Abstract
We compute the $1$-line of stable homotopy groups of motivic spheres over fields of characteristic not two in terms of hermitian and Milnor $K$-groups. This is achieved by solving questions about convergence and differentials in the slice spectral sequence.
-
[zbMATH03222619]
J. F. Adams, "On the groups $J(X)$. I," Topology, vol. 2, iss. 3, pp. 181-195, 1963.
@ARTICLE{zbMATH03222619,
author = {Adams, J. F.},
title = {On the groups {$J(X)$}. {I}},
journal = {Topology},
fjournal = {Topology. An International Journal of Mathematics},
volume = {2},
number = {3},
year = {1963},
pages = {181--195},
issn = {0040-9383},
mrclass = {55.40 (55.50)},
mrnumber = {0159336},
mrreviewer = {E. Dyer},
doi = {10.1016/0040-9383(63)90001-6},
url = {https://doi.org/10.1016/0040-9383(63)90001-6},
zblnumber = {},
} -
[andrews-miller]
M. Andrews and H. Miller, "Inverting the Hopf map," J. Topol., vol. 10, iss. 4, pp. 1145-1168, 2017.
@ARTICLE{andrews-miller,
author = {Andrews, Michael and Miller, Haynes},
title = {Inverting the {H}opf map},
journal = {J. Topol.},
fjournal = {Journal of Topology},
volume = {10},
year = {2017},
number = {4},
pages = {1145--1168},
issn = {1753-8416},
mrclass = {14F42 (55T15)},
mrnumber = {3743072},
doi = {10.1112/topo.12034},
url = {https://doi.org/10.1112/topo.12034},
zblnumber = {06827937},
} -
[asok-fasel.splitting]
A. Asok and J. Fasel, "Splitting vector bundles outside the stable range and $\Bbb{A}^1$-homotopy sheaves of punctured affine spaces," J. Amer. Math. Soc., vol. 28, iss. 4, pp. 1031-1062, 2015.
@ARTICLE{asok-fasel.splitting,
author = {Asok, Aravind and Fasel, Jean},
title = {Splitting vector bundles outside the stable range and {$\Bbb{A}^1$}-homotopy sheaves of punctured affine spaces},
journal = {J. Amer. Math. Soc.},
fjournal = {Journal of the Amer. Math. Soc.},
volume = {28},
year = {2015},
number = {4},
pages = {1031--1062},
issn = {0894-0347},
mrclass = {14F42 (13C10 14J60 19A13 19D45)},
mrnumber = {3369908},
mrreviewer = {Daniel C. Isaksen},
doi = {10.1090/S0894-0347-2014-00818-3},
url = {https://doi.org/10.1090/S0894-0347-2014-00818-3},
zblnumber = {1329.14045},
} -
[asok-fasel.degree]
A. Asok and J. Fasel, "An explicit $KO$-degree map and applications," J. Topol., vol. 10, iss. 1, pp. 268-300, 2017.
@ARTICLE{asok-fasel.degree,
author = {Asok, Aravind and Fasel, Jean},
title = {An explicit {$KO$}-degree map and applications},
journal = {J. Topol.},
fjournal = {Journal of Topology},
volume = {10},
year = {2017},
number = {1},
pages = {268--300},
issn = {1753-8416},
mrclass = {14F42 (19E15 19G38 55R45)},
mrnumber = {3653068},
mrreviewer = {Satoshi Mochizuki},
doi = {10.1112/topo.12007},
url = {https://doi.org/10.1112/topo.12007},
zblnumber = {06778834},
} -
[asok-wickelgren-williams]
A. Asok, K. Wickelgren, and B. Williams, "The simplicial suspension sequence in $\Bbb{A}^1$-homotopy," Geom. Topol., vol. 21, iss. 4, pp. 2093-2160, 2017.
@ARTICLE{asok-wickelgren-williams,
author = {Asok, Aravind and Wickelgren, Kirsten and Williams, Ben},
title = {The simplicial suspension sequence in {$\Bbb{A}^1$}-homotopy},
journal = {Geom. Topol.},
fjournal = {Geometry \& Topology},
volume = {21},
year = {2017},
number = {4},
pages = {2093--2160},
issn = {1465-3060},
mrclass = {14F42 (19E15 55Q15 55Q20 55Q25)},
mrnumber = {3654105},
mrreviewer = {Daniel C. Isaksen},
doi = {10.2140/gt.2017.21.2093},
url = {https://doi.org/10.2140/gt.2017.21.2093},
zblnumber = {1365.14027},
} -
[zbMATH03176572] M. F. Atiyah and F. Hirzebruch, "Vector bundles and homogeneous spaces," in Proc. Sympos. Pure Math., Vol. III, Amer. Math. Soc., Providence, RI, 1961, pp. 7-38.
@INCOLLECTION{zbMATH03176572,
author = {Atiyah, M. F. and Hirzebruch, F.},
title = {Vector bundles and homogeneous spaces},
booktitle = {Proc. {S}ympos. {P}ure {M}ath., {V}ol. {III}},
pages = {7--38},
publisher = {Amer. Math. Soc., Providence, RI},
year = {1961},
mrclass = {57.30 (14.52)},
mrnumber = {0139181},
mrreviewer = {R. Bott},
zblnumber = {0108.17705},
} -
[bass-tate]
H. Bass and J. Tate, "The Milnor ring of a global field," in Algebraic $K$-theory, II: “Classical” Algebraic $K$-Theory and Connections with Arithmetic, Springer, Berlin, 1973, vol. 342, pp. 349-446.
@incollection{bass-tate,
author = {Bass, H. and Tate, J.},
TITLE = {The {M}ilnor ring of a global field},
BOOKTITLE = {Algebraic {$K$}-theory, {II}: ``{C}lassical'' Algebraic {$K$}-Theory and Connections with Arithmetic},
venue={{P}roc. {C}onf., {S}eattle, {W}ash., {B}attelle {M}emorial {I}nst., 1972},
PAGES = {349--446},
SERIES = {Lecture Notes in Math.},
VOLUME = {342},
PUBLISHER = {Springer, Berlin},
YEAR = {1973},
MRCLASS = {18F25 (12F05 12A65)},
MRNUMBER = {0442061},
MRREVIEWER = {T.-Y. Lam},
DOI = {10.1007/BFb0073733},
URL = {https://doi.org/10.1007/BFb0073733},
ZBLNUMBER = {0299.12013},
} -
[Boardman]
M. J. Boardman, "Conditionally convergent spectral sequences," in Homotopy Invariant Algebraic Structures, Amer. Math. Soc., Providence, RI, 1999, vol. 239, pp. 49-84.
@INCOLLECTION{Boardman,
author = {Boardman, J. Michael},
title = {Conditionally convergent spectral sequences},
booktitle = {Homotopy Invariant Algebraic Structures},
venue = {{B}altimore, {MD},
1998},
series = {Contemp. Math.},
volume = {239},
pages = {49--84},
publisher = {Amer. Math. Soc., Providence, RI},
year = {1999},
mrclass = {55T05 (18A30 18G40)},
mrnumber = {1718076},
mrreviewer = {John McCleary},
doi = {10.1090/conm/239/03597},
url = {https://doi.org/10.1090/conm/239/03597},
zblnumber = {0947.55020},
} -
[borel]
A. Borel, "Stable real cohomology of arithmetic groups," Ann. Sci. École Norm. Sup. (4), vol. 7, pp. 235-272 (1975), 1974.
