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Nonuniqueness of weak solutions to the
Navier-Stokes equation

By Tristan Buckmaster and Vlad Vicol

Abstract

For initial datum of finite kinetic energy, Leray has proven in 1934 that

there exists at least one global in time finite energy weak solution of the

3D Navier-Stokes equations. In this paper we prove that weak solutions of

the 3D Navier-Stokes equations are not unique in the class of weak solu-

tions with finite kinetic energy. Moreover, we prove that Hölder continuous

dissipative weak solutions of the 3D Euler equations may be obtained as a

strong vanishing viscosity limit of a sequence of finite energy weak solutions

of the 3D Navier-Stokes equations.

1. Introduction

In this paper we consider the 3D incompressible Navier-Stokes equation

∂tv + div (v ⊗ v) +∇p− ν∆v = 0,(1.1a)

div v = 0(1.1b)

posed on T3×R, with periodic boundary conditions in x ∈ T3 = R3/2πZ3. We

consider solutions normalized to have zero spatial mean, i.e.,
´
T3 v(x, t)dx = 0.

The constant ν ∈ (0, 1] is the kinematic viscosity. We define weak solutions to

the Navier-Stokes equations [49, Definition 1], [19, pp. 226]:

Definition 1.1. We say v ∈ C0(R;L2(T3)) is a weak solution of (1.1) if for

any t ∈ R the vector field v(·, t) is weakly divergence free, has zero mean, and

(1.1a) is satisfied in D′(T3 × R), i.e.,ˆ
R

ˆ
T3

v · (∂tϕ+ (v · ∇)ϕ+ ν∆ϕ)dxdt = 0
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holds for any test function ϕ ∈ C∞0 (T3×R) such that ϕ(·, t) is divergence-free

for all t.

As a direct result of the work of Fabes-Jones-Riviere [19], since the weak

solutions defined above lie in C0(R;L2(T3)), they are in fact solutions of the

integral form of the Navier-Stokes equations

(1.2) v(·, t) = eνt∆v(·, 0) +

ˆ t

0
eν(t−s)∆Pdiv (v(·, s)⊗ v(·, s))ds,

and are sometimes called mild or Oseen solutions (cf. [19] and [39, Def. 6.5]).

Here P is the Leray projector and et∆ denotes convolution with the heat kernel.

1.1. Previous works. In [40], Leray considered the Cauchy-problem for

(1.1) for initial datum of finite kinetic energy, v0 ∈ L2. Leray proved that

for any such datum, there exists a global in time weak solution v ∈ L∞t L
2
x,

which additionally has the regularity L2
t Ḣ

1
x, and obeys the energy inequality

‖v(t)‖2L2 + 2ν
´ t

0 ‖∇u(s)‖2L2 ds ≤ ‖v0‖2L2 . Hopf [24] established a similar result

for the equations posed in a smooth bounded domain, with Dirichlet boundary

conditions. To date, the question of uniqueness of Leray-Hopf weak solutions

for the 3D Navier-Stokes equations remains however open.

Based on the natural scaling of the equations

v(x, t) 7→ vλ(x, t) = λv(λx, λ2t),

a number of partial regularity results have been established [45], [7], [41], [37],

[53], [35]; the local existence for the Cauchy problem has been proven in scaling-

invariant spaces [30], [32], [28]; and conditional regularity has been established

under geometric structure assumptions [11] or assuming a signed pressure [47].

The conditional regularity and weak-strong uniqueness results known under the

umbrella of Ladyzhenskaya-Prodi-Serrin conditions [31], [43], [48], state that

if a Leray-Hopf weak solution also lies in LptL
q
x, with 2/p + 3/q ≤ 1, then the

solution is unique and smooth in positive time. These conditions and their gen-

eralizations have culminated with the work of Escauriaza-Seregin-Šverák [27]

who proved the L∞t L
3
x endpoint. The uniqueness of mild/Oseen solutions is

also known under the Ladyzhenskaya-Prodi-Serrin conditions, cf. [19] for p > 3,

and [21], [42], [38], [33] for p = 3. Note that the regularity of Leray-Hopf weak

solutions, or of bounded energy weak solutions, is consistent with the scaling
2/p + 3/q = 3/2. In contrast, the additional regularity required to ensure that

the energy equality holds in the Navier-Stokes equations is consistent with
2/4 + 3/4 = 5/4 for p = q = 4 [50], [34]. See [12], [52], [38], [44], [39] for surveys

of results on the Navier-Stokes equations.

The gap between the scaling of the kinetic energy and the natural scaling

of the equations leaves open the possibility of nonuniqueness of weak solutions

to (1.1). In [28], [29] Jia-Šverák proved that nonuniqueness of Leray-Hopf
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weak solutions in the regularity class L∞t L
3,∞
x holds if a certain spectral as-

sumption holds for a linearized Navier-Stokes operator. While a rigorous proof

of this spectral condition remains open, very recently Guillod-Šverák [23] have

provided compelling numerical evidence of it, using a scenario related to the

example of Ladyzhenskaya [36]. Thus, the works [29], [23] strongly suggest

that the Ladyzhenskaya-Prodi-Serrin regularity criteria are sharp.

1.2. Main results. In this paper we prove that weak solutions to (1.1) (in

the sense of Definition 1.1) are not unique within the class of weak solutions

with bounded kinetic energy. We establish the stronger result1:

Theorem 1.2 (Nonuniqueness of weak solutions). There exists β > 0,

such that for any nonnegative smooth function e(t) : [0, T ]→ R≥0, there exists

v ∈ C0
t ([0, T ];Hβ

x (T3)) a weak solution of the Navier-Stokes equations, such

that
´
T3 |v(x, t)|2 dx = e(t) for all t ∈ [0, T ]. Moreover, the associated vorticity

∇× v lies in C0
t ([0, T ];L1

x(T3)).

In particular, the above theorem shows that v ≡ 0 is not the only weak

solution which vanishes at a time slice, thereby implying the nonuniqueness of

weak solutions. Theorem 1.2 shows that weak solutions may come to rest in

finite time, a question posed by Serrin [49, pp. 88]. Moreover, by considering

e1(t), e2(t) > 0 which are nonincreasing, such that e1(t) = e2(t) for t ∈ [0, T/2],

and e1(T ) < e2(T ), the construction used to prove Theorem 1.2 also proves

the nonuniqueness of dissipative weak solutions.

From the proof of Theorem 1.2 it is clear that the constructed weak

solutions v also have regularity in time, i.e. there exists γ > 0 such that

v ∈ Cγt ([0, T ];L2
x(T3)). Thus, v ⊗ v lies in Cγt L

1
x ∩ C0

t L
1+γ
x , and the fact that

∇v ∈ C0
t L

1
x follows from (1.2) and the maximal regularity of the heat equation.

We note that while the weak solutions Theorem 1.2 may attain any smooth

energy profile, at the moment we do not prove that they are Leray-Hopf weak

solutions, i.e., they do not obey the energy inequality or have L2
t Ḣ

1
x integra-

bility. Moreover, the regularity parameter β > 0 cannot be expected to be too

large, since at β = 1/2 one has weak-strong uniqueness [12]. We expect that the

ideas used to prove Theorem 1.2 will in the future lead to a proof of nonunique-

ness of weak solutions in C0
t L

p
x, for any 2 ≤ p < 3, and the nonuniqueness of

Leray-Hopf weak solutions.

The proof of Theorem 1.2 builds on several of the fundamental ideas pio-

neered by De Lellis-Székelyhidi Jr. [15], [16]. These ideas were used to tackle

the Onsager conjecture for the Euler equation [18], [10], [8] (set ν = 0 in (1.1))

1We denote by Hβ the L2-based Sobolev space with regularity index β. Clearly C0
tH

β
x ⊂

C0
t L

2
x.
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via convex integration methods [46], [51], [2], [17], [1], [3], leading to the reso-

lution of the conjecture by Isett [26], [25], using a key ingredient by Daneri and

Székelyhidi Jr. [14]. The construction of dissipative Euler solutions below the

Onsager regularity threshold was proven by authors of this paper jointly with

De Lellis and Székelyhidi Jr. in [4], building on the ideas in [14], [26]. In order

to treat the dissipative term −ν∆, not present in the Euler system, we cannot

proceed as in [6], [9], since in these works Hölder continuous weak solutions are

constructed, which is possible only by using building blocks which are sparse

in the frequency variable and for small fractional powers of the Laplacian. In-

stead, the main idea, which is also used in [5], is to use building blocks for

the convex integration scheme which are “intermittent”. That is, the building

blocks we use are spatially inhomogeneous, and have different scaling in dif-

ferent Lp norms. At high frequency, these building blocks attempt to saturate

the Bernstein inequalities from Littlewood-Paley theory. Since they are built

by adding eigenfunctions of curl in a certain geometric manner, we call these

building blocks intermittent Beltrami flows. In particular, the proof of Theo-

rem 1.2 breaks down in 2D, as is expected, since there are not enough spatial

directions to oscillate in. The proof of Theorem 1.2 is given in Section 2 below.

The idea of using intermittent building blocks can be traced back to classi-

cal observations in hydrodynamic turbulence, see for instance [20]. Moreover,

in view of the aforementioned works on the Onsager conjecture for the Eu-

ler equations, we are naturally led to consider the set of accumulation points

in the vanishing viscosity limit ν → 0 of the family of weak solutions to the

Navier-Stokes equations which we constructed in Theorem 1.2. We prove in

this paper that this set of accumulation points, in the C0
t L

2
x topology, contains

all the Hölder continuous weak solutions of the 3D Euler equations:

Theorem 1.3 (Dissipative Euler solutions arise in the vanishing viscosity

limit). For β̄ > 0 let u ∈ C β̄t,x(T3 × [−2T, 2T ]) be a zero-mean weak solution

of the Euler equations. Then there exists β > 0, a sequence νn → 0, and a

uniformly bounded sequence v(νn) ∈ C0
t ([0, T ];Hβ

x (T3)) of weak solutions to the

Navier-Stokes equations, with v(νn) → u strongly in C0
t ([0, T ];L2

x(T3)).

In particular, Theorem 1.3 shows that the nonconservative weak solutions

to the Euler equations obtained in [26, 4] arise in the vanishing viscosity limit

of weak solutions to the Navier-Stokes equations. Thus, being a strong limit of

weak solutions to the Navier-Stokes equations, in the sense of Definition 1.1,

cannot serve as a selection criterion for weak solutions of the Euler equation.

Whether similar vanishing viscosity results hold for sequences of Leray-Hopf

weak solutions, or for suitable weak solutions of (1.1), remains a challenging

open problem. The proof of Theorem 1.3 is closely related to that of Theo-

rem 1.2, and is also given in Section 2 below.
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2. Outline of the convex integration scheme

In this section we sketch the proof of Theorem 1.2. For every integer q ≥ 0

we will construct a solution (vq, pq, R̊q) to the Navier-Stokes-Reynolds system

∂tvq + div (vq ⊗ vq) +∇pq − ν∆vq = div R̊q,(2.1a)

div vq = 0.(2.1b)

where the Reynolds stress R̊q is assumed to be a trace-free symmetric matrix.

2.1. Parameters. Throughout the proof we fix a sufficiently large, univer-

sal constant b ∈ 16N, and depending on b we fix a regularity parameter β > 0

such that βb2 ≤ 4 and βb ≤ 1/40. We remark that it is sufficient to take b = 29

and β = 2−16.

The relative size of the approximate solution vq and the Reynolds stress

error R̊q will be measured in terms of a frequency parameter λq and an ampli-

tude parameter δq defined as

λq = a(bq),

δq = λ3β
1 λ−2β

q

for some integer a� 1 to be chosen suitably.

2.2. Inductive estimates. By induction, we will assume the following esti-

mates2 on the solution of (2.1) at level q:

‖vq‖C1
x,t
≤ λ4

q ,(2.2) ∥∥∥R̊q∥∥∥
L1
≤ λ−εRq δq+1,(2.3) ∥∥∥R̊q∥∥∥

C1
x,t

≤ λ10
q .(2.4)

We additionally assume

(2.5) 0 ≤ e(t)−
ˆ
T3

|vq|2 dx ≤ δq+1

and

(2.6) e(t)−
ˆ
T3

|vq(x, t)|2 dx ≤ δq+1

100
⇒ vq(·, t) ≡ 0 and R̊q(·, t) ≡ 0.

for all t ∈ [0, T ].

2Here and throughout the paper we use the notation: ‖f‖Lp = ‖f‖L∞
t
L

p
x
, for 1 ≤ p ≤

∞, ‖f‖CN = ‖f‖L∞
t
CN

x
=
∑

0≤|α|≤N ‖D
αf‖L∞ , ‖f‖CN

x,t
=
∑

0≤n+|α|≤N ‖∂
n
t D

αf‖L∞ , and

‖f‖Ws,p = ‖f‖L∞
t
W

s,p
x

, for s > 0, and 1 ≤ p ≤ ∞.
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2.3. The main proposition and iterative procedure. In addition to the suf-

ficiently large universal constant b, and the sufficiently small regularity param-

eter β = β(b) > 0 fixed earlier, we fix the constant Me = ‖e‖C1
t
. The following

iteration lemma states the existence of a solution of (2.1) at level q+ 1, which

obeys suitable bounds.

