Abstract
We prove a conjecture of Calegari’s, that every quasigeodesic flow on a closed hyperbolic $3$-manifold contains a closed orbit.
-
[Anosov] D. V. Anosov, "Ergodic properties of geodesic flows on closed Riemannian manifolds of negative curvature," Dokl. Akad. Nauk SSSR, vol. 151, pp. 1250-1252, 1963.
@ARTICLE{Anosov,
author = {Anosov, D. V.},
title = {Ergodic properties of geodesic flows on closed {R}iemannian manifolds of negative curvature},
journal = {Dokl. Akad. Nauk SSSR},
fjournal = {Doklady Akademii Nauk SSSR},
volume = {151},
year = {1963},
pages = {1250--1252},
issn = {0002-3264},
mrclass = {53.72 (34.65)},
mrnumber = {0163258},
mrreviewer = {L. W. Green},
zblnumber = {0135.40402},
} -
[Auslander] J. Auslander, Minimal Flows and their Extensions, North-Holland Publishing Co., Amsterdam, 1988, vol. 153.
@BOOK{Auslander,
author = {Auslander, Joseph},
title = {Minimal Flows and their Extensions},
series = {North-Holland Math. Stud.},
volume = {153},
note = {Notas de Matemática [Mathematical Notes], 122},
publisher = {North-Holland Publishing Co., Amsterdam},
year = {1988},
pages = {xii+265},
isbn = {0-444-70453-1},
mrclass = {54H20},
mrnumber = {0956049},
mrreviewer = {M. Rees},
zblnumber = {0654.54027},
} -
[BridsonHaefliger]
M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, 1999, vol. 319.
@BOOK{BridsonHaefliger,
author = {Bridson, Martin R. and Haefliger, André},
title = {Metric Spaces of Non-Positive Curvature},
series = {Grundlehren Math. Wiss.},
volume = {319},
publisher = {Springer-Verlag, Berlin},
year = {1999},
pages = {xxii+643},
isbn = {3-540-64324-9},
mrclass = {53C23 (20F65 53C70 57M07)},
mrnumber = {1744486},
mrreviewer = {Athanase Papadopoulos},
doi = {10.1007/978-3-662-12494-9},
zblnumber = {0988.53001},
} -
[Calegari]
D. Calegari, "Universal circles for quasigeodesic flows," Geom. Topol., vol. 10, pp. 2271-2298, 2006.
@ARTICLE{Calegari,
author = {Calegari, Danny},
title = {Universal circles for quasigeodesic flows},
journal = {Geom. Topol.},
fjournal = {Geometry and Topology},
volume = {10},
year = {2006},
pages = {2271--2298},
issn = {1465-3060},
mrclass = {53C23 (37D40 57M50 57R30)},
mrnumber = {2284058},
mrreviewer = {Thierry Barbot},
doi = {10.2140/gt.2006.10.2271},
zblnumber = {1129.57032},
} -
[CannonThurston]
J. W. Cannon and W. P. Thurston, "Group invariant Peano curves," Geom. Topol., vol. 11, pp. 1315-1355, 2007.
@ARTICLE{CannonThurston,
author = {Cannon, James W. and Thurston, William P.},
title = {Group invariant {P}eano curves},
journal = {Geom. Topol.},
fjournal = {Geometry \& Topology},
volume = {11},
year = {2007},
pages = {1315--1355},
issn = {1465-3060},
mrclass = {57M50 (57M07)},
mrnumber = {2326947},
mrreviewer = {Darryl McCullough},
doi = {10.2140/gt.2007.11.1315},
zblnumber = {1136.57009},
} -
[Dawson]
R. . J. Dawson, "Unsolved Problems: Paradoxical Connections," Amer. Math. Monthly, vol. 96, iss. 1, pp. 31-33, 1989.
@ARTICLE{Dawson,
author = {Dawson, Robert J. {\relax{MacG}}.},
title = {Unsolved {P}roblems: {P}aradoxical {C}onnections},
journal = {Amer. Math. Monthly},
fjournal = {American Mathematical Monthly},
volume = {96},
year = {1989},
number = {1},
pages = {31--33},
issn = {0002-9890},
mrclass = {DML},
mrnumber = {1541436},
doi = {10.2307/2323252},
zblnumber = {0687.54024},
} -
[Fenley]
S. Fenley, "Ideal boundaries of pseudo-Anosov flows and uniform convergence groups with connections and applications to large scale geometry," Geom. Topol., vol. 16, iss. 1, pp. 1-110, 2012.
