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The first stable homotopy groups
of motivic spheres

By Oliver Röndigs, Markus Spitzweck, and Paul Arne Østvær

Abstract

We compute the 1-line of stable homotopy groups of motivic spheres over

fields of characteristic not two in terms of hermitian and Milnor K-groups.

This is achieved by solving questions about convergence and differentials

in the slice spectral sequence.

1. Introduction

1.1. Background and motivation. We present a systematic approach to

computing stable homotopy classes of maps between motivic spheres. These

invariants are the universal ones for smooth varieties subject to A1-invariance

in the sense of motivic homotopy theory [44], [72]. The idea of studying univer-

sal invariants is at the heart of the philosophy behind the theory of motives.

(Motivic homotopy theory can be viewed as a non-abelian generalization.)

Decades of research in algebraic topology have lead to beautiful mathemati-

cal structures related to the notoriously difficult problem of classifying maps

between spheres up to homotopy; see, e.g., [22]. Our approach to the corre-

sponding algebro-geometric problem employs the slice spectral sequence. The

formalism of this approach is remarkably convenient. It allows us to calculate

differentials using the action of the motivic Steenrod algebra on motivic co-

homology groups [28], [75]. Our focus in this paper is not just restricted to

specific computations, but also the context we lay out to formulate and carry

them out. There is still much to be done in this program, and many more

questions could be answered by pressing these computations further.

1.2. Main results and outline of the paper. For simplicity, let F be a field

of characteristic zero. The motivic spheres Sp,q over F form a bigraded family
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of objects indexed by integers p and q, and so do the stable homotopy groups

π?1 of the motivic sphere spectrum over F . By work of Morel [44], πp,q1 = 0 if

p < q and the 0-line
⊕

n∈Z πn+r,n1 is the Milnor-Witt K-theory KMW
∗ (F ) of F ,

which incorporates a great deal of nuanced arithmetic information about the

base field. By the r-line we mean
⊕

n∈Z πn+r,n1 for r ≥ 0. A next logical step

is to compute the terms πn+1,n1 on the 1-line. One of the major inspirations

for this paper is Morel’s π1-conjecture in weight zero. It states that there is a

short exact sequence

(1.1) 0→ KM
2 (F )/24→ π1,01→ F×/2⊕ Z/2→ 0.

Here KM
∗ (F ) is the Milnor K-theory of F [42]. In this paper we prove Morel’s

π1-conjecture. The surjection in (1.1) arises from the unit map for the hermit-

ian K-theory spectrum KQ of quadratic forms [23]. In general, (1.1) does not

split. One can make precise the statement that KM
2 (F ) is generated by the

second motivic Hopf map ν ∈ π3,21 (obtained from the Hopf construction on

SL2 [12, Rem. 4.4, Def. 4.7]), while F×/2⊕Z/2 is generated by the topological

Hopf map ηtop ∈ π1,01. We note the relations 24ν = 0 and 12ν = η2ηtop, where

η ∈ π1,11 is the first motivic Hopf map. The Hopf construction should witness

that ν is in the image of a motivic J-homomorphism, so one may speculate

whether the relation 24ν = 0 is a shadow of some motivic version of the Adams

conjecture [1].

More generally, for every n ∈ Z, we show an exact sequence of Nisnevich

sheaves on smooth schemes of finite type

(1.2) 0→ KM
2−n/24→ πn+1,n1→ πn+1,nf0(KQ).

Here f0(KQ) is the effective cover of hermitian K-theory arising in the slice

filtration of the motivic stable homotopy category of F . (This does not affect

homotopy groups of nonnegative weight.) The rightmost map in (1.2) is sur-

jective for n ≥ −4; compare with [4, Cor. 6]. The exact sequence (1.2) vastly

generalizes computations in [51] for fields of cohomological dimension at most

two, and in [13] and [20] for the real numbers. Our computations of motivic

stable homotopy groups are carried out on F -points. This implies (1.2) since

the motivic homotopy sheaves are strictly A1-invariant [43, Th. 6.2.7], [46,

Th. 2.11].

It is interesting to compare with the computations of unstable motivic

homotopy groups of punctured affine spaces in [3] and [5]. If d > 3, the

extension for the unstable homotopy sheaf πd(A
dr {0}) conjectured by Asok-

Fasel [17, Conj. 7, p. 1894] coincides with (1.2). As noted in [3], the exact

sequence (1.2) and a conjectural Freudenthal P1-suspension theorem imply

Murthy’s conjecture on splittings of vector bundles [3, Conj. 1].

Our approach is to divide and conquer the slice spectral sequence for the

motivic sphere spectrum. More precisely, we
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(1) identify the slices of 1 and their multiplicative structure,

(2) give widely applicative conditions under which the slice spectral se-

quence converges, and

(3) express the first slice differentials in terms of motivic Steenrod opera-

tions.

An explicit answer to (1) is out of reach because the slices of 1 involve the

E2-page of the topological Adams-Novikov spectral sequence as conjectured by

Voevodsky [73] and verified by Levine [34] for fields. Our solution applies to

Dedekind domains of mixed characteristic. Much more work remains on the

multiplicative structure; we collect just enough results for the purpose of this

paper by introducing techniques that will be useful for further computations.

This is carried out in Section 2.

Salient among the results for (2) is Levine’s convergence result [33] for

fields of finite cohomological dimension. Our solution for general fields (see

Section 3) clarifies the distinct role of η in the context of the slice filtration:

Theorem 3.50 identifies the slice completion of any motivic spectrum admitting

a cell presentation of finite type with its η-completion. For 1, it follows that

the slice spectral sequence takes the form of a conditionally convergent spectral

sequence

(1.3) E1
p,q,n(1) = πp,nsq(1) =⇒ πp,n1

∧
η

in the sense of Boardman [8]. Here sq(1) is the qth slice of 1 and 1∧η is the

η-complete sphere. This firmly answers Voevodsky’s question of convergence

of the slice spectral sequence [73]. We employ (1.3) to identify Morel’s plus

part of the rational sphere spectrum with rational motivic cohomology, and we

show a motivic homotopy finiteness result over finite fields. The slice spectral

sequence is an algebro-geometric analogue of the topological Atiyah-Hirzebruch

spectral sequence [6], with applications to K-theory [74], fully faithfulness of

the constant functor from the stable topological homotopy category to the sta-

ble motivic homotopy category over algebraically closed fields [34], and Milnor’s

conjecture on quadratic forms [64].

In Section 4 we partially solve (3) in a range suitable for computing the

1-line; the Adem relations, hermitian K-theory, and the solution of Milnor’s

conjecture on quadratic forms in [64] help a great deal in our analysis. (Prior

to Proposition 4.18 it is explained why the exact sequence (1.2) involves the

effective cover f0(KQ) instead of KQ.) Give and take technical details, the

problem of computing the E2-page of the slice spectral sequence has now been

turned into questions about motivic Steenrod operations.

Finally, in Sections 4 and 5 all the pieces fall into place as we show all

higher slice differentials relevant for the 1-line are trivial and determine hidden

multiplicative extensions. One of the techniques we employ breaks the sphere
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spectrum 1 into simpler pieces by completing and inverting with respect to

the Hopf map η. The arithmetic square for η allows us to put the pieces back

together again. This is used repeatedly throughout the paper, especially in

Section 5 as a preparation for the identification of the 1-line.

Throughout the paper we employ the following notation:

F , S field, finite dimensional separated Noetherian base scheme

SmS smooth schemes of finite type over S

Ss,t, Ωs,t, Σs,t motivic (s, t)-sphere, (s, t)-loop space, (s, t)-suspension

SH, SHeff motivic and effective motivic stable homotopy

categories of S

E, 1 = S0,0 generic motivic spectrum, the motivic sphere spectrum

A, 1A abelian group, motivic Moore spectrum of A

Λ, MA ring, motivic Eilenberg-MacLane spectra of a Λ-module A

MGL, MU, BP algebraic and complex cobordism,

Brown-Peterson spectrum

KGL, KQ, KW algebraic and hermitian K-theory, Witt-theory

fq, fq, sq qth effective cover, effective co-cover, and slice functors

H∗,∗, h∗,∗, h∗,∗n integral, mod-2, mod-n motivic cohomology groups, n > 2

∂ab : hs,ta → hs+1,t
b connecting homomorphism, a, b ∈ N ∪ {∞}, h∞ = H

incab ,prab : hs,ta → hs,tb inclusion, projection homomorphism,

a, b ∈ N ∪ {∞}, h∞ = H.

The ring Λ is a localization of the integers Z. Let EΛ be short for E ∧
1Λ. Note that MGLΛ is an E∞ motivic spectrum. Our standard suspension

convention is such that P1 ' T ' S2,1 and A1r{0} ' S1,1 for the Tate object

T = A1/A1 r {0}. We write dE1 (q) : sqE→ Σ1,0sq+1E or simply dE1 for the first

slice differential of E [64, §2], [73, §7], and drp,q,n(E) : Erp,q,n(E)→ Erp−1,q+r,n(E)

or simply dr(E) for the rth differential in the nth slice spectral sequence.

2. Slices of spheres and the first Hopf map

In this section we verify Voevodsky’s conjecture [73, Conj. 9] on the slices

of the motivic sphere spectrum over base schemes with compatible coefficients

in the sense of Definition 2.1. This applies to Dedekind domains of mixed

characteristic as well as to fields as in [34, §8]. Our analysis includes a dis-

cussion of the multiplicative structure of the slices of 1Λ. Relating this to the

E2-page of the topological Adams-Novikov spectral sequence is a key input in

our computations of stable motivic homotopy groups.

2.1. Compatible pairs and local stable motivic homotopy. Recall that the

complex cobordism spectrum has homotopy ring π∗MU=Z[xj |j≥1], |xj |=2j,

[57, Th. 3.1.5(a)]. Quillen proved that π∗MU is isomorphic to the Lazard

ring carrying a universal formal group law; cf. [57, Th. 1.3.4]. The bigraded

homotopy ring π?MGL is naturally a π∗MU-algebra. (See [47, (24) on page
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572], [73, (3.5)] for details.) Here we do not distinguish notationally between

xj ∈ π2jMU and its image xj ∈ π2j,jMGL.

Definition 2.1. Let S be a base scheme, and let Λ be a localization of the

integers Z. The pair (S,Λ) is called compatible if the following conditions hold:

(1) There is a canonically induced equivalence

ΦS ∧ 1Λ :
Ä
MGL/(x1, x2, . . .)MGL

ä
∧ 1Λ →MΛ.

(2) The first effective cover f1(MΛ) is contractible [73, §2].

(3) The weight zero motivic cohomology groups with Λ-coefficients of every

connected component of S agrees with Λ in degree 0 and the trivial group

in nonzero degrees.

Remark 2.2. The pair (S,Λ) is compatible if S is ind-smooth over a field or

a Dedekind domain of mixed characteristic, and it has the property that every

positive residue characteristic of S is invertible in Λ [70, Th. 11.3]. If F is a field

of exponential characteristic p ≥ 1, then
Ä
Spec(F ),Z[1

p ]
ä

is a compatible pair.

Let OT be the ring of T -integers in a number field F , where T is a finite set of

primes containing all infinite primes and all primes above a prime number `.

Then (Spec(OT ),Z(`)) is a compatible pair. If S is regular, the pair (S,Q) is

compatible by [47, Th. 10.5], [68, Lemma 6.2]. We conjecture that (S,Z) is

compatible provided all the connected components of S are irreducible.

Next we define the Λ-local stable motivic homotopy category. Let SptΣP1MS

be the category of motivic symmetric spectra with the stable model struc-

ture [30, Th. 4.15]. Here MS is short for the category of pointed simplicial

presheaves on SmS , also known as motivic spaces over S. The following model

structure exists by [21, Th. 4.1.1(1)].

Definition 2.3. The Λ-local stable model structure is the left Bousfield

localization of the stable model structure on SptΣP1MS with respect to the set

of naturally induced maps

Σs,tΣ∞X+ → Σs,tΣ∞X+ ∧ 1Λ

for all integers s, t, and X ∈ SmS . Denote the corresponding homotopy

category by SHΛ.

Remark 2.4. A map α : E→ F is a weak equivalence in the Λ-local stable

model structure if and only if α ∧ 1Λ : EΛ → FΛ is a stable motivic weak

equivalence. When Λ = Q, this defines the rational stable motivic homotopy

category. By [21, Th. 3.3.19(1)] there exists a left Quillen functor from the

stable to the Λ-local stable model structure on SptΣP1MS. We shall refer to its

derived functor as the Λ-localization functor.
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The slice filtration in SHΛ is defined exactly the same way as in SH [73,

§2] by taking Λ-localizations of compact generators. The Λ-localization functor

preserves effective objects, so the filtrations are compatible in the sense that

fq and sq commute with Λ-localization.

2.2. Slices of the motivic sphere spectrum. To determine the slices of the

motivic sphere spectrum we compare with algebraic cobordism, as in [34, §8].

We start with the zero slice.

Lemma 2.5. The cone of the unit map 1→MGL lies in Σ2,1SHeff .

Proof. Theorem 3.1 in [68] shows the cone is contained in the full localizing

triangulated subcategory of SH generated by the motivic spheres Sp,q, for

p ∈ Z, q > 0. �

Remark 2.6. In fact, the cone of the unit map 1→MGL is contained in

the smallest full subcategory of SH that contains the spheres S2q,q, for q > 0

and is closed under homotopy colimits and extensions. See the proof of [71,

Th. 5.7] and also Lemma 3.25.

By definition the zeroth slice functor s0 is trivial on Σ2,1SHeff . Thus

s0(1) → s0(MGL) is an isomorphism according to Lemma 2.5. The slices

of MGL are known for compatible pairs by [68, Cor. 4.7] and the Hopkins-

Morel-Hoyois isomorphism [27, Th. 7.12]; see [69, Th. 3.1]. There exists an

isomorphism of MΛ-modules

(2.1) sq(MGLΛ) ∼= Σ2q,qMΛ⊗MU2q =
∨

I=(i1,··· ,ir)

Σ2q,qMΛ.

Here the coproduct runs over indices ij ≥ 0 such that
∑r
j=1 2j · ij = 2q, i.e.,

monomials of total degree 2q in the polynomial generators xj for π∗(MU).

In particular, s0(MGLΛ) ∼= MΛ and we obtain a proof of [73, Conj. 10] for

compatible pairs; see, e.g., [18, §6 (iv),(v)] and [53, Th. 3.6.13(6)] for the MΛ-

module structure.

Theorem 2.7. The unit map 1 → MGL induces an isomorphism on

zero slices. Hence if the pair (S,Λ) is compatible, then s0(1Λ) ∼= MΛ and the

slices of any 1Λ-module have canonical MΛ-module structures.

Remark 2.8. The module theory of motivic cohomology in relation to mo-

tives was worked out in [59] and [60]. In [18, §6 (iv),(v)] and [53, Th. 3.6.13(6)]

it is shown that sq(E) is a module over the motivic ring spectrum s0(1). Using

the identification (2.1) it follows that the slice spectral sequence for MGLQ
degenerates.

The positive slices of the motivic sphere spectrum will be determined in

several steps, starting with the standard cosimplicial resolution already em-

ployed in [73, §3] and recalled in (2.3) below.



THE FIRST STABLE HOMOTOPY GROUPS OF MOTIVIC SPHERES 7

Proposition 2.9. The standard cosimplicial MGL-resolution of the mo-

tivic sphere spectrum

1 // MGL
//
// MGL∧2

//
//
// MGL∧3 · · ·

induces a natural isomorphism on all slices

(2.2) sq(1Λ)
∼=→ holim

∆
sq(MGL∧•Λ ).

Proof. The basic idea is to work with the Adams tower for the fiber MGL

of the unit map of the algebraic cobordism spectrum:

MGL→ 1→MGL

MGL
∧2 →MGL→MGL ∧MGL

· · ·

MGL
∧(n+1) →MGL

∧n →MGL
∧n ∧MGL

· · ·

The commutative algebras ComAlg(SptΣP1MS) form a combinatorial model

category. This holds by applying [24, Th. 3.6] to the commutative operad. We

may assume MGLΛ is a cofibrant object of ComAlg(SptΣP1MS) and likewise

for MGLΛ in SptΣP1MS. Then MGL∧nΛ is a commutative monoid with the

correct homotopy type in the sense that it is equivalent to the n-fold derived

smash product of MGLΛ with itself. We obtain strict diagrams

(2.3) ∆→ ComAlg(SptΣP1MS); [n] 7→MGL
∧(n+1)
Λ

and

(2.4) ∆→ SptΣP1MS; [n] 7→MGL
∧m
Λ ∧MGL

∧(n+1)
Λ .

We show there is a natural isomorphism

(2.5) sq(MGL
∧m
Λ )

∼=→ holim
∆

sq(MGL
∧m
Λ ∧MGL

∧(•+1)
Λ )

by downward induction on m. If m ≥ q + 1, the qth slices in (2.5) are trivial

according to Lemma 2.5. (Note that MGL ∈ Σ2,1SHeff .) For the induc-

tion step we claim there exists a naturally induced commutative diagram of
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distinguished triangles in SH:

(2.6)

sq(MGL
∧(m+1)
Λ ) //

��

holim
∆

sq(MGL
∧(m+1)
Λ ∧MGL

∧(•+1)
Λ )

��

sq(MGL
∧m
Λ ) //

��

holim
∆

sq(MGL
∧m
Λ ∧MGL

∧(•+1)
Λ )

��

sq(MGL
∧m
Λ ∧MGLΛ) // holim

∆
sq(MGL

∧m
Λ ∧MGLΛ ∧MGL

∧(•+1)
Λ ).

In effect, the model categorical considerations concerning functorial (co)fibrant

replacements in [18, §3.1] combined with (2.4) show there is a strict diagram

(2.7) ∆→ SptΣP1MS; n 7→ sq(MGL
∧m
Λ ∧MGL∧nΛ ).

The slice functor sq is by definition a composition of functorial colocalization

and localization functors that are Quillen functors between stable model struc-

tures on SptΣP1MS [18, §3.1]. It follows that sq is a triangulated functor of SH.

This verifies our claim concerning (2.6).

Lemma 2.10 given below shows that the lower horizontal map in (2.6) is

an isomorphism. By the induction hypothesis there is an isomorphism

sq(MGL
∧(m+1)
Λ )

∼=→ holim
∆

sq(MGL
∧(m+1)
Λ ∧MGL

∧(•+1)
Λ ).

It follows that the middle horizontal map in (2.6) is also an isomorphism. The

desired isomorphism in (2.2) is the special case of (2.5) for m = 0. �

Lemma 2.10. For every MGLΛ-module M , there are weak equivalences

M
∼−→ holim

∆
M ∧MGL

∧(•+1)
Λ

and

sq(M )
∼−→ holim

∆
sq(M ∧MGL

∧(•+1)
Λ ).

Proof. Let ‹∆ denote the split augmented simplicial category with natu-

rally ordered objects [−1]+ = {+}, [n]+ = {+, 0, . . . , n} for n ≥ 0. Maps in‹∆ are monotone maps preserving +. Note that ‹∆ has an initial object. The

evident functor from the simplicial category ∆ to ‹∆ is homotopy left cofinal

in the sense of [21, Def. 19.6.1]. Thus by [21, Th. 19.6.7(2)], for any split

coaugmented cosimplicial diagram X, there is a weak equivalence

X−1
∼= holim

∆̃

X
∼−→ holim

∆
X.
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The standard cosimplicial MGLΛ-resolution of M is a split coaugmented

cosimplicial diagram. Applying the qth slice functor preserves this structure.

�

For any q ≥ 0, we consider π2qMU∧(•+1) as a cosimplicial abelian group.

According to [73, Conj. 6] the slices of the cosimplicial motivic spectrum

MGL
∧(•+1)
Λ are given by

(2.8) sq(MGL
∧(•+1)
Λ ) ∼= Σ2q,qMΛ⊗ π2qMU∧(•+1).

In cosimplicial degree zero, (2.8) holds for compatible pairs by (2.1). Induc-

tively, this implies (2.8) in every cosimplicial degree on account of the smash

product decompositions

MGLΛ ∧MGLΛ = MGLΛ[b1, b2, b3, . . .], MU ∧MU = MU[b1, b2, b3, . . .],

from [47, Lemma 6.4(i)]. Here bj is the standard choice of generator in the dual

Landweber-Novikov algebra [49], [57, Th. 4.1.11], with the standard degree

|bj | = 2j.

In the following we refine (2.8) to a weak equivalence of cosimplicial MΛ-

modules for a fixed compatible pair (S,Λ), where S is connected. Note that

sq(MGL
∧(•+1)
Λ ) is a cosimplicial MΛ-module by Theorem 2.7. The category

of MΛ-modules MΛ −mod is enriched over chain complexes of Λ-modules

Ch(Λ − mod) by viewing MΛ as an E∞ object in the motivic symmetric

spectrum category SptΣP1PreCh(Λ −mod) for presheaves PreCh(Λ −mod)

of chain complexes of Λ-modules on SmS . The corresponding hom objects

HomMΛ−mod will be implicitly derived by taking (co)fibrant replacements in

the stable model structure on MΛ−mod [60, Prop. 38].

The cosimplicial chain complex of abelian groups

HomMΛ−mod(Σ2q,qMΛ, sq(MGL
∧(•+1)
Λ ))

yields by adjunction a map of cosimplicial MΛ-modules

(2.9)

Σ2q,qMΛ⊗HomMΛ−mod(Σ2q,qMΛ, sq(MGL
∧(•+1)
Λ ))

∼−→ sq(MGL
∧(•+1)
Λ ).

This is a weak equivalence on account of the MΛ-module isomorphism in (2.1)

and the identification of the hom object of motives HomMΛ−mod(MΛ,MΛ)

with the chain complex comprised of a single copy of Λ in degree zero; cf.