Proposition 2.1. There exists a universal constant M > 0, a suffi-

ciently small parameter εR = εR(b, β) > 0 and a sufficiently large parame-

ter a0 = a0(b, β, εR,M,Me) > 0 such that for any integer a ≥ a0, which is

a multiple of the NΛ of Remark 3.3, the following holds : Let (vq, pq, R̊q) be

a triple solving the Navier-Stokes-Reynolds system (2.1) in T3 × [0, T ] satis-

fying the inductive estimates (2.2)–(2.6). Then there exists a second triple

(vq+1, pq+1, R̊q+1) solving (2.1) and satisfying the (2.2)–(2.6) with q replaced

by q + 1. In addition we have that

(2.7) ‖vq+1 − vq‖L2 ≤Mδ
1/2
q+1.

The principal new idea in the proof of Proposition 2.1 is to construct the

perturbation vq+1 − vq as a sum of terms of the form

a(ξ)W(ξ)(2.8)

where W(ξ) is an intermittent Beltrami wave (cf. (3.12) below) with frequency

support centered at frequency ξλq+1 for ξ ∈ S2. While these intermittent Bel-

trami waves have similar properties (cf. Proposition 3.4) to the usual Beltrami

flows used in the previous convex integration constructions [16, 2, 17, 1, 3] for

the Euler equations, they are fundamentally different since their L1 norm is

much smaller than their L2 norm (cf. Proposition 3.5). The gain comes from

the fact that the Reynolds stress has to be estimated in L1 rather than L2,

and that the term ν∆v is linear in v. At the technical level, one difference

with respect to [26], [4] is the usage of very large gaps between consecutive

frequency parameters (i.e., b� 1), which is consistent with a small regularity

parameter β. Next, we show that Proposition 2.1 implies the main theorems

of the paper.

2.4. Proof of Theorem 1.2. Choose all the parameters from the statement

of Proposition 2.1, except for a, which we may need to be larger (so that it is

still larger than a0).

For q = 0 we note that the identically zero solution trivially satisfies (2.1)

with R̊0 = 0, and the inductive assumptions (2.2), (2.3), and (2.4) hold. More-

over, by taking a sufficiently large such that it is in the range of Proposition 2.1

(i.e. a ≥ a0) we may ensure that

|e(t)| ≤ ‖e‖C1
t

= Me ≤
λβ1
100

=
δ1

100
.
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Then the zero solution also satisfies (2.5) and (2.6).

For q ≥ 1, we inductively apply Proposition 2.1. The bound (2.7) and

interpolation implies3

∞∑
q=0

‖vq+1 − vq‖Hβ′ .
∞∑
q=0

‖vq+1 − vq‖1−β
′

L2 (‖vq+1‖C1 + ‖vq‖C1)β
′

.
∞∑
q=0

M1−β′λ
3β 1−β′

2
1 λ

−β 1−β′
2

q+1 λ4β′

q+1

.M1−β′λ
3β 1−β′

2
1 ,(2.9)

for β′ < β/(8 + β), and hence the sequence {vq}q≥0 is uniformly bounded C0
tH

β′
x ,

for such β′. Furthermore, by taking a sufficiently large (depending on b, β and

β′) the implicit constant in (2.9) can be made to be universal. From (2.1), (2.3),

the previously established uniform boundedness in C0
t L

2
x, and the embedding

W 2,1
x ⊂ L2

x we obtain that

‖∂tvq‖H−3 .
∥∥∥Pdiv (vq ⊗ vq)− ν∆vq − Pdiv R̊q

∥∥∥
H−3

. ‖vq ⊗ vq‖L1 + ‖vq‖L2 +
∥∥∥R̊q∥∥∥

L1

.M2λ3β
1 ,

where P is the Leray projector. Thus, the sequence {vq}q≥0 is uniformly

bounded in C1
tH
−3
x . It follows that for any 0 < β′′ < β′ the sum∑

q≥0

(vq+1 − vq) =: v

converges in C0
tH

β′′
x , and since

∥∥∥R̊q∥∥∥
L1
→ 0 as q → ∞, v is a C0

tH
β′′
x weak

solution of the Navier-Stokes equation. Lastly, in view of (2.5) we have that

the kinetic energy of v(·, t) is given by e(t) for all t ∈ [0, T ], concluding the

proof of the theorem.

2.5. Proof of Theorem 1.3. Fix β̄ > 0 and a weak solution u ∈ C β̄t,x to the

Euler equation on [−2T, 2T ]. The existence of such solutions is guaranteed in

view of the results of [26], [4] for β̄ < 1/3, and for β̄ > 1 from the classical local

existence results. Let Mu = ‖u‖Cβ̄ . Pick an integer n ≥ 1.

Choose all the parameters as in Proposition 2.1, except for a ≥ a0, which

we may take even larger, depending also on Mu and β′ which obeys 0 < β′ <

min(β̄/2, β/(8 + β)). We make a even larger, depending also on β′, so that in

3Throughout this paper, we we will write A . B to denote that there exists a sufficiently

large constant C, which is independent of q, such that A ≤ CB.
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view of (2.9) we may ensure that

∞∑
q=n

M1−β′λ
3β 1−β′

2
1 λ

−β 1−β′
2

q+1 λ4β′

q+1 ≤
1

2Cn
(2.10)

where C is the implicit constant in (2.9).

Let {φε}ε>0 be a family of standard compact support (of width 2) Friedrichs

mollifiers on R3 (space), and {ϕε}ε>0 be a family of standard compact support

(of width 2) Friedrichs mollifiers on R (time). We define

vn = (u ∗x φλ−1
n

) ∗t ϕλ−1
n

to be a mollification of u in space and time, at length scale and time scale

λ−1
n , restricted to the temporal range [0, T ]. Also, on [0, T ] define the energy

function

e(t) =

ˆ
T3

|vn(x, t)|2 dx+
δn
2

that ensures (2.5) and (2.6) hold for q = n.

Since u is a solution of the Euler equations, there exists a mean-free pn
such that

∂tvn + div (vn ⊗ vn) +∇pn − λ−2
n ∆vn = div (R̊n),

where R̊n is the traceless symmetric part of the tensor

(vn ⊗ vn)− ((u⊗ u) ∗x φλ−1
n

) ∗t ϕλ−1
n
− λ−2

n ∇vn.

Using a version of the commutator estimate introduced in [10], which may for

instance be found in [13, Lemma 1], we obtain that∥∥∥R̊n∥∥∥
L1
.
∥∥∥R̊n∥∥∥

C0
. λ−1

n Mu + λ−2β̄
n M2

u .(2.11)

In addition, from a similar argument it follows that∥∥∥R̊n∥∥∥
C1
t,x

.Mu + λ1−2β̄
n M2

u ,(2.12)

‖vn‖C1
t,x
. λ1−β̄

n Mu.(2.13)

Setting

ν := νn := λ−1
n ,

then with a sufficiently large, depending on Mu and β̄, we may ensure the pair

(vn, R̊n) obey the inductive assumptions (2.2)–(2.4) for q = n. Additionally,

we may also choose a sufficiently large, depending on Mu and β̄, so that

λβ̄−β
′

n Mu ≤
1

2n|T3|1/2
.(2.14)
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At this stage we may start the inductive Proposition 2.1, and as in the proof of

Theorem 1.2, we obtain a weak solution u(νn) of the Navier-Stokes equations,

with the desired regularity, such that∥∥∥v(νn) − u
∥∥∥
Hβ′
≤
∥∥∥v(νn) − vn

∥∥∥
Hβ′

+ |T3|1/2 ‖u− vn‖Cβ′ ≤
1

n

in view of (2.10) and (2.14). Since n was arbitrary, this concludes the proof of

the theorem.

3. Intermittent Beltrami waves

In this section we will describe in detail the construction of the intermittent

Beltrami waves which will form the building blocks of our convex integration

scheme. Very roughly, intermittent Betrami waves are approximate Beltrami

waves (approximate eigenfunctions to the curl operator) whose L1 norm is

significantly smaller than their L2 norm.

3.1. Beltrami waves. We first recall from Proposition 3.1 and Lemma 3.2

in [15] the construction of Beltrami waves (see also the summary given in [2]).

In order to better suit our later goal of defining intermittent Beltrami waves,

the statements of these propositions are slightly modified from the form they

appear in [2], by making the substitution k
|k| 7→ ξ.

Proposition 3.1. Given ξ ∈ S2 ∩Q3, let Aξ ∈ S2 ∩Q3 be such that

Aξ · ξ = 0, |Aξ| = 1, A−ξ = Aξ.

Furthermore, let

Bξ = 1√
2

(Aξ + iξ ×Aξ) .

Let Λ be a given finite subset of S2 ∩ Q3 such that −Λ = Λ, and let λ ∈ Z be

such that λΛ ⊂ Z3. Then for any choice of coefficients aξ ∈ C with aξ = a−ξ
the vector field

(3.1) W (x) =
∑
ξ∈Λ

aξBξe
iλξ·x

is real-valued, divergence-free and satisfies

(3.2) div (W ⊗W ) = ∇|W |
2

2
.

Furthermore, since Bξ ⊗B−ξ +B−ξ ⊗Bξ = Id− ξ ⊗ ξ, we have

(3.3)

 
T3

W ⊗W dx =
1

2

∑
ξ∈Λ

|aξ|2 (Id− ξ ⊗ ξ) .
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Proposition 3.2. For every N ∈ N, we can choose εγ > 0 and λ > 1 with

the following property. Let Bεγ (Id) denote the ball of symmetric 3×3 matrices,

centered at Id, of radius εγ . Then, there exist pairwise disjoint subsets

Λα ⊂ S2 ∩Q3 α ∈ {1, . . . , N},

with λΛα ∈ Z3, and smooth positive functions

γ
(α)
ξ ∈ C∞ (Bε(Id)) α ∈ {1, . . . , N}, ξ ∈ Λα,

with derivatives that are bounded independently of λ, such that

(a) ξ ∈ Λα implies −ξ ∈ Λα and γ
(α)
ξ = γ

(α)
−ξ ;

(b) for each R ∈ Bεγ (Id), we have the identity

(3.4) R =
1

2

∑
ξ∈Λα

(
γ

(α)
ξ (R)

)2
(Id− ξ ⊗ ξ) .

Remark 3.3. Throughout the construction, the parameter N is bounded

by a universal constant; for instance one can take N = 2. Moreover, for each

α the cardinality of the set Λα is also bounded by a universal constant; for

instance one may take |Λα| = 12. Consequently, the set of direction vectors

∪Nα=1∪ξ∈Λα {ξ, Aξ, ξ×Aξ} ⊂ S2∩Q3 also has a universally bounded cardinality.

Therefore, there exists a universal sufficiently large natural number NΛ ≥ 1

such that we have

{NΛξ,NΛAξ, NΛξ ×Aξ} ⊂ NΛS2 ∩ Z3

for all vectors ξ in the construction.

It is also convenient to introduce a sufficiently small geometric constant

cΛ ∈ (0, 1) such that

ξ + ξ′ 6= 0 ⇒
∣∣ξ + ξ′

∣∣ ≥ 2cΛ

for all ξ, ξ′ ∈ Λα and all α ∈ {1, . . . , N}. In view of the aforementioned

cardinality considerations, the geometric constant cΛ is universal to the con-

struction.

The implicit constants in the . of the below estimates are allowed to

depend on NΛ and cΛ, but we will not emphasize this dependence, since these

are universal constants.

3.2. Intermittent Beltrami waves. Recall cf. [22, §3] that the Dirichlet

kernel Dn is defined as

(3.5) Dn(x) =
n∑

ξ=−n
eixξ =

sin((n+ 1/2)x)

sin(x/2)

and has the property that for any p > 1 it obeys the estimate

‖Dn‖Lp ∼ n
1−1/p,



NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 111

where the implicit constant only depends only on p. Replacing the sum in

(3.5) by a sum of frequencies in a 3D integer cube

Ωr :=
{
ξ = (j, k, `) : j, k, ` ∈ {−r, . . . , r}

}
and normalizing to unit size in L2, we obtain a kernel

Dr(x) :=
1

(2r + 1)3/2

∑
ξ∈Ωr

eiξ·x =
1

(2r + 1)3/2

∑
j,k,`∈{−r,...,r}

ei(jx1+kx2+`x3)

such that for 1 < p ≤ ∞, we have

‖Dr‖2L2 = (2π)3, and ‖Dr‖Lp . r
3/2−3/p,(3.6)

where the implicit constant depends only on p. Note that −Ωr = Ωr.

The principal idea in the construction of intermittent Beltrami waves is

to modify the Beltrami waves of the previous section by adding oscillations

that mimic the structure of the kernels Dr in order to construct approximate

Beltrami waves with small Lp norm for p close to 1. The large parameter r

will parametrize the number of frequencies along edges of the cube Ωr. We

introduce a small parameter σ, such that λσ ∈ N parametrizes the spacing

between frequencies, or equivalently such that the resulting rescaled kernel is

(T/λσ)3-periodic. We assume throughout the paper that

(3.7) σr ≤ cΛ/(10NΛ),

where cΛ ∈ (0, 1) and NΛ ≥ 1 are the parameters from Remark 3.3. Lastly,

we introduce a large parameter µ ∈ (λ, λ2), which measures the amount of

temporal oscillation in our building blocks. The parameters λ, r, σ and µ are

chosen in Section 4 below.

We recall from Propositions 3.1 and 3.2 that for ξ ∈ Λα, the vectors

{ξ, Aξ, ξ ×Aξ} form an orthonormal basis of R3, and by Remark 3.3 we have

NΛξ, NΛAξ, NΛξ ×Aξ ∈ Z3 for all ξ ∈ Λα, α ∈ {1, . . . , N}.

