Nonuniqueness of weak solutions to the Navier-Stokes equation

Abstract

For initial datum of finite kinetic energy, Leray has proven in 1934 that there exists at least one global in time finite energy weak solution of the 3D Navier-Stokes equations. In this paper we prove that weak solutions of the 3D Navier-Stokes equations are not unique in the class of weak solutions with finite kinetic energy. Moreover, we prove that Hölder continuous dissipative weak solutions of the 3D Euler equations may be obtained as a strong vanishing viscosity limit of a sequence of finite energy weak solutions of the 3D Navier-Stokes equations.

  • [Buckmaster15] Go to document T. Buckmaster, "Onsager’s conjecture almost everywhere in time," Comm. Math. Phys., vol. 333, iss. 3, pp. 1175-1198, 2015.
    @ARTICLE{Buckmaster15,
      author = {Buckmaster, Tristan},
      title = {Onsager's conjecture almost everywhere in time},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {333},
      year = {2015},
      number = {3},
      pages = {1175--1198},
      issn = {0010-3616},
      mrclass = {35Q31 (76B03)},
      mrnumber = {3302631},
      mrreviewer = {Francesca Brini},
      doi = {10.1007/s00220-014-2262-z},
      url = {https://doi.org/10.1007/s00220-014-2262-z},
      zblnumber = {1308.35184},
      }
  • [BDLISJ15] Go to document T. Buckmaster, C. De Lellis, P. Isett, and L. Székelyhidi Jr., "Anomalous dissipation for $1/5$-Hölder Euler flows," Ann. of Math. (2), vol. 182, iss. 1, pp. 127-172, 2015.
    @ARTICLE{BDLISJ15,
      author = {Buckmaster, Tristan and De Lellis, Camillo and Isett, Philip and Székelyhidi, Jr., L\'{a}szló},
      title = {Anomalous dissipation for {$1/5$}-{H}ölder {E}uler flows},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {182},
      year = {2015},
      number = {1},
      pages = {127--172},
      issn = {0003-486X},
      mrclass = {35Q31 (35B65)},
      mrnumber = {3374958},
      mrreviewer = {Francesco Fanelli},
      doi = {10.4007/annals.2015.182.1.3},
      url = {https://doi.org/10.4007/annals.2015.182.1.3},
      zblnumber = {1330.35303},
      }
  • [BDLSZ16] Go to document T. Buckmaster, C. De Lellis, and L. Székelyhidi Jr., "Dissipative Euler flows with Onsager-critical spatial regularity," Comm. Pure Appl. Math., vol. 69, iss. 9, pp. 1613-1670, 2016.
    @ARTICLE{BDLSZ16,
      author = {Buckmaster, Tristan and De Lellis, Camillo and Székelyhidi, Jr., L\'{a}szló},
      title = {Dissipative {E}uler flows with {O}nsager-critical spatial regularity},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {69},
      year = {2016},
      number = {9},
      pages = {1613--1670},
      issn = {0010-3640},
      mrclass = {35Q31 (35B10 35D30 76B03)},
      mrnumber = {3530360},
      mrreviewer = {Franck Sueur},
      doi = {10.1002/cpa.21586},
      url = {https://doi.org/10.1002/cpa.21586},
      zblnumber = {1351.35109},
      }
  • [BDLSV17] Go to document T. Buckmaster, C. De Lellis, L. Székelyhidi Jr., and V. Vicol, Onsager’s conjecture for admissible weak solutions.
    @MISC{BDLSV17,
      author = {Buckmaster, Tristan and De Lellis, Camillo and Székelyhidi, Jr., L\'{a}szló and Vicol, V.},
      title = {Onsager's conjecture for admissible weak solutions},
      sortyear = {2018},
      note = {{\em Comm. Pure Appl. Math.},
      version of record online: 23 July 2018},
      zblnumber = {},
      doi = {10.1002/cpa.21781},
      }
  • [BMV17] T. Buckmaster, N. Masmoudi, and V. Vicol, Unpublished work.
    @MISC{BMV17,
      author = {Buckmaster, Tristan and Masmoudi, N. and Vicol, V.},
      title = {unpublished work},
      }
  • [BSV16] T. Buckmaster, S. Shkoller, and V. Vicol, Nonuniqueness of weak solutions to the SQG equation, 2017.
    @MISC{BSV16,
      author = {Buckmaster, Tristan and Shkoller, S. and Vicol, V.},
      title = {Nonuniqueness of weak solutions to the {SQG} equation},
      note = {{\em Comm. Pure Appl. Math.},
      accepted 2018},
      year = {2017},
      arxiv = {1610.00676},
      }
  • [CaffarelliKohnNirenberg82] Go to document L. Caffarelli, R. Kohn, and L. Nirenberg, "Partial regularity of suitable weak solutions of the Navier-Stokes equations," Comm. Pure Appl. Math., vol. 35, iss. 6, pp. 771-831, 1982.
    @ARTICLE{CaffarelliKohnNirenberg82,
      author = {Caffarelli, L. and Kohn, R. and Nirenberg, L.},
      title = {Partial regularity of suitable weak solutions of the {N}avier-{S}tokes equations},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {35},
      year = {1982},
      number = {6},
      pages = {771--831},
      issn = {0010-3640},
      mrclass = {35Q10 (76D05)},
      mrnumber = {0673830},
      mrreviewer = {Tai Ping Liu},
      doi = {10.1002/cpa.3160350604},
      url = {https://doi.org/10.1002/cpa.3160350604},
      zblnumber = {0509.35067},
      }
  • [ChCoFrSh2008] Go to document A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy, "Energy conservation and Onsager’s conjecture for the Euler equations," Nonlinearity, vol. 21, iss. 6, pp. 1233-1252, 2008.