Definition 2.1(3). We claim there is an isomorphism of cosimplicial objects in

Ch(Λ−mod),

(2.10) HomMΛ−mod(Σ2q,qMΛ, sq(MGL
∧(•+1)
Λ )) ∼= π2qMU∧(•+1) ⊗ Λ.
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Here π2qMU∧(•+1) in (2.10) is concentrated in degree zero. For connective

chain complexes Ch≥0(Λ−mod) of Λ-modules, there are adjunctions

(2.11) Λ−mod // Ch≥0(Λ−mod)
oo //

Ch(Λ−mod).oo

Here a Λ-module maps to the corresponding chain complex concentrated in

degree zero via the inclusion of Ch≥0(Λ −mod) into Ch(Λ −mod). In the

opposite direction, we use the good truncation functor and the zeroth homology

functor. For a cosimplicial object of Ch(Λ − mod) concentrated in degree

zero, such as π2qMU∧(•+1) considered above, the units and counits of the

adjunctions in (2.11) furnish canonical isomorphisms producing isomorphic

objects in Ch(Λ −mod), hence the isomorphism in (2.10). To summarize,

(2.9) and (2.10) imply the weak equivalence of cosimplicial MΛ-modules

(2.12) Σ2q,qMΛ⊗ π2qMU∧(•+1) ∼−→ sq(MGL
∧(•+1)
Λ ).

Lemma 2.11. Suppose Λ is a principal ideal domain and M• is a levelwise

free cosimplicial Λ-module such that Tot(M•) is a perfect chain complex of

Λ-modules ; i.e., its homology is finitely generated and trivial in almost all

degrees. For C ∈ Ch(Λ − mod), let C ⊗ M• be the cosimplicial object in

Ch(Λ − mod) given degreewise by [n] 7→ C ⊗ Mn. Then the natural map

C ⊗L Tot(M•)→ Tot(C ⊗M•) is a quasi-isomorphism.

Proof. Note that the tensor −⊗M• and the derived tensor −⊗L M• co-

incide because M• is levelwise free. Without loss of generality we may assume

that C is cofibrant in the projective model structure on Ch(Λ −mod); see,

e.g., [25, Th. 2.3.11]. Let N ∈ Ch(Λ −mod) be the degreewise free (non-

normalized) chain complex associated to M•. Since Λ is a PID, it follows

that N is projectively cofibrant (as a sum of length two chain complexes with

free entries). Let C � N be the double complex obtained by taking degree-

wise tensor products of entries from C and N , i.e., (C � N)p,q = Cp ⊗Λ N
q

for all integers p, q. Then Tot(C ⊗M•) ' Tot
∏

(C � N), where Tot
∏

de-

notes the total complex associated to a double complex given degreewise as

Tot
∏

(C�N)n =
∏

(C�N)i,j for all i, j such that i+j = n. By perfectness of

Tot(M•) there exists a quasi-isomorphism N ′ → N , where N ′ ∈ Ch(Λ−mod)

is comprised of finitely generated free Λ-modules and N ′p = 0 for almost all

p. Since N ′ and N are both (co)fibrant in the projective model structure

(cf. [25, p. 44]), this map is in fact a homotopy equivalence. It follows that

Tot
∏

(C � N ′) → Tot
∏

(C � N) is also a homotopy equivalence. Since N ′ is

nonzero in only finitely many degrees, we conclude there is a canonical isomor-

phism C ⊗N ′ ∼= Tot
∏

(C �N ′). �

We are ready to finish our identification of the slices of the motivic sphere

spectrum.
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Theorem 2.12. Suppose (S,Λ) is a compatible pair and A is a Λ-module.

Then there are isomorphisms of MΛ-modules

sq(1A) ∼= Σ2q,qMA⊗ Tot(π2qMU∧(•+1))

∼=
∨
p≥0

Σ2q,qMA⊗ Extp,2qMU∗MU(MU∗,MU∗)[−p].

In particular, the slices of the Λ-local sphere spectrum are

sq(1Λ) ∼=
∨
p≥0

Σ2q−p,qM(Λ⊗ Extp,2qMU∗MU(MU∗,MU∗)).

Proof. By Proposition 2.9 and (2.12), we have

sq(1Λ)
∼=→ holim

∆
sq(MGL∧•Λ )

∼←− holim
∆

Σ2q,qMΛ⊗ π2qMU∧(•+1).

Using the identification Tot(π2qMU∧(•+1)) ∼= holim
∆

π2qMU∧(•+1), we claim

there is a weak equivalence of MΛ-modules

ξ : Σ2q,qMΛ⊗ Tot(π2qMU∧(•+1)) −→ holim
∆

Σ2q,qMΛ⊗ π2qMU∧(•+1).

It suffices to show that the map HomMΛ−mod(G, ξ) is an isomorphism for ev-

ery generator G of MΛ−mod. Hence let G be a free MΛ-module on a shifted

motivic symmetric suspension spectrum of a smooth scheme over S; cf. [60,

Prop. 38]. Setting C=HomMΛ−mod(G,Σ2q,qMΛ), the map HomMΛ−mod(G, ξ)

takes the form

C ⊗ Tot(π2qMU∧(•+1))→ Tot(C ⊗ π2qMU∧(•+1)).

Since MU∧(•+1) is levelwise free and Tot(π2qMU∧(•+1)) is a perfect chain com-

plex of abelian groups, Lemma 2.11 implies our claim. Finally, the result for

sq(1Λ) follows since every chain complex of abelian groups is quasi-isomorphic

to its homology, considered as a chain complex in a natural way. �

We refer to Appendix B for explicit computations of the Ext-groups in

Theorem 2.12. These form the terms of the E2-page of the topological Adams-

Novikov-sequence; see, e.g., [57, Chaps. 4, 7, App. A3] and [77, Table 2, 3].

Appendix B recalls the α-family αi of generators of Ext1,2i
BP∗BP(BP∗,BP∗)

listed in [57, Ths. 5.3.5(b), 5.3.6(b), 5.3.7]. Via the direct sum decomposition

Ext1,2i
MU∗MU(MU∗,MU∗) =

⊕
Ext1,2i

BP∗BP(BP∗,BP∗),

indexed over all prime numbers in [49, §11], the Ext-group elements for BP

correspond to generators of the corresponding direct summands of sq(1Λ) given

in Theorem 2.12.

Corollary 2.13. The q-th slice sq(1Λ) contains the suspensions Σq,qMΛ/2

generated by αq1 and Σq+2,qMΛ/2 generated by αq−3
1 α3 as direct summands for
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q > 0 respectively q > 2. The first seven positive slices of the Λ-local sphere

spectrum 1Λ are

s1(1Λ) ∼= Σ1,1MΛ/2,

s2(1Λ) ∼= Σ2,2MΛ/2 ∨ Σ3,2MΛ/12,

s3(1Λ) ∼= Σ3,3MΛ/2 ∨ Σ5,3MΛ/2,

s4(1Λ) ∼= Σ4,4MΛ/2 ∨ Σ6,4M(Λ/2)2 ∨ Σ7,4MΛ/240,

s5(1Λ) ∼= Σ5,5MΛ/2 ∨ Σ7,5MΛ/2 ∨ Σ8,5M(Λ/2)2 ∨ Σ9,5MΛ/2,

s6(1Λ) ∼= Σ6,6MΛ/2

∨ Σ8,6MΛ/2 ∨ Σ9,6M(Λ/2)2 ∨ Σ10,6MΛ/6 ∨ Σ11,6MΛ/504,

s7(1Λ) ∼= Σ7,7MΛ/2

∨ Σ9,7MΛ/2 ∨ Σ10,7MΛ/2 ∨ Σ11,7MΛ/2 ∨ Σ12,7MΛ/2 ∨ Σ13,7MΛ/2.

Here the direct summand Σ3,2MΛ/4 of s2(1Λ) is generated by α2/2 and the

direct summand Σ6,4M(Λ/2)2 of s4(1Λ) is generated by α1α3 and β2/2. The

direct summand Σ4q+1,2q+1MΛ/2 of s2q+1(1Λ) is generated by α2q+1.

2.3. Cellularity and slices of K-theory spectra. Recall that the subcate-

gory of cellular spectra SHcell,Λ in SHΛ is the smallest full localizing subcate-

gory that contains all bigraded suspensions of 1Λ; cf. [11, §2.8], [73, §4].

Theorem 2.14. Suppose (S,Λ) is a compatible pair and the base scheme

S contains no point whose residue characteristic equals two. Then hermitian

K-theory KQΛ is a cellular spectrum in SHΛ and compatible with pullbacks.

Proof. The proof of cellularity given in [62] carries over to the setting of

compatible pairs. �

Next we extend the computation of the slices of hermitianK-theory in [64].

This will be used to analyze the map between slices induced by the unit map

1Λ → KQΛ.

Theorem 2.15. Suppose (S,Λ) is a compatible pair and the base scheme

S contains no point whose residue characteristic equals two. Then the slices of

KQΛ are given by

sq(KQΛ) ∼=

Σ2q,qMΛ ∨∨i< q
2

Σ2i+q,qMΛ/2 q ≡ 0 mod 2,∨
i< q+1

2
Σ2i+q,qMΛ/2 q ≡ 1 mod 2.

Proof. This follows from Corollaries 2.16, 2.17, Remark 2.18 applied to

every connected component of the base scheme, and the computation of sq(KQ)

over fields of characteristic unequal to two in [64, Th. 4.18]. �
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Recall that a motivic spectrum E ∈ SHΛ is called slice-wise cellular if sq(E)

is contained in the full localizing triangulated subcategory of SHΛ generated

by the qth suspension Σ2q,qMΛ [73, Def. 4.1]. Let DMΛ denote the homotopy

category of MΛ−mod. Replacing SHΛ by DMΛ gives an equivalent definition

of slice-wise cellular spectra.

Corollary 2.16. Every cellular spectrum in SHΛ is slice-wise cellular.

Proof. This follows from Theorem 2.12. �

In the next result, base schemes are included in the notation for clarity.

Corollary 2.17. Let φ : T→S be a map between connected base schemes,

and suppose (S,Λ) and (T,Λ) are compatible pairs. Then the pullback functor

φ∗ : SH(S)cell,Λ → SH(T )cell,Λ commutes with slices.

Proof. This holds for the sphere spectrum 1Λ by Theorem 2.12 because

φ∗(MΛS) ∼= MΛT according to [70, Th. 9.16, §10]. The general case follows

by attaching cells and noting that slices commute with homotopy colimits; see

[68, Cor. 4.5], [73, Lemma 4.2]. �

Remark 2.18. Let DΛ denote the derived category of the ring Λ. The

functor DΛ → DMΛ sending the tensor unit Λ in degree zero to Σ0,qMΛ is

a full embedding for every connected component of S. (This follows from

Definition 2.1(3).) Hence for every E ∈ SHcell,Λ and integer q, there exists a

unique C ∈ DΛ such that sq(E) = Σ0,qM(Λ ⊗ C). In this way we may view

slices as objects of DΛ. For φ : Spec(F ) → S, where F is a field such that

(F,Λ) is compatible, the slices of E ∈ SH(S)cell,Λ are determined by the slices

of φ∗(E) over every connected component of S. In particular, this applies to

KQ by Theorem 2.14.

Algebraic K-theory KGLΛ is a cellular motivic spectrum by [11, Th. 6.2].

Its slices are known for perfect fields by the works of Levine [32, §6.4, 11.3]

and Voevodsky [74], [76]. By base change the slices of KGLΛ are known for

all fields; in fact, every field is essentially smooth over a perfect field by [28,

Lemma 2.9], and [28, Lemma 2.7(1)] verifies the hypothesis of [54, Th. 2.12]

for an essentially smooth map. Hence, as in Theorem 2.15, we obtain

Theorem 2.19. Suppose (S,Λ) is a compatible pair. Then the slices of

KGLΛ are given by

sq(KGLΛ) ∼= Σ2q,qMΛ.

2.4. Multiplicative structure on sphere slices. Next we discuss the multi-

plicative properties of the isomorphisms in Theorem 2.12. Note that [n] 7→
π2∗MU

∧(n+1)
Λ is a cosimplicial graded E∞ algebra of Λ-modules. Its total
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object Tot(π∗MU
∧(•+1)
Λ ) is a graded E∞ algebra of Λ-modules, that is, in

E∞(Ch(Λ−mod)Z). To form the totalization as in [21, Def. 19.8.1(2)] we em-

ploy the model structure stated in [37, corollary, p. 286]. Its homology groups,

the E2-terms of the Adams-Novikov spectral sequence with Λ-coefficients, form

an Adams graded object in the category of graded Λ-modules [47, §3]. The

Adams grading of π2∗ is 2∗ while the algebras π2∗MU
∧(n+1)
Λ are strictly com-

mutative in graded Λ-modules of degree 0. For M ∈ Ch(Λ−mod)Z, we denote

by M{k} ∈ Ch(Λ−mod) the Adams degree 2k ∈ Z part of M .

The multiplication in Tot(π∗MU∧(•+1)) furnishes maps in the derived

category DΛ:

mk,l : Tot(π∗MU
∧(•+1)
Λ ){k} ⊗L

Λ Tot(π∗MU
∧(•+1)
Λ ){l}

→ Tot(π∗MU
∧(•+1)
Λ ){k + l}.

(2.13)

Theorem 2.20. Let Tot be short for Tot(π∗MU
∧(•+1)
Λ ) and k, l be non-

negative integers. There is the commutative diagram

sk(1Λ) ∧s0(1Λ) sl(1Λ) //

∼=
��

sk+l(1Λ)

∼=

��

(Σ2k,kMΛ⊗Tot{k}) ∧s0(1Λ) (Σ2l,lMΛ⊗Tot{l})

∼=
��

Σ2(k+l),k+lMΛ⊗(Tot{k}⊗L
ΛTot{l})

id⊗mk,l
// Σ2(k+l),k+lMΛ⊗Tot{k + l}.

Proof. We may assume the base scheme is connected. Let HΛ denote the

Eilenberg-MacLane spectrum in symmetric spectra. It affords a symmetric

monoidal functor HΛ−mod→MΛ−mod. We denote the associated enriched

hom objects by HomMΛ−mod.

Let F be the free associative algebra over MΛ on a cofibrant model of

P1 ' S2,1 viewed as a graded associative algebra, i.e., an algebra in MΛ −
modZ. We note the multiplication maps F{k} ∧MΛ F{l} → F{k + l} are

isomorphisms. Thus for every associative algebra A ∈MΛ−modZ, the collec-

tion (HomMΛ−mod(F{k},A {k}))k has the natural structure of an associative

algebra in HΛ−modZ, which we denote by A F .

The total slice functor s∗ sends E∞ motivic spectra to graded E∞ MΛ-

module spectra in a functorial way [18, Th. 5.1], [19, Ths. 3.8, 3.13]. Thus

the assignment [n] 7→ s∗(MGL
∧(n+1)
Λ ) defines a cosimplicial graded E∞ MΛ-

module spectrum. Now let A • be a fibrant replacement of the latter as a

cosimplicial graded associative algebra. This uses the semi-model structure on

associative algebras for the Σ-cofibrant operad in [67, Th. 4.7]. Then (A •)F
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is a cosimplicial object of associative algebras in HΛ −modZ. It is equiva-

lent to H(π2∗MU
∧(•+1)
Λ ) using the truncation methods in the proof of (2.12).

By adjointness there is a canonical weak equivalence of cosimplicical graded

associative MΛ-algebra spectra

F ∧d H(π2∗MU
∧(•+1)
Λ )

∼−→ A •.

Here ∧d (d is short for “diagonal” in order to distinguish it from the convolution

product, for which there is no such map) stands for the levelwise smash product

with respect to the grading. This follows as in the proof of Theorem 2.12

by considering the full slice functor s∗. Likewise, there is a canonical weak

equivalence of graded associative MΛ-algebras

F ∧d Tot(H(π2∗MU
∧(•+1)
Λ ))

∼−→ Tot(A •).

Finally, applying the weak equivalence of graded associative MΛ-algebras

(2.14) s∗(1Λ)
∼−→ Tot(s∗(MGL

∧(•+1)
Λ ))

∼−→ Tot(A •)

yields the desired commutative diagram. The proof of (2.14) is the same as

for a fixed slice degree; cf. Proposition 2.9. �

Remark 2.21. We expect that F ∧d Tot(H(π2∗MU
∧(•+1)
Λ )) → Tot(A •)

is an E∞ map. These objects acquire natural E∞ structures — the former

because MΛ is strongly periodizable; see [70, Th. 8.2].

We use Theorem 2.20 to show the motivic Hopf map η is non-nilpotent

[44, Th. 4.7]. The topological Hopf map ηtop is detected by α1 in the Adams-

Novikov spectral sequence. Theorem 2.12 shows that η ∈ π1,11Λ is detected by

1 ∈ π1,1s1(1Λ) ∼= h0,0 on the E1-page of the first slice spectral sequence of 1Λ.

Since all differentials entering or exiting this group are trivial (cf. Theorem 2.12

and Lemma 4.1), this class survives to the E∞-page. Theorem 2.20 implies

that its nth power is the nontrivial element of πn,nsn(1Λ) ∼= h0,0 in the nth

slice spectral sequence; it is also a permanent cycle by Theorem 2.12 and

Lemma 4.1.

Corollary 2.22. The n-fold multiplication map by the generator α1

yields the canonical projection

s1(1Λ) ∧s0(1Λ) · · · ∧s0(1Λ) s1(1Λ) −→ Σn,nMΛ/2

on the direct summand Σn,nMΛ/2 of sn(1Λ). Iterating the first motivic Hopf

map η yields a nontrivial element ηn 6= 0 ∈ πn,n1Λ for n ≥ 2.

Recall that Ext1,2q
MU∗MU(MU∗,MU∗) is a finite cyclic group of order aq,

where aq = 2 for q odd, and a2q is equal to the denominator of
Bq

4q [49], [77, §2],

[57, Th. 5.3.11]. These groups describe first order phenomena in the Adams-

Novikov spectral sequence related to the J-homomorphism [57, Th. 5.3.7].
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Lemma 2.23. Multiplication with the zero slice of 1Λ yields the canonical

module map

s0(1Λ) ∧ sq(1Λ)→ sq(1Λ).

Multiplication in the first slice s1(1Λ) ∧s0(1Λ) s1(1Λ)→ s2(1Λ) takes the form

Σ2,2MΛ/2 ∨ Σ3,2MΛ/2

(
id 0
0 inc

)
−−−−−−−−→Σ2,2MΛ/2 ∨ Σ3,2MΛ/12

via the identification of MZ/2∧MZMZ/2 in (A.1). The map inc : Σ3,2MΛ/2→
Σ3,2MΛ/12 is induced by the canonical inclusion Λ/2 → Λ/12. More gener-

ally, the multiplication map s1(1Λ) ∧s0(1Λ) s2q−1(1Λ) → s2q(1Λ), restricted to

the second summand of

Σ1,1MΛ/2{α1}∧MΛΣ4q−3,2q−1MΛ/2{α2q−1}∼= Σ4q−2,2qMΛ/2∨Σ4q−1,2qMΛ/2,

is the canonical inclusion Σ4q−1,2qMΛ/2→ Σ4q−1,2qMΛ/a2q{α2q/n} for every

q > 0.

Proof. The first multiplication is given by the canonical module structure

since the unit map 1Λ → MΛ induces an isomorphism on zero slices [32,

§10], [76, Th. 6.6]. With reference to Theorem 2.20 we compute the map

Tot{1} ⊗L
Λ Tot{1} → Tot{2} of complexes of length two, which provides the

matrix given above. The final statement follows, because the map (2.13) sends

the generator 1
2d(x2q−1

1 ⊗x1) of the degree 1 homology of Tot{2q−1}⊗L
ΛTot{1}

to an element that is not in the image of d : Tot{2q}0 → Tot{2q}1.

Alternatively, the second map is determined by Lemmas 2.28 and 2.29

using that the multiplication

Σ1,1MΛ/2 ∧ Σ1,1MΛ/2 ↪→ s1(KQΛ) ∧ s1(KQΛ)→ s2(KQΛ)

∼= Σ4,2MΛ ∨ Σ2,2MΛ/2 ∨ · · ·

hits the first two direct summands of s2(KQΛ) nontrivially [63, Th. 3.3]. (The

proof carries over verbatim to compatible pairs by Theorem 2.15.) Similarly,

the multiplication on s∗(KQΛ) implies the last statement. �

The multiplicative structure of the sphere spectrum induces a multipli-

cation on the slice spectral sequence; cf. [53, Th. 3.6.16] for the zeroth slice

spectral sequence. We shall make use of the following Leibniz rule.

Proposition 2.24. The slice spectral sequence for 1 is multiplicative.

The rth differential satisfies the Leibniz rule

dr(a · b) = dr(a) · b+ (−1)pa · dr(b)

for a ∈ Erp,q,n and b ∈ Erp′,q′,n′ .
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Proof. We show a more general result for pairings D ∧ E → F of motivic
spectra by checking the condition µ from [38, §3, 8]. To verify µ0 we use
commutativity of the diagram

spD ∧ sqE
diag
//

multsp,q

��

(
spD∧sqE

)
∨
(
spD∧sqE

)
//
(
Σ1,0fp+1D∧sqE

)
∨
(
spD∧Σ1,0fq+1E

)
��

sp+qD ∧ E

��

(
Σ1,0sp+1D∧sqE

)
∨
(
spD∧Σ1,0sq+1E

)
∼=
��

Σ1,0fp+q+1D ∧ E

��

Σ1,0
(
sp+1D∧sqE ∨ spD∧sq+1E

)
multsp+1,q∨multsp,q+1

��

Σ1,0sp+q+1D ∧ E Σ1,0
(
sp+1+qD∧E ∨ sp+q+1D∧E

)foldoo

in SH, which follows from the commutative diagram implied by [53, Ths. 3.4.5,

3.4.12] (see [18, §5] for a strictification):

fpD ∧ fqE
multfp,q

//

��

fp+qD ∧ E

��

spD ∧ sqE
multsp,q

// sp+qD ∧ E

More precisely, the latter implies the two compositions in the first diagram

agree up to a homotopy on fpD ∧ sqE and on spD ∧ fqE. Moreover, both com-

positions restrict to a constant map on fpD∧ fqE, so the respective homotopies

can be chosen to be constant on fpD ∧ fqE. The homotopy cofiber sequence

fpD ∧ sqE ∪fpD∧fqE spD ∧ fqE→ spD ∧ sqE→ Σ1,0fp+1D ∧ Σ1,0fq+1E

shows that both compositions agree up to homotopy on spD∧ sqE, since every

map from the p + q + 2-effective motivic spectrum Σ1,0fp+1D ∧ Σ1,0fq+1E to

Σ1,0sp+q+1D ∧ E is trivial.

