥ dimG+ dimV,

where all functions are considered restricted to V .
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Proof. Let

U = (id2 × J2q ◦ id2)(V ) ⊂ J2Ω× J2X,

so that U is an analytic subvariety of the diagonal J2D. Note that U does

not record any of the differential information concerning V , but instead a

coordinate system for U is given by z1, . . . , zn, φ1, . . . , φN . The result now

follows immediately from Theorem 9.1 applied to the Zariski closure of U . �

Part III. Ax-Schanuel in a differential field

In this part we formulate a version of Ax-Schanuel in the setting of a

differential field. We further show that the jet version (9.1) may be deduced

directly from the differential version (12.1).

11. Characterizing the uniformization map

We would like to have a criterion in a differential field to determine when

a pair of maps
w : ∆→ “Ω, u : ∆→ X = Γ\Ω,

where ∆ is a disk of given dimension, satisfies u = q(gv) for some g ∈ G(C).

To this end, we need a finer version of the Schwarzian varieties introduced in

Section 8 that serves the same purpose for jets of lower rank, i.e., those that

are non-surjective on tangent spaces.

Lemma 11.1. Let k be a positive integer. There exists a positive integer

m = m(G, q, k) with the following property. Let ∆k be a k-dimensional disk,

and consider a pair of maps (w, u) : ∆k → “Ω × “Ω. If at every t ∈ ∆k there

exists gt ∈ G(C) such that u(t) = gtw(t) up to order m, then there exists a

global g ∈ G(C) with u(t) = gw(t).

Proof. Let d = dimG. For positive integers a ≥ b, we define

Xa,b = {(φ, ψ) | ∃γ ∈ G(C), γ ◦ φ = ψ up to order b} ⊂ Jka“Ω× Jkb “Ω.
We partition Xd,d into subsets Xi

d,d consisting of all pairs (φ, ψ) satisfying

Stabφi = Stabφi+1, where φi denotes φ up to the i-th order, and i is the

smallest such integer. Note that this is indeed a partition since each time

Stabφi 6= Stabφi+1 the dimension of Stabφi+1 is at least 1 smaller than that of

Stabφi. Without loss of generality, assume that (w, u) has image generically

in Xi
d,d. Now, for all elements in Xi

d,d, it follows that there exists a universal

equation for all (i + 1)-st partial derivatives of ψ in terms of the degree ≤ d

partial derivatives of φ and the degree ≤ i partial derivatives of ψ at o. Thus

one can solve for u given w and all the partial derivatives of degree ≤ i of u at

0 ∈ ∆k. Clearly u(t) = g−1
o w(t) is one such solution, and so that must be the

only solution. This completes the proof. �
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With k,m as above, let JkmD ⊂ Jkm“Ω×JkmX be the graph of the projection

morphism. Now let V k
m = G(C) · JkmD, where the group G(C) acts only on the

factor Jkm
“Ω. Note that V k

m is definable, since

V k
m = G(C) · (JkmD|JkmF×JkmX).

Also, V k
m is the image of Xm,m under the projection map on the second factor,

so its closure is analytic and of the same dimension. It follows from Definable

Chow that V k
m is constructible algebraic.

Now if w : ∆k → “Ω and g ∈ G(C), then the image of (w, q(gw)) in

Jkm
“Ω× JkmX is contained in V k

m. We show the converse.

Theorem 11.2. Let k be a positive integer, and let m = m(G, q, k) and

V k
m be as above. Let (w, u) : ∆k → “Ω×X . If the image of Jk(w, u) is contained

in V k
m, then there exists a global g ∈ G(C) with u(t) = q(gw(t)).

Proof. Suppose Jk(w, u) lands in V k
m. Let ũ(t) be a local lift of u(t) such

that u(t) = q(ũ(t)). By Lemma 11.1 it follows that there exists some g0 ∈ G(C)

such that w(t) = g0ũ(t). Thus, u(t) = q(g−1
0 w(t)) as desired. �

11.1. Uniformized loci. Given a map w : ∆k → “Ω, an element g ∈ G(C),

and an integer r ≥ 2, we get in a natural way a map

L(w, g, r) : ∆k → “Ω×X × Jnr X,
where the second map is q(gw) and the third map is Jnr

Ä
q ◦ g

ä
◦ idr ◦w, which

records the partial derivatives of qg, where qg(z) = q(gz), to order |ν| ≤ r,

restricted to the image of w. We will call such a map a uniformized locus. Note

that the second map is repeated in the zero-order terms of the third map, and

so it is superfluous in a way, but we find it convenient to keep track of it.