    @ARTICLE{ChCoFrSh2008,
      author = {Cheskidov, A. and Constantin, P. and Friedlander, S. and Shvydkoy, R.},
      title = {Energy conservation and {O}nsager's conjecture for the {E}uler equations},
      journal = {Nonlinearity},
      fjournal = {Nonlinearity},
      volume = {21},
      year = {2008},
      number = {6},
      pages = {1233--1252},
      issn = {0951-7715},
      mrclass = {76B03 (76F02)},
      mrnumber = {2422377},
      mrreviewer = {Hee Chul Pak},
      doi = {10.1088/0951-7715/21/6/005},
      url = {https://doi.org/10.1088/0951-7715/21/6/005},
      zblnumber = {1138.76020},
      }
  • [CDLDR17] Go to document M. Colombo, C. De Lellis, and L. De Rosa, "Ill-posedness of Leray solutions for the hypodissipative Navier-Stokes equations," Comm. Math. Phys., vol. 362, iss. 2, pp. 659-688, 2018.
    @ARTICLE{CDLDR17,
      author = {Colombo, Maria and De Lellis, Camillo and De Rosa, Luigi},
      title = {Ill-posedness of {L}eray solutions for the hypodissipative {N}avier-{S}tokes equations},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {362},
      year = {2018},
      number = {2},
      pages = {659--688},
      issn = {0010-3616},
      mrclass = {35R11 (35Q30)},
      mrnumber = {3843425},
      doi = {10.1007/s00220-018-3177-x},
      url = {https://doi.org/10.1007/s00220-018-3177-x},
      zblnumber = {06932745},
      }
  • [ConstantinETiti94] Go to document P. Constantin, W. E, and E. S. Titi, "Onsager’s conjecture on the energy conservation for solutions of Euler’s equation," Comm. Math. Phys., vol. 165, iss. 1, pp. 207-209, 1994.
    @ARTICLE{ConstantinETiti94,
      author = {Constantin, Peter and E, Weinan and Titi, Edriss S.},
      title = {Onsager's conjecture on the energy conservation for solutions of {E}uler's equation},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {165},
      year = {1994},
      number = {1},
      pages = {207--209},
      issn = {0010-3616},
      mrclass = {76C99 (35Q30 76F99)},
      mrnumber = {1298949},
      doi = {10.1007/BF02099744},
      zblnumber = {0818.35085},
      }
  • [ConstantinFefferman93] Go to document P. Constantin and C. Fefferman, "Direction of vorticity and the problem of global regularity for the Navier-Stokes equations," Indiana Univ. Math. J., vol. 42, iss. 3, pp. 775-789, 1993.
    @ARTICLE{ConstantinFefferman93,
      author = {Constantin, Peter and Fefferman, Charles},
      title = {Direction of vorticity and the problem of global regularity for the {N}avier-{S}tokes equations},
      journal = {Indiana Univ. Math. J.},
      fjournal = {Indiana University Mathematics Journal},
      volume = {42},
      year = {1993},
      number = {3},
      pages = {775--789},
      issn = {0022-2518},
      mrclass = {35Q30 (76D05)},
      mrnumber = {1254117},
      mrreviewer = {Rodolfo Salvi},
      doi = {10.1512/iumj.1993.42.42034},
      url = {https://doi.org/10.1512/iumj.1993.42.42034},
      zblnumber = {0837.35113},
      }
  • [ConstantinFoias88] P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, IL, 1988.
    @BOOK{ConstantinFoias88,
      author = {Constantin, Peter and Foias, Ciprian},
      title = {Navier-{S}tokes Equations},
      series = {Chicago Lectures in Math.},
      publisher = {University of Chicago Press, Chicago, IL},
      year = {1988},
      pages = {x+190},
      isbn = {0-226-11548-8; 0-226-11549-6},
      mrclass = {35Q10 (58F12 76-02 76D05)},
      mrnumber = {0972259},
      mrreviewer = {Athanase Cotsiolis},
      zblnumber = {0687.35071},
      }
  • [CDLSJ12] Go to document S. Conti, C. De Lellis, and L. Székelyhidi Jr., "$h$-principle and rigidity for $C^{1,\alpha}$ isometric embeddings," in Nonlinear Partial Differential Equations, Springer, Heidelberg, 2012, vol. 7, pp. 83-116.
    @INCOLLECTION{CDLSJ12,
      author = {Conti, Sergio and De Lellis, Camillo and Székelyhidi, Jr., L\'{a}szló},
      title = {{$h$}-principle and rigidity for {$C^{1,\alpha}$} isometric embeddings},
      booktitle = {Nonlinear Partial Differential Equations},
      series = {Abel Symp.},
      volume = {7},
      pages = {83--116},
      publisher = {Springer, Heidelberg},
      year = {2012},
      mrclass = {53C24 (58A07)},
      mrnumber = {3289360},
      mrreviewer = {Toru Yoshiyasu},
      doi = {10.1007/978-3-642-25361-4_5},
      url = {https://doi.org/10.1007/978-3-642-25361-4_5},
      zblnumber = {1255.53038},
      }
  • [DSZ17] Go to document S. Daneri and L. Székelyhidi Jr., "Non-uniqueness and $h$-principle for Hölder-continuous weak solutions of the Euler equations," Arch. Ration. Mech. Anal., vol. 224, iss. 2, pp. 471-514, 2017.