Therefore, for ξ ∈Λ+
α , we may define a directed and rescaled (T/λσ)3 =(R/2πλσZ)3-

periodic Dirichlet kernel by

η(ξ)(x, t) = ηξ,λ,σ,r,µ(x, t)

= Dr (λσNΛ(ξ · x+ µt), λσNΛAξ · x, λσNΛ(ξ ×Aξ) · x) .
(3.8)

For ξ ∈ Λ−α , we define η(ξ)(x, t) := η(−ξ)(x, t). The periodicity of η(ξ) follows

from the fact that Dr is T3-periodic, and the definition of NΛ. We emphasize

that we have the important identity

1

µ
∂tη(ξ)(x, t) = ±(ξ · ∇)η(ξ)(x, t), for all ξ ∈ Λ±α(3.9)

as a consequence of the fact that the vectors Aξ and ξ×Aξ are orthogonal to ξ.
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Note that the map

(x1, x2, x3) 7→ (λσNΛ(ξ · x+ µt), λσNΛAξ · x, λσNΛ(ξ ×Aξ) · x)

is the composition of a rotation by a rational orthogonal matrix which maps

(e1, e2, e3) to (ξ, Aξ, ξ × Aξ), a rescaling by λσNΛ, and a translation by

λσNΛµte1. These are all volume preserving transformations on T3, and thus

by our choice of normalization for (3.6) we have that 
T3

η2
(ξ)(x, t)dx = 1, and

∥∥∥η(ξ)

∥∥∥
Lp(T3)

. r3/2−3/p(3.10)

for all 1 < p ≤ ∞, pointwise in time.

Letting W(ξ) be the Beltrami plane wave at frequency λ, namely

W(ξ)(x) = Wξ,λ(x) = Bξe
iλξ·x,(3.11)

we have

curlW(ξ) = λW(ξ) and divW(ξ) = 0.

We take λ to be a multiple of NΛ, so that W(ξ) is T3-periodic. Finally, we

define the intermittent Beltrami wave W(ξ) as

W(ξ)(x, t) = Wξ,λ,σ,r,µ(x, t) = ηξ,λ,σ,r,µ(x, t)Wξ,λ(x) = η(ξ)(x, t)W(ξ)(x).

(3.12)

We first make a few comments concerning the frequency support of W(ξ).

In view of (3.7) and the definition of η(ξ), which yields P≤2λσrNΛ
η(ξ) = η(ξ), we

have that

P≤2λP≥λ/2W(ξ) = W(ξ),(3.13)

while for ξ′ 6= −ξ, by the definition of cΛ in Remark 3.3 we have

P≤4λP≥cΛλ
Ä
W(ξ) ⊗W(ξ′)

ä
= W(ξ) ⊗W(ξ′).(3.14)

Note that the vector W(ξ) is not anymore divergence free, nor is it an

eigenfunction of curl . These properties only hold to leading order:∥∥∥∥ 1

λ
divW(ξ)

∥∥∥∥
L2

=
1

λ

∥∥∥Bξ · ∇η(ξ)

∥∥∥
L2
.
λσr

λ
= σr,∥∥∥∥ 1

λ
curlW(ξ) −W(ξ)

∥∥∥∥
L2

=
1

λ

∥∥∥∇η(ξ) ×Bξ
∥∥∥
L2
.
λσr

λ
= σr

and the parameter σr will be chosen to be small. Moreover, from Proposi-

tions 3.1 and 3.2 we have:

Proposition 3.4. Let W(ξ) be as defined above, and let Λα, εγ , γ(ξ) = γ
(α)
ξ

be as in Proposition 3.2. If aξ ∈ C are constants chosen such that aξ = a−ξ ,

the vector field ∑
α

∑
ξ∈Λα

aξW(ξ)(x)



NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 113

is real valued. Moreover, for each R ∈ Bεγ (Id) we have the identity

(3.15)
∑
ξ∈Λα

Ä
γ(ξ)(R)

ä2  
T3

W(ξ) ⊗W(−ξ)dx =
∑
ξ∈Λα

Ä
γ(ξ)(R)

ä2
Bξ ⊗B−ξ = R.

Proof of Proposition 3.4. The first statement follows from the fact that

η(−ξ)(x, t) = η(ξ)(x, t). Identity (3.15) follows from (3.4) upon noting that

2Re (Bξ ⊗B−ξ) = Id− ξ ⊗ ξ, and the normalization (3.10). �

For the purpose of estimating the oscillation error in Section 5, it is useful

to derive a replacement of identity (3.2), in the case of intermittent Beltrami

waves. For this purpose, we first recall the vector identity

(A · ∇)B + (B · ∇)A = ∇(A ·B)−A× curlB −B × curlA.

Hence, for ξ, ξ′ ∈ Λα we may rewrite

div
Ä
W(ξ) ⊗W(ξ′) + W(ξ′) ⊗W(ξ)

ä
=
Ä
W(ξ) ⊗W(ξ′) +W(ξ′) ⊗W(ξ)

ä
∇
Ä
η(ξ)η(ξ′)

ä
+ η(ξ)η(ξ′)

Ä
(W(ξ) · ∇)W(ξ′) + (W(ξ′) · ∇)W(ξ)

ä
=
Ä
(W(ξ′) · ∇)

Ä
η(ξ)η(ξ′)

ää
W(ξ) +

Ä
(W(ξ) · ∇)

Ä
η(ξ)η(ξ′)

ää
W(ξ′)

+ η(ξ)η(ξ′)∇
Ä
W(ξ) ·W(ξ′)

ä
− λη(ξ)η(ξ′)

Ä
W(ξ) ×W(ξ′) +W(ξ′) ×W(ξ)

ä
=
Ä
(W(ξ′) · ∇)

Ä
η(ξ)η(ξ′)

ää
W(ξ) +

Ä
(W(ξ) · ∇)

Ä
η(ξ)η(ξ′)

ää
W(ξ′)

+ η(ξ)η(ξ′)∇
Ä
W(ξ) ·W(ξ′)

ä
.

(3.16)

In the last equality we have used that the cross-product is antisymmetric.

Let us now restrict to the case ξ + ξ′ = 0. Recall that W(ξ) = 1√
2
(Aξ +

iξ×Aξ)eiλξ·x , ξ ·Aξ = 0, and |Aξ| = 1. Therefore, when ξ′ = −ξ the last term

on the right side of (3.16) is zero, as W(ξ) ·W(−ξ) = 1. Thus we obtain

div
Ä
W(ξ) ⊗W(−ξ) + W(−ξ) ⊗W(ξ)

ä
=
Ä
(W(−ξ) · ∇)η2

(ξ)

ä
W(ξ) +

Ä
(W(ξ) · ∇)η2

(ξ)

ä
W(−ξ)

=
Ä
(Aξ · ∇)η2

(ξ)

ä
Aξ +

Ä
((ξ ×Aξ) · ∇)η2

ξ

ä
(ξ ×Aξ)

= ∇η2
(ξ) −

Ä
(ξ · ∇)η2

(ξ)

ä
ξ.

In the last equality above we have used that {ξ, Aξ, ξ ×Aξ} is an orthonormal

basis of R3. The above identity and property (3.9) of η(ξ) shows that

div
Ä
W(ξ) ⊗W(−ξ) + W(−ξ) ⊗W(ξ)

ä
= ∇η2

(ξ) −
ξ

µ
∂tη

2
(ξ).(3.17)

which is the key identity that motivates the introduction of temporal oscilla-

tions in the problem.
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Recall, the intermittent Beltrami waves were designed to include addi-

tional oscillations that cancel in order to minimize their L1 norm, in a way

that is analogous to the cancellations of the Dirichlet kernel. In this direc-

tion, an immediate consequence of property (3.10) of η(ξ), of the frequency

localization in the spatial variable (3.13), and of the frequency of the temporal

oscillations, are the following bounds for η(ξ) and the the intermittent Beltrami

waves W(ξ):

Proposition 3.5. Let W(ξ) be defined as above. The bound∥∥∥∇N∂Kt W(ξ)

∥∥∥
Lp
. λN (λσrµ)Kr

3/2−3/p,(3.18) ∥∥∥∇N∂Kt η(ξ)

∥∥∥
Lp
. (λσr)N (λσrµ)Kr

3/2−3/p(3.19)

for any 1 < p ≤ ∞, N ≥ 0 and K ≥ 0. The implicit constant depends only on

N,K and p.

Remark 3.6. We note that while in the above proposition we state esti-

mates for all orders of derivatives (N and K), only derivatives up to a fixed

order, which is independent of q, appear in the entire proof of Proposition 2.1.

Hence the implicit constants that depend on the number of derivatives taken

are independent of q. This remark also applies to estimates in later parts of

the paper (e.g. mollification estimates).

3.3. Lp decorrelation. We now introduce a crucial lemma from [5] that

will be used throughout the paper. Suppose we wish to estimate∥∥∥f W(ξ)

∥∥∥
L1

for some arbitrary function f : T3 → R. The trivial estimate is∥∥∥f W(ξ)

∥∥∥
L1
. ‖f‖L2

∥∥∥W(ξ)

∥∥∥
L2
.

Such an estimate does not however take advantage of the special structure

of the (2πλσ)−1 periodic function W(ξ)e
−iλξ·x. It turns out that if say f has

frequency contained in a ball of radius µ and λσ � µ then one obtains the

improved estimate ∥∥∥f W(ξ)

∥∥∥
L1
. ‖f‖L1

∥∥∥W(ξ)

∥∥∥
L1
,

which gives us the needed gain because
∥∥∥W(ξ)

∥∥∥
L1
�
∥∥∥W(ξ)

∥∥∥
L2

. This idea is

one of the key insights of [5] and is summarized in Lemma 3.7 below. For

convenience we include the proof in Appendix A.

Lemma 3.7. Fix integers M,κ, λ ≥ 1 such that

2π
√

3λ

κ
≤ 1

3
and λ4 (2π

√
3λ)M

κM
≤ 1.
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Let p ∈ {1, 2}, and let f be a T3-periodic function such that there exists a

constant Cf such that

‖Djf‖Lp ≤ Cfλj

for all 1 ≤ j ≤ M + 4. In addition, let g be a (T/κ)3-periodic function. Then

we have that

‖fg‖Lp . Cf‖g‖Lp

holds, where the implicit constant is universal.

4. The perturbation

In this section we will construct the perturbation wq+1.

4.1. Mollification of vq . In order to avoid a loss of derivative, we replace vq
by a mollified velocity field v`. Let {φε}ε>0 be a family of standard Friedrichs

mollifiers (of compact support of radius 2) on R3 (space), and {ϕε}ε>0 be a

family of standard Friedrichs mollifiers (of compact support of width 2) on R
(time). We define a mollification of vq and R̊q in space and time, at length

scale and time scale ` (which is defined in (4.16) below) by

v` = (vq ∗x φ`) ∗t ϕ`,

R̊` = (R̊q ∗x φ`) ∗t ϕ`.
(4.1)

Then using (2.1) we obtain that (v`, R̊`) obey

∂tv` + div (v` ⊗ v`) +∇p` −∆v` = div
(
R̊` + ‹Rcommutator

)
,(4.2a)

div v` = 0,(4.2b)

where the new pressure p` and the traceless symmetric commutator stress‹Rcommutator are given by

p̃` = (pq ∗x φ`) ∗t ϕ` −
Ä
|v`|2 − (|vq|2 ∗x φ`) ∗t ϕ`

ä
,‹Rcommutator = (v`⊗̊v`)− ((vq⊗̊vq) ∗x φ`) ∗t ϕ`.

(4.3)

Here we have used a⊗̊b to denote the traceless part of the tensor a⊗ b.
Note that in view of (2.2) the commutator stress ‹Rcommutator obeys the

lossy estimate∥∥∥‹Rcommutator

∥∥∥
L∞
. ` ‖vq ⊗ vq‖C1 . ` ‖vq‖C1 ‖vq‖L∞ . `λ

8
q .(4.4)

The parameter ` will be chosen (cf. (4.16) below) to satisfy

(σλq+1)−
1/2 � `� λ−19

q δq+1.(4.5)
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In particular, R̊` inherits the L1 bound of R̊q from (2.3), and in view (2.4) and

the upper bound on ` in (4.5), we have that∥∥∥R̊`∥∥∥
CNt,x
. λ10

q `
−N+1 . `−N .(4.6)

Moreover, from (2.2) and the upper bound on ` from (4.5) we obtain the bounds

‖vq − v`‖L∞ . ` ‖vq‖C1 . `λ4
q ,(4.7)

‖v`‖CNx,t . `
1−N ‖vq‖C1 . `1−Nλ4

q . `
−N .(4.8)

4.2. Stress cutoffs. Because the Reynolds stress R̊` is not spatially homo-

geneous, we introduce stress cutoff functions. We let 0 ≤ χ̃0, χ̃ ≤ 1 be bump

functions adapted to the intervals [0, 4] and [1/4, 4] respectively, such that

together they form a partition of unity:

χ̃2
0(y) +

∑
i≥1

χ̃2
i (y) ≡ 1, where χ̃i(y) = χ̃(4−iy),(4.9)

for any y > 0. We then define

χ(i)(x, t) = χi,q+1(x, t) = χ̃i

(〈
R̊`(x, t)

100λ−εRq δq+1

〉)
(4.10)

for all i ≥ 0. Here and throughout the paper we use the notation 〈A〉 =

(1 + |A|2)1/2 where |A| denotes the Euclidean norm of the matrix A. By

definition the cutoffs χ(i) form a partition of unity∑
i≥0

χ2
(i) ≡ 1(4.11)

and we will show in Lemma 4.1 below that there exists an index imax = imax(q),

such that χ(i) ≡ 0 for all i > imax, and moreover that 4imax . `−1.