@ARTICLE{borel,
author = {Borel, Armand},
title = {Stable real cohomology of arithmetic groups},
journal = {Ann. Sci. École Norm. Sup. (4)},
fjournal = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
volume = {7},
year = {1974},
pages = {235--272 (1975)},
issn = {0012-9593},
mrclass = {22E40 (20G10)},
mrnumber = {0387496},
mrreviewer = {Howard Garland},
url = {http://www.numdam.org/item?id=ASENS_1974_4_7_2_235_0},
doi = {10.24033/asens.1269},
ZBLNUMBER = {0316.57026},
} -
[cisinski-deglise]
D. Cisinski and F. Déglise, "Étale motives," Compos. Math., vol. 152, iss. 3, pp. 556-666, 2016.
@ARTICLE{cisinski-deglise,
author = {Cisinski, Denis-Charles and Déglise, Frédéric},
title = {\'{E}tale motives},
journal = {Compos. Math.},
fjournal = {Compositio Mathematica},
volume = {152},
year = {2016},
number = {3},
pages = {556--666},
issn = {0010-437X},
mrclass = {14F20 (14F42)},
mrnumber = {3477640},
mrreviewer = {Matthias Wendt},
doi = {10.1112/S0010437X15007459},
url = {https://doi.org/10.1112/S0010437X15007459},
zblnumber = {0316.57026},
} -
[dugger-isaksen.cell]
D. Dugger and D. C. Isaksen, "Motivic cell structures," Algebr. Geom. Topol., vol. 5, pp. 615-652, 2005.
@ARTICLE{dugger-isaksen.cell,
author = {Dugger, Daniel and Isaksen, Daniel C.},
title = {Motivic cell structures},
journal = {Algebr. Geom. Topol.},
fjournal = {Algebraic \& Geometric Topology},
volume = {5},
year = {2005},
pages = {615--652},
issn = {1472-2747},
mrclass = {55U35 (14F42)},
mrnumber = {2153114},
mrreviewer = {Oliver Röndigs},
doi = {10.2140/agt.2005.5.615},
url = {https://doi.org/10.2140/agt.2005.5.615},
zblnumber = {1086.55013},
} -
[dugger-isaksen.hopf]
D. Dugger and D. C. Isaksen, "Motivic Hopf elements and relations," New York J. Math., vol. 19, pp. 823-871, 2013.
@ARTICLE{dugger-isaksen.hopf,
author = {Dugger, Daniel and Isaksen, Daniel C.},
title = {Motivic {H}opf elements and relations},
journal = {New York J. Math.},
fjournal = {New York Journal of Mathematics},
volume = {19},
year = {2013},
pages = {823--871},
issn = {1076-9803},
mrclass = {14F42 (55Q45)},
mrnumber = {3141814},
mrreviewer = {Kyle M. Ormsby},
url = {http://nyjm.albany.edu:8000/j/2013/19_823.html},
zblnumber = {1361.14019},
} -
[dugger-isaksen.real]
D. Dugger and D. C. Isaksen, "Low-dimensional Milnor-Witt stems over $\Bbb{R}$," Ann. K-Theory, vol. 2, iss. 2, pp. 175-210, 2017.
@ARTICLE{dugger-isaksen.real,
author = {Dugger, Daniel and Isaksen, Daniel C.},
title = {Low-dimensional {M}ilnor-{W}itt stems over {$\Bbb{R}$}},
journal = {Ann. K-Theory},
fjournal = {Annals of K-Theory},
volume = {2},
year = {2017},
number = {2},
pages = {175--210},
issn = {2379-1683},
mrclass = {14F42 (55Q45 55S10 55T15)},
mrnumber = {3590344},
mrreviewer = {Oliver Röndigs},
doi = {10.2140/akt.2017.2.175},
url = {https://doi.org/10.2140/akt.2017.2.175},
zblnumber = {06673993},
} -
[ekm]
R. Elman, N. Karpenko, and A. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, Amer. Math. Soc., Providence, RI, 2008, vol. 56.
@BOOK{ekm,
author = {Elman, Richard and Karpenko, Nikita and Merkurjev, Alexander},
title = {The Algebraic and Geometric Theory of Quadratic Forms},
series = {Amer. Math. Soc. Colloq. Publ.},
volume = {56},
publisher = {Amer. Math. Soc., Providence, RI},
year = {2008},
pages = {viii+435},
isbn = {978-0-8218-4329-1},
mrclass = {11Exx (11-02 11E04 11E81 14C15 14C25)},
mrnumber = {2427530},
mrreviewer = {Andrzej S\l adek},
doi = {10.1090/coll/056},
url = {https://doi.org/10.1090/coll/056},
zblnumber = {1165.11042},
} -
[elman-lam.pfister]
R. Elman and T. Y. Lam, "Pfister forms and $K$-theory of fields," J. Algebra, vol. 23, pp. 181-213, 1972.
@ARTICLE{elman-lam.pfister,
author = {Elman, Richard and Lam, T. Y.},
title = {Pfister forms and {$K$}-theory of fields},
journal = {J. Algebra},
fjournal = {Journal of Algebra},
volume = {23},
year = {1972},
pages = {181--213},
issn = {0021-8693},
mrclass = {18F25 (15A63)},
mrnumber = {0302739},
mrreviewer = {J. S. Hsia},
doi = {10.1016/0021-8693(72)90054-3},
url = {https://doi.org/10.1016/0021-8693(72)90054-3},
zblnumber = {0226.15009},
} -
[geisser.dedekind]
T. Geisser, "Motivic cohomology over Dedekind rings," Math. Z., vol. 248, iss. 4, pp. 773-794, 2004.
@ARTICLE{geisser.dedekind,
author = {Geisser, Thomas},
title = {Motivic cohomology over {D}edekind rings},
journal = {Math. Z.},
fjournal = {Mathematische Zeitschrift},
volume = {248},
year = {2004},
number = {4},
pages = {773--794},
issn = {0025-5874},
mrclass = {14F42 (14G40)},
mrnumber = {2103541},
mrreviewer = {Vladimir I. Guletskiĭ},
doi = {10.1007/s00209-004-0680-x},
url = {https://doi.org/10.1007/s00209-004-0680-x},
zblnumber = {1062.14025},
} -
[grso2] J. J. Gutiérrez, O. Röndigs, M. Spitzweck, and P. A. Østvaer, On (co)localization of algebras over operads.
@MISC{grso2,
author = {Guti{é}rrez, Javier J. and R{ö}ndigs, Oliver and Spitzweck, Markus and {\O}stv{æ}r, Paul Arne},
title = {On (co)localization of algebras over operads},
note = {in preparation},
sortyear={2018},
zblnumber = {},
} -
[grso]
J. J. Gutiérrez, O. Röndigs, M. Spitzweck, and P. A. Østvaer, "Motivic slices and coloured operads," J. Topol., vol. 5, iss. 3, pp. 727-755, 2012.
@ARTICLE{grso,
author = {Guti{é}rrez, Javier J. and R{ö}ndigs, Oliver and Spitzweck, Markus and {\O}stv{æ}r, Paul Arne},
title = {Motivic slices and coloured operads},
journal = {J. Topol.},
fjournal = {Journal of Topology},
volume = {5},
year = {2012},
number = {3},
pages = {727--755},
issn = {1753-8416},
mrclass = {14F42 (18D50 55P43)},
mrnumber = {2971612},
mrreviewer = {Daniel C. Isaksen},
doi = {10.1112/jtopol/jts015},
url = {https://doi.org/10.1112/jtopol/jts015},
zblnumber = {1258.18012},
} -
[ho.galois]
J. Heller and K. Ormsby, "Galois equivariance and stable motivic homotopy theory," Trans. Amer. Math. Soc., vol. 368, iss. 11, pp. 8047-8077, 2016.