@ARTICLE{Fenley,
author = {Fenley, Sérgio},
title = {Ideal boundaries of pseudo-{A}nosov flows and uniform convergence groups with connections and applications to large scale geometry},
journal = {Geom. Topol.},
fjournal = {Geometry \& Topology},
volume = {16},
year = {2012},
number = {1},
pages = {1--110},
issn = {1465-3060},
mrclass = {37C85 (37D20 53C23 57R30 58D19)},
mrnumber = {2872578},
mrreviewer = {Athanase Papadopoulos},
doi = {10.2140/gt.2012.16.1},
zblnumber = {1279.37026},
} -
[FenleyMosher]
S. Fenley and L. Mosher, "Quasigeodesic flows in hyperbolic 3-manifolds," Topology, vol. 40, iss. 3, pp. 503-537, 2001.
@ARTICLE{FenleyMosher,
author = {Fenley, Sérgio and Mosher, Lee},
title = {Quasigeodesic flows in hyperbolic 3-manifolds},
journal = {Topology},
fjournal = {Topology. An International Journal of Mathematics},
volume = {40},
year = {2001},
number = {3},
pages = {503--537},
issn = {0040-9383},
mrclass = {57R30 (37C10 37D40 53C23 57M50)},
mrnumber = {1838993},
mrreviewer = {Sandra L. Shields},
doi = {10.1016/S0040-9383(99)00072-5},
zblnumber = {0990.53040},
} -
[Frankel_qgflows]
S. Frankel, "Quasigeodesic flows and Möbius-like groups," J. Differential Geom., vol. 93, iss. 3, pp. 401-429, 2013.
@ARTICLE{Frankel_qgflows,
author = {Frankel, Steven},
title = {Quasigeodesic flows and {M}öbius-like groups},
journal = {J. Differential Geom.},
fjournal = {Journal of Differential Geometry},
volume = {93},
year = {2013},
number = {3},
pages = {401--429},
issn = {0022-040X},
mrclass = {53C23 (37D40 57M50 57R30 58E10)},
mrnumber = {3024301},
mrreviewer = {Boris Hasselblatt},
doi = {10.4310/jdg/1361844940},
zblnumber = {1279.53063},
} -
[Frankel_spherefilling]
S. Frankel, "Quasigeodesic flows and sphere-filling curves," Geom. Topol., vol. 19, iss. 3, pp. 1249-1262, 2015.
@ARTICLE{Frankel_spherefilling,
author = {Frankel, Steven},
title = {Quasigeodesic flows and sphere-filling curves},
journal = {Geom. Topol.},
fjournal = {Geometry \& Topology},
volume = {19},
year = {2015},
number = {3},
pages = {1249--1262},
issn = {1465-3060},
mrclass = {57M50 (37D40 57M07 57M60)},
mrnumber = {3352235},
mrreviewer = {Boris Hasselblatt},
doi = {10.2140/gt.2015.19.1249},
zblnumber = {1327.57021},
} -
[Franks]
J. Franks, "A new proof of the Brouwer plane translation theorem," Ergodic Theory Dynam. Systems, vol. 12, iss. 2, pp. 217-226, 1992.