    @ARTICLE{DSZ17,
      author = {Daneri, Sara and Székelyhidi, Jr., L\'{a}szló},
      title = {Non-uniqueness and $h$-principle for {H}ölder-continuous weak solutions of the {E}uler equations},
      journal = {Arch. Ration. Mech. Anal.},
      fjournal = {Archive for Rational Mechanics and Analysis},
      volume = {224},
      year = {2017},
      number = {2},
      pages = {471--514},
      issn = {0003-9527},
      mrclass = {35Q31 (35A02 35B65 35D30 76B03)},
      mrnumber = {3614753},
      mrreviewer = {Jean C. Cortissoz},
      doi = {10.1007/s00205-017-1081-8},
      url = {https://doi.org/10.1007/s00205-017-1081-8},
      zblnumber = {1372.35221},
      }
  • [DLSZ09] Go to document C. De Lellis and L. Székelyhidi Jr., "The Euler equations as a differential inclusion," Ann. of Math. (2), vol. 170, iss. 3, pp. 1417-1436, 2009.
    @ARTICLE{DLSZ09,
      author = {De Lellis, Camillo and Székelyhidi, Jr., L\'{a}szló},
      title = {The {E}uler equations as a differential inclusion},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {170},
      year = {2009},
      number = {3},
      pages = {1417--1436},
      issn = {0003-486X},
      mrclass = {35Q31 (34A60 35D30 76B03)},
      mrnumber = {2600877},
      mrreviewer = {Frédéric Charve},
      doi = {10.4007/annals.2009.170.1417},
      url = {https://doi.org/10.4007/annals.2009.170.1417},
      zblnumber = {1350.35146},
      }
  • [DLSZ13] Go to document C. De Lellis and L. Székelyhidi Jr., "Dissipative continuous Euler flows," Invent. Math., vol. 193, iss. 2, pp. 377-407, 2013.
    @ARTICLE{DLSZ13,
      author = {De Lellis, Camillo and Székelyhidi, Jr., L\'{a}szló},
      title = {Dissipative continuous {E}uler flows},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {193},
      year = {2013},
      number = {2},
      pages = {377--407},
      issn = {0020-9910},
      mrclass = {35Q31 (35A01 35B10 35B65 35D30 76B03)},
      mrnumber = {3090182},
      mrreviewer = {Francesco Fanelli},
      doi = {10.1007/s00222-012-0429-9},
      url = {https://doi.org/10.1007/s00222-012-0429-9},
      zblnumber = {1280.35103},
      }
  • [DLSZ15] Go to document C. De Lellis and L. Székelyhidi Jr., "On $h$-principle and Onsager’s conjecture," Eur. Math. Soc. Newsl., iss. 95, pp. 19-24, 2015.
    @ARTICLE{DLSZ15,
      author = {De Lellis, Camillo and Székelyhidi, Jr., L\'{a}szló},
      title = {On {$h$}-principle and {O}nsager's conjecture},
      journal = {Eur. Math. Soc. Newsl.},
      fjournal = {European Mathematical Society. Newsletter},
      number = {95},
      year = {2015},
      pages = {19--24},
      issn = {1027-488X},
      mrclass = {58D27 (35Q30 35Q31)},
      mrnumber = {3330471},
      mrreviewer = {Mahuya Datta},
      zblnumber = {1335.35189},
      url = {http://www.ems-ph.org/journals/newsletter/pdf/2015-03-95.pdf},
      }
  • [Eyink94] Go to document G. L. Eyink, "Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer," Phys. D, vol. 78, iss. 3-4, pp. 222-240, 1994.
    @ARTICLE{Eyink94,
      author = {Eyink, Gregory L.},
      title = {Energy dissipation without viscosity in ideal hydrodynamics. {I}. {F}ourier analysis and local energy transfer},
      journal = {Phys. D},
      fjournal = {Physica D. Nonlinear Phenomena},
      volume = {78},
      year = {1994},
      number = {3-4},
      pages = {222--240},
      issn = {0167-2789},
      mrclass = {76D05 (35Q35 76F99)},
      mrnumber = {1302409},
      mrreviewer = {P. L. Sulem},
      doi = {10.1016/0167-2789(94)90117-1},
      url = {https://doi.org/10.1016/0167-2789(94)90117-1},
      zblnumber = {0817.76011},
      }
  • [FabesJonesRiviere72] Go to document E. B. Fabes, B. F. Jones, and N. M. Rivière, "The initial value problem for the Navier-Stokes equations with data in $L^{p}$," Arch. Rational Mech. Anal., vol. 45, pp. 222-240, 1972.
    @ARTICLE{FabesJonesRiviere72,
      author = {Fabes, E. B. and Jones, B. F. and Rivière, N. M.},
      title = {The initial value problem for the {N}avier-{S}tokes equations with data in {$L\sp{p}$}},
      journal = {Arch. Rational Mech. Anal.},
      fjournal = {Archive for Rational Mechanics and Analysis},
      volume = {45},
      year = {1972},
      pages = {222--240},
      issn = {0003-9527},
      mrclass = {35Q15},
      mrnumber = {0316915},
      mrreviewer = {D. R. Smith},
      doi = {10.1007/BF00281533},
      url = {https://doi.org/10.1007/BF00281533},
      zblnumber = {0254.35097},
      }
  • [Frisch95] Go to document U. Frisch, Turbulence, Cambridge University Press, Cambridge, 1995.