Suppose µi holds for 0 ≤ i ≤ m. To prove µm+1 we choose commutative

diagrams

Σ1,0fq+m+2D

��

Σ1,0fq′+m+2E

��

Σp,nX
a
//

x

55

sqD // Σ1,0fq+1D Σp′,n′Y
b
//

y
55

sq′E // Σ1,0fq′+1E

in SH. Since µ0, . . . , µm are satisfied, the product a · b maps to an element in

the group [Σp+p′,n+n′X ∧ Y,Σ1,0fq+q′+1D ∧ E], which lifts to a map

z : Σp+p′,n+n′X ∧ Y → Σ1,0fq+q′+m+2D ∧ E.
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It remains to check the second equation in [38, (3.1)], which follows by induc-

tion and a similar consideration as for µ0. �

2.5. The first motivic Hopf map and slices. For the Brown-Peterson spec-

trum BP at a prime p, the group Exts,tBP∗BP(BP∗,BP∗) is trivial for 2s(p−1)

> t; cf. Appendix B. We use this to show that every iteration of the Hopf map

η acts trivially on odd order direct summands of sq(1Λ).

Lemma 2.25. Let A be a finite Λ-module of odd order. If Σr,qMA is a

direct summand of sq(1Λ), there exists a natural number k such that ηk restricts

to the trivial map on Σr,qMA.

Proof. We may assume A is cyclic of odd prime power order pm > 1. For

k >
q − (2q − r − 1)(p− 1)

p− 2
,

the inequality (2q− r+ k− 1) · 2(p− 1) > 2q+ 2k implies the vanishing of the

groups

Ext2q−r+k−1,2q+2k
BP∗BP (BP∗,BP∗) = Ext2q−r+k,2q+2k

BP∗BP (BP∗,BP∗) = 0.

These Ext-groups give trivial contributions to sq+k(1Λ); cf. Theorem 2.12. Note

that ηk restricts to an MΛ-module map on the direct summand Σr,qMA of

sq(1Λ). Since its target is trivial by the above, the assertion follows. �

Definition 2.26. The η-inverted Λ-local sphere spectrum 1Λ[η−1] is the

homotopy colimit of the diagram

1Λ
Σ−1,−1η−−−−−→ Σ−1,−11Λ

Σ−2,−2η−−−−−→ Σ−2,−21Λ
Σ−3,−3η−−−−−→ · · · .

Since slices commute with homotopy colimits (see [68, Cor. 4.5]), [73,

Lemma 4.2], Lemma 2.25 implies

Corollary 2.27. The zero slice of 1Λ[η−1] is an Eilenberg-MacLane

spectrum associated with a connective chain complex of Λ-modules whose ho-

mology are 2-primary torsion modules.

Next we analyze the unit map for hermitian K-theory.

Lemma 2.28. Let u : 1Λ → KQΛ be the unit map. Then sq(u) is an

inclusion on the bottom summand of sq(1Λ); that is, MΛ{1} for q = 0 and

Σq,qMΛ/2{αq1} for q > 0.

Proof. Note that s0(1Λ) is a direct summand of s0(KQΛ) by the proof of

Theorem 2.15 given for fields in [64, Th. 4.18]. The Hopf map η relates algebraic

and hermitian K-theory via the motivic Wood cofiber sequence [64, Th. 3.4]

(2.15) Σ1,1KQΛ
η−→ KQΛ → KGLΛ.
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Theorems 2.15 and 2.19 identify the slices of KQΛ and KGLΛ, respectively.

It follows that s1(1Λ) is a direct summand of s1(KQΛ) if and only if η induces

the canonical map

(2.16) Σ1,1s0(1Λ)→ s1(1Λ)

obtained from the coefficient reduction map Λ → Λ/2. Assuming the map

in (2.16) is trivial leads to a contradiction since by [64, Lemma 4.12] the

composition

Σ1,1s0(1Λ)→ Σ1,1s0(KQΛ)
η−→ s1(KQΛ)

is the canonical map Σ1,1MΛ → Σ1,1MΛ/2 composed with the inclusion into

the infinite sum
∨
i<1 Σ2i+1,1MΛ/2. Proceeding by induction on q > 0, η

induces the trivial map

Σq+1,q+1MΛ/2 ↪→ Σ1,1sq(1Λ)→ sq+1(1Λ),

precisely if

sq+1(cone(η))→ Σ2,1sq(1Λ)→ Σ2,1sq(KQΛ)

induces the inclusion of the direct summand Σq+2,q+1MΛ/2. (Here the motivic

spectrum Σq+1,q+1MΛ/2 can only map nontrivially to the corresponding direct

summand of the same bidegree in sq+1(1Λ).) However, the latter coincides with

the composite

sq+1(cone(η))→ sq+1(KGLΛ)→ Σ2,1sq(KQΛ),

which is trivial on any direct summand of the form Σq+2,q+1MΛ/2 according

to Lemma A.3. �

Next we determine the images of the slice summands corresponding to the

finite cyclic groups Ext1,2q
MU∗MU(MU∗,MU∗) of order aq under the unit map

u : 1Λ → KQΛ.

Lemma 2.29. For q ≥ 1, the map s2q−1(u) : s2q−1(1Λ) → s2q−1(KQΛ)

restricts to the canonical inclusion of the direct summand Σ4q−3,2q−1MΛ/2

generated by α2q−1. Moreover, s2q(u) : s2q(1Λ) → s2q(KQΛ) maps the direct

summand Σ4q−1,2qMΛ/a2q generated by α2q to Σ4q,2qMΛ such that the com-

posite

Σ4q−1,2qMΛ/a2q → Σ4q,2qMΛ
pr−→ Σ4q,2qMΛ/2

is the unique nontrivial map ∂
a2q

2 from Σ4q−1,2qMΛ/a2q to Σ4q,2qMΛ/2; cf.

Lemma A.3.

Proof. We argue by induction on q. Lemma 2.28 shows the claim for q = 1.

Suppose the direct summand Σ4q−3,2q−1MΛ/2 of s2q−1(1Λ) corresponding to

Ext1,4q−2
MU∗MU(MU∗,MU∗) maps identically via s2q−1(u) to the top summand of

s2q−1(KQΛ), i.e., the direct summand of largest simplicial suspension degree.

By [64, Th. 5.5] the first slice differential d
KQΛ
1 maps this direct summand
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via the cohomology operation δ2Sq
2Sq1 to the top summand Σ4q+1,2qMΛ of

Σ1,0s2q(KQΛ); here, δn : MΛ/n → Σ1,0MΛ is the canonical connecting map.

The commutative diagram with horizontal slice differentials

s2q−1(1Λ)
d
1Λ
1
//

s2q−1(u)

��

Σ1,0s2q(1Λ)

Σ1,0s2q(u)
��

s2q−1(KQΛ)
d
KQΛ
1
// Σ1,0s2q(KQΛ)

implies the map s2q(u) is nontrivial (since d
KQΛ
1 is nontrivial) by Lemma 2.28.

More precisely, Lemma A.3 and Theorem A.5 supply an element x2q ∈ Λ/a2q

such that d1Λ
1 maps the direct summand Σ4q−3,2q−1MΛ/2 via inc2

a2q
Sq2Sq1 +

x2q∂
2
a2q

Sq2 to the direct summand Σ4q,2qMΛ/a2q of Σ1,0s2q(1Λ) obtained from

Ext1,4q
MU∗MU(MU∗,MU∗). Here inc2

a2q
is induced by the canonical map Λ/2→

Λ/a2q and ∂2
a2q

: Σ4q−1,2qMΛ/2 → Σ4q,2qMΛ/a2q is defined in Example A.4.

Moreover, Lemma A.3 implies there exists an odd integer y2q such that s2q(u)

maps the direct summand Σ4q−1,2qMΛ/a2q of s2q(1Λ) via y2qδa2q to the di-

rect summand Σ4q,2qMΛ of s2q(KQΛ). Composing with the canonical map

to Σ4q,2qMΛ/2 yields the unique nontrivial map ∂
a2q

2 in the statement of the

lemma.

The Hopf map η and the unit u : 1Λ → KQΛ induces the following

commutative diagram:

Σ1,1s2q(1Λ)
η

//

Σ1,1s2q(u)
��

s2q+1(1Λ)

s2q+1(u)

��

Σ1,1s2q(KQΛ)
η
// s2q+1(KQΛ).

The direct summand Σ1,1Σ4q−1,2qMΛ/a2q maps via the unique nontrivial map

∂
a2q

2 to the top summand Σ4q+1,2q+1MΛ/2 of s2q+1(KQΛ). Thus s2q+1(u)

maps the direct summand Σ4q+1,2q+1MΛ/2 of s2q+1(1Λ) generated by α2q+1 ∈
Ext1,4q+2

BP∗BP(BP∗,BP∗) nontrivially, and hence identically, to the top summand

in s2q+1(KQΛ). This completes the induction step. �

Lemma 2.30. The first motivic Hopf map η induces the projection map

s1(η) : Σ1,1s0(1Λ) ∼= Σ1,1MΛ{1} → Σ1,1MΛ/2{α1} ∼= s1(1Λ).

Moreover, for q ≥ 1, s2q+1(η) restricts to the unique nontrivial map

Σ1,1∂
a2q

2 : Σ1,1Σ4q−1,2qMΛ/a2q{α2q/n} → Σ4q+1,2q+1MΛ/2{α2q+1},

while for q ≥ 0, i ≥ 1, s2q+i+1(η) restricts to the identity map

Σ1,1Σ4q+i,2q+iMΛ/2{αi−1
1 α2q+1}

id−→ Σ4q+i+1,2q+i+1MΛ/2{αi1α2q+1}.
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Proof. In s∗(KQΛ), η induces the identity on every direct summand

Σ2i+q,qMΛ/2 and the canonical projection on Σ4q,2qMΛ [64, §4.3]. The first

motivic Hopf map η corresponds to derived multiplication with

α1 ∈ Ext1,2
MU∗MU(MU∗,MU∗)

via the following commutative diagram:

Σ1,11Λ ∧ sq(1Λ)
∼=

//

��

sq+1(Σ1,11Λ)

sq+1(η)

��

s1(1Λ) ∧s0(1Λ) sq(1Λ) // sq+1(1Λ).

Applying Lemmas 2.23, 2.28, and 2.29 finishes the proof. �

We proceed by analyzing the action of η on the slices of 1Λ. Lemma 2.30

implies that s0(1Λ[η−1]) contains MΛ/2∨Σ2,0MΛ/2∨Σ4,0MΛ/2∨Σ6,0MΛ/2

as a direct summand. For q 6= 0, we have sq(1Λ[η−1]) ∼= Σq,qs0(1Λ[η−1]) as

observed in [64, Ex. 2.3]. By expanding on the proof of Lemma 2.30, it follows

that Σq+n,qMΛ/2 is a retract of sq(1Λ[η−1]) for every even natural number n.

A complete computation can be extracted from the following recent result due

to Andrews-Miller [2, (1.1.1)]; cf. [77, p. 500].

Theorem 2.31. At the prime 2 and for t 6= 1, there exists a natural

number N(t) such that αs−1
1 αt+1 is the unique nontrivial element in

Ext
s,2(s+t)
BP∗BP(BP∗,BP∗)

for all s ≥ N(t).

Recall that slices commute with homotopy colimits [68, Cor. 4.5], [73,

Lemma 4.2]. Thus Theorem 2.20, Corollary 2.27, and Theorem 2.31 allow us

to compute the slices of the η-inverted Λ-local sphere spectrum. (Note that the

multiplicative identity α1α2/2 = 0 explains the condition n 6= 1 in the wedge

product decomposition below; cf. Appendix B.)

Theorem 2.32. The slices of the η-inverted Λ-local sphere spectrum are

given by

sq(1Λ[η−1]) ∼= Σq,qMΛ/2{αq1} ∨
∨
n≥2

Σn+q,qMΛ/2{αq−n−1
1 αn+1}.

Remark 2.33. The canonical map MΛ ∼= s0(1Λ) → s0(1Λ[η−1]) does not

induce a map of ring spectra MΛ/2 → s0(1Λ[η−1]). This follows since the

multiplicative structure on s0(1Λ[η−1]) involves at least as many relations as

for s0(KW); see [63, Th. 3.6].
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For completeness we give slice spectral sequence interpretations of the

zeroth, second, and third motivic Hopf maps.

Example 2.34. The zeroth motivic Hopf map 1 − ε ∈ π0,01Λ is detected

by 2 ∈ π0,0MΛ. Further, ν ∈ π3,21Λ is detected by 1 ∈ π3,2Σ3,2MΛ/12 ∼= h0,0
12

for the direct summand Σ3,2MΛ/12 of s2(1Λ) corresponding to the Adams-

Novikov spectral sequence representative α2/2 of νtop; cf. Corollary 2.13. Fi-

nally, σ ∈ π7,41Λ is detected by 1 ∈ π7,4Σ7,4MΛ/240 ∼= h0,0
240 for the direct

summand Σ7,4MΛ/240 of s4(1Λ) corresponding to the Adams-Novikov spec-

tral sequence representative α4/4 of σtop; cf. Corollary 2.13. Theorem 2.12

and Lemma 4.1 imply that all differentials entering or exiting these groups are

trivial.

3. Convergence of the slice spectral sequence

In this section we answer Voevodsky’s convergence problem for the slice

spectral sequence [73, §7]. This clarifies the role of the first motivic Hopf map

η in the stable theory and recovers Levine’s convergence result for the slice

filtration over fields of finite cohomological dimension in [33, Th. 4].

3.1. Preliminaries. For every integer q, the inclusion iq : Σ2q,qSHeff ⊂ SH

affords a right adjoint rq by work of Neeman [48]. Define fq as the composite iq◦
rq. The derived counit for the adjunction yields, for every motivic spectrum E,

a distinguished triangle

fq(E)→ E→ fq−1(E)→ Σ1,0fq(E).

In the special case where fq−1(E) = E, one has fq−1(E) = sq−1(E). The natural

transformation fq+1 → fq induces a natural transformation fq → fq−1. By [18]

and [53] the slice filtration can be modeled on the level of model categories —

whence the following is well-defined.

Definition 3.1. Let sc denote the slice completion endofunctor holimq f
q−1

of SH.

By construction, the slice spectral sequence for E [64, §2], [73, §7] is an

upper half-plane spectral sequence with entering differentials that converges

conditionally to the homotopy groups of sc(E) in the sense of Boardman [8,

Def. 5.10, §7].

Remark 3.2. The slice completion functor is augmented by the natural

transformation IdSH → sc. If each slice of E is trivial, then so is sc(E).

Example 3.3. The canonical map KW → sc(KW) is not a weak equiv-

alence over the real numbers F = R. The lim1-short exact sequence and



THE FIRST STABLE HOMOTOPY GROUPS OF MOTIVIC SPHERES 23

[64, Lemma 3.13, Corollary 3.16] show

πs,tsc(KW) ∼=


Z∧2 4 | s− t,
Z∧2 /Z 4 | s− 1− t.
0 otherwise.

On the other hand, πs,tKW is trivial if 4 - s− t and infinite cyclic in all other

degrees.

Remark 3.4. In [64, Th. 6.12] it is shown that the slice spectral sequence

for KW converges to the filtration of the Witt ring by its fundamental ideal

of even dimensional forms. Example 3.3 shows the slice spectral sequence for

KW does not converge conditionally to the homotopy groups of KW. If p is

an odd prime, s∗(KW/p) = ∗ and fq(KW/p) = KW/p for all q ∈ Z.

Throughout the following, we let (S,Λ) be a compatible pair; cf. Defini-

tion 2.1.

Lemma 3.5. If η : Σ1,1E→ E is a weak equivalence, then the multiplication

by 2 map is trivial on all slices of E.

Proof. Note that E is an 1[η−1]-module. By [18, §6 (iv),(v)] and [53,

Th. 3.6.13(6)], it follows that s0(E) is an s0(1[η−1])-module. Multiplication by

2 is trivial on s0(1[η−1]) by Corollary 2.27 (cf. Theorem 2.31), so the same

holds for any s0(1[η−1])-module; e.g., sq(E). �

Let ε : 1 → 1 be the endomorphism induced by the commutativity auto-

morphism on S1,1∧S1,1, or equivalently by the inverse map for the multiplica-

tive group scheme S1,1 = Gm = A1 r {0}. The motivic Hopf map η is induced

by the canonical map A2r{0} → P1, or equivalently (*see [46, p. 73 in §3.3 and

Ex. 7.26]), by the Hopf construction applied to the multiplicative group Gm.

The first Hopf relation ηε = η follows; cf. [12, Th. 1.4, Lemma 4.8]. Moreover,

the rational point [−1] : S0,0 → S1,1 satisfies the relation 1 + ε = −η[−1] from

[46, p. 51].

In SH[1
2 ] there are orthogonal idempotents ε± = (1 ∓ ε)/2. We obtain a

decomposition of triangulated categories SH[1
2 ] = SH[1

2 ]+ × SH[1
2 ]−, where

the factors correspond to inverting ε+ and ε−, respectively. The element ε acts

as −1 on the plus part and as the identity on the minus part. It follows that

η acts trivially on SH[1
2 ]+ while η acts invertibly on SH[1

2 ]−.

Lemma 3.6. Suppose 2: E→ E is a weak equivalence. Then the canonical

map

E→ E[ 1
1−ε ]
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induces a weak equivalence

sq(E)
∼−→ sq(E[ 1

1−ε ])

for all q ∈ Z. Hence there is a canonical weak equivalence between slice com-

pletions

sc(E)
∼−→ sc(E[ 1

1−ε ]).

Proof. By assumption E affords a splitting

E ' E[ 1
1−ε ]× E[ 1

1+ε ].

Since ηε = η, the map η is trivial on E[ 1
1−ε ]. The equality 1+ε = −η[−1] implies

that η is invertible on E[ 1
1+ε ]. Lemma 3.5 shows the map 2: sq(E[ 1

1+ε ]) →
sq(E[ 1

1+ε ]) is trivial. By the assumption on E this is also a weak equivalence.

Hence sq(E[ 1
1+ε ]) ' ∗ for all q ∈ Z. Applying the slice completion functor yields

sc(E) ' sc
Ä
E[ 1

1−ε ]
ä
× sc

Ä
E[ 1

1+ε ]
ä
' sc

Ä
E[ 1

1−ε ]
ä
;

see Remark 3.2. �

Corollary 3.7. There is an isomorphism sc(1+
Q) ∼= sc(1Q) ∼= MQ in

SHQ.

Proof. The first identification is a special case of Lemma 3.6. The second

follows from the identification s∗(1Q) = MQ in Theorem 2.12. �

It follows that 1Q is an effective cellular motivic spectrum that need not

coincide with its slice completion, e.g., over ordered fields [14, Prop. 32.23].

See also Corollary 3.52.

Following [61, §3], every element α ∈ πs,t1 defines an α-completion functor

sending a motivic spectrum E to the homotopy limit of the canonically induced

sequential diagram

· · · → E/αm+1 → E/αm → · · · → E/α.

There is a naturally induced augmentation map

E→ E∧α := holim
m

E/αm.

Definition 3.8. A motivic spectrum E is α-complete if the canonical map

E→ E∧α is a weak equivalence.

Inverting α on E amounts to forming the homotopy colimit E[α−1] = E[ 1
α ]

of the diagram

E
α∧E−−→ Σ−s,−tE

α∧Σ−2s,−2tE−−−−−−−−→ · · · .
The main examples of interest to us are integers and η ∈ π1,11. Completion

and inversion with respect to a homotopy class are related by an arithmetic

square.



THE FIRST STABLE HOMOTOPY GROUPS OF MOTIVIC SPHERES 25

Lemma 3.9. For every motivic spectrum E and α ∈ πs,t1, there is a ho-

motopy pullback

E //

��

E[ 1
α ]

��

E∧α // E∧α[ 1
α ].

Proof. It suffices to show α is invertible in the homotopy fiber of the

canonical map E→ E∧α, i.e., in the homotopy limit of the diagram

· · · α∧Σ2s,2tE−−−−−−→ Σ2s,2tE
α∧Σs,tE−−−−−→ Σs,tE

α∧E−−→ E.

This follows since multiplication by α is an isomorphism on the corresponding

homotopy colimit in the opposite category of SH. �

Lemma 3.10. The map E→ E∧η induces a weak equivalence on slices after

inverting 2.

Proof. The arithmetic square for η

E //

��

E[ 1
η ]

��

E∧η // E∧η [ 1
η ]

is a homotopy pullback square by Lemma 3.9. Inverting 2 yields a homotopy

pullback square in which the motivic spectra on the right-hand side have con-

tractible slices; see Lemma 3.5. Thus the map on the left-hand side induces a

weak equivalence on all slices, as desired. �

Lemma 3.11. Let α ∈ πs,t1Λ, and suppose (α∧E)N is the trivial map for

some N ≥ 1. Then E is α-complete.

Lemma 3.12. The slice completion sc(E) of an effective motivic spectrum

E is η-complete.

Proof. By the assumption on E, it follows that f−1(E) = s0(E). The dis-

tinguished triangle sq(E) → fq(E) → fq−1(E) → Σ1,0sq(E) shows the effective

co-covers are finite extensions with slices as associated graded pieces. Since η

acts trivially on slices, these are η-complete by Lemma 3.11. The result follows

by commuting homotopy limits. �

Lemma 3.13. Suppose E ∈ SHeff and E/η is slice complete. Then the

η-completion of E maps via a natural weak equivalence to the slice completion

of E.
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Proof. There is a naturally induced commutative diagram:

(3.1) E //

��

E∧η

��

holimq f
q−1(E) // (holimq f

q−1(E))∧η .

Lemma 3.12 shows that the lower horizontal map is an isomorphism in SH.

We shall prove the right vertical map is an isomorphism. It suffices to show

there is an isomorphism for all n ≥ 1:

E/ηn → holim
q

fq−1(E)/ηn.

This follows from our assumption on E/η, induction on n, and the canonical

identification

holim
q

fq−1(E)/ηn ∼= holim
q

fq−1(E/ηn)

of iterated homotopy limits. �

Remark 3.14. Lemmas 3.12 and 3.13 hold for E provided fq(E) = E for

some q ∈ Z. The said lemmas do not hold for KW, since KW∧
η is contractible,

while sc(KW) is not.

Example 3.15. Hermitian K-theory has the property that KQ/η ∼= KGL

is slice complete by the motivic Wood cofiber sequence (2.15) and [74], and

likewise for its effective cover. In particular, we have sc(f0(KQ)) ∼= f0(KQ)∧η .

3.2. Connectivity. To study slice completeness of 1Λ we employ a notion

of connectivity based on presheaves of homotopy groups.