From such a map we obtain an image in the jet spaces (to some order m)

J∗mL(w, g, r) = ṽgk : ∆k → Jkm
“Ω× JkmX × Jnr X,

where the first map is Jkm(w) ◦ idm, the second map is Jkm
Ä
q ◦ g ◦w

ä
◦ idm, and

the third map is (again) Jnr
Ä
q ◦ g

ä
◦ idr ◦ w.

We want differential equations that characterize when a trio of maps

(w, v, u) : ∆k → “Ω×X × Jnr X
arises in this way. For (w, u), this is dealt with by Theorem 11.2.

Now, we cannot directly talk about the map q, though we do have access

to the map to JnmX. There is a complication when w has a stabilizer, in that

we could replace w by g◦w for any g in the stabilizer, and in fact by a different,

holomorphically varying, g at every point. This would not affect the map or

any of its derivatives, but it would affect the restrictions of the derivatives

of q ◦ g. Thus, we will equip the third coordinate with an extra differential

equation to insist that the g “stays constant.” We do this as follows.
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We have an algebraic map G(C) × Jn`
“Ω → Jn`

“Ω given by the natural

action. Let V ′n,` be the image of G(C)× id`(“Ω) restricted to Jn` Ω, and Vn,` its

constructible algebraic (by Corollary 3.2) image in Jn` X. Note that for ` ≥ 3,

the variety V ′n,` is fibered by varieties Ω over G(C)/N+(C).7 If we descend

to X, we lose the fibration but we retain an algebraic foliation.

To make this precise, let W ′n,` be the restriction to TV ′n,` of the image

of the natural holomorphic map G(C) × T id`(“Ω) → TJn`
“Ω. Then the image

Wn,` of W ′n,` in TJn` X determines an integrable algebraic (by Corollary 3.2)

foliation of Vn,`.

A map L(w, g, r) has its image in Vk,m × Vn,r, and the tangent lands in

Wn,r. We show that these properties characterize such maps.

Theorem 11.3. Let k be a positive integer, r ≥ 2, and m as above.

Consider a map

(w, u, v) : ∆k → “Ω×X × Jnr X.
If the image of (w, u, v) lands in Vk,m × Vn,r and the image of Tv lands in

Wn,r, and if v restricts to u, then there exists g ∈ G(C) such that (w, u, v) =

L(w, g, r).

Proof. Suppose that the hypotheses are satisfied. By Theorem 11.2 it

follows that there exists g ∈ G(C) with u = q ◦ g ◦ w. So it remains to

address the third coordinate. Note that if w has no stabilizer, the claim follows

immediately. As it stands, the third map must be of the form t→ q◦g(t)◦idk◦w
for some function g : ∆k → G(C). However, by assumption, Tv lands in

Wn,r, which is an integrable foliation whose leaves are precisely the set where

g(t) ∈ gN . Thus we may write g(t) = gn(t) for a function n(t) ∈ N . However,

since v restricts to u, it follows that n(t) is the identity function. Thus the

function g(t) = g must be constant and the claim is proved. �

12. Ax-Schanuel in a differential field

12.1. The setting . We fix G and q : Ω → X. Let n = dimX. We take a

field of definition L0 ⊂ C, of finite type, for X and for the system of differential

equations satisfied by q.

The weakly special subvarieties of X come in countably many families,

and so correspond to points in suitable (possibly constructible) subvarieties of

countably many Hilbert schemes. These families are defined over Q and the

collection of families is stable under Galois automorphisms. So we may take

them to be (not necessarily irreducible but) defined over L0.

7In fact, V ′
n,` is fibered by G(C)/N+(C) over Ω and is indeed isomorphic to the product

Ω×G(C)/N+(C).
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We consider a differential field (K,D, C). Here D = {D1, . . . , Dd} is a

finite set of commuting derivations and C is the constant field.

It is a deep theorem of Kazhdan [15], [16], [17] (see also Milne [21], [20])

that a conjugate of an arithmetic variety is again arithmetic. It will therefore

be important to ensure that our differential fields are identified correctly with

the complex object. We therefore assume (initially) that C contains a subfield

Λ0 isomorphic to L0 under ι0 : Λ0 → L0.

We take further a field of finite type L ⊂ C that is a field of definition for

the constructible algebraic varieties in Section 11, and assume that C contains

a field Λ isomorphic (by ι) to L. Then we can identify the various varieties in

Section 11 with their corresponding varieties in K.