    @BOOK{Frisch95,
      author = {Frisch, Uriel},
      title = {Turbulence},
      titlenote = {The Legacy of A. N. Kolmogorov},
      publisher = {Cambridge University Press, Cambridge},
      year = {1995},
      pages = {xiv+296},
      isbn = {0-521-45103-5},
      mrclass = {76-02 (35Q30 76D05 76Fxx 76M35)},
      mrnumber = {1428905},
      mrreviewer = {Philip J. Holmes},
      zblnumber = {0832.76001},
      doi = {10.1017/CBO9781139170666},
      }
  • [FurioliLemarieRieussetTerraneo00] Go to document G. Furioli, P. G. Lemarié-Rieusset, and E. Terraneo, "Unicité dans $L^3(\Bbb R^3)$ et d’autres espaces fonctionnels limites pour Navier-Stokes," Rev. Mat. Iberoamericana, vol. 16, iss. 3, pp. 605-667, 2000.
    @ARTICLE{FurioliLemarieRieussetTerraneo00,
      author = {Furioli, Giulia and Lemarié-Rieusset, Pierre G. and Terraneo, Elide},
      title = {Unicité dans {$L^3(\Bbb R^3)$} et d'autres espaces fonctionnels limites pour {N}avier-{S}tokes},
      journal = {Rev. Mat. Iberoamericana},
      fjournal = {Revista Matem\'{a}tica Iberoamericana},
      volume = {16},
      year = {2000},
      number = {3},
      pages = {605--667},
      issn = {0213-2230},
      mrclass = {76D03 (35Q30)},
      mrnumber = {1813331},
      mrreviewer = {Marco Cannone},
      doi = {10.4171/RMI/286},
      url = {https://doi.org/10.4171/RMI/286},
      zblnumber = {0970.35101},
      }
  • [GrafakosClassical] L. Grafakos, Classical Fourier Analysis, Second ed., Springer-Verlag, New York, 2008, vol. 249.
    @BOOK{GrafakosClassical,
      author = {Grafakos, Loukas},
      title = {Classical {F}ourier Analysis},
      series = {Grad. Texts in Math.},
      volume = {249},
      edition = {Second},
      publisher = {Springer-Verlag, New York},
      year = {2008},
      pages = {xvi+489},
      isbn = {978-0-387-09431-1},
      mrclass = {42-01 (42Bxx)},
      mrnumber = {2445437},
      mrreviewer = {Andreas Seeger},
      zblnumber = {1220.42001},
      }
  • [GuillodSverak17] J. Guillod and V. vSverák, Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces, 2017.
    @MISC{GuillodSverak17,
      author = {Guillod, J. and {Š}ver{{á}}k, V.},
      title = {Numerical investigations of non-uniqueness for the {N}avier-{S}tokes initial value problem in borderline spaces},
      arxiv = {1704.00560},
      year = {2017},
      zblnumber = {},
      }
  • [Hopf51] Go to document E. Hopf, "Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen," Math. Nachr., vol. 4, pp. 213-231, 1951.
    @ARTICLE{Hopf51,
      author = {Hopf, Eberhard},
      title = {Über die {A}nfangswertaufgabe für die hydrodynamischen {G}rundgleichungen},
      journal = {Math. Nachr.},
      fjournal = {Mathematische Nachrichten},
      volume = {4},
      year = {1951},
      pages = {213--231},
      issn = {0025-584X},
      mrclass = {76.1X},
      mrnumber = {0050423},
      mrreviewer = {J. Kampé de Fériet},
      doi = {10.1002/mana.3210040121},
      url = {https://doi.org/10.1002/mana.3210040121},
      zblnumber = {0042.10604},
      }
  • [Isett16] Go to document P. Isett, "A proof of Onsager’s conjecture," Ann. of Math., vol. 188, iss. 3, pp. 871-963, 2018.
    @ARTICLE{Isett16,
      author = {Isett, P.},
      title = {A proof of {O}nsager's conjecture},
      journal = {Ann. of Math.},
      volume = {188},
      number = {3},
      year = {2018},
      doi = {10.4007/annals.2018.188.3.4},
      pages = {871--963},
      zblnumber = {06976275},
      mrnumber = {3866888},
      }
  • [Isett17] P. Isett, On the endpoint regularity in Onsager’s conjecture, 2017.
    @MISC{Isett17,
      author = {Isett, P.},
      title = {On the endpoint regularity in {O}nsager's conjecture},
      arxiv = {1706.01549},
      year = {2017},
      zblnumber = {},
      }
  • [EscauriazaSerginSverak03] Go to document L. Iskauriaza, G. A. Serëgin, and V. Shverak, "$L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness," Uspekhi Mat. Nauk, vol. 58, iss. 2(350), pp. 3-44, 2003.
    @ARTICLE{EscauriazaSerginSverak03,
      author = {Iskauriaza, L. and Serëgin, G. A. and Shverak, V.},
      title = {{$L_{3,\infty}$}-solutions of {N}avier-{S}tokes equations and backward uniqueness},
      journal = {Uspekhi Mat. Nauk},
      fjournal = {Rossiĭskaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
      volume = {58},
      year = {2003},
      number = {2(350)},
      pages = {3--44},
      issn = {0042-1316},
      mrclass = {35Q30 (76D03 76D05)},
      mrnumber = {1992563},
      mrreviewer = {Grzegorz Karch},
      doi = {10.1070/RM2003v058n02ABEH000609},
      url = {https://doi.org/10.1070/RM2003v058n02ABEH000609},
      zblnumber = {1064.35134},
      }
  • [JiaSverak14] Go to document H. Jia and V. vSverák, "Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions," Invent. Math., vol. 196, iss. 1, pp. 233-265, 2014.