@ARTICLE{ho.galois,
author = {Heller, J. and Ormsby, K.},
title = {Galois equivariance and stable motivic homotopy theory},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the Amer. Math. Soc.},
volume = {368},
year = {2016},
number = {11},
pages = {8047--8077},
issn = {0002-9947},
mrclass = {14F42 (11E81 19E15 55P91)},
mrnumber = {3546793},
mrreviewer = {Daniel C. Isaksen},
doi = {10.1090/tran6647},
url = {https://doi.org/10.1090/tran6647},
zblnumber = {1346.14049},
} -
[hirschhorn] P. S. Hirschhorn, Model Categories and their Localizations, Amer. Math. Soc., Providence, RI, 2003, vol. 99.
@BOOK{hirschhorn,
author = {Hirschhorn, Philip S.},
title = {Model Categories and their Localizations},
series = {Math. Surveys Monogr.},
volume = {99},
publisher = {Amer. Math. Soc., Providence, RI},
year = {2003},
pages = {xvi+457},
isbn = {0-8218-3279-4},
mrclass = {18G55 (55P60 55U35)},
mrnumber = {1944041},
mrreviewer = {David A. Blanc},
zblnumber = {1017.55001},
} -
[HopkinsICM2002] M. J. Hopkins, "Algebraic topology and modular forms," in Proceedings of the International Congress of Mathematicians, Vol. I, 2002, pp. 291-317.
@INPROCEEDINGS{HopkinsICM2002,
author = {Hopkins, M. J.},
title = {Algebraic topology and modular forms},
booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. {I}},
venue = {{B}eijing, 2002},
pages = {291--317},
publisher = {Higher Ed. Press, Beijing},
year = {2002},
mrclass = {11F23 (14H52 55N34 55Q45)},
mrnumber = {1989190},
mrreviewer = {Matthew Ando},
zblnumber = {1031.55007},
} -
[hornbostel.hermitian]
J. Hornbostel, "$A^1$-representability of Hermitian $K$-theory and Witt groups," Topology, vol. 44, iss. 3, pp. 661-687, 2005.
@ARTICLE{hornbostel.hermitian,
author = {Hornbostel, Jens},
title = {{$A^1$}-representability of {H}ermitian {$K$}-theory and {W}itt groups},
journal = {Topology},
fjournal = {Topology. An International Journal of Mathematics},
volume = {44},
year = {2005},
number = {3},
pages = {661--687},
issn = {0040-9383},
mrclass = {19G38 (19G12)},
mrnumber = {2122220},
mrreviewer = {Stefan Gille},
doi = {10.1016/j.top.2004.10.004},
url = {https://doi.org/10.1016/j.top.2004.10.004},
zblnumber = {1078.19004},
} -
[hornbostel.preorient]
J. Hornbostel, "Preorientations of the derived motivic multiplicative group," Algebr. Geom. Topol., vol. 13, iss. 5, pp. 2667-2712, 2013.
@ARTICLE{hornbostel.preorient,
author = {Hornbostel, Jens},
title = {Preorientations of the derived motivic multiplicative group},
journal = {Algebr. Geom. Topol.},
fjournal = {Algebraic \& Geometric Topology},
volume = {13},
year = {2013},
number = {5},
pages = {2667--2712},
issn = {1472-2747},
mrclass = {55P42 (14F42)},
mrnumber = {3116300},
mrreviewer = {Oliver Röndigs},
doi = {10.2140/agt.2013.13.2667},
url = {https://doi.org/10.2140/agt.2013.13.2667},
zblnumber = {1281.55009},
} -
[hovey.modelcategories] M. Hovey, Model Categories, Amer. Math. Soc., Providence, RI, 1999, vol. 63.
@BOOK{hovey.modelcategories,
author = {Hovey, Mark},
title = {Model Categories},
series = {Math. Surveys Monogr.},
volume = {63},
publisher = {Amer. Math. Soc., Providence, RI},
year = {1999},
pages = {xii+209},
isbn = {0-8218-1359-5},
mrclass = {55U35 (18D15 18G30 18G55)},
mrnumber = {1650134},
mrreviewer = {Teimuraz Pirashvili},
zblnumber = {0909.55001},
} -
[hoyois.transfer]
M. Hoyois, "A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula," Algebr. Geom. Topol., vol. 14, iss. 6, pp. 3603-3658, 2014.
@ARTICLE{hoyois.transfer,
author = {Hoyois, Marc},
title = {A quadratic refinement of the {G}rothendieck-{L}efschetz-{V}erdier trace formula},
journal = {Algebr. Geom. Topol.},
fjournal = {Algebraic \& Geometric Topology},
volume = {14},
year = {2014},
number = {6},
pages = {3603--3658},
issn = {1472-2747},
mrclass = {14F42 (11E81 55M20)},
mrnumber = {3302973},
mrreviewer = {Daniel C. Isaksen},
doi = {10.2140/agt.2014.14.3603},
url = {https://doi.org/10.2140/agt.2014.14.3603},
zblnumber = {1351.14013},
} -
[hoyois]
M. Hoyois, "From algebraic cobordism to motivic cohomology," J. Reine Angew. Math., vol. 702, pp. 173-226, 2015.
@ARTICLE{hoyois,
author = {Hoyois, Marc},
title = {From algebraic cobordism to motivic cohomology},
journal = {J. Reine Angew. Math.},
fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
volume = {702},
year = {2015},
pages = {173--226},
issn = {0075-4102},
mrclass = {14F43 (14F42 55N22 55U35)},
mrnumber = {3341470},
mrreviewer = {Christophe Cazanave},
doi = {10.1515/crelle-2013-0038},
url = {https://doi.org/10.1515/crelle-2013-0038},
zblnumber = {1382.14006},
} -
[hko.positivecharacteristic]
M. Hoyois, S. Kelly, and P. A. Østvaer, "The motivic Steenrod algebra in positive characteristic," J. Eur. Math. Soc. (JEMS), vol. 19, iss. 12, pp. 3813-3849, 2017.
@ARTICLE{hko.positivecharacteristic,
author = {Hoyois, Marc and Kelly, Shane and {\O}stv{æ}r, Paul Arne},
title = {The motivic {S}teenrod algebra in positive characteristic},
journal = {J. Eur. Math. Soc. (JEMS)},
fjournal = {Journal of the European Mathematical Society (JEMS)},
volume = {19},
year = {2017},
number = {12},
pages = {3813--3849},
issn = {1435-9855},
mrclass = {14F42 (19E15)},
mrnumber = {3730515},
mrreviewer = {Ramdorai Sujatha},
doi = {10.4171/JEMS/754},
url = {https://doi.org/10.4171/JEMS/754},
zblnumber = {1386.14087},
} -
[hu-kriz-ormsby]
P. Hu, I. Kriz, and K. Ormsby, "Convergence of the motivic Adams spectral sequence," J. $K$-Theory, vol. 7, iss. 3, pp. 573-596, 2011.