4.3. The definition of the velocity increment. Define the coefficient func-

tion aξ,i,q+1 by

(4.12) a(ξ) := aξ,i,q+1 := ρ
1/2
i χi,q+1γ(ξ)

(
Id− R̊`

ρi(t)

)
.

where for i ≥ 1, the parameters ρi are defined by

ρi := λ−εRq δq+14i+c0(4.13)

where c0 ∈ N is a sufficiently large constant, which depends on the εγ in

Proposition 3.4. The addition of the factor 4c0 ensures that the argument of

γ(ξ) is in the range of definition. The definition ρ0 is slightly more complicated

and as such its definition will be delayed to Section 4.4 below; see (4.25) and
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(4.26). Modulo the definition of ρ0, we note that as a consequence of (3.14),

(3.15), (4.11), and (4.12) we have∑
i≥0

∑
ξ,ξ′∈Λ(i)

a2
(ξ)

 
T3

Ä
W(ξ) ⊗W(ξ′)

ä
dx =

∑
i≥0

ρiχ
2
(i)Id− R̊`,(4.14)

which justifies the definition of the amplitude functions a(ξ).

By a slight abuse of notation, let us now fix λ, σ, r, and µ for the shorthand

notation W(ξ), W(ξ) and η(ξ) introduced in Section 3.2 (cf. (3.8), (3.11), (3.12)):

W(ξ) := Wξ,λq+1,σ,r,µ, W(ξ) := Wξ,λq+1 and η(ξ) := ηξ,λq+1,σ,r,µ,

where the integer r, the parameter σ, and the parameter µ are defined by

r = λ
3/4
q+1, σ = λ

−15/16

q+1 and µ = λ
5/4
q+1.(4.15)

The fact that λq+1σ ∈ N is ensured by our choices a ∈ N and b ∈ 16N. In order

to ensure λq+1 is a multiple of NΛ, we need to choose a which is a multiple of

NΛ. Moreover, at this stage we fix

` = λ−20
q ,(4.16)

which in view of the choice of σ in (4.15), ensures that (4.5) holds, upon taking

λ0 sufficiently large. In view of (4.16), throughout the rest of the paper we

may use either `ε ≤ λ−20ε
0 or λ−εq ≤ λ−ε0 , with ε > 0 arbitrarily small, to absorb

any of the constants (which are q-independent) appearing due to . signs in

the below inequalities. This is possible by choosing λ0 = a, sufficiently large.

The principal part of wq+1 is defined as

(4.17) w
(p)
q+1 :=

∑
i

∑
ξ∈Λ(i)

a(ξ) W(ξ),

where the sum is over 0 ≤ i ≤ imax(q). The sets Λ(i) are defined as follows.

In Lemma 3.2 it suffices to take N = 2, so that α ∈ {α0, α1}, and we define

Λ(i) = Λαimod 2
. This choice is allowable since χiχj ≡ 0 for |i− j| ≥ 2. In order

to fix the fact that w
(p)
q+1 is not divergence free, we define an incompressibility

corrector by

w
(c)
q+1 :=

1

λq+1

∑
i

∑
ξ∈Λ(i)

∇
Ä
a(ξ)η(ξ)

ä
×W(ξ).(4.18)

Using that divW(ξ) = 0, we then have

w
(p)
q+1 + w

(c)
q+1 =

1

λq+1

∑
i

∑
ξ∈Λ(i)

curl
Ä
a(ξ)η(ξ)W(ξ)

ä
=

1

λq+1
curl (w

(p)
q+1),(4.19)

and thus

div
(
w

(p)
q+1 + w

(c)
q+1

)
= 0.
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In addition to the incompressibility corrector w
(c)
q+1, we introduce a tem-

poral corrector w
(t)
q+1, which is defined by

(4.20) w
(t)
q+1 :=

1

µ

∑
i

∑
ξ∈Λ+

(i)

PHP 6=0

Ä
a2

(ξ)η
2
(ξ)ξ
ä
.

Here we have denoted by P 6=0 the operator which projects a function onto

its nonzero frequencies P 6=0f = f −
ffl
T3 f , and have used PH for the usual

Helmholtz (or Leray) projector onto divergence-free vector fields, PHf = f −
∇(∆−1div f). The purpose of the corrector w

(t)
q+1 becomes apparent upon re-

calling (3.17). Indeed, if we multiply identity (3.17) by a2
(ξ), remove the mean

and a suitable pressure gradient, the leading order term left is

−(1/µ)PHP 6=0(ξa2
(ξ)∂tη

2
(ξ));

see (5.13) below. This term is not of high frequency (proportional to λq+1).

Moreover, upon writing this term as the divergence of a symmetric stress, the

size of this stress term in L1 is δq+1, instead of δq+2; thus this term does not

obey a favorable estimate and has to be cancelled altogether. The corrector

w
(t)
q+1 is designed such that its time derivative achieves precisely this goal, of

cancelling the −(1/µ)PHP 6=0(ξa2
(ξ)∂tη

2
(ξ)) term.

Finally, we define the velocity increment wq+1 by

(4.21) wq+1 := w
(p)
q+1 + w

(c)
q+1 + w

(t)
q+1,

which is by construction mean zero and divergence-free. The new velocity field

vq+1 is then defined as

(4.22) vq+1 = v` + wq+1.

4.4. The definition of ρ0. It follows from (4.14) that with the ρi defined

above we have

∑
i≥1

ˆ
T3

∣∣∣∣∣∣∣
∑
ξ∈Λ(i)

a(ξ)W(ξ)

∣∣∣∣∣∣∣
2

dx =
∑
i≥1

∑
ξ,ξ′∈Λ(i)

ˆ
T3

a(ξ)a(ξ′)tr (W(ξ) ⊗W(−ξ′)) dx

=
∑
i≥1

∑
ξ∈Λ(i)

ˆ
T3

a2
(ξ)tr

 
T3

(W(ξ) ⊗W(−ξ)) dx+ error

= 3
∑
i≥1

ρi

ˆ
T3

χ2
(i) dx+ error,

(4.23)

where the error term can be made arbitrarily small since the spatial frequency

of the a(ξ)’s is `−1, while the minimal separation of frequencies of W(ξ)⊗W−(ξ′)

is λq+1σ � `−1. The term labeled as error on the right side of (4.23) above will
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be estimated precisely in Section 6 below. We will show in the next section,

Lemma 4.3 that ∑
i≥1

ρi

ˆ
T3

χ2
(i) dx . δq+1λ

−εR
q .(4.24)

In order to ensure (2.5) is satisfied for q + 1, we design ρ0 such that

ˆ
T3

∣∣∣∣∣∣∣
∑
ξ∈Λ(0)

a(ξ)W(ξ)

∣∣∣∣∣∣∣
2

dx ≈ ẽ(t) := e(t)−
ˆ
T3

|vq|2 dx− 3
∑
i≥1

ρi

ˆ
T3

χ2
i dx.

We thus define the auxiliary function

ρ(t) :=
1

3 |T3|

Åˆ
T3

χ2
0 dx

ã−1

max

Å
ẽ(t)− δq+2

2
, 0

ã
.(4.25)

The term −δq+2/2 is added to ensure that we leave room for future corrections

and the max is in place to ensure that we do not correct the energy when

the energy of vq is already sufficiently close to the prescribed energy profile.

This later property will allow us to take energy profiles with compact support.

Finally, in order to ensure ρ
1/2
0 is sufficiently smooth, we define ρ0 as the square

of the mollification of ρ1/2 at time scale `

ρ0 =
Ä
(ρ

1/2) ∗t ϕ`
ä2
.(4.26)

We note that (2.5) and (4.34) below imply that

(4.27) ‖ρ0‖C0
t
≤ 2δq+1 and

∥∥∥ρ1/2
0

∥∥∥
CNt
. δ

1/2
q+1`

−N

for N ≥ 1. By a slight abuse of notation we will denote

R̊`
ρ0(t)

=


R̊`
ρ0(t) if χ0 6= 0 and R̊` 6= 0,

0 otherwise.

Observe that if χ0 6= 0 and R̊` 6= 0, then (2.6) and (4.24) ensure that ρ0 > 0.

In order to ensure that Id − R̊`
ρ0(t) is in the domain of the functions γ(ξ) from

Proposition 3.4, we will need to ensure that∥∥∥∥∥ R̊`
ρ0(t)

∥∥∥∥∥
L∞(suppχ(0))

≤ εγ .(4.28)

We give the proof of (4.28) next. Owing to the estimate∣∣∣∣e(t)− ˆ
T3

|vq(x, t)|2 dx− e(t′)−
ˆ
T3

∣∣vq(x, t′)∣∣2∣∣∣∣ dx . `1/2
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for t′ ∈ (t − `, t + `) which follows from Lemma 6.1 in Section 6, and the

inequality `1/2 � δq+1, we may apply (2.6) to conclude that it is sufficient to

check the above condition when

e(t)−
ˆ
T3

|vq(x, t)|2 dx ≥
δq+1

200
.

Then by (4.24), the above lower bound implies

ẽ(t) ≥ δq+1

400
,

and thus

ρ(t) ≥ 1

|T3|

Å
δq+1

400
− δq+2

2

ã
≥ δq+1

500
,

where we used (4.34) from Lemma 4.3 below to bound the integral. Finally,

using the estimate (6.4) from Section 6 we obtain

ρ0(t) ≥ δq+1

600
.

Since on the support of χ0 we have
∣∣∣R̊`∣∣∣ ≤ 1000λ−εRq δq+1, we obtain (4.28).

4.5. Estimates of the perturbation. We first collect a number of estimates

concerning the cutoffs χ(i) defined in (4.10).

Lemma 4.1. For q ≥ 0, there exists imax(q) ≥ 0, determined by (4.31)

below, such that

χ(i) ≡ 0 for all i > imax.

Moreover, we have that for all 0 ≤ i ≤ imax

ρi . 4imax . `−1(4.29)

where the implicit constants can be made independent of other parameters.

Moreover, we have

(4.30)
imax∑
i=0

ρ
1/2
i 2−i ≤ 3δ

1/2
q+1.

Proof of Lemma 4.1. Let i ≥ 1. By the definition of χ̃i we have that

χ(i) = 0 for all (x, t) such that

〈100−1λεRq δ−1
q+1R̊`(x, t)〉 < 4i−1.

Using the inductive assumption (2.4), we have that∥∥∥R̊`∥∥∥
L∞
.
∥∥∥R̊`∥∥∥

C1
.
∥∥∥R̊q∥∥∥

C1
≤ Cmaxλ

10
q ≤ λ10+εR

q
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since the implicit constant Cmax is independent of q and of εR (it only depends

on norms of the mollifier φ used to define R̊`), and thus we have Cmax ≤ λεRq .

Therefore, if i ≥ 1 is large enough such that

〈100−1δ−1
q+1λ

10+2εR
q 〉 ≤ 4i−2,

then χ(i) ≡ 0. Therefore, as εR ≤ 1/4 and since we have

〈100−1δ−1
q+1λ

10+2εR
q 〉 ≤ 〈δ−1

q+1λ
10+1/2
q 〉 ≤ δ−1

q+1λ
11
q

for all q ≥ 0 (since βb is small), we may define imax by

imax(q) = min
¶
i ≥ 0: 4i−2 ≥ λ11

q δ
−1
q+1

©
.(4.31)

Observe that, the first inequality of (4.29) follows trivially from the definition

of ρi for i ≥ 1 and (4.27) for i = 0. The second inequality follows from the fact

that λ11
q δ
−1
q+1 ≤ `−1, which is a consequence of bβ being small. Finally, from

the definition (4.13) and the bound (4.27) we have

imax∑
i=0

ρ
1/2
i 2−i ≤ 2δ

1/2
q+1 + 2c0

imax∑
i=1

λ−
εR/2

q δ
1/2
q+1

≤ δ1/2
q+1

Ä
2 + 2c0λ−

εR/2
q (3 + log4(λ11

q δ
−1
q+1))

ä
.

Since λ11
q δ
−1
q+1 ≤ λ20

q , which is a consequence of βb being small, we can bound

the second term above as

2c0λ−
εR/2

q (3 + log4(λ11
q δ
−1
q+1)) ≤ 2c0λ−

εR/2
q (3 + 20 log4(λq)) ≤ 1

by taking a (and hence λq) to be sufficiently large, depending on εR and c0.

This finishes the proof of (4.30). �

The size and derivative estimate for the χ(i) are summarized in the fol-

lowing lemma

Lemma 4.2. Let 0 ≤ i ≤ imax. Then we have∥∥∥χ(i)

∥∥∥
L2
. 2−i,(4.32) ∥∥∥χ(i)

∥∥∥
CNx,t
. λ10

q `
1−N . `−N(4.33)

for all N ≥ 1.