    @ARTICLE{JiaSverak14,
      author = {Jia, Hao and Šver\'{a}k, Vladim\'{i}r},
      title = {Local-in-space estimates near initial time for weak solutions of the {N}avier-{S}tokes equations and forward self-similar solutions},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {196},
      year = {2014},
      number = {1},
      pages = {233--265},
      issn = {0020-9910},
      mrclass = {35Q30 (35A01 35D30 76D03 76D05)},
      mrnumber = {3179576},
      mrreviewer = {Boris Muha},
      doi = {10.1007/s00222-013-0468-x},
      url = {https://doi.org/10.1007/s00222-013-0468-x},
      zblnumber = {1301.35089},
      }
  • [JiaSverak15] Go to document H. Jia and V. vSverák, "Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space?," J. Funct. Anal., vol. 268, iss. 12, pp. 3734-3766, 2015.
    @ARTICLE{JiaSverak15,
      author = {Jia, Hao and Šver\'{a}k, Vladim\'{i}r},
      title = {Are the incompressible 3d {N}avier-{S}tokes equations locally ill-posed in the natural energy space?},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {268},
      year = {2015},
      number = {12},
      pages = {3734--3766},
      issn = {0022-1236},
      mrclass = {35Q30 (35B30)},
      mrnumber = {3341963},
      mrreviewer = {Joel David Avrin},
      doi = {10.1016/j.jfa.2015.04.006},
      url = {https://doi.org/10.1016/j.jfa.2015.04.006},
      zblnumber = {1317.35176},
      }
  • [Kato84] Go to document T. Kato, "Strong $L^{p}$-solutions of the Navier-Stokes equation in ${\bf R}^{m}$, with applications to weak solutions," Math. Z., vol. 187, iss. 4, pp. 471-480, 1984.
    @ARTICLE{Kato84,
      author = {Kato, Tosio},
      title = {Strong {$L\sp{p}$}-solutions of the {N}avier-{S}tokes equation in {${\bf R}\sp{m}$},
      with applications to weak solutions},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {187},
      year = {1984},
      number = {4},
      pages = {471--480},
      issn = {0025-5874},
      mrclass = {35Q10 (76D05)},
      mrnumber = {0760047},
      mrreviewer = {Yoshikazu Giga},
      doi = {10.1007/BF01174182},
      url = {https://doi.org/10.1007/BF01174182},
      zblnumber = {0545.35073},
      }
  • [KiselevLadyzhenskaya57] Go to document A. A. Kiselev and O. A. Ladyvzenskaya, "On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid," Izv. Akad. Nauk SSSR. Ser. Mat., vol. 21, iss. 5, pp. 655-680, 1957.
    @ARTICLE{KiselevLadyzhenskaya57,
      author = {Kiselev, A. A. and Ladyženskaya, O. A.},
      title = {On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid},
      journal = {Izv. Akad. Nauk SSSR. Ser. Mat.},
      fjournal = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
      volume = {21},
      number={5},
      year = {1957},
      pages = {655--680},
      issn = {0373-2436},
      mrclass = {76.00},
      mrnumber = {0100448},
      mrreviewer = {R. Finn},
      zblnumber = {0078.39801},
      url = {http://mi.mathnet.ru/eng/izv/v21/i5/p655},
      }
  • [KochTataru01] Go to document H. Koch and D. Tataru, "Well-posedness for the Navier-Stokes equations," Adv. Math., vol. 157, iss. 1, pp. 22-35, 2001.
    @ARTICLE{KochTataru01,
      author = {Koch, Herbert and Tataru, Daniel},
      title = {Well-posedness for the {N}avier-{S}tokes equations},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {157},
      year = {2001},
      number = {1},
      pages = {22--35},
      issn = {0001-8708},
      mrclass = {35Q30},
      mrnumber = {1808843},
      mrreviewer = {Radjesvarane Alexandre},
      doi = {10.1006/aima.2000.1937},
      url = {https://doi.org/10.1006/aima.2000.1937},
      zblnumber = {0972.35084},
      }
  • [Kukavica06b] Go to document I. Kukavica, "Pressure integrability conditions for uniqueness of mild solutions of the Navier-Stokes system," J. Differential Equations, vol. 223, iss. 2, pp. 427-441, 2006.
    @ARTICLE{Kukavica06b,
      author = {Kukavica, Igor},
      title = {Pressure integrability conditions for uniqueness of mild solutions of the {N}avier-{S}tokes system},
      journal = {J. Differential Equations},
      fjournal = {Journal of Differential Equations},
      volume = {223},
      year = {2006},
      number = {2},
      pages = {427--441},
      issn = {0022-0396},
      mrclass = {35Q30 (76D03 76D05)},
      mrnumber = {2214942},
      mrreviewer = {Joel David Avrin},
      doi = {10.1016/j.jde.2005.07.005},
      url = {https://doi.org/10.1016/j.jde.2005.07.005},
      zblnumber = {1105.35080},
      }
  • [Kukavica06] Go to document I. Kukavica, "Role of the pressure for validity of the energy equality for solutions of the Navier-Stokes equation," J. Dynam. Differential Equations, vol. 18, iss. 2, pp. 461-482, 2006.