Definition 3.16. A motivic spectrum E is k-connected if for every triple

(s, t, d) of integers with s − t + d < k and every X ∈ SmS of dimension ≤ d,

the group [Σs,tX+,E] is trivial. A map of motivic spectra is k-connected if its

homotopy fiber is k-connected.

A related notion of connectivity is defined in [27, §1.1]: E is said to be

k-connective if it is contained in the full localizing subcategory generated by

the shifted suspension spectra {Σs,tX+}s−t≥k,X∈SmS
. If S is a field, E is

k-connective if and only if its Nisnevich sheaves of homotopy groups πs,tE = 0

for s− t < k; see [43, Th. 6.1.8] for the case of perfect fields and [27, Th. 2.3]

for all fields.

Lemma 3.17. Suppose that S is a field. If E is k-connective, then it is

k-connected.

Proof. If E is a k-connective motivic spectrum and t ∈ Z, then the as-

sociated S1-spectrum Ω∞Gm
Σ0,−tE is k + t-connective, and by adjunction it
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determines the values of the presheaf of homotopy groups of E with weight t.

For any motivic S1-spectrum E that is k + t-connective with respect to the

homotopy t-structure, we have [ΣsX+, E] = 0 for every X ∈ SmS of dimen-

sion ≤ d and s < −d+ k+ t: By induction, the analogous statement holds for

any finite Postnikov truncation of E, so the claim follows from a limit argu-

ment. (The lim1-term vanishes because the corresponding system is eventually

constant.) See also the proof of [27, Cor. 2.4]. �

Example 3.18. If S is a field or a Dedekind domain, then the motivic

cohomology spectrum MA over S is 0-connected. In fact, [Σs,tX+,MA] ∼=
H−s,−t(X;A) = 0 if −s > −t + d, where d is the dimension of X, by [16,

Cor. 4.4].

Definition 3.19. A connected pair is a compatible pair (S,Λ) such that

the Λ-local sphere spectrum 1Λ and the motivic Eilenberg-MacLane spectrum

MΛ are 0-connected.

Unless the contrary is stated we assume throughout that (S,Λ) is a con-

nected pair.

Example 3.20. If S is a field, every compatible pair is a connected pair by

Lemma 3.17 and Example 3.18.

Example 3.21. If V → Y is a vector bundle of rank r over Y ∈ SmS ,

then the Thom space Th(V ) is r-connected. More generally, if a ∈ K0(Y ) is a

virtual vector bundle of rank r ∈ Z, then Th(a) is r-connected. This follows

from [27, Lemma 3.1] and the assumption on (S,Λ). In particular, Σa,b1Λ is

(a− b)-connected.

Lemma 3.22. A cellular motivic spectrum E is k-connected if and only if

πs,tE = 0 for all integers s, t with s− t < k.

Proof. Suppose E is a cellular motivic spectrum satisfying the stated van-

ishing. Inductively one constructs a map of cellular motivic spectra D → E

inducing a πp,q-isomorphism for all p, q ∈ Z, where D is obtained by attaching

(s, t)-cells for s − t ≥ k. Since this is a weak equivalence [11, Cor. 7.2], the

desired conclusion follows using connectivity of spheres as in Example 3.21.

The converse implication is immediate. �

The connectivity of fq(1Λ) does not increase with q, mainly because of the

direct summand Σq,qMΛ/2{αq} of sq(1Λ); cf. Corollary 2.13. By coning off η

the situation changes drastically. To make this precise, we compare with the

algebraic cobordism spectrum MGL [72, §6.3].

Lemma 3.23. The effective cover fq(MGLΛ) is q-connected.
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Proof. This follows from the proof of [68, Th. 4.7] and Lemma 3.17. �

Lemma 3.24. The unit map of MGL factors through a map 1/η →MGL

whose cone is contained in Σ4,2SHeff .

Proof. The composite of 1→MGL with η is trivial, so the factorization

exists abstractly. As for an explicit construction, η identifies up to a S2,1-

suspension with the canonical map from the complement of the zero section

of the tautological line bundle γ1 → P1 to P1; hence its mapping cone is the

Thom space ThP1(γ1). Thus we can model 1/η by the motivic spectrum with

evident structure maps given by

(∗,ThP1(γ1),ThP1(A1 ⊕ γ1), . . . ).

Recall that MGL is the motivic spectrumÄ
S0 = ThS(γ0),ThGr1=P∞(γ1),ThGr2(γ2), . . . ),

where γn → Grn is the tautological vector bundle over the nth Grassmannian

[72, §6.3]. The resulting map 1/η → MGL is determined by the inclusion

P1 ↪→ P∞ sending (x : y) to (x : y : 0 : · · · ), which in turn induces ThP1(γ1)→
ThP∞(γ1) in spectrum level one.

For every m ≥ 2, the inclusion P1 ↪→ Pm is the zero section of the

vector bundle Pm r Pm−2 → P1 projecting onto the first two coordinates.

By homotopy purity for vector bundles, the cofiber of P1 ↪→ Pm is weakly

equivalent to the Thom space of a rank 2 bundle over Pm−2. Taking the

colimit produces the Thom space of a rank 2 bundle over P∞. Since the

cofiber of ThP1(γ1)→ ThP∞(γ1) involves the map induced on Thom spaces of

a line bundle, it is weakly equivalent to the Thom space of a rank 3 bundle.

Thus the homotopy cofiber ofÄ
∗,ThP1(γ1),ThP1(A1 ⊕ γ1), . . .

ä
→
Ä
S0 = ThS(γ0),ThGr1=P∞(γ1),ThGr1(A1 ⊕ γ1), . . .

ä
is contained in Σ4,2SHeff . Since the same holds true for the canonical mapÄ

S0 = ThS(γ0),ThGr1=P∞(γ1),ThGr1(A1 ⊕ γ1), . . .
ä
→MGL,

the result follows. �

We refer to the map constructed in the proof of Lemma 3.24 as the canon-

ical one.

Lemma 3.25. Let S be a base scheme such that 1 is 0-connected. Then

the canonical map 1/η → MGL is 1-connected, and likewise for fq(1/η) →
fq(MGL) when q ∈ {0, 1, 2}.
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Proof. For the first statement, see also [27, Th. 2.8]. The connectivity of

Thom spaces given in Example 3.21 implies together with Lemma 3.24 that

1/η → MGL is 1-connected. Moreover, it induces a weak equivalence on s0
and s1 by Lemma 3.24. An application of the five lemma implies the assertions

for f1 and f2. �

Lemma 3.26. Let (S,Λ) be a compatible pair where S is a field. The map

fq(1Λ/η)→ sq(1Λ/η) is 1-connected for all q.

Proof. Lemmas 3.23 and 3.25 imply fq(1Λ/η) → sq(1Λ/η) is 1-connected

for q ∈ {0, 1}. Moreover, [Σs,tX+, f2(1Λ/η)→ s2(1Λ/η)] is an isomorphism for

all X ∈ SmS of dimension d and integers s, t satisfying s− t+ d < 1. In order

to conclude for f2(1Λ/η)→ s2(1Λ/η), it remains to show the canonical map

[Σs,tX+, f2(1Λ/η)→ s2(1Λ/η)]

is surjective for s−t+d = 1. We may assume S is connected. Since f2(1Λ/η)→
s2(1Λ/η) is a map between cellular motivic spectra, we may assume X is the

base scheme by Lemma 3.22. Lemma 2.30 implies the isomorphism s2(1Λ/η) ∼=
Σ3,2MΛ/12. Hence the target of

[S3,2, f2(1Λ/η)→ s2(1Λ/η)]

is the group Λ/12 (over arbitrary connected base schemes). By construction

of the slice filtration the Hopf map ν : S3,2 → 1 (which exists over Z — cf. [12,

Rem. 4.14] — and hence over S) factors through f2(1Λ). If S maps to Spec(C),

the complex realization map

[S3,2, f2(1/η)]→ π3(1top/η) ∼= Z/12

is surjective, and hence so is the map

[S3,2, f2(1/η)→ s2(1/η)].

For an arbitrary field of characteristic zero, one can reduce to the previous case

since all the constructions commute with filtered colimits. Suppose S has char-

acteristic p > 0, and set (T,Λ) =
Ä
Spec(Z(p)),Z[1

p ]
ä
. Since the canonical maps

H0,0(S; Λ/12)← H0,0(T ; Λ/12)→ H0,0(Q; Λ/12)

are isomorphisms, also

[S3,2, f2(1Λ/η)→ s2(1Λ/η)]

is surjective over S. For any field and integers s, t with s−t = 1, surjectivity of

[Ss,t, f2(1Λ/η)→ s2(1Λ/η)]

follows from the
⊕
n πn,n1-module structure, which induces a surjection

π3,2s2(1Λ/η)× πn,n1Λ → π3+n,2+ns2(1Λ/η)
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for all n. (Note that 1Λ = f0(1Λ) → f0(1Λ/η) → s0(1Λ/η) = s0(1Λ) is

0-connected,which implies the claimed surjectivity.) Thus f2(1Λ/η)→ s2(1Λ/η)

is 1-connected. Since sq(1Λ/η) is at least 2-connected for every q > 2 by

Lemma 2.30, it follows that fq(1Λ/η) → sq(1Λ/η) is 1-connected for every

integer q. �

Lemma 3.27. Let (S,Λ) be a compatible pair where S is a field. The

canonical map 1Λ/η → sc(1Λ/η) is 1-connected.

Proof. In fact, since the map fq+1(1Λ/η) → fq(1Λ/η) is 1-connected for

q ≥ 3 by Lemma 2.30, it suffices to prove that f3(1Λ/η) is 1-connected. This

follows from the case q = 2 of Lemma 3.26. �

3.3. Cellularity. The following definitions modeled on [11, §2,8], [29, §2]

are tailored for our discussion of convergence for the slice filtration.

Attaching a cell to E refers to the process of forming the pushout of some

diagram

(3.2) Ds+1,t1←↩ Σs,t1
α−→ E.

The leftmost map in (3.2) denotes the canonical inclusion into the simplicial

mapping cylinder Ds+1,t1 of Σs,t1 → ∗. Thus the pushout D consists of E

together with a cell of dimension (s + 1, t) and weight t. More generally, one

attaches a collection of cells indexed by some set I by forming the pushout of

some diagram ∨
i∈I

Dsi,ti1←↩
∨
i∈I

Σsi,ti1
∨αi−−→ E.

A cell presentation of f : D→ E consists of a sequence of motivic spectra

(3.3) D = D−1
d0−→ D0

∼−→ D′0
d1−→ D1

∼−→ D′1 → · · ·
dn−→ Dn

∼−→ D′n
dn+1−−−→ · · ·

along with the canonical map to the colimit c : D→ D∞, and attaching maps∨
i∈In

Σsi,ti1
αn−−→ D′n−1

such that Dn is obtained by attaching cells to D′n−1 along αn, and a weak

equivalence w : D∞
∼−→ E satisfying w ◦ c = f . Maps labeled with ∼ in (3.3)

are acyclic cofibrations.

A cell presentation D→ D∞
∼−→ E of a map D→ E is of finite type if the

following hold:

(1) There exists an integer k such that D→ D∞ contains no cells in dimension

(s, t) for s− t < k.

(2) For every integer n, D → D∞ contains at most finitely many cells of di-

mension (s, t) for s− t = n.
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Remark 3.28. A cell presentation of ∗ → E is simply called a cell presen-

tation of E — the most important (absolute) case. The distinction between a

motivic spectrum and a cell presentation thereof will often be suppressed.

Remark 3.29. The exact same definitions apply to Λ-local motivic spectra.

However, a Λ-cell presentation of finite type need not be a cell presentation of

finite type.

Example 3.30. The suspension spectrum Σ∞P∞ admits a cell presenta-

tion of finite type with one cell of dimension (2n, n) for every natural number n.

If E admits a cell presentation of finite type, then so does Σm,nE. The (s, t)-cells

of E become (s+m, t+ n)-cells of Σm,nE.

Proposition 3.31. The motivic spectrum MGL admits a cell presenta-

tion of finite type. If (S,Λ) is a compatible pair, then MΛ admits a Λ-cell

presentation of finite type.

Proof. Example 3.30 shows that the suspension spectrum of MGLn ad-

mits a cell presentation of finite type if n = 1; the general case follows similarly.

We conclude for MGL using Lemma 3.35 below. The result for MΛ was proven

in [27, Prop. 8.1] for base schemes that are essentially smooth over a field, and

more generally in [70, Cor. 11.4]. Here we use Definition 2.1(1) of a compatible

pair. �

Next we turn to a few auxiliary results on cell presentations.

Lemma 3.32. A motivic spectrum is cellular if and only if it has a cell

presentation.

Proof. Let E be a fibrant cellular motivic spectrum. To construct a cell

presentation, let

D0 :=
∨

α∈π∗,∗E
Σ∗,∗1

∨α−−→ E.

Then D0 → E factors through an acyclic cofibration D0
∼−→ D′0 and a fibration

D′0 → E. By construction, π∗,∗(D
′
0) → π∗,∗(E) is surjective. We choose lifts of

generators of its kernel, and we use these to attach cells to D′0. The result-

ing map D1 → E factors again through an acyclic cofibration and a fibration

D′1 → E, which is also a π∗,∗-surjection. Iterating this procedure leads to an

π∗,∗-isomorphism D∞ = colimnDn → E. Here injectivity uses compactness of

Σs,t1 so that any element in the kernel lifts to a finite stage and is therefore

annihilated at the next stage. Now since D∞ and E are cellular, the map

D∞ → E is a weak equivalence [11, Cor. 7.2]. The converse implication follows

directly from the definitions. �

Lemma 3.33. The cells in any Λ-cell presentation of finite type can be

rearranged according to their connectivity (in the sense of Definition 3.16).
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Proof. Without loss of generality we may assume the cell presentation

D → E∞
∼−→ E is one of a map D → E of fibrant motivic spectra such that

each step D′n
dn+1−−−→ Dn+1 consists of attaching exactly one cell of bidegree

(sn, tn). We may further assume that D′n is fibrant. Now suppose there exist

natural numbers m < n such that sm − tm > sn − tn. Let k be the smallest

natural number such that the sequence (s0 − t0, s1 − t1, . . . , sk − tk) is not

increasing, so that sk−1− tk−1 > sk − tk. Then the canonical map D′k−1 → Dk
is sk−1 − tk−1 − 1-connected by Example 3.21. Thus the attaching map for

the kth cell αk+1 : Σsk−1,tk1Λ → D′k, considered as an element in πsk−1,tkD
′
k,

lifts to πsk−1,tkD
′
k−1. Choose a representative βk+1 : Σsk−1,tk1Λ → D′k−1 and a

homotopyH : Σsk−1,tk1Λ∧∆1
+ → D′k from Σsk−1,tk1Λ

βk+1−−−→ D′k−1
dk−→ Dk

∼−→ D′k
to the attaching map αk+1 : Σsk−1,tk1Λ → D′k for the kth cell. Factor the

canonical map D′k−1 → D′k as an acyclic cofibration D′k−1
∼−→ C′k−1 followed by

a fibration q : C′k−1 → D′k. Lifting H in the commutative diagram

Σsk−1,tk1Λ ∧∆0
+

βk+1
//

��

C′k−1

q

��

Σsk−1,tk1Λ ∧∆1
+

H
// D′k

produces a homotopy whose restriction to the other inclusion is an attaching

map

γk : Σsk−1,tk1Λ → C′k−1.

Define Ck by attaching a cell with respect to γk and Ck+1 by attaching a cell

with respect to

γk+1 : Σsk−1−1,tk−11Λ → D′k−1
∼−→ C′k−1 → Ck.

The universal property of pushouts — applied twice — produces a map

vk+1 : Ck+1 → Dk+1

and a commutative diagram of homotopy cofiber sequences:

D′k−1
// Dk+1

// Dk+1/D
′
k−1

D′k−1
//

∼
��

=

OO

Ck+1

=

��

//

vk+1

OO

Ck+1/D
′
k−1

∼
��

w

OO

C′k−1
// Ck+1

// Ck+1/C
′
k−1.
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The map w is a weak equivalence by construction; its source and target are

weakly equivalent to Σsk−1,tk−11Λ ∨ Σsk,tk1Λ. Hence vk+1 is a weak equiva-

lence, producing a cell presentation C∞
∼−→ D∞ = E′ of higher connectivity.

Iterating this finitely many times yields a cell presentation of E (with cells of

the same degrees) in which the first k + 1-cells are attached in their order of

connectivity. Proceeding by induction on the cell filtration of E provides the

desired statement. �

The next result is essentially a modification of [29, Lemma 7] to our setup.

Lemma 3.34. Let k be an integer, and let f : D→ E be a k-connected map

of motivic spectra. If f has a Λ-cell presentation of finite type, then it admits

a Λ-cell presentation of finite type whose cells are at least k-connected.

Proof. We may assume f is a map between bifibrant motivic spectra. Let

D = D−1 → D0
∼−→ D′0 → D1

∼−→ D′1 → · · · → D∞
∼−→ E

be a Λ-cell presentation of finite type, where D′n is fibrant for every n. By

Lemma 3.33 we may assume the Λ-cells are attached according to increasing

connectivity. Consider the first attaching Λ-cell and D0 = Ds,t1Λ∪Σs−1,t1Λ
D−1.

If s − t ≥ k, there is nothing to prove. If s − t < k, the canonical map

(Σs−1,t1Λ, D
s,t1Λ) → (D,E) lifts to (D,D) up to homotopy since f : D → E is

k-connected. In other words the attaching map Σs−1,t1Λ → D is homotopic to

a constant map. Choose a homotopy H : Σs−1,t1Λ ∧∆1
+ → D from the given

attaching map to the constant map, and let C0 be the pushout of the diagram

Ds−1,t1Λ ∧∆1
+ Σs−1,t1Λ ∧∆1

+
//oo D.

There are canonical acyclic cofibrations D0
∼−→ C0

∼←− D ∨ Σs,t1Λ. Attaching

an (s + 1, t)-Λ-cell via the map Σs,t1Λ → D ∨ Σs,t1Λ → C0 to C0 produces a

motivic spectrum B0 receiving an acyclic cofibration from D. Let B′0 be the

pushout of the diagram

B0 D0
∼
//oo D′0.

The canonical map D → B′0 is an acyclic cofibration. Choose a retraction

B′0
∼−→ D. By construction D′0 → E has a Λ-cell presentation with precisely one

Λ-cell of degree (s, t) less than in the Λ-cell presentation of f : D→ E. Cobase

change along D′0 → B′0
∼−→ D produces a Λ-cell presentation for the induced

map D → D∞ ∪D′0 D. The target has the homotopy type of E ∨ Σs+1,t1Λ by

construction. Thus attaching a Λ-cell of degree (s+ 2, t) to D∞ ∪D′0 D via the

canonical map produces a motivic spectrum mapping via a weak equivalence

to E. Hence E admits a Λ-cell presentation with precisely one Λ-cell of degree

(s, t) less than D→ D∞ and precisely one Λ-cell of degree (s+ 2, t) more than
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D → D∞. Iterating this procedure finitely many times provides the desired

statement. �

Any map D → E of motivic spectra such that D and E admit Λ-cell

presentations of finite type acquires a Λ-cell presentation of finite type, as one

deduces from applying the simplicial mapping cylinder. Hence Lemma 3.34

applies to any map of motivic spectra admitting Λ-cell presentations of finite

type.

Also [29, Lemma 8] requires a modification in our context.

Lemma 3.35. Let (φ(n))n be an increasing sequence of integers diverging

to +∞. Suppose E is a Λ-cellular motivic spectrum. If for each integer n there

exists a motivic spectrum En with a Λ-cell presentation of finite type and a

φ(n)-connected map En → E, then E has a Λ-cell presentation of finite type.

Proof. The assumption on the connectivity of En → E implies there exists

a φ(n)-connected map fn : En → En+1 and a homotopy commutative diagram:

En //

  

En+1

||

E.

Lemma 3.34 implies fn admits a Λ-cell presentation wn ◦ cn of finite type

comprised of Λ-cells of connectivity at least φ(n). The colimit of the maps cn
yields the desired Λ-cell presentation of finite type. �

The following statement adapts [29, comment after Lemma 8, p. 581] to

our notion of connectivity.

Lemma 3.36. Let g : E → C be a k-connected map of motivic spectra for

C cellular. Choose a cell presentation c : C′
∼−→ C and a fibrant replacement

e : E
∼−→ E†. Then there exists a k − 1-connected cellular inclusion i : D ↪→ C′

and a k − 1-connected map h : D→ E† such that g ◦ e−1 ◦ h equals c ◦ i in the

homotopy category. In particular, if C′ is of finite type or has no cells below a

fixed weight, then the same holds for D.

Proof. Choose a diagram ∗ = C′0 → C′1 → · · · , with C′n+1 obtained by

attaching cells to C′n, whose colimit is C′. Let D be the motivic spectrum

comprised of all cells in C′ of dimension (s, t) with s− t ≤ k. It is constructed

inductively by restricting the corresponding attaching map. By Example 3.21

the restriction of the nth attaching map to cells of dimension (s, t) with s−t ≤ k
to C′n factors through Dn → C′n up to homotopy. This allows us to form the

motivic spectrum Dn+1.

The reverse map D → E in SH is constructed inductively, starting with

the point. Suppose hn : Dn → E has been constructed with g ◦ hn = in in SH,



THE FIRST STABLE HOMOTOPY GROUPS OF MOTIVIC SPHERES 35

where in : Dn → C′n → C′ is the inclusion described above. Since g : E → C is

k-connected, every map Σs,t1→ Dn → C′n → C with s− t < k lifts to E. This

yields a map hn+1 : Dn+1 → E such that g ◦ hn+1 = in+1 in SH. The inclusion

D ↪→ C′ is k − 1-connected by Example 3.21, hence so is h. �

Lemma 3.37. If E is a k-connected cellular motivic spectrum, then fn(E)

and sn(E) are k-connected for all n ∈ Z and sc(E) is at least k − 1-connected.

Proof. By Theorem 2.12, the result holds for the motivic sphere spec-

trum 1, and hence for all spheres. To conclude, recall that fn and sn commute

with homotopy colimits, and a homotopy limit of k-connected motivic spectra

is at least k − 1-connected. �

3.4. Convergence. We are interested in finding conditions on a motivic

spectrum such that its slice completion admits a Λ-cell presentation of finite

type.

Definition 3.38. A motivic spectrum E is called slice-connected if for every

n ∈ Z, there exists a natural number φ(n) with the following properties:

(1) The nth slice sn(E) is φ(n)-connected.