Proof of Lemma 4.2. We prove that∥∥∥χ(i)

∥∥∥
L1
. 4−i,

so that the bound (4.32) follows since χ(i) ≤ 1, upon interpolating the L2 norm

between the L1 and the L∞ norms.
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When i = 0, 1, we have that
∥∥∥χ(i)

∥∥∥
L1
≤ |T3|

∥∥∥χ(0)

∥∥∥
L∞
. 1 . 4−i. For

i ≥ 2, we use the Chebyshev’s inequality and the inductive assumption (2.3)

to conclude∥∥∥χ(i)

∥∥∥
L1
≤ sup

t

∣∣∣¶x : 4i−1 ≤ 〈λεRq δ−1
q+1R̊`(x, t)/100〉 ≤ 4i+1

©∣∣∣
≤ sup

t

∣∣∣¶x : 4i−1 ≤ λεRq δ−1
q+1|R̊`(x, t)|/100 + 1

©∣∣∣
≤ sup

t

∣∣∣¶x : 100λ−εRq δq+14i−2 ≤ |R̊`(x, t)|
©∣∣∣

. λεRq δ−1
q+14−i

∥∥∥R̊`∥∥∥
L∞t L

1
x

. λεRq δ−1
q+14−i

∥∥∥R̊q∥∥∥
L∞t L

1
x

. 4−i,

proving the desired L1 bound. In order to prove the estimate (4.33) we appeal

to [2, Prop. C.1], which yields∥∥∥χ(i)

∥∥∥
CNt,x
.
∥∥∥〈λεRq δ−1

q+1R̊`/100〉
∥∥∥
CNt,x

+
∥∥∥〈λεRq δ−1

q+1R̊`/100〉
∥∥∥N
C1
t,x

. `−N+1
∥∥∥R̊`∥∥∥

C1
t,x

+
∥∥∥R̊`∥∥∥N

C1
t,x

. `−N+1
∥∥∥R̊q∥∥∥

C1
t,x

+
∥∥∥R̊q∥∥∥N

C1
t,x

. λ10
q `
−N+1 + λ10N

q . λ10
q `

1−N ,

where we have used that δq+1 . 1 and (2.4). �

Lemma 4.3. We have that the following lower and upper bounds hold :ˆ
T3

χ2
(0) dx ≥

|T3|
2
,(4.34)

∑
i≥1

ρi

ˆ
T3

χ2
(i)(x, t) dx . λ

−εR
q δq+1.(4.35)

Proof of Lemma 4.3. By Chebyshev’s inequality, we have∣∣∣∣ßx| ∣∣∣R̊`∣∣∣ ≥ 2λ−εRq δq+1

∣∣∣T3
∣∣∣−1
™∣∣∣∣ ≤ ∣∣T3

∣∣ ∥∥∥R̊`∥∥∥
L1

2λ−εRq δq+1

≤

∣∣T3
∣∣ ∥∥∥R̊q∥∥∥

L1

2λ−εRq δq+1

≤
∣∣T3
∣∣

2
,

where we have used (2.3). Then from the definition of χ(0) we obtain (4.34).

Observe that by definition,∑
i≥1

ρi

ˆ
T3

χ2
(i)dx .

∑
i≥1

(4iλ−εRq δq+1)χ̃2

(
1

4i

〈
R̊`

100λ−εRq δq+1

〉)
dx

.
∥∥∥R̊`∥∥∥

L1
.
∥∥∥R̊q∥∥∥

L1
. λ−εRq δq+1,

from which we conclude (4.35). �
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Lemma 4.4. The bounds∥∥∥a(ξ)

∥∥∥
L2
. ρ

1/2
i 2−i . δ

1/2
q+1,(4.36) ∥∥∥a(ξ)

∥∥∥
L∞
. ρ

1/2
i . δ

1/2
q+12i,(4.37) ∥∥∥a(ξ)

∥∥∥
CNx,t
. `−N(4.38)

hold for all 0 ≤ i ≤ imax and N ≥ 1.

Proof of Lemma 4.4. The bound (4.37) follows directly from the defini-

tions (4.12), (4.13) together with the boundedness of the functions γ(ξ) and ρ0

given in (4.27). Using (4.32) additionally, the estimate (4.36) follows similarly.

For (4.38), we apply derivatives to (4.12), use [2, Prop. C.1], estimate (4.33),

Lemma 4.1, the bound (4.6) for R̊`, the definition (4.16) of `, and the bound

(4.29) to obtain the following estimate for the case i ≥ 1:∥∥∥a(ξ)

∥∥∥
CNx,t
. ρ

1/2
i

Ç∥∥∥χ(i)

∥∥∥
L∞

∥∥∥γ(ξ)

Ä
Id− ρ−1

i R̊`
ä∥∥∥
CNx,t

+
∥∥∥χ(i)

∥∥∥
CNx,t

∥∥∥γ(ξ)

Ä
Id− ρ−1

i R̊`
ä∥∥∥
L∞

å
. ρ

1/2
i

Ç
ρ−1
i

∥∥∥R̊`∥∥∥
CNx,t

+ ρ−1
i

∥∥∥R̊`∥∥∥N
C1
t,x

+ λ10
q `

1−N
å

. ρ
1/2
i

Ç
ρ−1
i `−N+1

∥∥∥R̊`∥∥∥
C1
x,t

+ ρ−1
i

∥∥∥R̊`∥∥∥N
C1
t,x

+ ρ
−1/2
i `−N

å
. ρ

1/2
i

(
ρ−1
i `−N+1λ10

q + ρ−1
i λ10N

q + ρ
−1/2
i `−N

)
. `−N .

(4.39)

For i = 0, the time derivative may land on ρ
1/2
0 . We use (4.27) to estimate this

contribution similarly, by loosing an `−1 for each time derivative. �

Proposition 4.5. The principal part of the velocity perturbation, the in-

compressibility, and the temporal correctors obey the bounds∥∥∥w(p)
q+1

∥∥∥
L2
≤ M

2
δ

1/2
q+1,(4.40) ∥∥∥w(c)

q+1

∥∥∥
L2

+
∥∥∥w(t)

q+1

∥∥∥
L2
. r3/2`−1µ−1δ

1/2
q+1,(4.41) ∥∥∥w(p)

q+1

∥∥∥
W 1,p

+
∥∥∥w(c)

q+1

∥∥∥
W 1,p

+
∥∥∥w(t)

q+1

∥∥∥
W 1,p

. `−2λq+1r
3/2−3/p,(4.42) ∥∥∥∂tw(p)

q+1

∥∥∥
Lp

+
∥∥∥∂tw(c)

q+1

∥∥∥
Lp
. `−2λq+1σµr

5/2−3/p,(4.43) ∥∥∥w(p)
q+1

∥∥∥
CNx,t

+
∥∥∥w(c)

q+1

∥∥∥
CNx,t

+
∥∥∥w(t)

q+1

∥∥∥
CNx,t
≤ 1

2
λ

(3 + 5N)/2
q+1(4.44)

for N ∈ {0, 1, 2, 3} and p > 1, where M is a universal constant.
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Proof of Proposition 4.5. For i≥0, from (4.36) and (4.38) we may estimate∥∥∥DNa(ξ)

∥∥∥
L2
. δ

1/2
q+1`

−2N ,

where we have used that `δ
−1/2
q+1 = λ−20+βb

q . 1, which follows from the restric-

tion imposed on the smallness of βb. Since W(ξ) is (T/λq+1σ)3 periodic, and the

condition (4.5) gives that `−2 � λq+1σ, we may apply (3.18) with N = K = 0

and Lemma 3.7 to conclude∥∥∥a(ξ)W(ξ)

∥∥∥
L2
. ρ

1/2
i 2−i

∥∥∥W(ξ)

∥∥∥
L2
. ρ

1/2
i 2−i.

Upon summing over i ∈ {0, . . . , imax}, and appealing to (4.30), we obtain (4.40)

for some fixed constant M independent of any parameter.

In order to bound the L2 norm of w
(c)
q+1, we use (3.19) and Lemma 4.4 to

estimate∥∥∥∥∥ 1

λq+1
∇
Ä
a(ξ)η(ξ)

ä
×W(ξ)

∥∥∥∥∥
L2

.
1

λq+1

(∥∥∥∇a(ξ)

∥∥∥
L∞

∥∥∥η(ξ)

∥∥∥
L2

+
∥∥∥a(ξ)

∥∥∥
L∞

∥∥∥∇η(ξ)

∥∥∥
L2

)
.

1

λq+1

(
`−1 + δ

1/2
q+12iλq+1σr

)
. δ

1/2
q+12iσr,

where we have used that `−1 ≤ λq+1δ
1/2
q+1σr, which follows from (4.15)–(4.16)

since b is sufficiently large. Analogously, bounding the summands in the defi-

nition of w
(t)
q+1, we have∥∥∥∥ 1

2µ
PHP6=0

Ä
a2

(ξ)η
2
(ξ)ξ
ä∥∥∥∥
L2

.
1

µ
‖a‖2L∞

∥∥∥η(ξ)

∥∥∥2

L4
.
δq+14ir3/2

µ
.

Summing in i ∈ {0, . . . , imax} and ξ, and employing (4.29), we obtain∥∥∥w(c)
q+1

∥∥∥
L2

+
∥∥∥w(t)

q+1

∥∥∥
L2
.
δ

1/2
q+1σr

`1/2
+
δq+1r

3/2

`µ
.
r3/2

`µ
δ

1/2
q+1.

In the above bound we have used the inequality `1/2µ ≤ σ−1r1/2, which follows

from (4.15)–(4.16).

Now consider (4.42). Observe that by definition (4.17), estimate (3.18),

and Lemma 4.4, we have∥∥∥w(p)
q+1

∥∥∥
W 1,p

.
∑
i

∑
ξ∈Λ(i)

‖aξ‖C1
x,t

∥∥∥W(ξ)

∥∥∥
W 1,p

.
∑
i

∑
ξ∈Λ(i)

`−1λq+1r
3/2−3/p

. `−2λq+1r
3/2−3/p.

(4.45)
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Here we have also used (4.29) in order to sum over i. For the analogous bound

on w
(c)
q+1, using (3.19) and Lemma 4.4 we arrive at∥∥∥∥∥ 1

λq+1
∇
Ä
a(ξ)η(ξ)

ä
×W(ξ)

∥∥∥∥∥
W 1,p

.
1

λq+1

(∥∥∥∇2
Ä
a(ξ)η(ξ)

ä∥∥∥
Lp

+ λq+1

∥∥∥∇ Äa(ξ)η(ξ)

ä∥∥∥
Lp

)

.

∥∥∥a(ξ)

∥∥∥
C2

λq+1

(∥∥∥η(ξ)

∥∥∥
W 2,p

+ λq+1

∥∥∥η(ξ)

∥∥∥
W 1,p

)
.

`−2

λq+1
(λq+1σr)

2r
3/2−3/p +

`−2

λq+1
λ2
q+1σr

5/2−3/p

. `−2λq+1r
3/2−3/p (σr) ,

where we used λq+1σr ≤ λq+1. The above bound is consistent with (4.42)

for w
(c)
q+1 since summing over i and ξ loses an extra factor of `−1 that may be

absorbed since `−1σr < 1. Similarly, in order to estimate w
(t)
q+1 we use the

bound (3.19) and Lemma 4.4 to obtain∥∥∥∥ 1

µ
PHP 6=0

Ä
a2

(ξ)η
2
(ξ)ξ
ä∥∥∥∥
W 1,p

.
1

µ

∥∥∥a(ξ)

∥∥∥
C1

∥∥∥a(ξ)

∥∥∥
L∞

Å∥∥∥∇η(ξ)

∥∥∥
L2p

∥∥∥η(ξ)

∥∥∥
L2p

+
∥∥∥η(ξ)

∥∥∥2

L2p

ã
.

1

µ
`−1δ

1/2
q+12i(λq+1σr)r

3−3/p.

Summing in i and ξ and using (4.29) we obtain

∥∥∥w(t)
q+1

∥∥∥
W 1,p

.
1

µ
`−

3/2δ
1/2
q+1(λq+1σr)r

3−3/p . `−2λq+1r
3/2−3/pσr

5/2

µ
.

Thus (4.42) also holds for w
(t)
q+1, as a consequence of the inequality σr5/2 ≤ µ,

which holds by (4.15).

Now consider the Lp estimates of the time derivatives of w
(p)
q+1 and w

(c)
q+1.

Estimates (3.18) and (4.38) yield∥∥∥∂tw(p)
q+1

∥∥∥
Lp
.
∑
i

∑
ξ∈Λ(i)

∥∥∥a(ξ)

∥∥∥
C1
x,t

∥∥∥∂tW(ξ)

∥∥∥
Lp

.
∑
i

∑
ξ∈Λ(i)

`−1(λq+1σrµ)r
3/2−3/p

. `−2λq+1σµr
5/2−3/p.
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Similarly, using (3.19) and (4.38), we obtain∥∥∥∂tw(c)
q+1

∥∥∥
Lp
.
∑
i

∑
ξ∈Λ(i)

∥∥∥∥∥ 1

λq+1
∂t
Ä
∇
Ä
a(ξ)η(ξ)

ä
×W(ξ)

ä∥∥∥∥∥
Lp

.
1

λq+1

∑
i

∑
ξ∈Λ(i)

∥∥∥∂t∇ Äa(ξ)η(ξ)

ä∥∥∥
Lp

.
1

λq+1

∑
i

∑
ξ∈Λ(i)

∥∥∥a(ξ)

∥∥∥
C2
x,t

(∥∥∥∂tη(ξ)

∥∥∥
W 1,p

+
∥∥∥η(ξ)

∥∥∥
W 1,p

)
. `−3λq+1σ

2µr
7/2−3/p,

which is a bound that is consistent with (4.43), upon noting that `−1σr ≤ 1

holds.