@ARTICLE{hu-kriz-ormsby,
author = {Hu, P. and Kriz, I. and Ormsby, K.},
title = {Convergence of the motivic {A}dams spectral sequence},
journal = {J. $K$-{T}heory},
fjournal = {Journal of $K$-Theory. $K$-Theory and its {A}pplications in {A}lgebra, {G}eometry, {A}nalysis \& {T}opology},
volume = {7},
year = {2011},
number = {3},
pages = {573--596},
issn = {1865-2433},
mrclass = {14F42 (55T15)},
mrnumber = {2811716},
mrreviewer = {Matthias Wendt},
doi = {10.1017/is011003012jkt150},
url = {https://doi.org/10.1017/is011003012jkt150},
zblnumber = {1309.14018},
} -
[jardine.motivicsymmetricspectra]
J. F. Jardine, "Motivic symmetric spectra," Doc. Math., vol. 5, pp. 445-552, 2000.
@ARTICLE{jardine.motivicsymmetricspectra,
author = {Jardine, J. F.},
title = {Motivic symmetric spectra},
journal = {Doc. Math.},
fjournal = {Documenta Mathematica},
volume = {5},
year = {2000},
pages = {445--552},
issn = {1431-0635},
mrclass = {55P42 (14F42 55U35)},
mrnumber = {1787949},
mrreviewer = {Jianqiang Zhao},
zblnumber = {0969.19004},
url = {https://www.math.uni-bielefeld.de/documenta/vol-05/15.pdf},
} -
[levine.indec]
M. Levine, "The indecomposable $K_3$ of fields," Ann. Sci. École Norm. Sup. (4), vol. 22, iss. 2, pp. 255-344, 1989.
@ARTICLE{levine.indec,
author = {Levine, Marc},
title = {The indecomposable {$K_3$} of fields},
journal = {Ann. Sci. École Norm. Sup. (4)},
fjournal = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
volume = {22},
year = {1989},
number = {2},
pages = {255--344},
issn = {0012-9593},
mrclass = {11R70 (12G05 18F25 19D55 19F27)},
mrnumber = {1005161},
mrreviewer = {Jerzy Browkin},
url = {http://www.numdam.org/item?id=ASENS_1989_4_22_2_255_0},
doi = {10.24033/asens.1585},
zblnumber = {0705.19001},
} -
[levine.coniveau]
M. Levine, "The homotopy coniveau tower," J. Topol., vol. 1, iss. 1, pp. 217-267, 2008.
@ARTICLE{levine.coniveau,
author = {Levine, Marc},
title = {The homotopy coniveau tower},
journal = {J. Topol.},
fjournal = {Journal of Topology},
volume = {1},
year = {2008},
number = {1},
pages = {217--267},
issn = {1753-8416},
mrclass = {14C25 (14F42 19E08 19E15 55P42)},
mrnumber = {2365658},
doi = {10.1112/jtopol/jtm004},
url = {https://doi.org/10.1112/jtopol/jtm004},
zblnumber = {1154.14005},
} -
[levine.sliceconvergence]
M. Levine, "Convergence of Voevodsky’s slice tower," Doc. Math., vol. 18, pp. 907-941, 2013.
@ARTICLE{levine.sliceconvergence,
author = {Levine, Marc},
title = {Convergence of {V}oevodsky's slice tower},
journal = {Doc. Math.},
fjournal = {Documenta Mathematica},
volume = {18},
year = {2013},
pages = {907--941},
issn = {1431-0635},
mrclass = {14F42 (55P42)},
mrnumber = {3084567},
mrreviewer = {Satoshi Mochizuki},
zblnumber = {1284.14030},
url = {https://www.math.uni-bielefeld.de/documenta/vol-18/28.pdf},
} -
[levine.comparison]
M. Levine, "A comparison of motivic and classical stable homotopy theories," J. Topol., vol. 7, iss. 2, pp. 327-362, 2014.
@ARTICLE{levine.comparison,
author = {Levine, Marc},
title = {A comparison of motivic and classical stable homotopy theories},
journal = {J. Topol.},
fjournal = {Journal of Topology},
volume = {7},
year = {2014},
number = {2},
pages = {327--362},
issn = {1753-8416},
mrclass = {14C25 (14F42 19E08 19E15 55P42)},
mrnumber = {3217623},
mrreviewer = {Niko Naumann},
doi = {10.1112/jtopol/jtt031},
url = {https://doi.org/10.1112/jtopol/jtt031},
zblnumber = {1333.14021},
} -
[levine.an]
M. Levine, "The Adams-Novikov spectral sequence and Voevodsky’s slice tower," Geom. Topol., vol. 19, iss. 5, pp. 2691-2740, 2015.
@ARTICLE{levine.an,
author = {Levine, Marc},
title = {The {A}dams-{N}ovikov spectral sequence and {V}oevodsky's slice tower},
journal = {Geom. Topol.},
fjournal = {Geometry \& Topology},
volume = {19},
year = {2015},
number = {5},
pages = {2691--2740},
issn = {1465-3060},
mrclass = {55T15 (14F42 55P42)},
mrnumber = {3416112},
mrreviewer = {Kyle M. Ormsby},
doi = {10.2140/gt.2015.19.2691},
url = {https://doi.org/10.2140/gt.2015.19.2691},
zblnumber = {06503551},
} -
[lichtenbaum.weight-2]
S. Lichtenbaum, "The construction of weight-two arithmetic cohomology," Invent. Math., vol. 88, iss. 1, pp. 183-215, 1987.
@ARTICLE{lichtenbaum.weight-2,
author = {Lichtenbaum, Stephen},
title = {The construction of weight-two arithmetic cohomology},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {88},
year = {1987},
number = {1},
pages = {183--215},
issn = {0020-9910},
mrclass = {14F20 (11G99 14F15 18F25 19E20)},
mrnumber = {0877012},
mrreviewer = {Gerd Faltings},
doi = {10.1007/BF01405097},
url = {https://doi.org/10.1007/BF01405097},
zblnumber = {06503551},
} -
[mandell]
M. A. Mandell, "Flatness for the $E_\infty$ tensor product," in Homotopy Methods in Algebraic Topology, Amer. Math. Soc., Providence, RI, 2001, vol. 271, pp. 285-309.
@INCOLLECTION{mandell,
author = {Mandell, Michael A.},
title = {Flatness for the {$E_\infty$} tensor product},
booktitle = {Homotopy Methods in Algebraic Topology},
venue = {{B}oulder, {CO},
1999},
series = {Contemp. Math.},
volume = {271},
pages = {285--309},
publisher = {Amer. Math. Soc., Providence, RI},
year = {2001},
mrclass = {18G55 (16E99 18D50 18G15)},
mrnumber = {1831356},
doi = {10.1090/conm/271/04359},
url = {https://doi.org/10.1090/conm/271/04359},
zblnumber = {0995.18007},
} -
@ARTICLE{massey,
author = {Massey, W. S.},
title = {Products in exact couples},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {59},
year = {1954},
pages = {558--569},
issn = {0003-486X},
mrclass = {56.0X},
mrnumber = {0060829},
mrreviewer = {P. J. Hilton},
doi = {10.2307/1969719},
url = {https://doi.org/10.2307/1969719},
zblnumber = {0057.15204},
} -
[merkurjev.weighttwo]
A. Merkurjev, "Weight two motivic cohomology of classifying spaces for semisimple groups," Amer. J. Math., vol. 138, iss. 3, pp. 763-792, 2016.