(2) The sequence (φ(n)) is non-decreasing and diverges to +∞.

Definition 3.39. A motivic spectrum E is called Λ-slice-finitary if for ev-

ery n ∈ Z, there exist natural numbers φ(n) ≤ ψ(n) and a finite collection

{Cn,0, Cn,1, . . . , Cn,ψ(n)} of finitely presented Λ-modules with the following

properties:

(1) The nth slice sn(E) is weakly equivalent to the (finite) sum of motivic

Eilenberg-MacLane spectra Σn+φ(n),nMCn,0 ∨ Σn+φ(n)+1,nMCn,1 ∨ · · · ∨
Σn+φ(n)+ψ(n),nMCn,ψ(n).

(2) The sequence (φ(n)) is non-decreasing and diverges to +∞.

(3) There exists an integer e such that fe(E) = E.

A Z-slice-finitary motivic spectrum is simply called slice-finitary.

Example 3.40. Algebraic cobordism is Λ-slice-finitary. The Moore spec-

trum 1Λ/p
m is Λ-slice-finitary for every odd prime p and natural number m.

The motivic spectrum 1Λ[1
2 ] is slice-connected, but not Λ-slice-finitary (al-

though it is Λ[1
2 ]-slice-finitary). In fact,

φ(n) =

n n odd,

n− 1 n even

is a sequence of lower bounds for the connectivity of the slices of 1Λ[1
2 ]. How-

ever, f1(1Λ[1
2 ]) is Λ-slice-finitary. Theorem 2.31 implies 1Λ/η

m is Λ-slice-

finitary for all m ≥ 1.
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Lemma 3.41. Any Λ-slice-finitary motivic spectrum is slice-connected.

Proof. This follows from the isomorphisms for X ∈ SmS ,

[Σs,tX+, snE] ∼= [Σs,tX+,Σ
n+φ(n),nMCn,0 ∨ · · · ∨ Σn+ψ(n),nMCn,ψ(n)]

∼= Hn+φ(n)−s,n−t(X;Cn,0)⊕ · · · ⊕Hn+ψ(n)−s,n−t(X;Cn,ψ(n)),

and the assumption on the motivic Eilenberg-MacLane spectrum in Defini-

tion 3.19. �

Lemma 3.42. The full subcategories of slice-connected and Λ-slice-finitary

motivic spectra of SH are triangulated.

Proof. For slice-connected motivic spectra, this follows since sn is a trian-

gulated functor. Lemma A.3 allows us to conclude for Λ-slice-finitary motivic

spectra. �

Lemma 3.43. Suppose E is a slice-connected motivic spectrum for the

sequence (φ(n)). Then for every n ∈ Z, the maps sc(E) → fn−1(E) and

holimq fq(E)→ fn(E) are φ(n)-connected.

Proof. If X ∈ SmS is of dimension at most d, the homotopy cofiber

sequence

sn(E)→ fn+1(E)→ fn(E)→ Σ1,0sn(E)

implies that [Σs,tX+, f
n+1(E)→ fn(E)] is an isomorphism for s− t+ d < φ(n).

Since (φ(n)) is non-decreasing and diverges to +∞, the map fn+m(E)→ fn(E)

is φ(n)-connected for every natural number m. Thus the lim1-term in the

lim-lim1-short exact sequence for

[Σs,tX+, sc(E) = holim
q→∞

fq−1(E)]

vanishes, and for all s, t and X ∈ SmS , there is an isomorphism

[Σs,tX+, sc(E)] ∼= lim
q→∞

[Σs,tX+f
q−1(E)].

The asserted connectivity follows from the analogous statement for holimq fq(E).

�

Lemma 3.44. Let α 7→ Eα be an I-indexed diagram of slice-connected

motivic spectra. Suppose there exists a non-decreasing sequence (φ(n)) with

limn→∞ φ(n) = +∞ such that sn(Eα) is at least φ(n)-connected for every α.

Then the homotopy colimit

hocolim
α∈I

Eα

is slice-connected, and the nth slice sn(hocolimα∈IEα) is at least φ(n)-connected.

Moreover, there is a natural weak equivalence

hocolim
α∈I

sc(Eα)
∼−→ sc

Ä
hocolim
α∈I

Eα
ä
.
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Proof. Use that sn and fn commute with homotopy colimits and connec-

tivity is preserved under homotopy colimits. The second part follows from

Lemma 3.43. �

Proposition 3.45. If E is a Λ-slice-finitary motivic spectrum, then the

slice completion sc(E) has a Λ-cell presentation of finite type.

Proof. Lemma 3.43 implies that sc(E) → fn(E) is φ(n)-connected. The

assumption on E implies that all slices have a Λ-cell presentation of finite

type by Proposition 3.31. Since E is e-effective for some integer e, fn(E) is e-

effective and has a Λ-cell presentations of finite type. Lemma 3.36 allows us to

reverse the canonical maps in order to produce a φ(n)−1-connected map Dn →
sc(E) for every n ≥ e. We may arrange that the reversion process produces

a φ(n) − 1-connected map Dn → Dn+1 for every n ≥ e, which commutes up

to homotopy with the reversed maps. This produces an ∞-connected map

hocolimnDn → sc(E). In particular, sc(E) has a Λ-cell presentation of finite

type by Lemma 3.35. �

Proposition 3.46. Let E be a Λ-slice-finitary motivic spectrum with a

Λ-cell presentation of finite type. Then holimq fq(E) admits a Λ-cell presenta-

tion of finite type, and its slices are trivial.

Proof. Lemma 3.43 implies the canonical map holimq fq(E) → fn(E) is

φ(n)-connected. Since E is slice-connected and the condition on the orders

appearing in the slices holds, the slices of E are cellular of finite type by Propo-

sition 3.31. Since E is of finite type, in particular effective, fq(E) is of finite

type. Lemma 3.36 reverses the canonical map holimq fq(E)→ fn(E) to produce

an φ(n) − 1-connected map Dn → holimq fq(E), with Dn ↪→ fn(E) a cellular

inclusion. In particular, Dn is of finite type, with no cells of weight strictly less

than n. As in Proposition 3.45 we obtain a weak equivalence

(3.4) hocolim
n

Dn
∼−→ holim

q
fq(E).

Since slices commute with homotopy colimits and Dn is n-effective,

s∗(holim
q

fq(E)) = ∗.

Moreover, hocolimnDn is of finite type. �

Lemma 3.47. Let Φ be an endofunctor of the category of motivic spectra

that commutes with homotopy colimits, commutes with Σa,b up to weak equiva-

lence, and preserves cellularity and connectivity in the sense that conn(Φ(E))-

conn(E) is constant. If the canonical map

Φ(1)→ sc(Φ(1))
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is 1-connected, then for every cellular motivic spectrum E of finite type, the

canonical map

Φ(E)→ sc(Φ(E))

is 1 + conn(E)-connected.

Proof. Induction on the number of cells implies the result for motivic

spectra with finitely many cells. If E is cellular of finite type, consider the

homotopy cofiber sequence

Φ(E(n))→ Φ(E)→ Φ(E/E(n))→ Σ1,0Φ(E(n)),

where E(n) is the subspectrum of E comprising the first n-cells. Since the

connectivity of E/E(n) increases with n, and hence by assumption on Φ and

Lemma 3.37 also the connectivity of the slice completion sc(Φ(E/E(n))), the

result follows. �

Corollary 3.48. Let (S,Λ) be a compatible pair where S is a field. Sup-

pose E has a Λ-cell presentation of finite type. Then the canonical map

E/η → sc(E/η)

is 1 + conn(E)-connected.

Proof. This follows from Lemmas 3.27 and 3.47. �

Proposition 3.49. Let (S,Λ) be a compatible pair where S is a field.

Suppose E has a Λ-cell presentation of finite type. Then the canonical map

E/η → sc(E/η) is a weak equivalence.

Proof. There is a commutative diagram of homotopy cofiber sequences:

(3.5) holimq fq(E/η) //

��

E/η //

��

sc(E/η)

��

sc
Ä
holimq fq(E/η)

ä
// sc(E/η) // sc

Ä
sc(E/η)

ä
.

Example 3.40 implies E/η is slice-finitary. By Proposition 3.46 the right

vertical map in (3.5) is a weak equivalence. Note that sc(holimq fq(E/η))

is contractible; see Proposition 3.46. The homotopy limit holimq fq(E/η) is

1 + conn(E)-connected by Corollary 3.48, and cellular of finite type by Propo-

sition 3.46. Applying Corollary 3.48 to holimq fq(E/η) shows the left vertical

map in (3.5) is 2 + conn(E)-connected. By the five lemma, the middle vertical

map in (3.5) is 2 + conn(E)-connected. Thus the left vertical map in (3.5) is

3 + conn(E)-connected. Iterating this argument finishes the proof. �

We can now give a criterion for when the slice completion coincides with

the η-completion.
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Theorem 3.50. Let (S,Λ) be a compatible pair where S is a field. Suppose

E has a Λ-cell presentation of finite type. Then there is a canonical zig-zag of

weak equivalences between the slice completion sc(E) and the η-completion E∧η .

Proof. This follows from Lemma 3.13 and Proposition 3.49. �

Theorems 2.12 and 3.50 identify the +-part of the rational motivic sphere

spectrum as first announced in [45]; see [10, Th. 16.2.13] for an alternate

formulation and proof.

Corollary 3.51. For S a field, the unit map for the motivic Eilenberg-

MacLane spectrum induces an isomorphism 1+
Q
∼= MQ in SHQ.

Proof. Theorem 3.50 applies to 1Q and MQ. (Note that MQ has a ra-

tional cell presentation of finite type by Proposition 3.31.) The Hopf relation

εη = η implies the η-completion of 1Q is the +-part 1+
Q of the rational mo-

tivic sphere spectrum. Thus there are conditionally convergent slice spectral

sequences

(3.6) πp,nsq(1Q) =⇒ πp,n(1+
Q),

(3.7) πp,nsq(MQ) =⇒ πp,n(MQ).

Theorem 2.12 shows the unit map induces an isomorphism of slices

sq(1Q)
∼=→ sq(MQ) ∼=

MQ q = 0,

∗ q 6= 0,

and hence an isomorphism between (3.6) and (3.7). The filtered target groups

are isomorphic by [8, Th. 7.2]. Cellularity of 1+
Q and MQ finish the proof. �

Corollary 3.52. Suppose S is a field with finite mod 2 étale cohomo-

logical dimension or positive characteristic. Then there is an isomorphism

1Q
∼= MQ in SHQ.

Proof. Combine [33, Lemma 6.8] showing 1−Q = ∗ and Corollary 3.51. �

Corollary 3.53. If S is a finite field, then there are isomorphisms

πp,q(1)⊗Q ∼=

Q (p, q) = (0, 0),

0 otherwise.

If S is a totally imaginary number field with s pairs of complex embeddings,

there is an isomorphism π−1,−1(1)⊗Q ∼= Q∞ and in all other degrees

πp,q(1)⊗Q ∼=


Q (p, q) = (0, 0),

Qs (p, q) = (−1, odd),

0 otherwise.
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Proof. If S is a finite field, Quillen’s computation of the algebraic K-groups

of a finite field [56] shows Kn(S) is a finite group for all n > 0. If S is a totally

imaginary number field, Borel’s computation [9] provides the identification of

Kn(S)⊗Q. Using the rational degeneration of the slice spectral sequence for

KGL, the identifications follow from Corollary 3.52. �

4. Differentials for the motivic sphere spectrum

We start this section by describing components of the first slice differential

for 1Λ, where (S,Λ) is a compatible pair and S is connected. This leads to

a discussion of higher differentials, which eventually allows us to compute the

first motivic stable stems.

4.1. The first slice differential. Following [57], let αi be a generator of

its p-primary component Ext1,2i
BP∗BP(BP∗,BP∗). Let αi be the generator of

its p-primary component Ext1,2i
BP∗BP(BP∗,BP∗). We denote motivic Steenrod

operations by Sqi [75, §9]. Let τ be the generator of h0,1 ∼= µ2(OS) when S has

no points of residue field characteristic two, and let ρ denote the class of −1 in

h1,1 ∼= O×S /2. Recall from Lemma 2.29 that ∂
a2q

2 denotes the unique nontriv-

ial map from Σ4q−1,2qMΛ/a2q to Σ4q,2qMΛ/2. We refer to Theorem A.5 for

properties of the naturally induced maps inc2
a2q

: Σ4q,2qMΛ/2→ Σ4q,2qMΛ/a2q

and ∂2
a2q

: Σ4q−1,2qMΛ/2→ Σ4q,2qMΛ/a2q. Recall the slices of 1Λ from Theo-

rem 2.12 and Corollary 2.13.

Lemma 4.1. For 0 ≤ q ≤ 2, the slice differential

d1Λ
1 (q) : sq(1Λ)→ Σ1,0sq+1(1Λ)

is given by

d1Λ
1 (0) = Sq2pr: MΛ→MΛ/2→ Σ2,1MΛ/2,

d1Λ
1 (1) =

Ç
Sq2

inc2
12Sq

2Sq1

å
: Σ1,1MΛ/2→ Σ3,2MΛ/2 ∨ Σ4,2MΛ/12,

d1Λ
1 (2) =

Ç
Sq2 τ∂12

2

Sq3Sq1 Sq2∂12
2

å
: Σ2,2MΛ/2 ∨ Σ3,2MΛ/12

→ Σ4,3MΛ/2 ∨ Σ6,3MΛ/2.

For q ≥ 3, d1Λ
1 (q) restricts to the direct summand Σq,qMΛ/2∨Σq+2,qMΛ/2 of

sq(1Λ) byÇ
Sq2 τ

Sq3Sq1 Sq2 + ρSq1

å
: Σq,qMΛ/2 ∨ Σq+2,qMΛ/2

→ Σq+2,q+1MΛ/2 ∨ Σq+4,q+1MΛ/2.
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Here Σq+2,qMΛ/2 is generated by αq−3
1 α3 ∈ Extq−2,2q

BP∗BP(BP∗,BP∗). Moreover,

d1Λ
1 (q) restricts as follows on top direct summands of s∗(1Λ):

inc2
a2q

Sq2Sq1 : Σ4q−3,2q−1MΛ/2→ Σ4q,2qMΛ/a2q,

Sq2∂
a2q

2 : Σ4q−1,2qMΛ/a2q → Σ4q+2,2q+1MΛ/2,

τ∂
a2q

2 : Σ4q−1,2qMΛ/a2q → Σ4q,2q+1MΛ/2 q odd,

0: Σ4q−1,2qMΛ/a2q → Σ4q,2q+1MΛ/2 q even.

Here Σ4q−3,2q−1MΛ/2 and Σ4q−1,2qMΛ/a2q are generated by α2q−1 and α2q/n,

respectively.

Proof. The unit map 1Λ → KGLΛ and mod-2 reduction map KGLΛ →
KGLΛ/2 for the algebraic K-theory spectrum induce the following commuta-

tive diagram:

s0(1Λ)
∼=

//

d
1Λ
1 (0)

��

s0(KGLΛ)
pr

//

d
KGLΛ
1 (0)

��

s0(KGLΛ/2)

d
KGLΛ/2

1 (0)
��

Σ1,0s1(1Λ) // Σ1,0s1(KGLΛ)
pr
// Σ1,0s1(KGLΛ/2).

The map s0(1Λ)→ s0(KGLΛ) is an isomorphism by [32]; see also [64, Th. 4.1].

Over Spec(Z[1
2 ]), we have d

KGLΛ/2
1 = Sq2Sq1 +Sq1Sq2 [64, Lemma 5.1]. Hence

the map s0(1Λ) → Σ1,0s1(KGLΛ/2) equals Sq1Sq2pr. (Recall Sq1pr = 0 by

[64, Lemma A.3].) It follows that d1Λ
1 (0) : s0(1Λ) → Σ1,0s1(1Λ) and s1(1Λ) →

s1(KGLΛ/2) are nontrivial. This implies s1(1Λ) → s1(KGLΛ/2) is given by

Sq1, and d1Λ
1 (0) = Sq2pr; see, e.g., [64, Lemmas A.1, A.4].

By [64, Lemma 2.1], the Hopf map η : Σ1,11Λ → 1Λ induces the following

commutative diagram:

(4.1) Σ1,1sq−1(1Λ)
∼=

//

Σ1,1d
1Λ
1 (q−1)

��

sq(Σ
1,11Λ)

sq(η)
//

d
Σ1,11Λ
1 (q)

��

sq(1Λ)

d
1Λ
1 (q)
��

Σ2,1sq(1Λ)
∼=
// Σ1,0sq+1(Σ1,11Λ)

Σ1,0sq+1(η)
// Σ1,0sq+1(1Λ).

By Lemma 2.30, sq(η) and Σ1,0sq+1(η) in (4.1) are known on the summands

generated by αq1 and αq−1
1 α3. For q ≥ 1, (4.1) and the motivic Steenrod

algebra (see, e.g., [64, Lemma A.2]) show there exists an element φ ∈ h1,1 —

independent of q by the comparison with KQ given in Lemma 2.28 — such that

d1Λ
1 (q) = Sq2 + φSq1 on the direct summand Σq,qMΛ/2 of sq(1Λ) generated

by αq1. The Adem relations Sq2Sq2 = τSq1Sq2Sq1 and Sq1Sq1 = 0 (see, e.g.,

[28, Th. 5.1]) imply

(Sq2 + φSq1)2 = τSq1Sq2Sq1 + φ(Sq1Sq2 + Sq2Sq1).
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Since differentials square to zero, [64, Lemma A.2] implies that d1Λ
1 (q) maps

Σq,qMΛ/2{αq1} by Sq3Sq1 to Σq+4,q+1MΛ/2{αq−2
1 α3} for q ≥ 4. A tedious

calculation for q > 4 using Adem relations and motivic cohomology operations

of weight one yields

d1Λ
1 (q)|Σq,qMΛ/2∨Σq+2,qMΛ/2 =

Ç
Sq2 τ

Sq3Sq1 Sq2 + ρSq1

å
.

Theorem A.5 shows d1Λ
1 (1) : s1(1Λ)→ Σ1,0s2(1Λ) is given byÇ

Sq2

b2inc2
12Sq

2Sq1 + c2∂
2
12Sq

2

å
: Σ1,1MΛ/2→ Σ3,2MΛ/2 ∨ Σ4,2MΛ/12,

where b2, c2 ∈ h0,0, and moreover that d1Λ
1 (2) is given byÇ

Sq2 xτ∂12
2 + φpr12

2

Sq3Sq1 ySq2∂12
2 + zSq1Sq2pr12

2

å
: Σ2,2MΛ/2 ∨ Σ3,2MΛ/12

→ Σ4,3MΛ/2 ∨ Σ6,3MΛ/2,

where x, y, z ∈ h0,0 and φ ∈ h1,1. (The first column is obtained as in the case

q > 4.) In Example 4.3 we use the multiplicative structure on the slices of 1Λ

to conclude c2 = 0. From d1Λ
1 (2)d1Λ

1 (1) = 0 we obtain b2 = y = 1. Likewise,

d1Λ
1 (3)d1Λ

1 (2) = 0, where d1Λ
1 (3) maps by Sq2 + τ to Σ4,3MΛ/2, so we obtain

φ = z = 0 and x = 1.

To determine d1Λ
1 (3) and d1Λ

1 (4), the calculation for q > 4 shows it re-

mains to consider Σ6,4MΛ/2{α1α3}∨Σ6,4MΛ/2{β2/2}; cf. Corollary 2.13 and

[57, Th. 5.3.7, Table A3.3]. Since ν2 is detected to β2/2 (see [57, Table A.3.3]),

Theorem 2.20 implies s4(ν2) : s4(Σ6,41Λ) → s4(1Λ) maps to Σ6,4MΛ/2{β2/2}
via the coefficient reduction Λ → Λ/2. Here ν : Σ3,21Λ → 1Λ is the sec-

ond motivic Hopf map, whose homotopy cofiber is the quaternionic projective

plane. Now Σ6,4MΛ/2{β2/2} maps trivially to s4(KQΛ) under the unit map

because ν ∧KQΛ is trivial. This follows from the quaternionic projective bun-

dle theorem [52, Th. 9.2], or π3,2KQ = GW
[2]
−1(S) = KSp−1(S) = 0; see, e.g.,

[65, Prop. 6.3]. Lemma 2.29 combined with the computation of d
KQΛ
1 in [64,

Th. 5.5] identify d1Λ
1 (3) and d1Λ

1 (4) entering and exiting Σ6,4MΛ/2{α1α3}, and

also d1Λ
1 (4) exiting Σ6,4MΛ/2{β2/2}.

Also the last four equations can be obtained by comparing with KQΛ

using Lemma 2.29. More precisely, this comparison directly implies the last

three equations, and also that the differential restricts to a map

inc2
a2q

Sq2Sq1 + c2qSq
2∂2
a2q

: Σ4q−3,2q−1MΛ/2→ Σ4q,2qMΛ/a2q

for some c2q ∈ h0,0. Example 4.3 shows c2q = 0. For degree reasons, any dif-

ferential exiting a direct summand of sq(1Λ) of simplicial degree at least q + 3

maps trivially to the direct summand Σq+2,q+1MΛ/2 of Σ1,0sq+1(1Λ). Since
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multiplication by τ : MΛ/2 → Σ0,1MΛ/2 is injective on the motivic Steen-

rod algebra, any differential exiting a direct summand of sq(1Λ) of simplicial

degree at least q + 3 maps trivially to the direct summand Σq+4,q+1MΛ/2 of

Σ1,0sq+1(1Λ). �

The motivic cohomology operation τ appears also in many other first slice

differentials gotten from α1-towers in the Adams-Novikov spectral sequence.

Lemma 4.2. At the prime 2, for i ≥ 3 and q ≥ 1, restricting d1Λ
1 (4q+i−3)

to the direct summand generated by αi−3
1 α4q+2/n yields

τpr: Σ8q+3,4q+2MΛ/a4q+2 → Σ8q+3,4q+3MΛ/2

for i = 3 and

τ : Σ8q+i,4q+i−1MΛ/2→ Σ8q+i,4q+iMΛ/2

for i > 3. Moreover, for i ≥ 3 and q ≥ 1, restricting d1Λ
1 (4q + i − 4) to the

direct summand generated by αi−3
1 α4q−1 yields

τ : Σ8q+i−6,4q+i−4MΛ/2→ Σ8q+i−6,4q+i−3MΛ/2.