@ARTICLE{Franks,
author = {Franks, John},
title = {A new proof of the {B}rouwer plane translation theorem},
journal = {Ergodic Theory Dynam. Systems},
fjournal = {Ergodic Theory and Dynamical Systems},
volume = {12},
year = {1992},
number = {2},
pages = {217--226},
issn = {0143-3857},
mrclass = {58F08 (54H20)},
mrnumber = {1176619},
mrreviewer = {Edward Slaminka},
doi = {10.1017/S0143385700006702},
zblnumber = {0767.58025},
} -
[Gabai]
D. Gabai, "Foliations and the topology of $3$-manifolds," J. Differential Geom., vol. 18, iss. 3, pp. 445-503, 1983.
@ARTICLE{Gabai,
author = {Gabai, David},
title = {Foliations and the topology of {$3$}-manifolds},
journal = {J. Differential Geom.},
fjournal = {Journal of Differential Geometry},
volume = {18},
year = {1983},
number = {3},
pages = {445--503},
issn = {0022-040X},
mrclass = {57N10 (57R30)},
mrnumber = {0723813},
mrreviewer = {Jean-Pierre Otal},
doi = {10.4310/jdg/1214437784},
zblnumber = {0533.57013},
} -
[Gromov]
M. Gromov, "Hyperbolic groups," in Essays in Group Theory, Springer, New York, 1987, vol. 8, pp. 75-263.
@INCOLLECTION{Gromov,
author = {Gromov, M.},
title = {Hyperbolic groups},
booktitle = {Essays in {G}roup {T}heory},
series = {Math. Sci. Res. Inst. Publ.},
volume = {8},
pages = {75--263},
publisher = {Springer, New York},
year = {1987},
mrclass = {20F32 (20F06 20F10 22E40 53C20 57R75 58F17)},
mrnumber = {0919829},
mrreviewer = {Christopher W. Stark},
doi = {10.1007/978-1-4613-9586-7_3},
zblnumber = {0634.20015},
} -
[HockingYoung] J. G. Hocking and G. S. Young, Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961.
@BOOK{HockingYoung,
author = {Hocking, John G. and Young, Gail S.},
title = {Topology},
publisher = {Addison-Wesley Publishing Co., Inc., Reading, Mass.-London},
year = {1961},
pages = {ix+374},
mrclass = {54.00 (55.00)},
mrnumber = {0125557},
mrreviewer = {S. S. Cairns},
zblnumber = {0718.55001},
} -
[Kapovich] M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhäuser Boston, Inc., Boston, MA, 2001, vol. 183.
@BOOK{Kapovich,
author = {Kapovich, Michael},
title = {Hyperbolic Manifolds and Discrete Groups},
series = {Progr. Math.},
volume = {183},
publisher = {Birkhäuser Boston, Inc., Boston, MA},
year = {2001},
pages = {xxvi+467},
isbn = {0-8176-3904-7},
mrclass = {57M50 (20F65 20H10 30F40 30F60 32G15)},
mrnumber = {1792613},
mrreviewer = {Michel Coornaert},
zblnumber = {0958.57001},
} -
[Kovacevic]
N. Kovavcević, "Examples of Möbius-like groups which are not Möbius groups," Trans. Amer. Math. Soc., vol. 351, iss. 12, pp. 4823-4835, 1999.
@ARTICLE{Kovacevic,
author = {Kova\v{c}ević,
Nataša},
title = {Examples of {M}öbius-like groups which are not {M}öbius groups},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the American Mathematical Society},
volume = {351},
year = {1999},
number = {12},
pages = {4823--4835},
issn = {0002-9947},
mrclass = {20H10 (54H15 57S30)},
mrnumber = {1473446},
mrreviewer = {I. Kra},
doi = {10.1090/S0002-9947-99-02188-1},
zblnumber = {0934.57039},
} -
[GKuperberg]
G. Kuperberg, "A volume-preserving counterexample to the Seifert conjecture," Comment. Math. Helv., vol. 71, iss. 1, pp. 70-97, 1996.
@ARTICLE{GKuperberg,
author = {Kuperberg, Greg},
title = {A volume-preserving counterexample to the {S}eifert conjecture},
journal = {Comment. Math. Helv.},
fjournal = {Commentarii Mathematici Helvetici},
volume = {71},
year = {1996},
number = {1},
pages = {70--97},
issn = {0010-2571},
mrclass = {58F18 (57R30 58F22 58F25)},
mrnumber = {1371679},
mrreviewer = {Michael Hurley},
doi = {10.1007/BF02566410},
zblnumber = {0859.57017},
} -
[KKuperberg]
K. Kuperberg, "A smooth counterexample to the Seifert conjecture," Ann. of Math. (2), vol. 140, iss. 3, pp. 723-732, 1994.