@ARTICLE{merkurjev.weighttwo,
author = {Merkurjev, A.},
title = {Weight two motivic cohomology of classifying spaces for semisimple groups},
journal = {Amer. J. Math.},
fjournal = {American Journal of Mathematics},
volume = {138},
year = {2016},
number = {3},
pages = {763--792},
issn = {0002-9327},
mrclass = {14F42 (20G15 55R35)},
mrnumber = {3506385},
mrreviewer = {Matthias Wendt},
doi = {10.1353/ajm.2016.0028},
url = {https://doi.org/10.1353/ajm.2016.0028},
zblnumber = {1346.14051},
} -
[merkurjev-suslin.k3]
A. S. Merkurcprimeev and A. A. Suslin, "The group $K_3$ for a field," Izv. Akad. Nauk SSSR Ser. Mat., vol. 54, iss. 3, pp. 522-545, 1990.
@ARTICLE{merkurjev-suslin.k3,
author = {Merkur{\cprime}ev, A. S. and Suslin, A. A.},
title = {The group {$K_3$} for a field},
journal = {Izv. Akad. Nauk SSSR Ser. Mat.},
fjournal = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
volume = {54},
year = {1990},
number = {3},
pages = {522--545},
issn = {0373-2436},
mrclass = {19D45},
mrnumber = {1072694},
mrreviewer = {L. N. Vaserstein},
zblnumber = {0711.19002},
doi = {10.1070/IM1991v036n03ABEH002034},
} -
[merkurjev-suslin.rost]
A. Merkurjev and A. Suslin, "Motivic cohomology of the simplicial motive of a Rost variety," J. Pure Appl. Algebra, vol. 214, iss. 11, pp. 2017-2026, 2010.
@ARTICLE{merkurjev-suslin.rost,
author = {Merkurjev, Alexander and Suslin, Andrei},
title = {Motivic cohomology of the simplicial motive of a {R}ost variety},
journal = {J. Pure Appl. Algebra},
fjournal = {Journal of Pure and Applied Algebra},
volume = {214},
year = {2010},
number = {11},
pages = {2017--2026},
issn = {0022-4049},
mrclass = {14F42 (11S25 19D50)},
mrnumber = {2645334},
mrreviewer = {Matthias Wendt},
doi = {10.1016/j.jpaa.2010.02.006},
url = {https://doi.org/10.1016/j.jpaa.2010.02.006},
zblnumber = {1200.14041},
} -
[mfo2013]
T. Geisser, A. Huber-Klawitter, U. Jannsen, and M. . rm (editors), "Algebraic $K$-theory and motivic cohomology," Oberwolfach Rep., vol. 10, iss. 2, pp. 1861-1913, 2013.
@ARTICLE{mfo2013,
author = {Thomas {Geisser} and Annette {Huber-Klawitter} and Uwe {Jannsen} and Marc {\relax{Levine {\rm (editors)}}}},
title = {Algebraic {$K$}-theory and motivic cohomology},
titlenote = {Abstracts from the workshop held June 23--29, 2013},
journal = {Oberwolfach Rep.},
fjournal = {Oberwolfach Reports},
volume = {10},
year = {2013},
number = {2},
pages = {1861--1913},
issn = {1660-8933},
mrclass = {19E15 (14C15 14F42)},
mrnumber = {3013936},
doi = {10.4171/OWR/2013/32},
url = {https://doi.org/10.4171/OWR/2013/32},
zblnumber = {1349.00165},
} -
[milnor.k-quadratic]
J. Milnor, "Algebraic $K$-theory and quadratic forms," Invent. Math., vol. 9, pp. 318-344, 1970.
@ARTICLE{milnor.k-quadratic,
author = {Milnor, John},
title = {Algebraic {$K$}-theory and quadratic forms},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {9},
year = {1970},
pages = {318--344},
issn = {0020-9910},
mrclass = {18.20 (10.00)},
mrnumber = {0260844},
mrreviewer = {H. Bass},
doi = {10.1007/BF01425486},
url = {https://doi.org/10.1007/BF01425486},
zblnumber = {0199.55501},
} -
[morelsplitting] F. Morel, Rational stable splitting of Grassmanians and rational motivic sphere spectrum, 2006.
@MISC{morelsplitting,
author = {Morel, Fabien},
title = {Rational stable splitting of {G}rassmanians and rational motivic sphere spectrum},
note = {preprint},
year = {2006},
zblnumber = {},
} -
[morel.connectivity]
F. Morel, "The stable ${\Bbb A}^1$-connectivity theorems," $K$-Theory, vol. 35, iss. 1-2, pp. 1-68, 2005.
@ARTICLE{morel.connectivity,
author = {Morel, Fabien},
title = {The stable {${\Bbb A}^1$}-connectivity theorems},
journal = {$K$-Theory},
fjournal = {$K$-Theory. An Interdisciplinary Journal for the Development, Application, and Influence of $K$-Theory in the Mathematical Sciences},
volume = {35},
year = {2005},
number = {1-2},
pages = {1--68},
issn = {0920-3036},
mrclass = {14F35 (19E20 19G12)},
mrnumber = {2240215},
mrreviewer = {Oliver Röndigs},
doi = {10.1007/s10977-005-1562-7},
url = {https://doi.org/10.1007/s10977-005-1562-7},
zblnumber = {1117.14023},
} -
[MorelICM2006]
F. Morel, "$\Bbb A^1$-algebraic topology," in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1035-1059.
@INCOLLECTION{MorelICM2006,
author = {Morel, Fabien},
title = {{$\Bbb A^1$}-algebraic topology},
booktitle = {International {C}ongress of {M}athematicians. {V}ol. {II}},
pages = {1035--1059},
publisher = {Eur. Math. Soc., Zürich},
year = {2006},
mrclass = {14F35 (19E15 55P99)},
mrnumber = {2275634},
mrreviewer = {Oliver Röndigs},
zblnumber = {1097.14014},
doi = {10.4171/022-2/49},
} -
[morel.field]
F. Morel, $\Bbb A^1$-algebraic topology over a field, Springer, Heidelberg, 2012, vol. 2052.
@BOOK{morel.field,
author = {Morel, Fabien},
title = {{$\Bbb A^1$}-algebraic topology over a field},
series = {Lecture Notes in Math.},
volume = {2052},
publisher = {Springer, Heidelberg},
year = {2012},
pages = {x+259},
isbn = {978-3-642-29513-3},
mrclass = {14F35 (14F05)},
mrnumber = {2934577},
mrreviewer = {Matthias Wendt},
doi = {10.1007/978-3-642-29514-0},
url = {https://doi.org/10.1007/978-3-642-29514-0},
zblnumber = {1263.14003},
} -
[NSO]
N. Naumann, M. Spitzweck, and P. A. Østvaer, "Motivic Landweber exactness," Doc. Math., vol. 14, pp. 551-593, 2009.
@ARTICLE{NSO,
author = {Naumann, Niko and Spitzweck, Markus and {\O}stv{æ}r, Paul Arne},
title = {Motivic {L}andweber exactness},
journal = {Doc. Math.},
fjournal = {Documenta Mathematica},
volume = {14},
year = {2009},
pages = {551--593},
issn = {1431-0635},
mrclass = {55N22 (14A20 14F42 19E08 55P42)},
mrnumber = {2565902},
zblnumber = {1230.55005},
url = {https://www.math.uni-bielefeld.de/documenta/vol-14/20.pdf},
} -
[neeman]
A. Neeman, "The Grothendieck duality theorem via Bousfield’s techniques and Brown representability," J. Amer. Math. Soc., vol. 9, iss. 1, pp. 205-236, 1996.