    @ARTICLE{Kukavica06,
      author = {Kukavica, Igor},
      title = {Role of the pressure for validity of the energy equality for solutions of the {N}avier-{S}tokes equation},
      journal = {J. Dynam. Differential Equations},
      fjournal = {Journal of Dynamics and Differential Equations},
      volume = {18},
      year = {2006},
      number = {2},
      pages = {461--482},
      issn = {1040-7294},
      mrclass = {35Q30 (35K15)},
      mrnumber = {2229985},
      mrreviewer = {Horst Heck},
      doi = {10.1007/s10884-006-9010-9},
      url = {https://doi.org/10.1007/s10884-006-9010-9},
      zblnumber = {1105.35081},
      }
  • [Kukavica08b] Go to document I. Kukavica, "On partial regularity for the Navier-Stokes equations," Discrete Contin. Dyn. Syst., vol. 21, iss. 3, pp. 717-728, 2008.
    @ARTICLE{Kukavica08b,
      author = {Kukavica, Igor},
      title = {On partial regularity for the {N}avier-{S}tokes equations},
      journal = {Discrete Contin. Dyn. Syst.},
      fjournal = {Discrete and Continuous Dynamical Systems. Series A},
      volume = {21},
      year = {2008},
      number = {3},
      pages = {717--728},
      issn = {1078-0947},
      mrclass = {35Q30 (35D10 76D03 76D05)},
      mrnumber = {2399434},
      mrreviewer = {Beno\^{i}t P. Desjardins},
      doi = {10.3934/dcds.2008.21.717},
      url = {https://doi.org/10.3934/dcds.2008.21.717},
      zblnumber = {1147.35071},
      }
  • [Ladyzhenskaya67] O. A. Ladyvzenskaja, "Uniqueness and smoothness of generalized solutions of Navier-Stokes equations," Zap. Nau\vcn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 5, pp. 169-185, 1967.
    @ARTICLE{Ladyzhenskaya67,
      author = {Ladyženskaja, O. A.},
      title = {Uniqueness and smoothness of generalized solutions of {N}avier-{S}tokes equations},
      journal = {Zap. Nau\v{c}n. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)},
      fjournal = {Zapiski Nau\v{c}nyh Seminarov Leningradskogo Otdelenija Matemati\v{c}eskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI)},
      volume = {5},
      year = {1967},
      pages = {169--185},
      mrclass = {35.79 (76.00)},
      mrnumber = {0236541},
      mrreviewer = {M. Borsuk},
      zblnumber = {0194.12805},
      }
  • [LadyzhenskayaSeregin99] Go to document O. A. Ladyvzenskaja and G. A. Seregin, "On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations," J. Math. Fluid Mech., vol. 1, iss. 4, pp. 356-387, 1999.
    @ARTICLE{LadyzhenskayaSeregin99,
      author = {Ladyženskaja, O. A. and Seregin, G. A.},
      title = {On partial regularity of suitable weak solutions to the three-dimensional {N}avier-{S}tokes equations},
      journal = {J. Math. Fluid Mech.},
      fjournal = {Journal of Mathematical Fluid Mechanics},
      volume = {1},
      year = {1999},
      number = {4},
      pages = {356--387},
      issn = {1422-6928},
      mrclass = {35Q30 (35D10 76D03 76D05)},
      mrnumber = {1738171},
      mrreviewer = {Alexander Yurjevich Chebotarev},
      doi = {10.1007/s000210050015},
      url = {https://doi.org/10.1007/s000210050015},
      zblnumber = {0954.35129},
      }
  • [LemarieRieusset02] Go to document P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC, Boca Raton, FL, 2002, vol. 431.
    @BOOK{LemarieRieusset02,
      author = {Lemarié-Rieusset, P. G.},
      title = {Recent Developments in the {N}avier-{S}tokes Problem},
      series = {Chapman \& Hall/CRC Research Notes in Math.},
      volume = {431},
      publisher = {Chapman \& Hall/CRC, Boca Raton, FL},
      year = {2002},
      pages = {xiv+395},
      isbn = {1-58488-220-4},
      mrclass = {35Q30 (46N20 76D03 76D05)},
      mrnumber = {1938147},
      mrreviewer = {Joel David Avrin},
      doi = {10.1201/9781420035674},
      url = {https://doi.org/10.1201/9781420035674},
      zblnumber = {1034.35093},
      }
  • [Lemarie16] Go to document P. G. Lemarié-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016.
    @BOOK{Lemarie16,
      author = {Lemarié-Rieusset, Pierre Gilles},
      title = {The {N}avier-{S}tokes Problem in the 21st Century},
      publisher = {CRC Press, Boca Raton, FL},
      year = {2016},
      pages = {xxii+718},
      isbn = {978-1-4665-6621-7},
      mrclass = {76D05 (35Q30 76D03)},
      mrnumber = {3469428},
      mrreviewer = {Isabelle Gruais},
      doi = {10.1201/b19556},
      url = {https://doi.org/10.1201/b19556},
      zblnumber = {1342.76029},
      }
  • [Leray34] Go to document J. Leray, "Sur le mouvement d’un liquide visqueux emplissant l’espace," Acta Math., vol. 63, iss. 1, pp. 193-248, 1934.
    @ARTICLE{Leray34,
      author = {Leray, Jean},
      title = {Sur le mouvement d'un liquide visqueux emplissant l'espace},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {63},
      year = {1934},
      number = {1},
      pages = {193--248},
      issn = {0001-5962},
      mrclass = {DML},
      mrnumber = {1555394},
      doi = {10.1007/BF02547354},
      url = {https://doi.org/10.1007/BF02547354},
      zblnumber = {60.0726.05},
      }
  • [Lin98] Go to document F. Lin, "A new proof of the Caffarelli-Kohn-Nirenberg theorem," Comm. Pure Appl. Math., vol. 51, iss. 3, pp. 241-257, 1998.