@ARTICLE{KKuperberg,
author = {Kuperberg, Krystyna},
title = {A smooth counterexample to the {S}eifert conjecture},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {140},
year = {1994},
number = {3},
pages = {723--732},
issn = {0003-486X},
mrclass = {57R25 (58F18 58F22 58F25)},
mrnumber = {1307902},
mrreviewer = {John E. Fornæ ss},
doi = {10.2307/2118623},
zblnumber = {0856.57024},
} -
[Kuratowski1] K. Kuratowski, Topology. Vol. I, Academic Press, New York, 1966.
@BOOK{Kuratowski1,
author = {Kuratowski, K.},
title = {Topology. {V}ol. {I}},
note = {new edition, revised and augmented; translated from the {F}rench by {J. J}aworowski},
publisher = {Academic Press, New York},
year = {1966},
pages = {xx+560},
mrclass = {54.00},
mrnumber = {0217751},
mrreviewer = {F. Burton Jones},
zblnumber={0158.40901},
} -
[Kuratowski2] K. Kuratowski, Topology. Vol. II, Academic Press, New York, 1968.
@BOOK{Kuratowski2,
author = {Kuratowski, K.},
title = {Topology. {V}ol. {II}},
series = {new edition, revised and augmented; translated from the French by A. Kirkor},
publisher = {Academic Press, New York},
year = {1968},
pages = {xiv+608},
mrclass = {54.00},
mrnumber = {0259835},
zblnumber = {0158.40802},
} -
[Mangum]
B. S. Mangum, "Incompressible surfaces and pseudo-Anosov flows," Topology Appl., vol. 87, iss. 1, pp. 29-51, 1998.
@ARTICLE{Mangum,
author = {Mangum, Brian S.},
title = {Incompressible surfaces and pseudo-{A}nosov flows},
journal = {Topology Appl.},
fjournal = {Topology and its Applications},
volume = {87},
year = {1998},
number = {1},
pages = {29--51},
issn = {0166-8641},
mrclass = {57M50 (57R30 58F18)},
mrnumber = {1626072},
mrreviewer = {Darren D. Long},
doi = {10.1016/S0166-8641(97)00120-X},
zblnumber = {0927.57009},
} -
[MontgomeryZippin]
D. Montgomery and L. Zippin, "Translation Groups of Three-Space," Amer. J. Math., vol. 59, iss. 1, pp. 121-128, 1937.
@ARTICLE{MontgomeryZippin,
author = {Montgomery, Deane and Zippin, Leo},
title = {Translation {G}roups of {T}hree-{S}pace},
journal = {Amer. J. Math.},
fjournal = {American Journal of Mathematics},
volume = {59},
year = {1937},
number = {1},
pages = {121--128},
issn = {0002-9327},
mrclass = {DML},
mrnumber = {1507224},
doi = {10.2307/2371566},
zblnumber = {0016.10303},
} -
[Moore]
R. L. Moore, "Concerning upper semi-continuous collections of continua," Trans. Amer. Math. Soc., vol. 27, iss. 4, pp. 416-428, 1925.
@ARTICLE{Moore,
author = {Moore, R. L.},
title = {Concerning upper semi-continuous collections of continua},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the American Mathematical Society},
volume = {27},
year = {1925},
number = {4},
pages = {416--428},
issn = {0002-9947},
mrclass = {54F15 (54B99)},
mrnumber = {1501320},
doi = {10.2307/1989234},
zblnumber = {51.0464.03},
} -
[Rechtman]
A. Rechtman, "Existence of periodic orbits for geodesible vector fields on closed 3-manifolds," Ergodic Theory Dynam. Systems, vol. 30, iss. 6, pp. 1817-1841, 2010.