@ARTICLE{neeman,
author = {Neeman, Amnon},
title = {The {G}rothendieck duality theorem via {B}ousfield's techniques and {B}rown representability},
journal = {J. Amer. Math. Soc.},
fjournal = {Journal of the Amer. Math. Soc.},
volume = {9},
year = {1996},
number = {1},
pages = {205--236},
issn = {0894-0347},
mrclass = {18E30 (14F05)},
mrnumber = {1308405},
mrreviewer = {Luca Barbieri Viale},
doi = {10.1090/S0894-0347-96-00174-9},
url = {https://doi.org/10.1090/S0894-0347-96-00174-9},
zblnumber = {0864.14008},
} -
[novikov]
S. P. Novikov, "Methods of algebraic topology from the point of view of cobordism theory," Izv. Akad. Nauk SSSR Ser. Mat., vol. 31, pp. 855-951, 1967.
@ARTICLE{novikov,
author = {Novikov, S. P.},
title = {Methods of algebraic topology from the point of view of cobordism theory},
journal = {Izv. Akad. Nauk SSSR Ser. Mat.},
fjournal = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
volume = {31},
year = {1967},
pages = {855--951},
issn = {0373-2436},
mrclass = {55.52 (57.00)},
mrnumber = {0221509},
mrreviewer = {A. Liulevicius},
zblnumber = {0169.54503},
doi = {10.1070/IM1967v001n04ABEH000591},
} -
[ovv]
D. Orlov, A. Vishik, and V. Voevodsky, "An exact sequence for $K^M_\ast/2$ with applications to quadratic forms," Ann. of Math. (2), vol. 165, iss. 1, pp. 1-13, 2007.
@ARTICLE{ovv,
author = {Orlov, D. and Vishik, A. and Voevodsky, V.},
title = {An exact sequence for {$K^M_\ast/2$} with applications to quadratic forms},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {165},
year = {2007},
number = {1},
pages = {1--13},
issn = {0003-486X},
mrclass = {19D45 (11E70 11E81)},
mrnumber = {2276765},
mrreviewer = {Jean-Pierre Tignol},
doi = {10.4007/annals.2007.165.1},
url = {https://doi.org/10.4007/annals.2007.165.1},
zblnumber = {1124.14017},
} -
[oo]
K. M. Ormsby and P. A. Østvaer, "Stable motivic $\pi_1$ of low-dimensional fields," Adv. Math., vol. 265, pp. 97-131, 2014.
@ARTICLE{oo,
author = {Ormsby, Kyle M. and {\O}stv{æ}r, Paul Arne},
title = {Stable motivic {$\pi_1$} of low-dimensional fields},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {265},
year = {2014},
pages = {97--131},
issn = {0001-8708},
mrclass = {55P42 (19E15 55T15)},
mrnumber = {3255457},
mrreviewer = {Markus Szymik},
doi = {10.1016/j.aim.2014.07.024},
url = {https://doi.org/10.1016/j.aim.2014.07.024},
zblnumber = {1304.55008},
} -
[paninwalterBO] I. Panin and C. Walter, On the motivic commutative ring spectrum $\bold{BO}$, 2011.
@MISC{paninwalterBO,
author = {Panin, I. and Walter, C.},
title = {On the motivic commutative ring spectrum $\bold{BO}$},
arxiv = {1011.0650},
year = {2011},
zblnumber = {},
} -
[Pelaez] P. Pelaez, Multiplicative Properties of the Slice Filtration, , 2011, vol. 335.
@BOOK{Pelaez,
author = {Pelaez, Pablo},
title = {Multiplicative {P}roperties of the {S}lice {F}iltration},
series = {Astérisque},
volume = {335},
year = {2011},
pages = {xvi+289},
issn = {0303-1179},
isbn = {978-2-85629-305-8},
mrclass = {14F42 (18D10 18G40 18G55 55P42)},
mrnumber = {2807904},
mrreviewer = {Oliver Röndigs},
zblnumber = {1235.14003},
} -
[pp:functoriality]
P. Pelaez, "On the functoriality of the slice filtration," J. K-Theory, vol. 11, iss. 1, pp. 55-71, 2013.
@ARTICLE{pp:functoriality,
author = {Pelaez, Pablo},
title = {On the functoriality of the slice filtration},
journal = {J. K-Theory},
fjournal = {Journal of K-Theory. K-Theory and its Applications in Algebra, Geometry, Analysis \& Topology},
volume = {11},
year = {2013},
number = {1},
pages = {55--71},
issn = {1865-2433},
mrclass = {14F42},
mrnumber = {3034283},
mrreviewer = {Matthias Wendt},
doi = {10.1017/is013001013jkt196},
url = {https://doi.org/10.1017/is013001013jkt196},
zblnumber = {1319.14029},
} -
[quick]
G. Quick, "Stable étale realization and étale cobordism," Adv. Math., vol. 214, iss. 2, pp. 730-760, 2007.
@ARTICLE{quick,
author = {Quick, Gereon},
title = {Stable étale realization and étale cobordism},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {214},
year = {2007},
number = {2},
pages = {730--760},
issn = {0001-8708},
mrclass = {14F35 (14F42 55U35)},
mrnumber = {2349718},
mrreviewer = {Daniel C. Isaksen},
doi = {10.1016/j.aim.2007.03.005},
url = {https://doi.org/10.1016/j.aim.2007.03.005},
zblnumber = {1129.14031},
} -
[quillen.kfq]
D. Quillen, "On the cohomology and $K$-theory of the general linear groups over a finite field," Ann. of Math. (2), vol. 96, pp. 552-586, 1972.
@ARTICLE{quillen.kfq,
author = {Quillen, Daniel},
title = {On the cohomology and {$K$}-theory of the general linear groups over a finite field},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {96},
year = {1972},
pages = {552--586},
issn = {0003-486X},
mrclass = {20J05 (18F25 55B15)},
mrnumber = {0315016},
mrreviewer = {D. W. Anderson},
doi = {10.2307/1970825},
url = {https://doi.org/10.2307/1970825},
zblnumber = {0249.18022},
} -
[ravenel.green] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, Inc., Orlando, FL, 1986, vol. 121.
@BOOK{ravenel.green,
author = {Ravenel, Douglas C.},
title = {Complex cobordism and stable homotopy groups of spheres},
series = {Pure and Applied Mathematics},
volume = {121},
publisher = {Academic Press, Inc., Orlando, FL},
year = {1986},
pages = {xx+413},
isbn = {0-12-583430-6; 0-12-583431-4},
mrclass = {55-02 (55Qxx 57-02)},
mrnumber = {0860042},
mrreviewer = {Joseph Neisendorfer},
zblnumber = {0608.55001},
} -
[roendigs.etainv] O. Röndigs, On the $\eta$-inverted sphere, 2016.
@MISC{roendigs.etainv,
author = {Röndigs, Oliver},
title = {On the $\eta$-inverted sphere},
note = {to appear in \emph{{P}roceedings of the International Colloquium on $K$-Theory, TIFR} (2016)},
arxiv = {1602.08798},
year = {2016},
zblnumber = {},
} -
[RO1]
O. Röndigs and P. A. Østvaer, "Motives and modules over motivic cohomology," C. R. Math. Acad. Sci. Paris, vol. 342, iss. 10, pp. 751-754, 2006.