12.2. Rank and transcendence degree. Let V be an algebraic variety 8 over

the constant field C, and let p ∈ V (K) be a K-point. Let U ⊂ V be an open

affine set defined over C that contains p. Let R = O(U) be the ring of functions

on U , and let S be the image of R in K induced by evaluation on p. We define

the transcendence degree of p to be the transcendence degree of the fraction

field of S over C.

We define the rank of p to be the rank of the matrix rank(p) = (Dis)1≤i≤n
s∈S

.

Finally, given two varieties V1, V2 and points p1 ∈ V1(K), p2 ∈ V2(K), we

say that p2 is a function of p1 if rank(p1, p2) = rank(p2).

12.3. Statement and proof of differential Ax-Schanuel . We consider K

points (z, x, y) of “Ω × X × Jnr X where r ≥ 2. We assume that x and z have

the same rank and that x is a function of z. Set k = rank(x) = rank(z), and

assume k ≥ 1. (For k = 0, our theorems are true but trivial.)

We consider Seidenberg embeddings of K into fields of meromorphic func-

tions [35]. If (z, x, y) satisfies the differential conditions corresponding to the

hypotheses of Theorem 11.3 then, under any Seidenberg embedding over ι,

meaning extending ι, as may always be assumed (see the version given in

Scanlon [34]), we get tuples of regular functions

(z, x, y) : ∆k → “Ω×X × JrX
that give a uniformized locus. It is thus a natural abuse of notation to refer

to a tuple (z, x, y) satisfying these conditions as a uniformized locus in K. We

will say similarly that x is contained in a weakly special subvariety if it gives a

K point of one of the varieties defining the weakly special families.

We can now state a differential version of Ax-Schanuel, making precise

Theorem 1.5.

8Or a scheme of finite type.
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Theorem 12.1 (Differential Ax-Schanuel). Fix G, q, L as above, and let

(K,D, C) be a differential field with Λ ⊂ K, ι as above. Let (z, x, y) be a

uniformized locus. Then

tr.deg.CC(z, x, y) ≥ rank(z) + dimG

unless x is contained in a proper weakly special subvariety.

Proof. Suppose the transcendence degree tr.deg.CC(z, x, y) is less, so that

there is a variety W defined over C containing these quantities with dimW <

rank(z) + dimG. Take a suitable finitely generated differential K ′ ⊂ K field

containing Λ and all constants appearing in the algebraic dependencies, the z

and the associated q-quantities, and a field of definition of W . Take a Seiden-

berg embedding of K ′ over ι into a field of meromorphic functions of t ∈ ∆k,

where k = rank(z).

Then x = qg(z) for some g ∈ G(C) for which the partial derivatives of qg,

restricted to the image of z as a function of t ∈ ∆k, agree with the Seidenberg

embeddings y of y. (Note that the tuple y records the co-ordinates of x.)

Define Q = qg, and let Ωg = g−1Ω be the domain of Q.

Let U ′ be the locus in Jn2 Ωg × Jn2 X that is the graph under JnQ of the

locus
(z, 1n×n, 0, . . . , 0) ⊂ Jn2 Ωg.

By assumption (z, x, y) is a uniformized locus, and therefore U ′ is the locus

(i.e. over t ∈ ∆k) described by

(z, 1n×n, 0, . . . , 0;x, y)

and is clearly in Jnd,n
2 Ωg×Jnd,n

2 X. (Recall the assumption that q is unramified.)

We let W ′ be the Zariski closure (over C) of U ′ and U ⊂ W ′ ∩ JnQ the

component containing U ′. We have dimC U
′ = k = rank(z), while W ′ is a

subvariety of the image of W under the Seidenberg embedding, so dimCW
′ ≤

dimCW . By assumption, we have rank(z) > dimCW − dimG, and therefore

we have

dimC U ≥ dimC U
′ = rank(z) > dimCW − dimG ≥ dimCW

′ − dimG.

Hence by Theorem 9.1, for the map Q, which is just the same statement

as for q, we conclude that x is contained in a proper weakly special subvariety

of X. But then x also has this property. �

We next show that the jet version of Ax-Schanuel (Theorem 9.1) may in

fact be deduced directly from Theorem 12.1.

12.4. Direct proof of Theorem 9.1 from Theorem 12.1. The proof follows

the corresponding deduction in [30]. We assume Theorem 12.1 holds. If A =

{f1, . . . , f`} is a set of regular functions of t ∈ ∆k, we set

dimA = dim(f1, . . . , fM ) = dim{
Ä
f1(t), . . . , fM (t)

ä
: t ∈ ∆k},



974 NGAIMING MOK, JONATHAN PILA, and JACOB TSIMERMAN

where {
Ä
f1(t), . . . , fM (t)

ä
: t ∈ ∆k} is the locus parametrized by A. The tran-

scendence degree tr.deg.CC(f1, . . . , fM ) is the dimension of the Zariski closure

of this locus, which we denote dim Zcl(A) = dim Zcl(f1, . . . , fM ).