For N = 0, the bound (4.44) holds for w
(p)
q+1 in view of (3.18), (4.38),

(4.29), and the fact that `−1r3/2 � λ
3/2
q+1. For the derivative bounds of w

(p)
q+1,

we use (3.18) and (4.38) to conclude∥∥∥a(ξ)W(ξ)

∥∥∥
CNx,t
.
∥∥∥a(ξ)

∥∥∥
CNx,t

∥∥∥W(ξ)

∥∥∥
CNx,t
. `−N (λq+1σrµ)Nr

3/2,

from which the first part of (4.44) immediately follows in view of our parameter

choices (4.15)–(4.16). Indeed, (4.15) gives λq+1σrµ = λ
33/16

q+1 = λ2
q+1λ

1/16

q+1 and

r3/2 = λ
9/8
q+1. The bound for the CNx,t norm of w

(c)
q+1 and w

(t)
q+1 follows mutatis

mutandis. �

In view of

• the definitions of wq+1 and vq+1 in (4.21) and (4.22);

• the estimates (4.7) and (4.8);

• the identity vq+1 − vq = wq+1 + (v` − vq);
• the bound `λ4

qδ
−1/2
q+1 + `−1r3/2µ−1 � 1, which holds since b was taken to be

sufficiently large,

the estimates in Proposition 4.5 directly imply

Corollary 4.6. For N ∈ {0, 1, 2, 3} and p > 1, we have

‖wq+1‖L2 ≤
3M

4
δ

1/2
q+1,(4.46)

‖vq+1 − vq‖L2 ≤Mδ
1/2
q+1,(4.47)

‖wq+1‖W 1,p . `−2λq+1r
3/2−3/p,(4.48)

‖wq+1‖CNx,t ≤
1

2
λ

(3 + 5N)/2
q+1 ,(4.49)

‖vq+1‖CNx,t ≤ λ
(3 + 5N)/2
q+1 .(4.50)
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Therefore, setting N = 1 in the above estimate for vq+1 we have proven

that (2.2) holds with q replaced by q + 1. Also, (4.47) proves the velocity

increment bound we have claimed in (2.7).

5. Reynolds stress

The main result of this section may be summarized as follows:

Proposition 5.1. There exist a p > 1 sufficiently close to 1 and an

εR > 0 sufficiently small, depending only on b and β (in particular, independent

of q), such that there exist a traceless symmetric 2 tensor ‹R and a scalar

pressure field p̃, defined implicitly in (5.7) below, satisfying

∂tvq+1 + div (vq+1 ⊗ vq+1) +∇p̃− ν∆vq+1 = div ‹R(5.1)

and the bound ∥∥∥‹R∥∥∥
Lp
. λ−2εR

q+1 δq+2,(5.2)

where the constant depends on the choice of p and εR.

An immediate consequence of Proposition 5.1 is that the desired inductive

estimates (2.3)–(2.4) hold for a suitably defined Reynolds stress R̊q+1; see (5.5)

below. We emphasize that compared to ‹R, the stress R̊q+1 constructed below

also obeys a satisfactory C1 estimate.

Corollary 5.2. There exists a traceless symmetric 2 tensor R̊q+1 and a

scalar pressure field pq+1 such that

∂tvq+1 + div (vq+1 ⊗ vq+1) +∇pq+1 − ν∆vq+1 = div R̊q+1.

Moreover, the following bounds hold :∥∥∥R̊q+1

∥∥∥
L1
≤ λ−εRq+1 δq+2,(5.3) ∥∥∥R̊q+1

∥∥∥
C1
x,t

≤ λ10
q+1.(5.4)

Before giving the proof of the corollary, we recall from [2, Def. 1.4] the

2-tensor valued elliptic operator R that has the property that Rv(x) is a sym-

metric trace-free matrix for each x ∈ T3, and R is a right inverse of the div

operator, i.e.,

divRv = v −
 
T3

v(x) dx

for any smooth v. Moreover, we have the classical Calderón-Zygmund bound

‖|∇|R‖Lp→Lp . 1, and the Schauder estimates ‖R‖Lp→Lp + ‖R‖C0→C0 . 1,

for p ∈ (1,∞). Since throughout the proof the value of p > 1 is independent

of q, the implicit constants in these inequalities are uniformly bounded.

Proof of Corollary 5.2. With ‹R and p̃ defined in Proposition 5.1, we let

(5.5) R̊q+1 = R(PHdiv ‹R) and pq+1 = p̃−∆−1div div ‹R.
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With the parameter p > 1 from Proposition 5.1, using that ‖Rdiv ‖Lp→Lp . 1

we directly bound∥∥∥R̊q+1

∥∥∥
L1
.
∥∥∥R̊q+1

∥∥∥
Lp
.
∥∥∥‹R∥∥∥

Lp
. λ−2εR

q+1 δq+2.

The estimate (5.3) then follows since the factor λ−εRq+1 can absorb any constant

if we assume a is sufficiently large.

Now consider (5.4). Using equation (5.1) and the bounds of Corollary 4.6

we obtain ∥∥∥R̊q+1

∥∥∥
C1

=
∥∥∥RPH(div ‹R)

∥∥∥
C1

. ‖∂tvq+1 + div (vq+1 ⊗ vq+1)− ν∆vq+1‖C1

. ‖∂tvq+1‖C1 + ‖vq+1 ⊗ vq+1‖C2 + ‖vq+1‖C3

. λ9
q+1

by using the Schauder estimates ‖RPH‖C0→C0 . 1. Similarly, we have that∥∥∥∂tR̊q+1

∥∥∥
L∞
. ‖∂t(∂tvq+1 + div (vq+1 ⊗ vq+1)− ν∆vq+1)‖C0

.
∥∥∥∂2

t vq+1

∥∥∥
C0

+ ‖∂tvq+1 ⊗ vq+1‖C1 + ‖∂tvq+1‖C2

. λ9
q+1,

which concludes the proof of (5.4) upon using the leftover power of λq+1 to

absorb all q independent constants. �

5.1. Proof of Proposition 5.1. Recall that vq+1 = wq+1 + v`, where v` is

defined in Section 4.1. Using (4.2) and (4.21), we obtain

(5.6) div ‹R−∇p̃ = −ν∆wq+1 +∂t(w
(p)
q+1+w

(c)
q+1)+div (v` ⊗ wq+1+wq+1 ⊗ v`)

+div
(
(w

(c)
q+1+w

(t)
q+1)⊗ wq+1+w

(p)
q+1 ⊗ (w

(c)
q+1+w

(t)
q+1)

)
+div (w

(p)
q+1 ⊗ w

(p)
q+1 + R̊`) + ∂tw

(t)
q+1

+div (‹Rcommutator)−∇p`
=: div

Ä‹Rlinear + ‹Rcorrector + ‹Roscillation + ‹Rcommutator

ä
(5.7)

+∇ (P − p`) .

Here, the symmetric trace-free stresses ‹Rlinear and ‹Rcorrector are defined by

applying the inverse divergence operator R to the first and respectively second

lines of (5.6). The stress ‹Rcommutator was defined previously in (4.3), while the

stress ‹Roscillation is defined in Section 5.3 below. The pressure P is given by

(5.11) below.

Besides the already used inequalities between the parameters, `, r, σ, and

λq+1, we shall use the following bound in order to achieve (5.2):
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`−2σµr
5/2−3/p + (r

3/2`−1µ−1)
1/pλ

3(1−1/p)
q+1

+
r3−3/p

`3λq+1σ
+
σr4−3/p

`3
+ λ−10

q . λ−2εR
q+1 δq+2.

(5.8)

In view of (4.15)–(4.16), the above inequality holds for b sufficiently large, β

sufficiently small depending on b, parameters εR, p − 1 > 0 sufficiently small

depending on b and β, and for λ0 = a sufficiently large depending on all these

parameters and on M .

In view of the bound `λ6
q . λ−10

q , the estimate (4.4) for ‹Rcommutator is

consistent with (5.2). Hence it remains to consider the linear, corrector and

oscillation errors in (5.7).

5.2. The linear and corrector errors. In view of (5.2), we estimate contri-

butions to the ‹R coming from the first line in (5.6) as∥∥∥‹Rlinear

∥∥∥
Lp
. ‖R(ν∆wq+1)‖Lp +

∥∥∥R(∂t(w
(p)
q+1 + w

(c)
q+1))

∥∥∥
Lp

+ ‖Rdiv (v` ⊗ wq+1 + wq+1 ⊗ v`)‖Lp

. ‖wq+1‖W 1,p +
1

λq+1

∥∥∥∂tRcurl
(
w

(p)
q+1

)∥∥∥
Lp

+ ‖v`‖L∞ ‖wq+1‖Lp

. λ4
q ‖wq+1‖W 1,p +

1

λq+1

∥∥∥∂tw(p)
q+1

∥∥∥
Lp

(5.9)

. λ4
q`
−2λq+1r

3/2−3/p +
1

λq+1
`−2λq+1σµr

5/2−3/p

. `−2σµr
5/2−3/p,

where we have used ν ≤ 1, λ4
qλq+1 ≤ σµr, the identity (4.19), the inductive

estimate (2.2) to bound ‖v`‖L∞ . ‖v`‖C1 . ‖vq‖C1 , estimates (4.43) and

(4.48). Next we turn to the errors involving correctors, for which we appeal to

Lp interpolation, the Poincaré inequality, and Proposition 4.5:∥∥∥‹Rcorrector

∥∥∥
Lp
≤
∥∥∥Rdiv

(
(w

(c)
q+1 + w

(t)
q+1)⊗ wq+1 + w

(p)
q+1 ⊗ (w

(c)
q+1 + w

(t)
q+1)

)∥∥∥
Lp

.
∥∥∥(w(c)

q+1 + w
(t)
q+1)⊗ wq+1

∥∥∥1/p

L1

∥∥∥(w(c)
q+1 + w

(t)
q+1)⊗ wq+1

∥∥∥1−1/p

L∞

+
∥∥∥w(p)

q+1 ⊗ (w
(c)
q+1 + w

(t)
q+1)

∥∥∥1/p

L1

∥∥∥w(p)
q+1 ⊗ (w

(c)
q+1 + w

(t)
q+1)

∥∥∥1−1/p

L∞

. (r
3/2`−1µ−1)

1/pδ
1/p
q+1λ

3(1−1/p)
q+1

. (r
3/2`−1µ−1)

1/pλ
3(1−1/p)
q+1 .

Due to (5.8) this estimate is sufficient.
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5.3. Oscillation error. In this section we estimate the remaining error,‹Roscillation, which obeys

div
Ä‹Roscillation

ä
+∇P = div

(
w

(p)
q+1 ⊗ w

(p)
q+1 + R̊`

)
+ ∂tw

(t)
q+1,(5.10)

where the pressure term P is given by

P =
∑
i≥0

ρiχ
2
(i) +

1

2

∑
i,j

∑
ξ∈Λ(i),ξ

′∈Λ(j)

a(ξ)a(ξ′)P 6=0

Ä
W(ξ) ·W(ξ′)

ä
−
∑
i

∑
ξ∈Λ+

(i)

1

µ
∆−1div ∂t

Ä
a2

(ξ)η
2
(ξ)ξ
ä
.

(5.11)

Recall that from the definition of w
(p)
q+1 and of the coefficients a(ξ), via

(4.14) we have

(5.12)

div
(
w

(p)
q+1 ⊗ w

(p)
q+1

)
+ div R̊`

=
∑
i,j

∑
ξ∈Λ(i),ξ

′∈Λ(j)

div
Ä
a(ξ)a(ξ′)W(ξ) ⊗W(ξ′)

ä
+ div R̊`

=
∑
i,j

∑
ξ∈Λ(i),ξ

′∈Λ(j)

div

Å
a(ξ)a(ξ′)

Å
W(ξ) ⊗W(ξ′) −

 
T3

W(ξ) ⊗W(ξ′) dx

ãã
+∇

Ñ∑
i≥0

ρiχ
2
(i)

é
=
∑
i,j

∑
ξ∈Λ(i),ξ

′∈Λ(j)

div
Ä
a(ξ)a(ξ′)P≥λq+1σ/2

Ä
W(ξ) ⊗W(ξ′)

ää
︸ ︷︷ ︸

E(ξ,ξ′)

+∇

Ñ∑
i≥0

ρiχ
2
(i)

é
.

Here we use that the minimal separation between active frequencies of W(ξ)⊗
W(ξ′) and the 0 frequency is given by λq+1σ for ξ′ = −ξ, and by cΛλq+1 ≥ λq+1σ

for ξ′ 6= −ξ. We proceed to estimate each symmetrized summand E(ξ,ξ′)+E(ξ′,ξ)

individually. We split

E(ξ,ξ′) + E(ξ′,ξ) = P 6=0

Ä
P≥λq+1σ/2

Ä
W(ξ) ⊗W(ξ′) + W(ξ′) ⊗W(ξ)

ä
∇
Ä
a(ξ)a(ξ′)

ää
+ P 6=0

Ä
a(ξ)a(ξ′)div

Ä
W(ξ) ⊗W(ξ′) + W(ξ′) ⊗W(ξ)

ää
=: E(ξ,ξ′,1) + E(ξ,ξ′,2).