    @ARTICLE{Lin98,
      author = {Lin, Fanghua},
      title = {A new proof of the {C}affarelli-{K}ohn-{N}irenberg theorem},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {51},
      year = {1998},
      number = {3},
      pages = {241--257},
      issn = {0010-3640},
      mrclass = {35Q30 (35B65 76D05)},
      mrnumber = {1488514},
      mrreviewer = {Jürgen Socolowsky},
      url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0312%28199712%2950%3A12%3C1261%3A%3AAID-CPA3%3E3.0.CO%3B2-6},
      zblnumber = {0958.35102},
      }
  • [LionsMasmoudi01] Go to document P. -L. Lions and N. Masmoudi, "Uniqueness of mild solutions of the Navier-Stokes system in $L^N$," Comm. Partial Differential Equations, vol. 26, iss. 11-12, pp. 2211-2226, 2001.
    @ARTICLE{LionsMasmoudi01,
      author = {Lions, P.-L. and Masmoudi, N.},
      title = {Uniqueness of mild solutions of the {N}avier-{S}tokes system in {$L^N$}},
      journal = {Comm. Partial Differential Equations},
      fjournal = {Communications in Partial Differential Equations},
      volume = {26},
      year = {2001},
      number = {11-12},
      pages = {2211--2226},
      issn = {0360-5302},
      mrclass = {35Q30 (76D03 76D05)},
      mrnumber = {1876415},
      mrreviewer = {Jürgen Socolowsky},
      doi = {10.1081/PDE-100107819},
      url = {https://doi.org/10.1081/PDE-100107819},
      zblnumber = {1086.35077},
      }
  • [Prodi59] Go to document G. Prodi, "Un teorema di unicità per le equazioni di Navier-Stokes," Ann. Mat. Pura Appl. (4), vol. 48, pp. 173-182, 1959.
    @ARTICLE{Prodi59,
      author = {Prodi, Giovanni},
      title = {Un teorema di unicità per le equazioni di {N}avier-{S}tokes},
      journal = {Ann. Mat. Pura Appl. (4)},
      fjournal = {Annali di Matematica Pura ed Applicata. Serie Quarta},
      volume = {48},
      year = {1959},
      pages = {173--182},
      issn = {0003-4622},
      mrclass = {35.79},
      mrnumber = {0126088},
      mrreviewer = {J. L. Lions},
      doi = {10.1007/BF02410664},
      url = {https://doi.org/10.1007/BF02410664},
      zblnumber = {0148.08202},
      }
  • [RSR16] Go to document J. C. Robinson, J. L. Rodrigo, and W. Sadowski, The Three-Dimensional Navier-Stokes Equations, Cambridge University Press, Cambridge, 2016, vol. 157.
    @BOOK{RSR16,
      author = {Robinson, James C. and Rodrigo, José L. and Sadowski, Witold},
      title = {The Three-Dimensional {N}avier-{S}tokes Equations},
      series = {Cambridge Stud. Adv. Math.},
      volume = {157},
      note = {Classical theory},
      publisher = {Cambridge University Press, Cambridge},
      year = {2016},
      pages = {xiv+471},
      isbn = {978-1-107-01966-9},
      mrclass = {76-02 (35Q30 76D05)},
      mrnumber = {3616490},
      mrreviewer = {Jean C. Cortissoz},
      doi = {10.1017/CBO9781139095143},
      url = {https://doi.org/10.1017/CBO9781139095143},
      zblnumber = {1358.35002},
      }
  • [Scheffer76] Go to document V. Scheffer, "Partial regularity of solutions to the Navier-Stokes equations," Pacific J. Math., vol. 66, iss. 2, pp. 535-552, 1976.
    @ARTICLE{Scheffer76,
      author = {Scheffer, Vladimir},
      title = {Partial regularity of solutions to the {N}avier-{S}tokes equations},
      journal = {Pacific J. Math.},
      fjournal = {Pacific Journal of Mathematics},
      volume = {66},
      year = {1976},
      number = {2},
      pages = {535--552},
      issn = {0030-8730},
      mrclass = {35Q99 (35D10)},
      mrnumber = {0454426},
      doi = {10.2140/pjm.1976.66.535},
      zblnumber = {0325.35064},
      }
  • [Scheffer93] Go to document V. Scheffer, "An inviscid flow with compact support in space-time," J. Geom. Anal., vol. 3, iss. 4, pp. 343-401, 1993.
    @ARTICLE{Scheffer93,
      author = {Scheffer, Vladimir},
      title = {An inviscid flow with compact support in space-time},
      journal = {J. Geom. Anal.},
      fjournal = {The Journal of Geometric Analysis},
      volume = {3},
      year = {1993},
      number = {4},
      pages = {343--401},
      issn = {1050-6926},
      mrclass = {35Q35 (28A80 76C99)},
      mrnumber = {1231007},
      mrreviewer = {Helena J. Nussenzveig Lopes},
      doi = {10.1007/BF02921318},
      url = {https://doi.org/10.1007/BF02921318},
      zblnumber = {0836.76017},
      }
  • [SereginSverak02] Go to document G. Seregin and V. vSverák, "Navier-Stokes equations with lower bounds on the pressure," Arch. Ration. Mech. Anal., vol. 163, iss. 1, pp. 65-86, 2002.