We consider a locus U ⊂ Jnd,n
` D, of dimension k say, where ` ≥ 2, meaning

the graph of q on some locus of non-degenerate jets.

We take z = (z1, . . . , zn), x = (x1, . . . , xN ) as affine coordinates on Ω

and an open affine subset of X containing an open subset of U . We assume

that x1, . . . , xn are algebraically independent on X and the further variables

dependent upon them. We take coordinates

(z, r, s, . . . ;x,R, S, . . .)

in Jn` Ω × Jn` X, where r = (rij , i, j = 1, . . . , n) with ri representing the coor-

dinates of the first derivatives of zi, likewise R = (Rij) for xi, i = 1, . . . , N ,

s = (sijk) and S = (Sijk) the second derivatives of zi, xi etc. The non-

degeneracy condition means that the matrix r has rank n.

Then the action of q on the jets is given by xi = qi(z) and

Rij =
∑
p

∂qi
∂zp

rpj , Sijh =
∑
p

∂qi
∂zp

spjh +
∑
m

∑
p

∂qi
∂zp∂zm

rmh r
p
j , etc.

with summations p,m = 1, . . . , n.

Thus U is locally parametrized by t ∈ ∆k in the form

(z(t), r(t), s(t), . . . ; q(z(t)), R(t), S(t), . . .),

where

Rij(t) =
∑
p

∂qi
∂zp

rpj (t), S
i
jh(t) =

∑
p

∂qi
∂zp

spjh(t) +
∑
m

∑
p

∂qi
∂zp∂zm

rmh (t)rpj (t), etc.,

and the derivatives of q are evaluated at z(t).

We must prove that, as functions of t,

dim Zcl(z, r, s, . . . ;x,R, S, . . .) ≥ dim(z, r, s, . . .) + dimG.

We claim that

C(z, r, s, . . . ;x,R, S, . . .) = C(z, r, s, . . . ;x, q
(ν)
i ◦ z(t), |ν| ≤ `).

Clearly the left-hand side is contained in the right. On the other hand,

since r has full rank, by our non-degeneracy assumption we may find a map

φ : Ω→ ∆k such that (z, r, s, ...) ◦ φ is the identity, and thus the two fields are

equal. Thus we need to prove

dim Zcl(z, r, s, . . . ;x, q
(ν)
i ◦ z(t), |ν| ≤ `) ≥ dim(z, r, s, . . .) + dimG.

We consider the differential field containing the functions z, x, y = q
(ν)
i ◦z.

The hypotheses of Theorem 12.1 hold; that is, (z, x, y) is a uniformized locus

of rank k = rank(z) = dimU .
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If the projection of U to X is not contained in a proper weakly special

subvariety then we have

dim Zcl(z, x, y, . . .) ≥ dim(z) + dimG.

The conclusion then follows because, for any sets A,B of functions,

dim Zcl(A,B)− dim Zcl(A) ≥ dim(A,B)− dimA.

This concludes the proof. �

12.5. A special case . We state a special case of Theorem 12.1, which clar-

ifies the relationship between it and the modular and exponential cases. This

version views q as an analogue of exp /j. It concerns differential avatars of the

Cartesian product map
q` : Ω` → X`

which are suitably non-degenerate on each factor so that the differential equa-

tion can be straightforwardly imposed on the corresponding coordinate func-

tions.

The point is that if z, x have rank n and (z, x) ∈ V k
m, then y is uniquely

determined and lies in Jnr (K) by solving suitable systems of linear equations

in the derivatives of z, x.

Theorem 12.2. Suppose z=
Ä
z(1), . . . , z(`)

ä
∈ “Ω`(K), with rank(z(k))=n

for each k = 1, . . . , `, and x =
Ä
x(1), . . . , x(`)

ä
∈ X`(K), each of rank n, such

that x(i) is a function of z(i) for each i. Let y(i) be the partial derivatives of

x(i) with respect to z(i) up to order r ≥ 2, and put y =
Ä
y(1), . . . , y(`)

ä
.

Suppose further that (z(k), x(k)) ∈ V k
m for each k = 1, . . . , `. Then

tr.deg.CC
Ä
z, x, y

ä
≥ rank(z) + `dimG

unless x is contained in a proper weakly special subvariety of X .
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