Proof. The Adams-Novikov d3-differential maps αi−3
1 α4q+2/n to αi1α4q/n,

and αq−i1 α4q−1 to αi1α4q−3 [49], [77, Property 2.3, Table 2]. Topological realiza-

tion (see, e.g., [35, Th. 1]) shows the corresponding restrictions of d1Λ
1 (4q+i−3)

and d1Λ
1 (4q+ i−4) are nontrivial over fields of characteristic zero. The general

case follows by base change from Z[1
2 ]. �

By taking into account the primes 3 and 7 we find that d1Λ
1 (6) restricts to

τpr: Σ11,6MΛ/504{α6/3} → Σ11,7MΛ/2{α3
1α4/4}.

We summarize these computations in Figure 4.1. An entry represents a

shifted motivic Eilenberg-MacLane spectrum with coefficients determined by

Extp,2qMU∗MU(MU∗,MU∗) as in Theorem 2.12. The slices are labeled succes-

sively along the vertical axis. Horizontally, each direct summand of a fixed

slice is labeled according to the difference between the simplicial suspension of

the direct summand and the slice degree. The d1-differentials are labeled by

colors corresponding to elements of the motivic Steenrod algebra, and they are

ordered by simplicial degree. An open square refers to Λ-coefficients and solid

dots to Λ/2. The asterisk in the second slice indicates Λ/12-coefficients, and

similarly for Λ/2⊕ Λ/2, Λ/240, Λ/6, and Λ/504.

Example 4.3. Write c1 ∈ H2,1(P2) = [Σ−2,−1P2
+, s0(1Λ)] for the first

Chern class of the tautological line bundle on P2. Then Sq2pr∞2 (c1) = pr∞2 (c1)2

∈ h4,2(P2) is nonzero. Lemma 2.23 computes the cup-product of τ ∈ h0,1(P2)

= [Σ1,0P2
+, s1(1Λ)] with c1, i.e.,

τ · c1 = τpr∞2 (c1) ∈ h2,2(P2) = [Σ−1,−1P2
+, s1(1Λ)].
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Figure 4.1. The first slice differential for 1Λ.

Applying the first slice differential yields

d1Λ
1 (τ · c1) =

Ä
Sq2(τpr∞2 (c1)), inc2

12Sq
2Sq1(τpr∞2 (c1)) + c2∂

2
12Sq

2(τpr∞2 (c1))
ä

=
Ä
τpr∞2 (c1)2, inc2

12ρpr∞2 (c1)2 + c2∂
2
12τpr∞2 (c1)2

ä
=
Ä
τpr∞2 (c1)2, c2∂

2
12τpr∞2 (c1)2

ä
.

If 0 6= ρ ∈ h1,1(S), then ∂2
12τpr∞2 (c1)2 is nonzero because Sq1 = pr12

2 ∂
2
12 and

Sq1τpr∞2 (c1)2 = ρpr∞2 (c1)2 ∈ h5,3(P2). The change of coefficients long exact

sequence

· · · → h4,3
6 (P2)

Sq1

−−→ h5,3(P2)
inc2

12−−−→ h5,3
12 (P2)→ · · ·

implies inc2
12ρpr∞2 (c1)2 = 0. By the Leibniz rule in Proposition 2.24 we get

d1Λ
1 (τ · c1) = d1Λ

1 (τ) · c1 + τ · d1Λ
1 (c1)

= 0 · c1 + τ · Sq2pr∞2 (c1)

= τ · pr∞2 (c1)2

= (τpr∞2 (c1)2, inc2
12τSq

1(pr∞2 (c1)2))

= (τpr∞2 (c1)2, 0).
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Lemma 2.23 determines s1(1Λ) ∧s0(1Λ) s1(1Λ) → s2(1Λ), and Corollary A.2

identifies the effect on
Ä
τ,pr∞2 (c1)2

ä
. Hence c2 = 0 over Z[1

2 ], where ρ 6= 0,

and in general by base change. More generally, one may use the Leibniz rule,

c1 as above, and

τ ∈ h0,1(P2) = [Σ4q−3,2q−2P2
+,Σ

4q−3,2q−1MΛ/2]→ [Σ4q−3,2q−2P2
+, s2q−1(1Λ)]

to conclude c2q = 0 precisely if the multiplication map

Tot{2q − 1} ⊗ Tot{1} → Tot{2q}

to the Adams degree 4q part of the standard cosimplicial BP-resolution at the

prime 2 induces the map inc2
a2q

= inc2
a2q

+ 0 · ∂2
a2q

to H1(Tot{2q}) = Z/a2q.

The latter is verified in Lemma B.1.

Fix a compatible pair (F,Λ), where F is a field of characteristic not two.

For n ∈ Z, Figure 4.2 shows the E1-page E1
p,q,−n(1Λ) = πp,−nsq(1Λ) of the

weight −nth slice spectral sequence for 1Λ. Note that E1
p,q,−n(1Λ) = 0 for

p < −n or q < 0, and Hp,n = 0 for n < 0. In each bidegree, the correspond-

ing group is decomposed into direct summands according to Theorem 2.12.

We write h∗,∗2,2 for motivic cohomology with (Λ/2 × Λ/2)-coefficients. Each

differential is assigned a color corresponding to a motivic Steenrod operation.

Lemma 4.4. For n ∈ Z, every d1-differential entering the −nth column

in the −nth slice spectral sequence for 1Λ is trivial. The d1-differential

d1 : hn−1,n+1 → hn+2,n+2
12

is also trivial.

Proof. By Lemma 4.1, this amounts to the triviality of Sq2pr: Hn−1,n →
hn−1,n → hn+1,n+1, τ∂12

2 : hn+2,n+2
12 → hn+3,n+3, Sq2 : hi,i+1 → hi+2,i+2 for

all i ≥ n, and finally the composition inc2
12Sq

2Sq1 : hn−1,n+1 → hn,n+1 →
hn+2,n+2 → hn+2,n+2

12 . Note that τ∂12
2 factors through the group hn+3,n+2 = 0,

while Sq2 is trivial in the given range [64, Cor. 6.2]. �

Remark 4.5. Lemma 4.4 implies E2
0,q,0(1Λ) = E1

0,q,0(1Λ). For degree rea-

sons, it follows that E2
1,q,0(1Λ) = E1

1,q,0(1Λ), q ≤ 2. Each d1-differential corre-

sponding to multiplication with τ is surjective. (Recall that τ : hp,q → hp,q+1

is an isomorphism for 0 ≤ p ≤ q by Voevodsky’s solution of the Milnor con-

jecture; cf. [64, Lemma 6.1].) In Theorem 4.7 we show E∞1,1,0(1Λ) ∼= h0,1,

E∞1,2,0(1Λ) ∼= h1,2 ⊕ h2,2
12 , E∞1,3,0(1Λ) ∼= h2,3/τ∂12

2 h1,2
12 , and E∞1,q,0(1Λ) = 0 for

q > 3. In Theorem 5.5 (see also Corollary 5.2) we prove Morel’s π1-conjecture

by solving the hidden extensions between these groups.

4.2. Higher slice differentials. Throughout we fix a compatible pair (F,Λ),

where F is a field of char(F ) 6= 2.
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Figure 4.2. E1-page of the weight −nth slice spectral sequence

for 1Λ.

Lemma 4.6. The unit maps 1Λ→KQΛ and 1Λ→KWΛ induce the fol-

lowing isomorphisms for all n ∈ Z, q > 0:

E2
n,0,n(1Λ)

∼=−→ E2
n,0,n(KQΛ) and E2

n,q,n(1Λ)
∼=−→ E2

n,q,n(KWΛ).
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Proof. For degree reasons, only powers of α1 contribute to the nth column

of the nth slice spectral sequence for 1Λ. Lemma 2.28 implies that the unit

maps 1Λ → KQΛ and 1Λ → KWΛ induce inclusions

H−n,−n = E1
n,0,n(1Λ)

↪→ H−n,−n ⊕ h−n−2,−n ⊕ · · · = E1
n,0,n(KQΛ) n ≤ 0,

hq−n,q−n = E1
n,q,n(1Λ)

↪→ hq−n,q−n ⊕ hq−n−2,q−n ⊕ · · · = E1
n,q,n(KWΛ) q > 0 or n > 0.

Lemma 4.4 shows that the first slice differential for 1Λ maps trivially to the

nth column, so that E2
n,q,n(1Λ) = E1

n,q,n(1Λ). The E2-page E2
n,0,n(KQΛ) can

be computed in low degrees using [64, Th. 5.5]; for weight zero, see [64, §7].

If n > 0, the groups E1
n,0,n(1Λ) and E1

n,0,n(KQΛ) are trivial. If n ≤ 0, then

E2
n,0,n(KQΛ) is given by the homology of the following complex:

h−n−4,−n−1 ⊕ h−n−6,−n−1 ⊕ · · ·

d1(KQΛ)
��

H−n,−n ⊕ h−n−2,−n ⊕ · · ·

d1(KQΛ)
��

h−n,−n+1 ⊕ h−n−2,−n+1 ⊕ · · · .

This implies an isomorphism E2
n,0,n(1Λ)

∼=−→ E2
n,0,n(KQΛ) for n ≤ 0. For q > 0,

E2
n,q,n(KWΛ) is given by the homology of the following complex:

hq−n−2,q−n−1 ⊕ hq−n−4,q−n−1 ⊕ · · ·

d1(KWΛ)
��

hq−n,q−n ⊕ hq−n−2,q−n ⊕ · · ·

d1(KWΛ)
��

hq−n,q−n+1 ⊕ hq−n−2,q−n+1 ⊕ · · · .

This implies an isomorphism E2
n,q,n(1Λ)

∼=−→ E2
n,q,n(KWΛ); for n = 0, see [64,

Th. 6.3]. For n > 0, we use the periodicity isomorphism η : Σ1,1KWΛ → KWΛ

[64, Ex. 2.3]. �

Theorem 4.7. For all n, q ∈ Z, there are isomorphisms

E∞n,q,n(1Λ) ∼= E1
n,q,n(1Λ) ∼=

H−n,−n n ≤ 0 and q = 0,

hq−n,q−n n > 0 or q > 0.
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Proof. The connectivity of the slices shows that E1
n,q,n(1Λ) consists of infi-

nite cycles. The case q = 0 follows by effectivity of 1Λ, which excludes nontriv-

ial differentials entering E1
n,q,n(1Λ). Lemma 4.6 shows E2

n,q,n(1Λ) = E1
n,q,n(1Λ)

and that the unit map 1Λ → KWΛ induces an isomorphism E2
n,q,n(1Λ) ∼=

E2
n,q,n(KWΛ) for q > 0. Since E2

n,q,n(KWΛ) = E∞n,q,n(KWΛ), by [64, Th. 6.3]

all differentials entering E2
n,q,n(KWΛ), and hence E2

n,q,n(1Λ), are trivial. In

loc. cit., n = 0; the general case follows from the isomorphism η : Σ1,1KWΛ →
KWΛ. �

Corollary 4.8. If n > 0, the unit maps 1Λ → KQΛ and 1Λ → KWΛ

induce isomorphisms

π0,0sc(1Λ)
∼=−→ π0,0sc(KQΛ) and πn,nsc(1Λ)

∼=−→ πn,nsc(KWΛ),

respectively. If n < 0, then πn,nsc(1Λ) is the I-adic completion of an extension

of H−n,−n by I−n+1, where I denotes the fundamental ideal of the Witt ring.

Proof. The πn,n-isomorphisms for n ≥ 0 follow from Theorem 4.7 and the

corresponding statements for KQΛ and KWΛ. If n < 0, then 1Λ → s0(1Λ)

(with homotopy fiber f1(1Λ)) induces a surjection πn,n1Λ → πn,ns0(1Λ) ∼=
H−n,−n. The image of π0,0f−n+1(KWΛ) in π0,0KWΛ is I−n+1 by [64, Th. 6.12],

whence Theorem 4.7 shows

πn,nf1(1Λ) ∼= π0,0f−n+1(1Λ)→ π0,0f−n+1(KWΛ)

induces an isomorphism on I-adic completions. �

Remark 4.9. Suppose the slice filtration on πn,n1Λ is Hausdorff, i.e., 1Λ is

convergent with respect to the slice filtration [73, Def. 7.1]. Theorem 4.7 and

Corollary 4.8 imply

π0,01Λ
∼=−→ π0,0KQΛ and πn,n1Λ

∼=−→ πn,nKWΛ

for n > 0 and an extension

0→ I−n+1 → πn,n1Λ → H−n,−n → 0

for n < 0. This is Morel’s identification of the 0-line [46, Th. 1.23, Cor. 1.25].

To compute πn+1,n1Λ
∧
η , we set out to determine the E∞-terms of the

−n + 1st column of the −nth slice spectral sequence for 1Λ. Lemma 4.1 and

the isomorphism τ : hp,q → hp,q+1 for 0 ≤ p ≤ q imply that only terms from

the first four slices may survive to the −n+ 1st column of the E2-page of the

−nth slice spectral sequence; cf. Remark 4.5. Thus the only possibly nonzero

differentials entering the −n+ 1st column on the E2-page are

E2
−n+2,0,−n → E2

−n+1,2,−n and E2
−n+2,1,−n → E2

−n+1,3,−n.
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To show that these d2-differentials, as well as the d3-differential

E3
−n+2,0,−n → E3

−n+1,3,−n,

are trivial we shall reduce to global fields. All dr-differentials entering the

−n+ 1st column for r ≥ 4 are trivial for degree reasons, so this determines the

desired E∞-terms.

We write cdp(F ) for the p-cohomological dimension of a field F [66, §3.1].

Lemma 4.10. If cd2(F ) ≤ 2 and cd3(F ) ≤ 4, then every rth differential

in the −nth slice spectral sequence entering the −n+ 1st column is trivial for

r ≥ 2.

Proof. Note that E2
−n+2,0,−n is a subgroup of Hn−2,n. The latter group

is trivial by definition when n ≤ 0 and for n = 1, 2 by [36], [40, (4.1), (4.2)].

If n ≥ 3, the possible targets are zero for fields of cohomological dimension

at most three for the prime 2 and at most four for the prime 3. The group

E2
−n+2,1,−n is a subquotient of hn−1,n+1, which is trivial for n ≤ 0. If n ≥ 1,

then hn+2,n+3 = 0 since cd2(F ) ≤ 2, so that E2
−n+2,3,−n = 0. �

Lemma 4.11. Let F be R, C or a global field of positive characteristic not

two. For n ∈ Z, r ≥ 2, every dr-differential in the −nth slice spectral sequence

for 1Λ entering the −n+ 1st column is trivial.

Proof. Lemma 4.10 applies to C and global fields of positive dimension [66,

§4.2]. The mod-2 motivic cohomology ring of the reals is h∗,∗(R) = Z/2[τ, ρ].

Any d1-differential restricting to Sq2 and entering the −n + 1st column is

an isomorphism: up to a cup-product isomorphism by some τ -power, such a

d1-differential is cup-product by ρ2 [64, Cor. 6.2]. Lemma 4.1 implies the only

possibly nontrivial rth differential is

(4.2) d2 : 2Hn−2,n → hn+2,n+2
12 ;n ≥ 0.

The group hn+2,n+2
12 (R) is cyclic of order two with a generator represented

by ν · {−1, . . . ,−1}, where ν : S7,4 → S4,2 is the second motivic Hopf map;

cf. Example 2.34. Taking real points yields the real Betti realization map

πp,q1Λ → πp−q1top, which maps ν to ηtop ∈ π11top, and likewise for every

element of the form ν · {−1, . . . ,−1}. This implies that (4.2) is trivial. �

Lemma 4.12. Let F be a global field of char(F ) 6= 2. Then for n ≥ 1,

hn+2,n+3/Sq2hn,n+2 = hn+2,n+3/τ∂12
2 hn+1,n+2

12 = 0.

Proof. For n ≥ 1, hn+2,n+3 = 0 over global fields of positive characteristic

[66, §4.2]. By the cup-product isomorphism τ : hi,i → hi,i+1 [64, Cor. 6.1] for

i ≥ 0 and Tate’s computation of hi,i, i ≥ 3, for number fields [42, Th. A.2] it
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suffices to consider R. For n ≥ 0,

Sq2 : hn,n+2 → hn+2,n+3

is the cup-product map by ρ2 [64, Cor. 6.2], and hence it is an isomorphism.

Likewise, the second group vanishes since by Theorem A.5, the composition

hn+1,n+2 inc2
12−−−→ hn+1,n+2

12

∂12
2−−→ hn+2,n+2

coincides with Sq1, i.e., the cup-product map by ρ [64, Cor. 6.2]. �

Lemma 4.13. Let F be a global field of char(F ) 6= 2. For n ∈ Z, r ≥ 2, all

rth differentials in the −nth slice spectral sequence for 1Λ entering the −n+1st

column are trivial.

Proof. Lemma 4.12 implies this for differentials entering E2
−n+1,3,−n and

also for the first component of the differential entering

E2
−n+1,2,−n

∼= hn+1,n+2/Sq2hn−1,n+1 ⊕ hn+2,n+2
12 .

We may assume char(F ) = 0 by Lemma 4.10. Then there is a canonically

induced isomorphism

hn+2,n+2
12 (F )

∼=−→
⊕

hn+2,n+2
12 (R),

where the direct sum is indexed by the real places of F [7, Th. 2.1]. We

conclude using Lemma 4.10 and base change. �

Lemma 4.14. The rth slice differentials induce an KM
∗
∼=
⊕
n∈NH

n,n-

module map⊕
n∈Z

drp+n,q,n(E) :
⊕
n∈Z

Erp+n,q,n(E)→
⊕
n∈Z

Erp−1+n,q+r,n(E).

Proof. By naturality, any map f of Λ-local motivic spectra induces a

graded module map
⊕
n∈Z πp+n,nf with respect to

⊕
n∈Z πn,n1Λ. The first

slice differential is induced by the naturally induced map sq(E)→ Σ1,0sq+1(E).

Each slice sq(E) is a module over the motivic ring spectrum s0(1Λ); cf. [18, §6
(iv), (v)] and [53, Th. 3.6.13(6)]. Thus sq(E) is an MΛ-module. In particular,

η ∈ π1,11 acts trivially on both sq(E) and Σ1,0sq+1(E). Hence the first differen-

tial is an
⊕
n∈NH

n,n-module map. The other cases follow by construction. �

For a = (a1, . . . , an), ai ∈ F×, the Pfister quadric Qa is the (2n−1 − 1)-

dimensional projective quadric defined by the quadratic form [50, §2]

qa = 〈〈a1, . . . , an−1〉〉 − 〈an〉.
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Its closed points (Qa)(0) contains the subset (Qa)(0,≤2) comprised of x for which

the degree [Fx : F ] ≤ 2 [50, §3]. By [50, Th. 3.2], there is an exact sequence

(4.3)
⊕

x∈(Qa)(0,≤2)

KM
∗ (Fx)/2→ KM

∗ (F )/2
a→ KM

∗+n(F )/2→ KM
∗+n(F (Qa))/2.

In the following we employ this sequence to give substantive applications of

presheaves with transfers structure to computational motivic homotopy theory.

Lemma 4.15. For n ∈ Z, the d2-differential E2
−n+2,0,−n → E2

−n+1,2,−n in

the −nth slice spectral sequence for 1Λ is trivial.

Proof. Lemma 4.1 shows the direct summand hn+2,n+2
12 of E1

−n+1,2,−n sur-

vives to a direct summand of E2
−n+1,2,−n since the entering first differential is

trivial, and we deduce

E2
−n+1,2,−n

∼= hn+2,n+2
4 ⊕ hn+2,n+2

3 ⊕ hn+1,n+2/Sq2hn−1,n+2.

To deal with hn+2,n+2
3 , we employ the mod-3 reduction map 1Λ → 1Λ/3. In

low degrees, Corollary 2.13 determines the induced map of slices. For the E2-

pages of the corresponding slice spectral sequences, there is a naturally induced

commutative diagram:

E2
−n+2,0,−n(1Λ) //

d2(1Λ)

��

E2
−n+2,0,−n(1Λ/3) = hn−2,n

3

d2(1Λ/3)
��

E2
−n+1,2,−n(1Λ) // E2

−n+1,2,−n(1Λ/3) = hn+2,n+2
3 .

The lower horizontal map is the projection. Thus it suffices to show d2(1Λ/3)

is trivial. By Lemma 4.14, the second differential is a graded KM
∗ /3-module

map ⊕
n∈Z

d2(1Λ/3) :
⊕
n∈Z

hn−2,n
3 →

⊕
n∈Z

hn+2,n+2
3 .

Suppose F contains a primitive third root of unity ξ ∈ h0,1
3 . The KM

∗ /3-

module
⊕
n∈Z h

n−2,n
3 is then generated by ξ2 ∈ h0,2

3 , and it suffices to show

d2(1Λ/3)(ξ2) = 0 ∈ h4,4
3 . Let F0 be the prime field of F . By base change we

may replace F by F0(ξ). We have h4,4
3 (F0(ξ)) = 0 by [66, §3.3, 4.4]. Hence

d2(1Λ/3)(ξ2) = 0; see Lemma 4.10. If F does not contain ξ as above, a transfer

argument for the quadratic extension F (ξ)/F implies the claim.

Next we analyze the component of the second differential entering

hn+1,n+2/Sq2hn−1,n+1.



52 OLIVER RÖNDIGS, MARKUS SPITZWECK, and PAUL ARNE ØSTVÆR

The unit map 1Λ → f0(KQ)Λ induces the following commutative diagram:

E2
−n+2,0,−n(1Λ) //

d2(1Λ)

��

E2
−n+2,0,−n(f0(KQΛ))

d2(f0(KQΛ))
��

E2
−n+1,2,−n(1Λ) // E2

−n+1,2,−n(f0(KQΛ)) = hn+1,n+2/Sq2hn−1,n+1.

Here the lower horizontal map is the projection, and the upper horizontal map

is the inclusion of a direct summand. We conclude using Lemma 4.19, which

shows triviality of

d2(f0(KQΛ)) : E2
−n+2,0,−n(f0(KQΛ))→ E2

−n+1,2,−n(f0(KQΛ)).