Here we used the fact that E(ξ,ξ′) +E(ξ,ξ′) has zero mean to subtract the mean

from each of the the two terms on the right-hand side of the above. We have

also removed the unnecessary frequency projection P≥λq+1σ/2 from the second

term.
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The term E(ξ,ξ′,1) can easily be estimated using Lemmas 4.4 and B.1,

estimate (B.2), with λ = `−1, Ca = `−2, κ = λq+1σ/2, and L sufficiently large, as

∥∥∥RE(ξ,ξ′,1)

∥∥∥
Lp
.
∥∥∥|∇|−1E(ξ,ξ′,1)

∥∥∥
Lp

.
∥∥∥|∇|−1 P 6=0

Ä
P≥λq+1σ/2

Ä
W(ξ) ⊗W(ξ′)

ä
∇
Ä
a(ξ)a(ξ′)

ää∥∥∥
Lp

.
1

`2λq+1σ

(
1 +

1

`L (λq+1σ)L−2

)∥∥∥W(ξ) ⊗W(ξ′)

∥∥∥
Lp

.
1

`2λq+1σ

∥∥∥W(ξ)

∥∥∥
L2p

∥∥∥W(ξ′)

∥∥∥
L2p

.
r3−3/p

`2λq+1σ
.

In the last inequality above we have used the estimate (3.18), and in the second

to last inequality we have used that for b sufficiently large and L sufficiently

large, we have `−L(λq+1σ)2−L . 1. Indeed, this inequality holds under the

conditions L ≥ 3 and b(L− 2)/16 ≥ 20L. After summing in i and ξ we incur an

additional loss of `−1. By (5.8) this bound is consistent with (5.2).

For the term E(ξ,ξ′,2), we split into two cases: ξ + ξ′ 6= 0 and ξ + ξ′ = 0.

Let us first consider the case ξ+ξ′ 6= 0. Applying the identity (3.16) and using

(3.14), we have

a(ξ)a(ξ′)div
Ä
W(ξ) ⊗W(ξ′) + W(ξ′) ⊗W(ξ)

ä
= a(ξ)a(ξ′)

ÄÄ
W(ξ′) · ∇

Ä
η(ξ)η(ξ′)

ää
W(ξ) +

Ä
W(ξ) · ∇

Ä
η(ξ)η(ξ′)

ää
W(ξ′)

ä
+ a(ξ)a(ξ′)η(ξ)η(ξ′)∇

Ä
W(ξ) ·W(ξ′)

ä
= a(ξ)a(ξ′)P≥cΛλq+1

Ä
∇
Ä
η(ξ)η(ξ′)

ä Ä
W(ξ′) ⊗W(ξ) +W(ξ) ⊗W(ξ′)

ää
+∇

Ä
a(ξ)a(ξ′)W(ξ) ·W(ξ′)

ä
−∇

Ä
a(ξ)a(ξ′)

ä
P≥cΛλq+1

Ä
W(ξ) ·W(ξ′)

ä
− a(ξ)a(ξ′)P≥cΛλq+1

Ä
(W(ξ) ·W(ξ′))∇(η(ξ)η(ξ′))

ä
.

The second term is a pressure, and to the remaining terms we apply the inverse

divergence operator R. We estimate R applied to the third term analogously

to E(ξ,ξ′,1), and R applied to the fourth term can be estimated similarly to the

first term. Thus it suffices to estimate R applied to the first term. Applying

(3.19), Lemma 4.4, estimate (B.2) of Lemma B.1, with λ = `−1, Ca = `−2,

κ = cΛλq+1, and for b and L sufficiently large (L ≥ 3 and b(L − 2) ≥ 20L
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suffices), we obtain∥∥∥R Äa(ξ)a(ξ′)P≥cΛλq+1

Ä
∇
Ä
η(ξ)η(ξ′)

ä
(W(ξ′) ⊗W(ξ) +W(ξ) ⊗W(ξ′))

ää∥∥∥
Lp

. `−2

(
1 +

1

`LλL−2
q+1

) ∥∥∥∇ Äη(ξ)η(ξ′)

ä∥∥∥
Lp

λq+1

.
σr4−3/p

`2
.

Summing in ξ and i we lose an additional `−1 factor. By (5.8) this bound is

consistent with (5.2).

Now let us consider E(ξ,ξ′,2) for the case ξ + ξ′ = 0. Applying the identity

(3.17), we have

E(ξ,−ξ,2) = P 6=0

Å
a2

(ξ)∇η
2
(ξ) − a

2
(ξ)

ξ

µ
∂t
Ä
η2

(ξ)

äã
= ∇

Ä
a2

(ξ)P≥λq+1σ/2

Ä
η2

(ξ)

ää
− P6=0

Ä
P≥λq+1σ/2

Ä
η2

(ξ)

ä
∇a2

(ξ)

ä
− 1

µ
∂tP6=0

Ä
a2

(ξ)η
2
(ξ)ξ
ä

+
1

µ
P 6=0

Ä
η2

(ξ)∂t
Ä
a2

(ξ)

ä
ξ
ä
.

(5.13)

Here we have used that P6=0η
2
(ξ) = P≥λq+1σ/2η

2
(ξ), which holds since η(ξ) is

(T/λq+1σ)3-periodic. Hence, summing in ξ and i, using that η(ξ) = η(−ξ), pairing

with the ∂tw
(t)
q+1 present in (5.10), recalling the definition of w

(t)
q+1 in (4.20), and

noting that Id− PH = ∇∆−1div , we obtain∑
i

∑
ξ∈Λ+

(i)

E(ξ,−ξ,2) + ∂tw
(t)
q+1

= ∇

Ö∑
i

∑
ξ∈Λ+

(i)

a2
(ξ)P≥λq+1σ/2

Ä
η2

(ξ)

äè
−
∑
i

∑
ξ∈Λ+

(i)

P 6=0

Ä
P≥λq+1σ/2

Ä
η2

(ξ)

ä
∇a2

(ξ)

ä
−∇

Ö∑
i

∑
ξ∈Λ+

(i)

1

µ
∆−1div ∂t

Ä
a2

(ξ)η
2
(ξ)ξ
äè

+
1

µ

∑
i

∑
ξ∈Λ+

(i)

P6=0

Ä
η2

(ξ)∂t
Ä
a2

(ξ)

ä
ξ
ä
.

(5.14)

The first and third terms are pressure terms, and to the remaining terms we

apply the inverse divergence operator R. Thus it suffices to estimate R applied

to the second and the last term above. We split the second term of (5.14) into

its summands, apply R, and estimate each term individually, similarly to the
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estimate of RE(ξ,ξ′,1). Using (3.19), Lemma 4.4 and Lemma B.1, estimate

(B.2), with λ = `−1, Ca = `−2, κ = λq+1σ/2, and for b and L sufficiently large

(L ≥ 3 and b(L− 2)/16 ≥ 20L), we obtain

∥∥∥R ÄP≥λq+1σ/2(η
2
(ξ))∇a

2
(ξ)

ä∥∥∥
Lp
.

1

`2λq+1σ

(
1 +

1

`L (λq+1σ)L−2

)∥∥∥η2
(ξ)

∥∥∥
Lp

.
r3−3/p

`2λq+1σ
.

(5.15)

Summing over ξ and i we lose a factor of `−1. Lastly, applying R to the

last term on the right side of (5.14), the bound on each summand is a simple

consequence of (3.19) and Lemma 4.4:∥∥∥∥∥∥∥∥R
Ö

1

µ

∑
i

∑
ξ∈Λ+

(i)

P 6=0

Ä
∂t(a

2
(ξ))η

2
(ξ)ξ
äè∥∥∥∥∥∥∥∥

Lp

(5.16)

.
1

µ

∑
i

∑
ξ∈Λ+

(i)

∥∥∥∂t(a2
(ξ))η

2
(ξ)ξ

∥∥∥
Lp

.
1

µ

∑
i

∑
ξ∈Λ+

(i)

∥∥∥a(ξ)

∥∥∥
C1
t,x

∥∥∥a(ξ)

∥∥∥
L∞

∥∥∥η(ξ)

∥∥∥2

L2p

.
1

µ

∑
i

`−1δ
1/2
q+12ir3−3/p

.
`−2r3−3/p

µ
.

r3−3/p

`2λq+1σ
,

where we have used that λq+1σ ≤ µ. Using (5.8), the bounds (5.15) and (5.16)

are consistent with (5.2), which concludes the proof of Proposition 5.1.

6. The energy iterate

Lemma 6.1. For all t and t′ satisfying |t− t′| ≤ 2`, and all i ≥ 0, we

have ∣∣e(t′)− e(t′′)∣∣ . `1/2,(6.1) ∣∣∣∣ˆ
T3

|vq(x, t)|2 dx−
ˆ
T3

∣∣vq(x, t′)∣∣2 dx∣∣∣∣ . `1/2,(6.2) ∣∣∣∣ˆ
T3

Ä
χ2
i (x, t)− χ2

i (x, t
′)
ä
dx

∣∣∣∣ . `1/2,(6.3) ∣∣ρ(t)− ρ(t′)
∣∣ . `1/2.(6.4)
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Proof of Lemma 6.1. In the proof of the lemma, we crudely use a factor

of λq to absorb constants. First note that (6.1) follows immediately from the

assumed estimate ‖e‖C1
t
≤Me. Using (2.2) we have∣∣∣∣ˆ

T3

|vq(x, t)|2 dx−
ˆ
T3

∣∣vq(x, t′)∣∣2 dx∣∣∣∣ . ` ‖vq‖2C1
t,x
. λ8

q`,

which implies (6.2). The estimate (6.3) follows in a similar fashion, from

Lemma 4.2. Finally, (6.4) follows directly from the definition of ρ(t), (4.34)

and the bounds (6.1)–(6.3) above. �

Lemma 6.2. If ρ0(t) 6= 0, then the energy of vq+1 satisfies the following

estimate:

(6.5)

∣∣∣∣e(t)− ˆ
T3

|vq+1(x, t)|2 dx− δq+2

2

∣∣∣∣ ≤ δq+2

4
.

Note that the above lemma implies that if ρ0(t) 6= 0, then

e(t)−
ˆ
T3

|vq(x, t)|2 dx >
δq+1

100
,

and thus (2.6) is an empty statement for such times.

Proof of Lemma 6.2. By definition we have

ˆ
T3

|vq+1(x, t)|2 dx =

ˆ
T3

|v`(x, t)|2 dx

+ 2

ˆ
T3

wq+1(x, t) · v`(x, t) dx+

ˆ
T3

|wq+1(x, t)|2 dx.

(6.6)

Using (4.14), similarly to (4.23), we have thatˆ
T3

∣∣∣w(p)
q+1(x, t)

∣∣∣2 dx− 3
∑
i≥0

ρi

ˆ
T3

χ2
(i)(x, t) dx

=
∑
i,j≥0

∑
ξ∈Λ(i),ξ

′∈Λ(j)

ˆ
T3

a(ξ)a(ξ′)P≥λq+1σ/2(W(ξ) ·W(−ξ′))dx =: Eρ(t).

Using the standard integration by parts argument

|
ˆ
T3

fP≥µgdx| = |
ˆ
T3

|∇|L f |∇|−L P≥µgdx| . ‖g‖L2 µ
−L ‖f‖CL ,

with L sufficiently large, we obtain from (4.38), since `−1 � λq+1σ, that∣∣∣∣∣∣
ˆ
T3

∣∣∣w(p)
q+1(x, t)

∣∣∣2 dx− 3
∑
i≥0

ρi

ˆ
T3

χ2
(i)(x, t) dx

∣∣∣∣∣∣ = |Eρ(t)| ≤ `
1/2.(6.7)
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We consider two sub-cases: ρ(t) 6= 0 and ρ(t) = 0. First consider the case

ρ(t) 6= 0; then using the definition of ρ, we obtain

3
∑
i≥0

ρi

ˆ
T3

χ2
(i)(x, t) dx

= 3ρ(t)

ˆ
T3

χ2
(0)(x, t) dx

+ 3 (ρ0(t)− ρ(t))

ˆ
T3

χ2
(0)(x, t) dx+ 3

∑
i≥1

ρi

ˆ
T3

χ2
(i)(x, t) dx

= e(t)−
ˆ
T3

|vq(x, t)|2 dx+ 3 (ρ0(t)− ρ(t))

ˆ
T3

χ2
0(x, t) dx− δq+2

2
.

For the case that ρ(t) = 0, we have that by continuity for some t′ ∈ (t−`, t+`),

e(t′)−
ˆ
T3

∣∣vq(x, t′)∣∣2 dx− 3
∑
i≥1

ρi

ˆ
T3

χ2
i (x, t

′) dx− δq+2

2
= 0.

Thus applying Lemma 6.1 we conclude that for either case ρ(t) 6= 0 or ρ(t) = 0,∣∣∣∣∣∣3∑i≥0

ρi

ˆ
T3

χ2
(i)(x, t) dx− e(t) +

ˆ
T3

|vq(x, t)|2 dx+
δq+2

2

∣∣∣∣∣∣ . `1/2.(6.8)

When ρ(t) 6= 0, in the above estimate we have used the bound |ρ0(t)− ρ(t)| .
`1/2, which follows from the definition of ρ0 in (4.26) and the estimate (6.4)

established earlier.

Observe that using (2.2), the definition of v`, and (4.7) we have

∣∣∣∣ˆ
T3

|vq(x, t)|2dx−
ˆ
T3

|v`(x, t)|2dx
∣∣∣∣ . ‖vq‖L∞ ‖v` − vq‖L∞ . λ8

q` . `
1/2.

(6.9)

Further, using also (3.13), (4.8), (4.38), and integration by parts, we obtain∣∣∣∣ˆ
T3

wq+1(x, t) · v`(x, t)
∣∣∣∣ dx ≤ ∥∥∥w(c)

q+1 + w
(t)
q+1

∥∥∥
L2
‖v`‖C1

+
∑
i≥0

∑
ξ∈Λ(i)

∣∣∣∣ˆ
T3

a(ξ)W(ξ)(x, t) · v`(x, t) dx
∣∣∣∣

. `−2r3/2µ−1 +
∑
i≥0

∑
ξ∈Λ(i)

λ−Nq+1

∥∥∥a(ξ)v`
∥∥∥
CN

. `−2λ
−1/8
q+1 + λ−Nq+1`

−N−2.