@ARTICLE{Rechtman,
author = {Rechtman, Ana},
title = {Existence of periodic orbits for geodesible vector fields on closed 3-manifolds},
journal = {Ergodic Theory Dynam. Systems},
fjournal = {Ergodic Theory and Dynamical Systems},
volume = {30},
year = {2010},
number = {6},
pages = {1817--1841},
issn = {0143-3857},
mrclass = {53D42 (53D40 57R58)},
mrnumber = {2736897},
mrreviewer = {Pablo Suárez-Serrato},
doi = {10.1017/S0143385709000807},
zblnumber = {1214.37015},
} -
[Schweizer]
P. A. Schweitzer, "Counterexamples to the Seifert conjecture and opening closed leaves of foliations," Ann. of Math. (2), vol. 100, pp. 386-400, 1974.
@ARTICLE{Schweizer,
author = {Schweitzer, Paul A.},
title = {Counterexamples to the {S}eifert conjecture and opening closed leaves of foliations},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {100},
year = {1974},
pages = {386--400},
issn = {0003-486X},
mrclass = {57D30 (58F10)},
mrnumber = {0356086},
mrreviewer = {Robert Roussarie},
doi = {10.2307/1971077},
zblnumber = {0295.57010},
} -
[Seifert]
H. Seifert, "Closed integral curves in $3$-space and isotopic two-dimensional deformations," Proc. Amer. Math. Soc., vol. 1, pp. 287-302, 1950.
@ARTICLE{Seifert,
author = {Seifert, Herbert},
title = {Closed integral curves in {$3$}-space and isotopic two-dimensional deformations},
journal = {Proc. Amer. Math. Soc.},
fjournal = {Proceedings of the American Mathematical Society},
volume = {1},
year = {1950},
pages = {287--302},
issn = {0002-9939},
mrclass = {56.0X},
mrnumber = {0037508},
mrreviewer = {R. H. Fox},
doi = {10.2307/2032372},
zblnumber = {0039.40002},
} -
[Taubes]
C. H. Taubes, "The Seiberg-Witten equations and the Weinstein conjecture," Geom. Topol., vol. 11, pp. 2117-2202, 2007.
@ARTICLE{Taubes,
author = {Taubes, Clifford Henry},
title = {The {S}eiberg-{W}itten equations and the {W}einstein conjecture},
journal = {Geom. Topol.},
fjournal = {Geometry \& Topology},
volume = {11},
year = {2007},
pages = {2117--2202},
issn = {1465-3060},
mrclass = {57R17 (53D35 57R57 58J30)},
mrnumber = {2350473},
mrreviewer = {Hans U. Boden},
doi = {10.2140/gt.2007.11.2117},
zblnumber = {1135.57015},
} -
[Thurston] W. P. Thurston, Geometry and topology of 3-manifolds, 1979.
@MISC{Thurston,
author = {Thurston, W. P.},
title = {Geometry and topology of 3-manifolds},
note = {a.k.a. ``Thurston's notes''},
year = {1979},
zblnumber = {},
} -
[Wilder] R. L. Wilder, Topology of Manifolds, Amer. Math. Soc., Providence, R.I., 1979, vol. 32.
@BOOK{Wilder,
author = {Wilder, Raymond Louis},
title = {Topology of Manifolds},
series = {Amer. Math. Soc. Colloq. Publ.},
volume = {32},
note = {reprint of 1963 edition},
publisher = {Amer. Math. Soc., Providence, R.I.},
year = {1979},
pages = {xiii+403},
isbn = {0-8218-1032-4},
mrclass = {57-01},
mrnumber = {0598636},
zblnumber = {0511.57001},
} -
[Zeghib]
A. Zeghib, "Sur les feuilletages géodésiques continus des variétés hyperboliques," Invent. Math., vol. 114, iss. 1, pp. 193-206, 1993.
@ARTICLE{Zeghib,
author = {Zeghib, A.},
title = {Sur les feuilletages géodésiques continus des variétés hyperboliques},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {114},
year = {1993},
number = {1},
pages = {193--206},
issn = {0020-9910},
mrclass = {58F18 (57R30)},
mrnumber = {1235023},
mrreviewer = {Louis Funar},
doi = {10.1007/BF01232666},
zblnumber = {0789.57019},
}