    @ARTICLE{SereginSverak02,
      author = {Seregin, G. and Šver\'{a}k, V.},
      title = {Navier-{S}tokes equations with lower bounds on the pressure},
      journal = {Arch. Ration. Mech. Anal.},
      fjournal = {Archive for Rational Mechanics and Analysis},
      volume = {163},
      year = {2002},
      number = {1},
      pages = {65--86},
      issn = {0003-9527},
      mrclass = {35Q30 (76D03 76D05)},
      mrnumber = {1905137},
      mrreviewer = {Cun-Zheng Wang},
      doi = {10.1007/s002050200199},
      url = {https://doi.org/10.1007/s002050200199},
      zblnumber = {1002.35094},
      }
  • [Serrin62] Go to document J. Serrin, "On the interior regularity of weak solutions of the Navier-Stokes equations," Arch. Rational Mech. Anal., vol. 9, pp. 187-195, 1962.
    @ARTICLE{Serrin62,
      author = {Serrin, James},
      title = {On the interior regularity of weak solutions of the {N}avier-{S}tokes equations},
      journal = {Arch. Rational Mech. Anal.},
      fjournal = {Archive for Rational Mechanics and Analysis},
      volume = {9},
      year = {1962},
      pages = {187--195},
      issn = {0003-9527},
      mrclass = {35.24 (35.79)},
      mrnumber = {0136885},
      mrreviewer = {G. Prodi},
      doi = {10.1007/BF00253344},
      url = {https://doi.org/10.1007/BF00253344},
      zblnumber = {0106.18302},
      }
  • [Serrin63] J. Serrin, "The initial value problem for the Navier-Stokes equations," in Nonlinear Problems, Univ. of Wisconsin Press, Madison, Wis., 1963, pp. 69-98.
    @INCOLLECTION{Serrin63,
      author = {Serrin, James},
      title = {The initial value problem for the {N}avier-{S}tokes equations},
      booktitle = {Nonlinear {P}roblems},
      venue = {{P}roc. {S}ympos., {M}adison, {W}is., 1962},
      pages = {69--98},
      publisher = {Univ. of Wisconsin Press, Madison, Wis.},
      year = {1963},
      mrclass = {35.79},
      mrnumber = {0150444},
      mrreviewer = {G. Prodi},
      zblnumber = {0115.08502},
      }
  • [Shinbrot74] Go to document M. Shinbrot, "The energy equation for the Navier-Stokes system," SIAM J. Math. Anal., vol. 5, pp. 948-954, 1974.
    @ARTICLE{Shinbrot74,
      author = {Shinbrot, Marvin},
      title = {The energy equation for the {N}avier-{S}tokes system},
      journal = {SIAM J. Math. Anal.},
      fjournal = {SIAM Journal on Mathematical Analysis},
      volume = {5},
      year = {1974},
      pages = {948--954},
      issn = {0036-1410},
      mrclass = {35Q10},
      mrnumber = {0435629},
      mrreviewer = {D. E. Edmunds},
      doi = {10.1137/0505092},
      url = {https://doi.org/10.1137/0505092},
      zblnumber = {0316.76011},
      }
  • [Shnirelman97] Go to document A. Shnirelman, "On the nonuniqueness of weak solution of the Euler equation," Comm. Pure Appl. Math., vol. 50, iss. 12, pp. 1261-1286, 1997.
    @ARTICLE{Shnirelman97,
      author = {Shnirelman, A.},
      title = {On the nonuniqueness of weak solution of the {E}uler equation},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {50},
      year = {1997},
      number = {12},
      pages = {1261--1286},
      issn = {0010-3640},
      mrclass = {35Q30 (35D05 76C99)},
      mrnumber = {1476315},
      mrreviewer = {Alexander Yurjevich Chebotarev},
      url={https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0312%28199712%2950%3A12%3C1261%3A%3AAID-CPA3%3E3.0.CO%3B2-6},
      zblnumber = {0909.35109},
      }
  • [Temam01] Go to document R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, Providence, RI, 2001.
    @BOOK{Temam01,
      author = {Temam, Roger},
      title = {Navier-{S}tokes Equations},
      titlenote = {Theory and Numerical Analysis, reprint of the 1984 edition},
      publisher = {AMS Chelsea Publishing, Providence, RI},
      year = {2001},
      pages = {xiv+408},
      isbn = {0-8218-2737-5},
      mrclass = {76-02 (35Q30 65Mxx 65Nxx 76D03 76D05 76N10)},
      mrnumber = {1846644},
      mrreviewer = {Tom\'{a}s Chacón Rebollo},
      doi = {10.1090/chel/343},
      url = {https://doi.org/10.1090/chel/343},
      zblnumber = {0981.35001},
      }
  • [Vasseur07] Go to document A. F. Vasseur, "A new proof of partial regularity of solutions to Navier-Stokes equations," NoDEA Nonlinear Differential Equations Appl., vol. 14, iss. 5-6, pp. 753-785, 2007.
    @ARTICLE{Vasseur07,
      author = {Vasseur, Alexis F.},
      title = {A new proof of partial regularity of solutions to {N}avier-{S}tokes equations},
      journal = {NoDEA Nonlinear Differential Equations Appl.},
      fjournal = {NoDEA. Nonlinear Differential Equations and Applications},
      volume = {14},
      year = {2007},
      number = {5-6},
      pages = {753--785},
      issn = {1021-9722},
      mrclass = {35Q30 (35B65 76D03 76D05)},
      mrnumber = {2374209},
      mrreviewer = {Ana L. Silvestre},
      doi = {10.1007/s00030-007-6001-4},
      url = {https://doi.org/10.1007/s00030-007-6001-4},
      zblnumber = {1142.35066},
      }

Authors

Tristan Buckmaster

Princeton University, Princeton, NJ

Vlad Vicol

Princeton University, Princeton, NJ

Current address:

Courant Institute of Mathematical Sciences, New York University, New York, NY