@ARTICLE{RO1,
author = {Röndigs, Oliver and {\O}stv{æ}r, Paul Arne},
title = {Motives and modules over motivic cohomology},
journal = {C. R. Math. Acad. Sci. Paris},
fjournal = {Comptes Rendus Mathématique. Académie des Sciences. Paris},
volume = {342},
year = {2006},
number = {10},
pages = {751--754},
issn = {1631-073X},
mrclass = {14F42},
mrnumber = {2227753},
doi = {10.1016/j.crma.2006.03.013},
url = {https://doi.org/10.1016/j.crma.2006.03.013},
zblnumber = {1097.14016},
} -
[RO2]
O. Röndigs and P. A. Østvaer, "Modules over motivic cohomology," Adv. Math., vol. 219, iss. 2, pp. 689-727, 2008.
@ARTICLE{RO2,
author = {Röndigs, Oliver and {\O}stv{æ}r, Paul Arne},
title = {Modules over motivic cohomology},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {219},
year = {2008},
number = {2},
pages = {689--727},
issn = {0001-8708},
mrclass = {14F42 (55U35)},
mrnumber = {2435654},
mrreviewer = {Christian Haesemeyer},
doi = {10.1016/j.aim.2008.05.013},
url = {https://doi.org/10.1016/j.aim.2008.05.013},
zblnumber = {1180.14015},
} -
[roendigs-oestvaer.rigidity]
O. Röndigs and P. A. Østvaer, "Rigidity in motivic homotopy theory," Math. Ann., vol. 341, iss. 3, pp. 651-675, 2008.
@ARTICLE{roendigs-oestvaer.rigidity,
author = {Röndigs, Oliver and {\O}stv{æ}r, Paul Arne},
title = {Rigidity in motivic homotopy theory},
journal = {Math. Ann.},
fjournal = {Mathematische Annalen},
volume = {341},
year = {2008},
number = {3},
pages = {651--675},
issn = {0025-5831},
mrclass = {14F42 (55P42)},
mrnumber = {2399164},
mrreviewer = {Daniel C. Isaksen},
doi = {10.1007/s00208-008-0208-5},
url = {https://doi.org/10.1007/s00208-008-0208-5},
zblnumber = {1180.14014},
} -
[ro.mult-slices-hermitian]
O. Röndigs and P. A. Østvaer, "The multiplicative structure on the graded slices of Hermitian $K$-theory and Witt-theory," Homology Homotopy Appl., vol. 18, iss. 1, pp. 373-380, 2016.
@ARTICLE{ro.mult-slices-hermitian,
author = {Röndigs, Oliver and {\O}stv{æ}r, Paul Arne},
title = {The multiplicative structure on the graded slices of {H}ermitian {$K$}-theory and {W}itt-theory},
journal = {Homology Homotopy Appl.},
fjournal = {Homology, Homotopy and Applications},
volume = {18},
year = {2016},
number = {1},
pages = {373--380},
issn = {1532-0073},
mrclass = {19G38 (14F42 19G12)},
mrnumber = {3509094},
mrreviewer = {Charles Weibel},
doi = {10.4310/HHA.2016.v18.n1.a20},
url = {https://doi.org/10.4310/HHA.2016.v18.n1.a20},
zblnumber = {1352.14013},
} -
[roendigs-oestvaer.hermitian]
O. Röndigs and P. A. Østvaer, "Slices of Hermitian $K$-theory and Milnor’s conjecture on quadratic forms," Geom. Topol., vol. 20, iss. 2, pp. 1157-1212, 2016.
@ARTICLE{roendigs-oestvaer.hermitian,
author = {Röndigs, Oliver and {\O}stv{æ}r, Paul Arne},
title = {Slices of {H}ermitian {$K$}-theory and {M}ilnor's conjecture on quadratic forms},
journal = {Geom. Topol.},
fjournal = {Geometry \& Topology},
volume = {20},
year = {2016},
number = {2},
pages = {1157--1212},
issn = {1465-3060},
mrclass = {19G38 (11E04 14F42 55P42 55T05)},
mrnumber = {3493102},
mrreviewer = {Kyle M. Ormsby},
doi = {10.2140/gt.2016.20.1157},
url = {https://doi.org/10.2140/gt.2016.20.1157},
zblnumber = {06578603},
} -
[RSO] O. Röndigs and P. A. Østvaer, Cellularity of hermitian ${K}$-theory and Witt-theory, 2016.
@MISC{RSO,
author = {Röndigs, Oliver and {\O}stv{æ}r, Paul Arne},
title = {Cellularity of hermitian ${K}$-theory and {W}itt-theory},
note = {to appear in the \emph{{P}roceedings of the International Colloquium on $K$-Theory, TIFR} (2016)},
arxiv = {1603.05139},
year = {2016},
zblnumber = {},
} -
[schlichting]
M. Schlichting, "Hermitian $K$-theory, derived equivalences and Karoubi’s fundamental theorem," J. Pure Appl. Algebra, vol. 221, iss. 7, pp. 1729-1844, 2017.
@ARTICLE{schlichting,
author = {Schlichting, Marco},
title = {Hermitian {$K$}-theory, derived equivalences and {K}aroubi's fundamental theorem},
journal = {J. Pure Appl. Algebra},
fjournal = {Journal of Pure and Applied Algebra},
volume = {221},
year = {2017},
number = {7},
pages = {1729--1844},
issn = {0022-4049},
mrclass = {19G38 (14C35 18E30)},
mrnumber = {3614976},
mrreviewer = {Michael K. Brown},
doi = {10.1016/j.jpaa.2016.12.026},
url = {https://doi.org/10.1016/j.jpaa.2016.12.026},
zblnumber = {1360.19008},
} -
[serre.Gcohomology]
. J-P. Serre, Cohomologie Galoisienne, Fifth ed., Springer-Verlag, Berlin, 1994, vol. 5.
@BOOK{serre.Gcohomology,
author = {Serre, {\relax J-P}},
title = {Cohomologie Galoisienne},
series = {Lecture Notes in Math.},
volume = {5},
edition = {Fifth},
publisher = {Springer-Verlag, Berlin},
year = {1994},
pages = {x+181},
isbn = {3-540-58002-6},
mrclass = {12G05 (11R34)},
mrnumber = {1324577},
doi = {10.1007/BFb0108758},
url = {https://doi.org/10.1007/BFb0108758},
zblnumber = {0812.12002},
} -
[spitzweckalgebraiccobordism] M. Spitzweck, Algebraic cobordism in mixed characteristic, 2014.
@MISC{spitzweckalgebraiccobordism,
author = {Spitzweck, Markus},
title = {Algebraic cobordism in mixed characteristic},
arxiv = {1404.2542},
year = {2014},
zblnumber = {},
} -
[spitzweckmz]
M. Spitzweck, "A commutative $\mathbf{P}^1$-spectrum representing motivic cohomology over Dedekind domains," Mém. Soc. Math. France, vol. 157, p. 114, 2018.
@article{spitzweckmz,
author = {Spitzweck, Markus},
title = {A commutative $\mathbf{P}^1$-spectrum representing motivic cohomology over {D}edekind domains},
journal={Mém. Soc. Math. France},
volume = {157},
year = {2018},
pages ={114~pp.},
doi = {10.24033/msmf.465},
} -
[spitzweck.thesis]
M. Spitzweck, Operads, algebras and modules in model categories and motivesBonn: Univ. Bonn. Mathematisch-Naturwissenschaftliche Fakultät (Dissertation), 2001.