Finally, we consider the component of d2(1Λ) entering hn+2,n+2
4 using the

canonical map 1Λ → 1Λ/12h for the hyperbolic plane h = 1 − ε. In π0,01,

we have 12h = 3h3. The slices and slice differentials of 1Λ/12h are readily

computed. In particular, the map

E2
−n+1,2,−n(1Λ)→ E2

−n+1,2,−n
Ä
1Λ/12h

ä
in slice degree two is a (split) injection. Hence it suffices to show the composite

map

E2
−n+2,0,−n(1Λ)→ E2

−n+2,0,−n
Ä
1Λ/12h

ä d2

−→ E2
−n+1,2,−n

Ä
1Λ/12h

ä
is zero. In slice degree zero, there is the following commutative diagram:

E2
−n+2,0,−n(1Λ)

��

// E2
−n+2,0,−n

Ä
1Λ/12h

ä
��

Hn−2,n
pr∞24

// hn−2,n
24 .

The vertical inclusions are isomorphisms if Sq2 : hn−2,n → hn,n+1 is trivial, i.e.,

if ρ2 = 0. For E2
−n+2,0,−n

Ä
1Λ/12h

ä
, there is a short exact sequence

0→ ker(pr24
2 : hn−2,n

24 → hn−2,n)

→ E2
−n+2,0,−n

Ä
1Λ/12h

ä
→ ker(Sq2 : hn−2,n → hn,n+1),

(4.4)

and similarly for E2
−n+2,0,−n(1Λ). The rightmost map in (4.4) is surjective,

being the base change of pr24
2 : hn−2,n

24 → hn−2,n, which is surjective in bidegree

(0, 2). Hence the boundary map ∂2
12 : h0,2 → h1,2

12 is trivial. Since the KM
∗ -

module ⊕n∈Zhn−2,n is generated by τ2 ∈ h0,2, the boundary and KM
∗ -module

map ∂2
12 : hn−2,n → hn−1,n

12 is trivial. Thus the KM
∗ -module⊕

n∈Z
E2
−n+2,0,−n

Ä
1Λ/12h

ä
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has 2-primary component generated in degrees (0,−2) and (−1,−3), since the

same holds for the outer terms in (4.4). We can identify the KM
∗ -module⊕

n∈Z
ker(Sq2 : hn−2,n → hn,n+1)

with {x ∈ ⊕n∈Zhn,n|ρ2x = 0} generated in degree at most (1, 1) by [50,

Th. 3.3]. (See [41, Th. 2.1] if char(F ) is odd.) We note that the 2-primary

component of the KM
∗ -module⊕

n∈Z
ker(pr24

2 : hn−2,n
24 → hn−2,n) =

⊕
n∈Z

hn−2,n
3 ⊕ im(hn−2,n

4 → hn−2,n
8 )

is generated in degree (0, 2) by comparing with ⊕n∈Zhn−2,n
4 . It remains to

prove that the KM
∗ -module generators map trivially under d2.

Let g0 ∈ E2
0,0,−2

Ä
1Λ/12h

ä
be a generator in degree (0,−2). If g0 ∈

⊕n∈Zhn−2,n
4 , then it is defined over the prime field F0 ⊂ F . Naturality of

the slice spectral sequence with respect to field extensions implies

d2(g0) ∈ E2
−1,2,−2

Ä
1Λ/12h

ä
(F0) = h3,4/Sq2h1,3 ⊕ h4,4 ⊕ h4,4

12 (F0)

=

Λ/2⊕ Λ/2 F0 = Q,
0 char(F ) > 0.

The inclusion Q ↪→ R induces an isomorphism on E2
−1,2,−2

Ä
1Λ/12h

ä ∼= Z/2{ρ4}
⊕ Z/2{ρ4ν}. The real Betti realization sends 1 to S, h to 0, ρ to 1, and ν to

ηtop. Hence it defines a surjective homomorphism

π−1,−21/12h→ π1S⊕ π0S.

It follows that d2(g0) = 0. If g0 maps to a degree (0, 2) generator in the

KM
∗ -module ⊕

n∈Z
ker(Sq2 : hn−2,n → hn,n+1),

then ρ2 = 0, and −1 is a sum of at most two squares in F by the proof of [42,

Th. 1.4], [15, Cor. 3.5]. If ρ = 0, then g0 is defined over the smallest subfield

F0(
√
−1) containing

√
−1. It follows that d2(g0) = 0 since

E2
−1,2,−2

Ä
1Λ/12h

ä
(F0(
√
−1)) = h3,4/Sq2h1,3 ⊕ h4,4 ⊕ h4,4

12 (F0(
√
−1)) = 0.

If ρ 6= 0 but ρ2 = 0, there exist elements a, b ∈ F such that a2 + b2 = −1 and

g0 is defined over the field F0(a, b) of cohomological dimension at most 3 [66,

§§3.3, 4.4]. Hence h4,4 ⊕ h4,4
12 (F0(a, b)) = 0 and d2(g0) = 0. This shows d2 = 0

over every field for which ρ2 = 0.
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Suppose g1 ∈ E2
−1,0,−3

Ä
1Λ/12h

ä
is a generator in degree (−1,−3). It maps

to a degree (1, 3) generator in the KM
∗ -module⊕

n∈Z
ker(Sq2 : hn−2,n → hn,n+1).

Every such generator is of the form τ2a with ρ2a = 0, where a ∈ h1,1(F ) is

represented by a unit in F . The exact sequence (4.3) of [50, Th. 3.2] implies

that there exist finitely many quadratic field extensions L1, . . . , Lm of F split-

ting ρ2 (i.e., ρ2 = 0 over each Lj), such that a is in the image of the transfer

map
m∑
j=1

trj :
m⊕
j=1

h1,1(Lj)→ h1,1(F ).

By [26, Th. 1.9] the transfer map for Lj/F is induced by the Spanier-Whitehead

dual of the structure map Σ∞Spec(Lj)+ → Σ∞Spec(F )+ = 1Λ, and hence it

commutes with the slice differentials. Since the differential d2(1Λ/12h) is zero

for fields in which ρ2 = 0, also d2(τ2a) = 0, which concludes the proof. �

Lemma 4.16. For n ∈ Z, the d2-differential E2
−n+2,1,−n → E2

−n+1,3,−n in

the −nth slice spectral sequence for 1Λ is trivial.

Proof. By comparison with 1Λ/12h we find a naturally induced (split)

injection

E2
−n+1,3,−n(1Λ)→ E2

−n+1,3,−n
Ä
1Λ/12h

ä
.

This reduces the proof to showing triviality of the composite map

E2
−n+2,1,−n(1Λ)→ E2

−n+2,1,−n
Ä
1Λ/12h

ä d2(1Λ/12h)−−−−−−−→ E2
−n+1,3,−n

Ä
1Λ/12h

ä
.

We claim d2(1Λ/12h) : E2
−n+2,1,−n

Ä
1Λ/12h

ä
→ E2

−n+1,3,−n
Ä
1Λ/12h

ä
is trivial.

The canonical pairing 1Λ ∧ 1Λ/12h→ 1Λ/12h induces

π1,1s1(1Λ)× π−n+1,−n−1s0
Ä
1Λ/12h

ä
= h0,0 × hn−1,n+1

24 → π−n+2,−ns1
Ä
1Λ/12h

ä
sending (1, x) to pr24

2 (x)∈hn−1,n+1 ↪→hn−1,n+1×hn,n+1 =π−n+2,−ns1
Ä
1Λ/12h

ä
.

Invoking Proposition 2.24 yields the induced pairing between E2-terms

E2
1,1,1(1Λ)× E2

−n+1,0,−n−1(1Λ/12h)→ E2
−n+2,1,−n(1Λ/12h).

We claim it surjects onto the image of E2
−n+2,1,−n(1Λ → 1Λ/12h): Product with

1 ∈ h0,0 = E2
1,1,1(1Λ) yields E2

−n+2,0,−n
Ä
1Λ/12h

ä
→ ker(Sq2 : hn−2,n → hn,n+1)

in (4.4), which is surjective by the proof of Lemma 4.15. Hence for every x in

the image of E2
−n+2,1,−n(1Λ → 1Λ/12h), there exists y ∈ E2

−n+1,0,−n−1(1Λ/12h)

with x = 1 · y. Proposition 2.24 implies the vanishing

d2(x) = d2(1 · y) = d2(1) · y ± 1 · d2(y) = 0 · y ± 1 · 0 = 0,
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where d2(y) = 0 by the proof of Lemma 4.15. The complementary direct

summand of E2
−n+2,1,−n(1Λ/12h) is hn,n+1/Sq2pr24

2 h
n−2,n
24 = hn,n+1/Sq2hn−2,n.

Here g0 := τ ∈ h0,1, which is defined over F0, generates the KM
∗ -module

⊕n∈Zhn,n+1/Sq2hn−2,n. It suffices to show d2(g0) = 0 over Q. We note that

g0 detects an element in π2,01Λ/12h mapping to ηtop ∈ ker(12h : π1,01Λ →
π1,01Λ); its nontriviality follows from Betti realization. It follows that

d2(1Λ/12h) : E2
−n+2,1,−n

Ä
1Λ/12h

ä
→ E2

−n+1,3,−n
Ä
1Λ/12h

ä
is trivial. �

Lemma 4.17. For n ∈ Z, the d3-differential E3
−n+2,0,−n → E3

−n+1,3,−n in

the −nth slice spectral sequence for 1Λ is trivial.

Proof. Lemmas 4.15 and 4.16 imply E2
−n+2,0,−n = E3

−n+2,0,−n, E2
−n+1,3,−n

= E3
−n+1,3,−n, and injectivity of E3

−n+1,3,−n(1Λ → 1Λ/12h). It remains to

prove the composite

E3
−n+2,0,−n(1Λ)→ E3

−n+2,0,−n(1Λ/12h)
d3(1Λ/12h)−−−−−−−→ E3

−n+1,3,−n(1Λ/12h)

is trivial. To that end it suffices to consider the generators of the KM
∗ -module⊕

n∈Z
E3
−n+2,0,−n(1Λ/12h) =

⊕
n∈Z

ker(hn−2,n
24

Sq2pr24
2−−−−−→ hn,n+1).

We apply the same techniques as in the proofs of Lemmas 4.15 and 4.16, e.g.,

base change to field extensions of F0 for which the generators map trivially by a

cohomological dimension consideration, and the real Betti realization. Further

details are left to the reader. �

To summarize, Lemmas 4.1, 4.15, 4.16, and 4.17 imply, for all q, n ∈ Z,

the equality

(4.5) E∞−n+1,q,−n(1Λ) = E2
−n+1,q,−n(1Λ).

In the remainder of this section, we shift focus from the motivic sphere spec-

trum 1 to the hermitian K-theory spectrum KQ, in order to study the unit

map 1 → KQ. However, some of the earlier arguments do not apply to KQ

since it is not effective. By computation the (possibly) nontrivial entries for

nonnegative q in the relevant column are given by

q E2
−n+1,q,−n(KQ)

2 hn+1,n+2/Sq2(hn−1,n+1)

1 hn,n+1/Sq2pr(Hn−2,n)

0 Hn−1,n.

However, since 1 is effective, 1→ KQ factors over the effective cover f0(KQ)

with trivial negative slices.
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Proposition 4.18. There are isomorphisms

E∞−n+1,q,−n(f0(KQ)) =



0 q > 2,

hn+1,n+2/Sq2(hn−1,n+1) q = 2,

hn,n+1/Sq2pr(Hn−2,n) q = 1,

Hn−1,n ⊕ hn−5,n ⊕ hn−9,n ⊕ · · · q = 0,

0 q < 0.

Proof. Theorem 2.15 implies that E1
p,q,−n(f0(KQ)) is given by

πp,−nsq(f0(KQ)) =


H2q−p,q+n ⊕⊕i< q

2
h2i+(q−p),q+n 0 ≤ q ≡ 0 mod 2,⊕

i< q+1
2
h2i+(q−p),q+n 0 ≤ q ≡ 1 mod 2,

0 0 > q.

The first differential for KQ is described in [64, Th. 5.5]. It coincides with the

first differential for f0(KQ) on nonnegative slices. From this we deduce the

computation

E2
−n+1,q,−n(f0(KQ)) =


0 q > 2,

hn+1,n+2/Sq2(hn−1,n+1) q = 2,

hn,n+1/Sq2pr(Hn−2,n) q = 1,

0 q < 0.

The case q = 0 is special since the entering differential is zero for f0(KQ), but

nonzero for KQ if n ≤ −3. Hence E2
−n+1,0,−n(f0(KQ)) is the kernel of the map

Hn−1,n ⊕ hn−3,n ⊕ · · · → hn+1,n+1 ⊕ hn−1,n+1 ⊕ hn−3,n+1 ⊕ hn−5,n+1 ⊕ · · ·

(xn−1, xn−3, . . . ) 7→ (Sq3Sq1xn−3, 0, τxn−3 + Sq3Sq1xn−7, 0, . . . ),

i.e., Hn−1,n ⊕ hn−5,n ⊕ · · · . This determines the E2-page. The only possibly

nontrivial d2-differential is E2
−n+2,0,−n(f0(KQ))→ E2

−n+1,2,−n(f0(KQ)), whose

triviality is provided below in Lemma 4.19. �

Lemma 4.19. The second differential

E2
−n+2,0,−n(f0(KQ))→ E2

−n+1,2,−n(f0(KQ))

in the −nth slice spectral sequence for f0(KQ) is trivial.

Proof. Observe first that, analogous to the computation of the group

E2
−n+1,0,−n(f0(KQ)), one obtains

E2
−n+2,0,−n(f0(KQ)) ∼= Jn−2,n ⊕ jn−6,n ⊕ jn−10,n ⊕ · · · ,
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where

Jn−2,n := ker(Hn−2,n pr∞2−−→ hn−2,n Sq2

−−→ hn,n+1),

jn−2m,n := ker(hn−2m,n Sq2

−−→ hn−2m+2,n+1).

The claim follows readily for n≤1, since then E1
−n+2,0,−n(f0(KQ)) = 0. It also

follows if the cohomological dimension cd2(F [
√
−1]) ≤ 2, since then

E2
−n+1,2,−n(f0(KQ)) = hn+1,n+2/Sq2hn−1,n+1 = 0 for n ≥ 2.

In general, the cup-product map ρ : hn,n(F )→ hn+1,n+1(F ) is surjective when

n ≥ cd2(F [
√
−1]). For q ≥ 0, we recall from Theorem 2.15 the slices

sq(f0(KQ/2)) =
∨
i≤q

Σq+i,qMZ/2.

There is a naturally induced commutative diagram as follows:

E2
−n+2,0,−n(f0(KQ)) //

d2

��

E2
−n+2,0,−n(f0(KQ/2))

d2

��

E2
−n+1,2,−n(f0(KQ)) // E2

−n+1,2,−n(f0(KQ/2)).

Here the lower horizontal map is split injective by a comparison of slices and

d1-differentials. Hence it suffices to prove the composite

E2
−n+2,0,−n(f0(KQ)) // E2

−n+2,0,−n(f0(KQ/2))
d2
// E2
−n+1,2,−n(f0(KQ/2))

is trivial. The first map in the composite is trivial when n ≤ 2 via identification

with

ker(Hn−2,n Sq2pr∞2−−−−−→ hn,n+1)→ ker(hn−2,n Sq2

−−→ hn,n+1).

The source and target are trivial for n < 2, and the connecting map h0,2 ∂2
∞−−→

H1,2 is injective since H1,2 contains a (unique) element of order two [31], [39],

whence H0,2 → h0,2 is trivial.

Suppose
√
−1 ∈ F , so that ρ = 0 ∈ h1,1. Then the KM

∗ -module

(4.6)
⊕
n∈Z

E2
−n+2,0,−n(f0(KQ/2)) =

⊕
n∈Z

hn−2,n⊕
⊕
n∈Z

hn−6,n⊕
⊕
n∈Z

hn−10,n⊕· · ·

is generated by the elements τ4k+2 ∈ h0,4k+2, k ≥ 0, defined over F0(
√
−1). By

cohomological dimension, these generators map trivially, and hence also (4.6)

by Lemma 4.14.

Suppose
√
−1 /∈ F , but ρ2 = 0. Again we may choose a, b ∈ F such that

a2 + b2 = −1 [15, Cor. 3.5]. The KM
∗ -module (4.6) is then generated by the

elements τ4k+2 ∈ h0,4k+2, k ≥ 0, defined over F0(a, b). If char(F ) > 0 or a is

algebraic over F0, then τ4k+2 maps trivially by cohomological dimension. In
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the remaining case (char(F ) = 0 and a transcendental over Q), τ2 is the only

generator that may map nontrivially. Nevertheless, the d2-differential

E2
−n+2,0,−n(f0(KQ/2))

d2
// E2
−n+1,2,−n(f0(KQ/2))

is trivial over F0(a, b) for all n ≥ 3, since the target is then trivial by cohomolog-

ical dimension. It follows that d2 : E2
−n+2,0,−n(f0(KQ))→ E2

−n+1,2,−n(f0(KQ))

is trivial over F0(a, b). This computes π−n+1,−nf0(KQ) via the slice filtration

over F0(a, b):

(4.7)

f2π−n+1,−nf0(KQ) //

∼=
��

f1π−n+1,−nf0(KQ) //

��

π−n+1,−nf0(KQ)

��

hn+1,n+2 hn,n+1 Hn−1,n ⊕ hn−5,n ⊕ hn−9,n ⊕ · · · .

In general, (4.7) is a nontrivial extension of KMW
∗ -modules. If

d2 : E2
−n+2,0,−n(f0(KQ))→ E2

−n+1,2,−n(f0(KQ))

is trivial, then the above computation extends to any F by replacing hn,n+1

with hn,n+1/Sq2(hn−2,n), and similarly for f2π−n+1,−nf0(KQ).

Claim. There is a split extension of abelian groups

0 // f2π−n+1,−nf0(KQ) // f1π−n+1,−nf0(KQ) // hn,n+1/Sq2 // 0.

Proof of Claim. If d2 is trivial for f0(KQ), then f2π−n+1,−nf0(KQ) =

hn+1,n+2/Sq2. The first nontrivial group f2π2,1f0(KQ) = π2,1f0(KQ) = h0,1 is

generated by the image of ηηtop. The extension for f1π1,0f0(KQ) = π1,0f0(KQ)

splits by comparison with the composite

πtop1 S→ π1,01→ π1,0f0(KQ)→ π1,0KQ→ πtop1 KO,

obtained from Betti realization. The summand h0,1 is generated by the image

of ηtop. Define the map hn,n+1 → f1π−n+1,−nf0(KQ) by sending τφ, φ ∈ KM
n ,

to the image of [φ]ηtop. Then

hn,n+1 → f1π−n+1,−nf0(KQ)→ π−n+1,−ns1(f0(KQ)) = hn,n+1

is the identity since τ ∈ h0,1 = π1,0s1(1Λ) detects ηtop ∈ π1,01Λ = f1π1,01Λ. It

follows that

(4.8) f1π−n+1,−nf0(KQ) ∼= hn,n+1/Sq2 ⊕ hn+1,n+2/Sq2

as abelian groups over any field with trivial

d2 : E2
−n+2,0,−n(f0(KQ))→ E2

−n+1,2,−n(f0(KQ)).
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The KMW
∗ -module structure of

⊕
n∈Z f1π−n+1,−nf0(KQ) is given by η · (x, y) =

(0, x) and for u ∈ F×, [u] · (x, y) =
Ä
[u] · x, [u] · y

ä
, compatible with (4.8). The

abelian group extension

0→ f1π−n+1,−nf0(KQ)

→ π−n+1,−nf0(KQ)→ Hn−1,n ⊕ hn−5,n ⊕ hn−9,n ⊕ · · · → 0

is classified by an element

x = (x1, x2)

∈ ExtAb(Hn−1,n ⊕ hn−5,n ⊕ hn−9,n ⊕ · · · , hn,n+1/Sq2 ⊕ hn+1,n+2/Sq2)

via the identification (4.8). Observe that x1 6= 0 over F = Q: The third

algebraic K-group π−1,−2kgl(Q) = π−1,−2KGL(Q) = K3(Q) ∼= Z/48 is the

target of π−1,−2f0(KQ)(Q) via the forgetful map, which on extensions takes

the following form:

f1π−1,−2f0(KQ) ∼= h2,3(Q)/Sq2 ∂2
∞
//

��

f1π−1,−2kgl ∼= H3,3(Q) ∼= Z/2

��

π−1,−2f0(KQ)(Q)
forget

//

��

π−1,−2kgl(Q)

��

H1,2(Q)
id

// H1,2(Q) ∼= Z/24.

The horizontal maps are surjective, and it follows that the column on the left

hand side is not a trivial extension. (Note that h3,4(Q)/Sq2 = 0.)

Claim. x2 = 0 over Q(a, b) (and more generally over any field of charac-

teristic not two).

Proof of Claim. The degree two extension Q(a, b)/Q(a) yields an injec-

tion H1,2(Q(a)) ↪→ H1,2(Q(a, b)) by [31, Cor. 4.6]. For the purely tran-

scendental field extension Q(a)/Q, we have H1,2(Q) ∼= H1,2(Q(a)) ∼= Z/24

by [31, p. 327]. Moreover, on 2-torsion subgroups, [31, Cor. 4.4] implies

2H
1,2(Q(a)) = 2H

1,2(Q(a, b)).

If the extension

0→ h3,4(Q(a, b))→ E(Q(a, b))→ H1,2(Q(a, b))→ 0

corresponding to x2 is nontrivial, then so is the extension between the 2-torsion

subgroups

0→ h3,4(Q(a, b))→ E′(Q(a, b))→ 2H
1,2(Q(a, b))→ 0.
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Since h3,4(Q)/Sq2h1,3(Q) = 0, the extension corresponding to x2 over Q implies

E(Q) = H1,2(Q), and hence E′(Q) = 2H
1,2(Q) = 2H

1,2(Q(a, b)). By natural-

ity there is a splitting 2H
1,2(Q(a, b)) → E′(Q(a, b)), which shows x2 = 0 over

Q(a, b). It follows that

π−1,−2f0(KQ)(Q(a, b))→ π−1,−2f0(KQ/2)(Q(a, b)

restricts to an injection on the summand h3,4(Q(a, b)). We conclude that

d2 : E2
0,0,−2(f0(KQ/2))→ E2

−1,2,−2(f0(KQ/2))

is trivial over Q(a, b). Base change implies the same result if ρ2 = 0. Using

the generator of E2
0,0,−2(f0(KQ/2)) = h0,2, we deduce triviality of

d2 : E2
−n+2,0,−n(f0(KQ/2))→ E2

−n+1,2,−n(f0(KQ/2)).