In the last line we have used (4.15) and the fact that summing over ξ and i

costs at most an extra `−1. Taking N sufficiently large, we obtain∣∣∣∣ˆ
T3

wq+1(x, t) · v`(x, t)
∣∣∣∣ dx . `−2λ

−1/8
q+1 . `

1/2,(6.10)
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upon taking b ≥ 400. Using (4.40) and (4.41) yields∣∣∣∣ˆ
T3

|wq+1(x, t)|2dx−
ˆ
T3

∣∣∣w(p)
q+1(x, t)

∣∣∣2 dx∣∣∣∣
.
(
‖wq+1‖L2 +

∥∥∥w(p)
q+1

∥∥∥
L2

) (∥∥∥w(c)
q+1

∥∥∥
L2

+
∥∥∥w(t)

q+1

∥∥∥
L2

)
. δq+1`

−1µ−1

. `1/2.

(6.11)

Thus we conclude from (6.6), (6.7), (6.8), (6.10) and (6.11) that∣∣∣∣e(t)− ˆ
T3

|vq+1(x, t)|2 dx− δq+2

2

∣∣∣∣ . `1/2,

from which (6.5) immediately follows. �

Lemma 6.3. If ρ0(t) = 0, then vq+1(·, t) ≡ 0, R̊q+1(·, t) ≡ 0 and

e(t)−
ˆ
T
|vq+1(x, t)|2 ≤ 3δq+2

4
.(6.12)

Proof of Lemma 6.3. Since ρ0(t) = 0, it follows from the definition of ρ0

and ρ that for all t′ ∈ (t− `, t+ `), we have

e(t′)−
ˆ
T3

∣∣vq(x, t′)∣∣2 dx− 3
∑
i≥1

ρi

ˆ
T3

χ2
i (x, t

′) dx ≤ δq+2

2
.

Using (4.35), this implies that

e(t′)−
ˆ
T3

∣∣vq(x, t′)∣∣2 dx− δq+2

2
. λ−εRq δq+1.(6.13)

Using that λ−εRq and the ratio δq+2δ
−1
q+1 can absorb any constant, from (2.6)

we conclude that vq(·, t′) ≡ 0 and R̊q(·, t′) ≡ 0 for all t′ ∈ (t− `, t+ `). Hence

v`(·, t) ≡ 0 and R̊`(·, t) ≡ 0. This in turn implies that χi(·, t) ≡ 0 for all i ≥ 1.

Since in addition ρ0(t) = 0, it follows by (4.12) that a(ξ)(·, t) = 0 for all i ≥ 0,

and thus that wq+1(·, t) ≡ 0. Hence we have that vq+1(·, t) ≡ 0. Moreover,

since the {χi(x, t)}i≥1 and ρ
1/2
0 (t) are nonnegative smooth functions, it follows

that ∂tχi(·, t) ≡ 0 for all i ≥ 1 and that ∂tρ
1/2
0 (t) = 0. Hence we also obtain

∂ta(ξ)(·, t) ≡ 0, and from the definition of wq+1 we have ∂twq+1(·, t) ≡ 0. Since

vq vanishes on (t − `, t + `) and v`, wq+1, ∂twq+1, R̊`, all vanish at time t, it

follows from (4.3) and (5.7) that ‹R(·, t) ≡ 0, and therefore R̊q+1(·, t) ≡ 0.

Using (6.13) and (6.9) (note that `−1/4 may be used to absorb constants),

we obtain

e(t)−
ˆ
T3

|vq+1(x, t)|2 = e(t)−
ˆ
T3

|vq(x, t)|2 +

ˆ
T3

|vq(x, t)|2 −
ˆ
T3

|v`(x, t)|2

≤ 5δq+2

8
+ `

1/4 ≤ 3δq+2

4
.
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In the last inequality we used that βb2 is sufficiently small. Hence we obtain

(6.12). �

We conclude this section by using Lemmas 6.2 and 6.3 to conclude (2.5)

and (2.6) for q+1. Observe that the estimates (6.5) and (6.12), together imply

(2.5) for q + 1. From (6.5), if

e(t)−
ˆ
T3

|vq+1(x, t)|2 dx ≤ δq+2

100
,

then ρ0(t) = 0. Hence from Lemma 6.3 we obtain that vq+1 ≡ 0 and R̊q+1 ≡ 0,

from which we conclude (2.6).

Appendix A. Lp product estimate

Proof of Lemma 3.7. For convenience we give here the proof from [5]. We

first consider the case p = 1. With these assumptions we have

‖fg‖L1 ≤
∑
j

ˆ
Tj

|fg| ,

where Tj are cubes of side-length 2π
κ . For any function h, let hj denote its

mean on the cube Tj . Observe that for x ∈ Tj , we have

|f(x)| =
∣∣∣f j + f(x)− f j

∣∣∣
≤
∣∣∣f j∣∣∣+ sup

Tj

∣∣∣f(x)− f j
∣∣∣

≤
∣∣∣f j∣∣∣+ 2π

√
3

κ
sup
Tj

|Df |

≤
∣∣∣f j∣∣∣+ 2π

√
3

κ

∣∣∣Dfj∣∣∣+ 2π
√

3

κ
sup
Tj

∣∣∣Df −Df j∣∣∣
≤
∣∣∣f j∣∣∣+ 2π

√
3

κ

∣∣∣Dfj∣∣∣+ 6π

κ2
sup
Tj

∣∣∣D2f
∣∣∣

≤
∣∣∣f j∣∣∣+ 2π

√
3

κ

∣∣∣Dfj∣∣∣+ 6π

κ2
sup
Tj

∣∣∣D2f j

∣∣∣+ 6π

κ2
sup
Tj

∣∣∣D2f −D2f j

∣∣∣ .
Iterating this procedure M times we see that on Tj we have the pointwise

estimate

|f | ≤
M∑
m=0

(2π
√

3κ−1)m
∣∣∣Dmf j

∣∣∣+ (2π
√

3κ−1)M‖DMf‖L∞ .
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Upon multiplying the above by |g| and integrating over Tj , and then summing

over j, we obtain

‖fg‖L1(T3) ≤
∑
j

ˆ
Tj

(
|g|

M∑
m=0

(2π
√

3κ−1)m
∣∣∣Dmf j

∣∣∣) dx
+ (2π

√
3κ−1)M‖DMf‖L∞‖g‖L1

≤
M∑
m=0

(2π
√

3κ−1)m

Ñ∑
j

1

|Tj |
‖Dmf‖L1(Tj)

‖g‖L1(Tj)

é
+ (2π

√
3κ−1)M‖DMf‖L∞‖g‖L1 .

Since g is a Tj-periodic function, we have

‖g‖L1(T3) =
|T3|
|Tj |
‖g‖L1(Tj)

for any value of j, and since the interiors of the {Tj} are mutually disjoint,

based on the assumption on the L1 cost of a derivative acting on f and the

Sobolev embedding, we conclude from the above that (here we used the Sobolev

embedding of W d+1,1 ⊂ L∞)

‖fg‖L1(T3) ≤
1

|T3|
‖g‖L1(T3)

M∑
m=0

(2π
√

3κ−1)m ‖Dmf‖L1(T3)

+ (2π
√

3κ−1)M‖DM+4f‖L1‖g‖L1

≤ 1

|T3|
‖g‖L1(T3)

M∑
m=0

(2π
√

3κ−1)mλmCf

+ (2π
√

3κ−1)MλM+4Cf‖g‖L1

≤ (1 + 2|T3|)Cf‖g‖L1(T3).

The case p = 2 follows from the case p = 1 applied to the functions f2 and g2,

and from the bound

‖Dm(f2)‖L1 ≤
m∑
k=0

Ç
m

k

å
‖Dkf‖L2‖Dm−kf‖L2 ≤

m∑
k=0

Ç
m

k

å
λmC2

f = (2λ)mC2
f .

Here we are thus using that 4π
√

3λκ−1 ≤ 2/3 < 1 so that we have a geometric

sum. �

Appendix B. Commutator estimate

Lemma B.1. Fix κ ≥ 1, p ∈ (1, 2], and a sufficiently large L ∈ N. Let

a ∈ CL(T3) be such that there exists 1 ≤ λ ≤ κ, and Ca > 0 with∥∥∥Dja
∥∥∥
L∞
≤ Caλj(B.1)
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for all 0 ≤ j ≤ L. Assume furthermore that
´
T3 a(x)P≥κf(x)dx = 0. Then we

have ∥∥∥|∇|−1(a P≥κf)
∥∥∥
Lp
. Ca

Ç
1 +

λL

κL−2

å
‖f‖Lp
κ

(B.2)

for any f ∈ Lp(T3), where the implicit constant depend on p and L.

Proof of Lemma B.1. We have that

|∇|−1(a P≥κf) = |∇|−1(P≤κ/2a P≥κf) + |∇|−1(P≥κ/2a P≥κf)

= (P≥κ/2|∇|−1)(P≤κ/2a P≥κf) + |∇|−1(P≥κ/2a P≥κf).
(B.3)

Note that
´
T3 P≥κ/2g(x)dx = 0 for any function g, and thus the assumption

that aP≥κf has zero mean on T3 implies that P≥κ/2aP≥κf also has zero mean

on T3. We then use ∥∥∥|∇|−1P≥κ/2
∥∥∥
Lp→Lp

.
1

κ
,

which is a direct consequence of the Littlewood-Paley decomposition, and the

bound ∥∥∥|∇|−1P 6=0

∥∥∥
Lp→Lp

. 1,

which is a direct consequence of Schauder estimates (see [22]). Combining

these facts and appealing to the embedding W 1,4(T3) ⊂ L∞(T3), we obtain∥∥∥|∇|−1(a P≥κf)
∥∥∥
Lp
.

1

κ

∥∥∥P≤κ/2a P≥κf
∥∥∥
Lp

+
∥∥∥P≥κ/2a P≥κf

∥∥∥
Lp

.
(
‖a‖L∞ + κ

∥∥∥DP≥κ/2a
∥∥∥
L4

) ‖f‖Lp
κ

.
(
‖a‖L∞ + κ2−L

∥∥∥DLP≥κ/2a
∥∥∥
L4

) ‖f‖Lp
κ

.

Ñ
‖a‖L∞ + κ2

∥∥∥DLa
∥∥∥
L∞

κL

é
‖f‖Lp
κ

.

The proof of (B.2) is concluded in view of assumption (B.1). �
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[39] P. G. Lemarié-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC

Press, Boca Raton, FL, 2016. MR 3469428. Zbl 1342.76029. https://doi.org/10.

1201/b19556.

http://www.ams.org/mathscinet-getitem?mr=3179576
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1301.35089
https://doi.org/10.1007/s00222-013-0468-x
https://doi.org/10.1007/s00222-013-0468-x
http://www.ams.org/mathscinet-getitem?mr=3341963
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1317.35176
https://doi.org/10.1016/j.jfa.2015.04.006
https://doi.org/10.1016/j.jfa.2015.04.006
http://www.ams.org/mathscinet-getitem?mr=0760047
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0545.35073
https://doi.org/10.1007/BF01174182
http://www.ams.org/mathscinet-getitem?mr=0100448
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0078.39801
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0078.39801
http://mi.mathnet.ru/eng/izv/v21/i5/p655
http://www.ams.org/mathscinet-getitem?mr=1808843
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0972.35084
https://doi.org/10.1006/aima.2000.1937
https://doi.org/10.1006/aima.2000.1937
http://www.ams.org/mathscinet-getitem?mr=2214942
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1105.35080
https://doi.org/10.1016/j.jde.2005.07.005
http://www.ams.org/mathscinet-getitem?mr=2229985
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1105.35081
https://doi.org/10.1007/s10884-006-9010-9
https://doi.org/10.1007/s10884-006-9010-9
http://www.ams.org/mathscinet-getitem?mr=2399434
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1147.35071
https://doi.org/10.3934/dcds.2008.21.717
http://www.ams.org/mathscinet-getitem?mr=0236541
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0194.12805
http://www.ams.org/mathscinet-getitem?mr=1738171
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0954.35129
https://doi.org/10.1007/s000210050015
https://doi.org/10.1007/s000210050015
http://www.ams.org/mathscinet-getitem?mr=1938147
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1034.35093
https://doi.org/10.1201/9781420035674
https://doi.org/10.1201/9781420035674
http://www.ams.org/mathscinet-getitem?mr=3469428
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1342.76029
https://doi.org/10.1201/b19556
https://doi.org/10.1201/b19556


NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 143

[40] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta

Math. 63 no. 1 (1934), 193–248. MR 1555394. Zbl 60.0726.05. https://doi.org/

10.1007/BF02547354.

[41] F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure

Appl. Math. 51 no. 3 (1998), 241–257. MR 1488514. Zbl 0958.35102. Available

at https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0312%

28199712%2950%3A12%3C1261%3A%3AAID-CPA3%3E3.0.CO%3B2-6.

[42] P.-L. Lions and N. Masmoudi, Uniqueness of mild solutions of the Navier-

Stokes system in LN , Comm. Partial Differential Equations 26 no. 11-12

(2001), 2211–2226. MR 1876415. Zbl 1086.35077. https://doi.org/10.1081/

PDE-100107819.
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