@MISC{spitzweck.thesis,
author = {Spitzweck, Markus},
title = {Operads, algebras and modules in model categories and motives},
url = {http://hss.ulb.uni-bonn.de/2001/0241/0241.pdf},
pages = {77},
year = {2001},
publisher ={Bonn: Univ. Bonn. Mathematisch-Naturwissenschaftliche Fakultät (Dissertation)},
zblnumber = {1103.18300},
} -
[spitzweck.relations]
M. Spitzweck, "Relations between slices and quotients of the algebraic cobordism spectrum," Homology Homotopy Appl., vol. 12, iss. 2, pp. 335-351, 2010.
@ARTICLE{spitzweck.relations,
author = {Spitzweck, Markus},
title = {Relations between slices and quotients of the algebraic cobordism spectrum},
journal = {Homology Homotopy Appl.},
fjournal = {Homology, Homotopy and Applications},
volume = {12},
year = {2010},
number = {2},
pages = {335--351},
issn = {1532-0073},
mrclass = {14F42 (19E20 55N22 55P42)},
mrnumber = {2771593},
mrreviewer = {Niko Naumann},
url = {http://projecteuclid.org/euclid.hha/1296223886},
doi = {10.4310/HHA.2010.v12.n2.a11},
zblnumber = {1209.14019},
} -
[SO]
M. Spitzweck and P. A. Østvaer, "Motivic twisted $K$-theory," Algebr. Geom. Topol., vol. 12, iss. 1, pp. 565-599, 2012.
@ARTICLE{SO,
author = {Spitzweck, Markus and {\O}stv{æ}r, Paul Arne},
title = {Motivic twisted {$K$}-theory},
journal = {Algebr. Geom. Topol.},
fjournal = {Algebraic \& Geometric Topology},
volume = {12},
year = {2012},
number = {1},
pages = {565--599},
issn = {1472-2747},
mrclass = {19L50 (14F42 55P43)},
mrnumber = {2916287},
mrreviewer = {Niko Naumann},
doi = {10.2140/agt.2012.12.565},
url = {https://doi.org/10.2140/agt.2012.12.565},
zblnumber = {1282.14040},
} -
[VoevodskyICM1998]
V. Voevodsky, "$\Bbb A^1$-homotopy theory," in Proceedings of the International Congress of Mathematicians, Vol. I, 1998, pp. 579-604.
@INPROCEEDINGS{VoevodskyICM1998,
author = {Voevodsky, Vladimir},
title = {{$\bold A^1$}-homotopy theory},
booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. {I}},
venue = {{B}erlin, 1998},
series = {Doc. Math.},
year = {1998},
number = {Extra Vol. I},
pages = {579--604},
issn = {1431-0635},
mrclass = {14F35 (14A15 55U35)},
mrnumber = {1648048},
mrreviewer = {Mark Hovey},
zblnumber = {},
url = {https://www.math.uni-bielefeld.de/documenta/xvol-icm/00/00.html},
} -
[voevodsky.open] V. Voevodsky, "Open problems in the motivic stable homotopy theory. I," in Motives, Polylogarithms and Hodge Theory, Part I, Int. Press, Somerville, MA, 2002, vol. 3, pp. 3-34.
@INCOLLECTION{voevodsky.open,
author = {Voevodsky, Vladimir},
title = {Open problems in the motivic stable homotopy theory. {I}},
booktitle = {Motives, Polylogarithms and {H}odge Theory, {P}art {I}},
venue = {{I}rvine, {CA},
1998},
series = {Int. Press Lect. Ser.},
volume = {3},
pages = {3--34},
publisher = {Int. Press, Somerville, MA},
year = {2002},
mrclass = {14F35 (55P42)},
mrnumber = {1977582},
mrreviewer = {Vladimir I. Guletskiĭ},
zblnumber = {1047.14012},
} -
[Voevodsky:motivicss]
V. Voevodsky, "A possible new approach to the motivic spectral sequence for algebraic $K$-theory," in Recent Progress in Homotopy Theory, Amer. Math. Soc., Providence, RI, 2002, vol. 293, pp. 371-379.
@INCOLLECTION{Voevodsky:motivicss,
author = {Voevodsky, Vladimir},
title = {A possible new approach to the motivic spectral sequence for algebraic {$K$}-theory},
booktitle = {Recent Progress in Homotopy Theory},
venue = {{B}altimore, {MD},
2000},
series = {Contemp. Math.},
volume = {293},
pages = {371--379},
publisher = {Amer. Math. Soc., Providence, RI},
year = {2002},
mrclass = {55P42 (14F42 19E15 55P43)},
mrnumber = {1890744},
mrreviewer = {Po Hu},
doi = {10.1090/conm/293/04956},
url = {https://doi.org/10.1090/conm/293/04956},
zblnumber = {1009.19003},
} -
[Voevodsky.reduced]
V. Voevodsky, "Reduced power operations in motivic cohomology," Publ. Math. Inst. Hautes Études Sci., vol. 98, pp. 1-57, 2003.
@ARTICLE{Voevodsky.reduced,
author = {Voevodsky, Vladimir},
title = {Reduced power operations in motivic cohomology},
journal = {Publ. Math. Inst. Hautes Études Sci.},
fjournal = {Publications Mathématiques. Institut de Hautes Études Scientifiques},
volume = {98},
year = {2003},
pages = {1--57},
issn = {0073-8301},
mrclass = {14F42 (12G05 19D45 19E15)},
mrnumber = {2031198},
mrreviewer = {Eric M. Friedlander},
doi = {10.1007/s10240-003-0009-z},
url = {https://doi.org/10.1007/s10240-003-0009-z},
zblnumber = {1057.14027},
} -
[voevodsky.zero] V. Voevodsky, "On the zero slice of the sphere spectrum," Tr. Mat. Inst. Steklova, vol. 246, pp. 106-115, 2004.
@ARTICLE{voevodsky.zero,
author = {Voevodsky, Vladimir},
title = {On the zero slice of the sphere spectrum},
journal = {Tr. Mat. Inst. Steklova},
fjournal = {Trudy Matematicheskogo Instituta Imeni V. A. Steklova. Rossiĭskaya Akademiya Nauk},
note={and \emph{Algebr. Geom. Metody, Svyazi i Prilozh.} {\bf 246} (2004), 92--102},
volume = {246},
year = {2004},
pages = {106--115},
issn = {0371-9685},
mrclass = {14F42 (55P42)},
mrnumber = {2101286},
mrreviewer = {Daniel C. Isaksen},
zblnumber = {1182.14012},
} -
[Zahler]
R. Zahler, "The Adams-Novikov spectral sequence for the spheres," Ann. of Math. (2), vol. 96, pp. 480-504, 1972.
@ARTICLE{Zahler,
author = {Zahler, Raphael},
title = {The {A}dams-{N}ovikov spectral sequence for the spheres},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {96},
year = {1972},
pages = {480--504},
issn = {0003-486X},
mrclass = {55H15},
mrnumber = {0319197},
mrreviewer = {A. K. Bousfield},
doi = {10.2307/1970821},
url = {https://doi.org/10.2307/1970821},
zblnumber = {0244.55021},
}