In case the pure symbol ρ2 6= 0, we conclude by applying to f0(KQ/2)

the argument with (4.3) from [50, Th. 3.3] ([41, Th. 2.1] for fields of odd

characteristic) as in the proof of Lemma 4.15. �

5. The 1-line

Throughout this section we fix a compatible pair (F,Λ), where F is a

field of char(F ) 6= 2. Theorem 3.50 shows the slice spectral sequence for 1Λ

determines the homotopy groups of the η-completion 1Λ
∧
η . A straightforward

calculation of E2-pages using Lemma 4.1 shows πn+1,n1Λ
∧
η = 0 for n ≥ 3, and

πn+2,n1Λ
∧
η = 0 for n ≥ 5. For all n ∈ Z, we deduce

πn+1,n1Λ
∧
η [ 1
η ] = πn+2,n1Λ

∧
η [ 1
η ] = 0.

Combined with Lemma 3.9, the arithmetic square for η, we obtain short exact

sequences

0→ πn,n1Λ → πn,n1Λ
∧
η ⊕ πn,n1Λ[ 1

η ]→ πn,n1Λ
∧
η [ 1
η ]→ 0

and

0→ πn+1,n1Λ → πn+1,n1Λ
∧
η ⊕ πn+1,n1Λ[ 1

η ]→ 0.

Theorem 5.1. The groups πn+1,n1Λ[ 1
η ] and πn+2,n1Λ[ 1

η ] are trivial for all

n ∈ Z.

Proof. This is shown for 1 in [58, Th. 8.3]. �

Corollary 5.2. For all n ∈ Z, there is a canonically induced isomor-

phism

πn+1,n1Λ
∼=−→ πn+1,n1Λ

∧
η .
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Proposition 5.3. The canonical map f0(KQ)→ sc(f0(KQ)) induces an

isomorphism

πn+k,nf0(KQ)
∼=−→ πn+k,nsc(f0(KQ))

for all integers n and k ≡ 1, 2 mod 4.

Proof. Since KW = KQ[ 1
η ] and η acts invertibly on s∗(KW), the columns

in the respective slice spectral sequences for KQ and KW agree outside a finite

range. The computation of the E∞-page for KW from [64, Th. 6.3] implies

πn+k,nsc(KQ)[ 1
η ] = 0 for k 6≡ 0 mod 4. Example 3.15 shows that the slice-

and η-completions agree on f0(KQ). In the η-arithmetic square for f0(KQ)

(see Lemma 3.9), we observe that (f0(KQ))[ 1
η ] is the homotopy colimit of the

diagram

f0(KQ)→ f−1Σ−1,−1KQ→ f−2Σ−2,−2KQ→ · · · ,

which agrees with KQ[ 1
η ] = KW. The result follows from the vanishing

πn+k,nKW = 0 for k 6≡ 0 mod 4. �

Lemma 5.4. Let Un be the kernel of the naturally induced map

πn+1,n1Λ → πn+1,nf0(KQΛ).

The graded group
⊕

n∈Z Un has a naturally induced
⊕

n∈Z πn,n1Λ/(η)-module

structure.

Proof. We show that multiplication with η induces the trivial map η : Un→
Un+1 for all n ∈ Z. For any a ∈ Un, there is a natural number q such that

a ∈ fqπn+1,n1Λ and a /∈ fq+1πn+1,n1Λ. Then a maps to a nontrivial element

b in a subquotient of πn+1,nsq(1Λ). Since a ∈ Un, b maps trivially to the

corresponding subquotient of πn+1,nsq(KQΛ) on E2 = E∞-pages by Propo-

sitions 4.18 and 5.3. Lemmas 2.28 and 2.29 show there are only two such

subquotients on the E2-page of the nth slice spectral sequence for 1Λ by (4.5),

namely,

h−n+2,−n+3/τ∂12
2 (h−n+1,−n+2

12 ) + Sq2(h−n,−n+2) and h−n+2,−n+2
12 .

If b ∈ h−n+2,−n+2
12 , then it lifts to an element b′ ∈ πn+1,ns2(1Λ) and ηb′ ∈

πn+2,n+1s3(1Λ) ∼= h−n+1,−n+2 ⊕ h−n+3,−n+2 ∼= h−n+1,−n+2. By Lemma 2.30,

ηb′ = ∂12
2 b′ = 0, and hence ηb = 0. If b ∈ h−n+2,−n+3/

Ä
τ∂12

2 (h−n+1,−n+2
12 ) +

Sq2(h−n,−n+2)
ä
, then it lifts to an element b′ in πn+1,ns3(1Λ). Lemma 4.1 shows

the product ηb′ ∈ πn+2,n+1s4(1Λ) ∼= h−n+2,−n+3 is hit by the d1-differential

exiting tridegree (n+ 3, 3, n+ 1), and hence ηb = 0. Since multiplication with

η is natural with respect to the slice filtration, it follows that ηa = 0. �
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Theorem 5.5. Let (F,Λ) be a compatible pair, where F is a field of

char(F ) 6= 2. The unit map 1Λ → KQΛ induces an exact sequence

0→ KM
2−n ⊗ Λ/24→ πn+1,n1Λ → πn+1,nf0(KQΛ).

If n ≥ −4, the rightmost map is surjective. In particular, since πn+1,nf0(KQΛ)

= 0 for n ≥ 2, π3,21Λ
∼= Λ/24 and πn+1,n1Λ = 0 for n ≥ 3.

Proof. The well-known vanishing

πn+1,nf0(KQ) = πn+1,nKQ = GW
[n]
1−n(F ) = W 2n−1(F ) = 0

for n > 1 follows, for example, from [65, Prop. 6.3]. In the proof we shall make

use of the computations in Proposition 4.18.

Lemma 4.1 and (4.5) show that the following motivic cohomology groups

in the −nth slice spectral sequence for 1Λ are the only terms contributing to

the 1-line:

q E∞−n+1,q,−n(1Λ)

0 Hn−1,n

1 hn,n+1/Sq2pr(Hn−2,n)

2 hn+2,n+2
12 ⊕ hn+1,n+2/Sq2(hn−1,n+1)

3 hn+2,n+3/τ∂12
2 (hn+1,n+2

12 ) + Sq2(hn,n+2)

Lemmas 2.28 and 2.29 imply a split injection

E2
−n+1,0,−n(1Λ)→ E2

−n+1,0,−n(f0(KQ))

and an isomorphism

E2
−n+1,1,−n(1Λ)→ E2

−n+1,1,−n(f0(KQ)).

Likewise, hn+1,n+2/Sq2(hn−1,n+1) — a direct summand of E2
−n+1,2,−n(1Λ) —

maps isomorphically to E2
−n+1,2,−n(f0(KQ)), while the other direct summand

hn+2,n+2
12 of E2

−n+1,2,−n(1Λ) maps trivially to E2
−n+1,2,−n(f0(KQΛ)) and simi-

larly for hn+2,n+3/τ∂12
2 (hn+1,n+2

12 ) + Sq2(hn,n+2) = E2
−n+1,3,−n(1Λ).

Every element of hn,n+2 is of the form τ2c for some class c ∈ hn,n; cf.

Remark 4.5. We have Sq2(τ2c) = ρ2τc by [64, Cor. 6.2]. Combined with

Theorem A.5 in the case s = 1, we conclude there is an isomorphism

hn+2,n+3/τ∂12
2 (hn+1,n+2

12 ) + Sq2(hn,n+2) ∼= hn+2,n+2/∂12
2 (hn+1,n+2

12 ).

The change of coefficients long exact sequence

· · · → hn+1,n+2 → hn+1,n+2
24 → hn+1,n+2

12

∂12
2−−→ hn+2,n+2 → · · ·

induces a short exact sequence

0→ hn+2,n+2/∂12
2 (hn+1,n+2

12 )→ hn+2,n+2
24 → hn+2,n+2

12 → 0.
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Lemma 5.4 shows that any hidden extension or filtration shift in the slice spec-

tral sequence is a graded KM
∗ -module. The group ExtKM

∗
(h∗12, h

∗) identifies

with KM
∗ /2, whose degree zero part is Λ/2; i.e., there are only two possible de-

gree zero extensions. By comparing π3,21Λ with π31top
∼= Z/24 via topological

or étale realization (the latter involves 2-adic completion — see Remark 5.7)

it follows that the extension is nontrivial.

Surjectivity of the rightmost map for n ≥ −4 follows since the induced

map between the nth slice spectral sequences is a surjection on the E2 = E∞-

pages in the range we consider by Propositions 4.18 and 5.3. Here we use

H−1,2 = 0 to conclude for n = −4 [40, (4.2)]. �

Corollary 5.6. For every n ∈ Z, the unit map 1Λ → MΛ induces a

surjection

πn+1,n1Λ → πn+1,nMΛ = H−n−1,−n.

Remark 5.7. In odd characteristic the proof of Theorem 5.5 uses the étale

realization functor

Et2 : SH(F )→ SH∧2

to the 2-completed profinite stable homotopy category over the étale homotopy

type of a separable closure of F [55, Th. 31]. The examples in [55, p. 743]

show Et2(Ss,t) =
Ä
Ss
ä∧

2
. By construction we have Et2(ηtop) = ηtop, while

the description of η via the Hopf construction on the multiplicative group Gm

implies Et2(η) = ηtop.

Remark 5.8. As an abelian group, the kernel of π3,21Λ → π3,2f0(KQΛ) = 0

is generated by the second motivic Hopf map ν : Σ3,21Λ → 1Λ. Hence as a

graded KM
∗ -module, the kernel of⊕

n∈Z
π−n+1,−n1Λ →

⊕
n∈Z

π−n+1,−nf0(KQΛ)

is generated by ν. In principle, the image of π−n+1,−n1Λ → π−n+1,−nf0(KQΛ)

can be described as an extension of the three following groups:

(5.1) Hn−1,n, hn,n+1/Sq2pr(Hn−2,n), hn+1,n+2/Sq2(hn−1,n+1).

As graded KM
∗ -modules, the second group in (5.1) is generated by the topo-

logical Hopf map ηtop : Σ1,01Λ → 1Λ, while the third group is generated by

ηηtop : Σ2,11Λ → 1Λ. Hence the extension of the last two groups is generated

by ηtop as a graded KMW
∗ -module. The group Hn−1,n is not necessarily gener-

ated by a 2-torsion element. For example, H1,2(Q) ∼= Z/24, and H1,2(Q(
√
−1))

contains Z as a direct summand; see, e.g., [39, p. 542, 564]. The computation

of π3,21Λ implies the relation η2ηtop = 12ν, because η2ηtop is an element of

order two and nontrivial by complex or étale realization; cf. Remark 5.7.
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Example 5.9. The map π−4,−51Λ → π−4,−5f0(KQ)Λ is never surjective be-

cause the summand h0,5 ∼= Z/2 of E∞−n+1,0,−n(f0(KQ)) is not in its image. The

map π−n+1,−n1Λ → π−n+1,−nKQΛ may also fail to be surjective. Over F = Q,

the map π−6,−71 → π−6,−7KQ is not a surjection. The slice s−2(KQ) gives

rise to a nontrivial element of π−6,−7KQ. Here we rely on the computations for

hermitian K-theory in [64, §5,7]. The differential dKQ
r exiting Er−6,−2,−7(KQ)

is trivial when r ≥ 3, while dKQ
2 : E2

−6,−2,−7(KQ) = h0,5 ⊕H2,5 → H7,7 maps

h0,5 trivially, since H7,7 = KM
7 contains no elements of order two. The only

possible nontrivial rth differential entering Er−6,−2,−7(KQ) is E2
−5,−4,−7(KQ) =

H−3,3 → h0,5 ⊕ H2,5. Here H−3,3 = 0 since Q is a filtered colimit of number

fields, whence the Beilinson-Soulé vanishing conjecture holds.

Example 5.10. It is instructive to compare the short exact sequence of

Theorem 5.5 with the computation π−n+1,−n(1∧2 ) ∼= Z/2 over R for n > 1 in

[13, §8.3, Fig. 4]. Theorem 5.5 and Remark 5.8 provide an extension

0→ KM
n+2(R)/24→ π−n+1,−n1→ kq−n → 0,

where kq−n is an extension of Hn−1,n by hn,n+1/Sq2pr(Hn−2,n). In particular,

kq−2 is an extension of h2,3 = {0, τρ2} by the 2-divisible group H1,2 (which

contains a unique nontrivial element of order 2). If both kq−2 and π−1,−21

were trivial extensions, the 2-adic completion of π−1,−21 would consist of four

elements. Thus one of the extensions is nontrivial, whence π−1,−21 is the direct

sum of KM
4 (R)/24 ∼= {0, ρ4} and a nontrivial 2-divisible group.

Appendix A. The Steenrod algebra and its dual

This section lists results on the Steenrod algebra that are used in the

preceding sections. In the following, the base scheme contains no points of

residue characteristic two.

Theorem A.1 (Voevodsky [75], Hoyois-Kelly-Østvær [28], and Spitzweck

[70]). There exists a weak equivalence of right MZ/2-modules

(A.1) MZ/2 ∧MZ/2 ∼−→MZ/2 ∨ Σ1,0MZ/2 ∨
∨

(i,j)∈I
Σi,jMZ/2,

where I ⊂ N × N consists of pairs (i, j) of integers with i ≥ 2j > 0. With

respect to this weak equivalence, the unit and multiplication maps are given by

(id, 0, . . . ) : MZ/2 ∼= MZ/2 ∧ 1→MZ/2 ∧MZ/2,

(id,Sq1, 0, . . . ) : MZ/2 ∼= 1 ∧MZ/2→MZ/2 ∧MZ/2,
(id, 0, . . . ) : MZ/2 ∧MZ/2→MZ/2.
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The identification of MZ/2∧MZ/2 in Theorem A.1 induces a weak equiv-

alence

(A.2) MZ/2 ∧MZ MZ/2 ∼−→MZ/2 ∨ Σ1,0MZ/2.

Corollary A.2. Via (A.1), the external multiplication (f, g) 7→ f ∧ g
induces the pairing

ha,b ⊕ hc,d → ha+c,b+d ⊕ ha+c+1,b+d ⊕ · · · ; (f, g) 7→
Ä
f · g, f · Sq1(g), . . .

ä
.

Lemma A.3. For abelian groups A and B, there are isomorphisms

[MA,Σs,0MB] ∼=


Hom(A,B) s = 0,

Ext(A,B) s = 1,

0 otherwise.

Moreover, if MA→ Σ1,0MB is induced by the extension 0→B→C→A→ 0,

then its cone is Σ1,0MB → Σ1,0MC .

Example A.4. Let A and B be finite cyclic groups of order a and b, respec-

tively. Let incab denote an inclusion A ↪→ B, and let prab denote a quotient map

A → B. If incab : A ↪→ B is an inclusion of finite cyclic groups, with quotient

prbc : B → C, Lemma A.3 shows there exists a unique map

∂ca : MC → Σ1,0MA

representing the cone of MB →MC. For example, ∂2
2 = Sq1. If no confusion

can arise, the ubiquitous index “2” will be left out.

Theorem A.5. For r ≥ 1, the homotopy cofiber sequences

MZ/2r−1 →MZ/2r →MZ/2
∂2

2r−1−−−→ Σ1,0MZ/2r−1

and

MZ/2→MZ/2r →MZ/2r−1 ∂2r−1

2−−−−→ Σ1,0MZ/2

induce isomorphisms

[MZ/2,Σs,1MZ/2r] ∼=



inc2
2r ◦ h0,1 s = 0,

inc2
2r ◦ h1,1 ⊕ ∂2

2r ◦ h0,1 s = 1,

inc2
2r ◦ h0,0{Sq2} ⊕ ∂2

2r ◦ h1,1 s = 2,

inc2
2r ◦ h0,0{Sq2Sq1} ⊕ ∂2

2r ◦ h0,0{Sq2} s = 3,

∂2
2r ◦ h0,0{Sq2Sq1} s = 4,

0 s ≥ 5,
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[MZ/2r,Σs,1MZ/2] ∼=



h0,1 ◦ pr2r
2 s = 0,

h1,1 ◦ pr2r
2 ⊕ h0,1 ◦ ∂2r

2 s = 1,

h0,0{Sq2} ◦ pr2r
2 ⊕ h1,1 ◦ ∂2r

2 s = 2,

h0,0{Sq1Sq2} ◦ pr2r
2 ⊕ h0,0{Sq2} ◦ ∂2r

2 s = 3,

h0,0{Sq1Sq2} ◦ ∂2r
2 s = 4,

0 s ≥ 5.

Appendix B. Ext groups for complex bordism

Nearly all of the results in this section go back to Novikov’s paper [49]. If

(s, t) 6= (0, 0), the group Exts,tMU∗MU(MU∗,MU∗) is finite [49, Cor. 2.1], [77,

Property 2.2]. Moreover,

Exts,0MU∗MU(MU∗,MU∗) ∼=

Z s = 0,

0 s 6= 0.

It is convenient to display the Ext-groups groups for the Brown-Peterson

spectrum BP at a prime p and to use

Exts,tMU∗MU(MU∗,MU∗) =
⊕
p

Exts,tBP∗BP(BP∗,BP∗)

from [49]. Then

Exts,tBP∗BP(BP∗,BP∗) = 0 for 2s(p− 1) > t, and for 2p− 2 - t,

by [57, Prop. 4.4.2, Edge Theorem 5.1.23] and [77, Property 2.1].

For p = 2, [57, Edge Theorem 5.1.23, Th. 5.2.6(c), (d)] shows

Ext1,2q
BP∗BP(BP∗,BP∗) ∼=


Z/2{αq} q ≡ 1, 3 mod 4,

Z/4{α2/2} q = 2,

Z/2n+3{αq/n+3} q = 2n+1r ≡ 0, 2 mod 4;

q > 2, 2 - r.

In the proof of Lemma B.1 we use the normalized cobar complex ob-

tained from the standard BP-cosimplicial resolution at the prime 2, and cor-

responding representatives for the generators in Ext1,2q
BP∗BP(BP∗,BP∗). At the

prime 2, the choice of Hazewinkel generators gives BP∗ = Z(2)[v1, v2, . . . ] and

BP∗BP = BP∗[t1, t2, . . . ], where |vi| = |ti| = 2(2i − 1). If q is odd, then αq

is represented by
d(vq1)

2 . Here d is the differential in the Adams degree 2q part

Tot{q} of the cobar complex for BP. In particular, α1 is represented by [t1] in

Tot{1} =
(
Z(2){v1}

d=2−−→ Z(2){[t1]}
)
.
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Further, α2/2 is represented by
d(v2

1)
4 = v1[t1] + [t21]. If q = 2n+1r > 2 with r

odd, then αq/n is represented by

d(vq1 + 2qvq−3
1 v2)

2n+3
.

For all q ∈N, H0(Tot{2q−1}⊗Tot{1}) = 0 and the generator of H1(Tot{2q−1}
⊗ Tot{1}) =Z/2 is represented by

d(v2q−1
1 ⊗ v1)

2
=
d(v2q−1

1 )

2
⊗ v1 + v2q−1

1 ⊗ [t1].

Moreover, H2(Tot{2q−1}⊗Tot{1}) contains a direct summand Z/2 generated

by

d(v2q−1
1 )

2
⊗ [t1].

Using the multiplication in the BP-cobar complex there is an induced map

Tot{2q − 1} ⊗ Tot{1} → Tot{2q}.

By the proof of Lemma 2.29 there is an induced inclusion

H1(Tot{2q − 1} ⊗ Tot{1}) = Z/2→ H1(Tot{2q}) = Z/a2q.

Since Tot{2q} is degreewise free, there exists a map Tot{2q} → H1(Tot{2q})[1]

= Z/a2q[1] inducing the identity on H1.

In order to describe the multiplication map to H1(Tot{2q})[1] completely,

it remains to identify the composite(
Z(2){v

2q−1
1 ⊗ [t1]} d−→ Z(2){

d(v2q−1
1 )
2 ⊗ [t1]}

)
[1]

→ Tot{2q − 1} ⊗ Tot{1} → Tot{2q} → H1(Tot{2q})[1].

It represents either the trivial map, or the connecting map for the short exact

sequence

0→ Z/2→ Z/2a2q → Z/a2q → 0.

Lemma B.1. Let Tot{k} denote the Adams degree 2k part of the cobar

complex for BP∗ at the prime 2. The multiplication map Tot{2q − 1} ⊗
Tot{1} → Tot{2q} induces the trivial map of chain complexesÄ

Z(2){v
2q−1
1 ⊗ [t1]} 2−→ Z(2){

d(v2q−1
1 )
2 ⊗ [t1]}

ä
[1]→ H1(Tot{2q})[1].

Proof. The generator v2q−1
1 ⊗ [t1] in degree 1 maps to v2q−1

1 [t1]. The ele-

ment α2q/n+3 ∈ Tot{2q}1 in the target is represented by

g2q =
d(v2q

1 + 4qv2q−3
1 v2)

2n+3
,

where 2q = 2n+1r, r odd. We conclude by showing {g2q, v
2q−1
1 [t1]} extends to

a basis of the free Z(2)-module Tot{2q}1. To wit, the coefficient of v2q−4
1 v2[t1]
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for 2q ≥ 4 (of [t21] for 2q = 2) in g2q is odd with respect to the usual monomial

basis of Tot{2q}1: The coefficient of v2q−4
1 v2[t1] in d(v2q−3

1 v2) is 4q − 6. The

coefficient of v2q−4
1 v2[t1] in d(v2q

1 ) is zero. Thus when 2q ≥ 4, the coefficient of

v2q−4
1 v2[t1] in g2q is the odd integer

(4q − 6)4q

2n+3
=

(2n+2r − 6)2n+2r

2n+3
= (2n+1r − 3)r,

which completes the argument. �

Letting αq be the generic notation for a generator of the cyclic group

Ext1,2q
BP∗BP(BP∗,BP∗), [77, Prop. 6.1] shows

Ext
s,2(s+t)
BP∗BP(BP∗,BP∗) ∼=


0 t = 1, s ≥ 2,

Z/2{αs1} t = 0, s ≥ 1,

Z/2{αs−1
1 αt+1} 2 ≤ t ≤ 6, s ≥ 4.

For p odd, [57, Th. 5.2.6(a), (b)] shows

Ext
1,2k(p−1)
BP∗BP (BP∗,BP∗) ∼= Z/pn+1{αk/n}, k = pnr for p - r.

For the beta family of elements on the 2-line of the Adams-Novikov spec-

tral sequence, we refer to [57, Ch. 4, §4].
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