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Coarse hyperbolicity and closed orbits
for quasigeodesic flows

By Steven Frankel

Abstract

We prove a conjecture of Calegari’s, that every quasigeodesic flow on a

closed hyperbolic 3-manifold contains a closed orbit.

1. Introduction

In 1950, Seifert conjectured that every nonsingular flow on the 3-sphere

must contain a closed orbit [26]. The first counterexamples appeared in 1974,

when Schweitzer showed that every nonsingular flow on a 3-manifold can be

deformed to a C1 flow with no closed orbits [25]. These examples have been

generalized considerably, and it is known that the flow can be taken to be

smooth [18] or volume-preserving [17].

On the other hand, there are certain geometric constraints that ensure the

existence of closed orbits. Taubes’ 2007 proof of the 3-dimensional Weinstein

conjecture shows that every Reeb flow on a closed 3-manifold has a closed

orbit [27]. Reeb flows are geodesible, i.e., there is a Riemannian metric in

which the flowlines are geodesics. In 2010, Rechtman showed that any real

analytic geodesible flow on a closed 3-manifold has a closed orbit, unless the

manifold is a torus bundle with reducible monodromy [24].

Geodesibility is a global geometric condition. In contrast, a flow is quasi-

geodesic if the path taken by each point is coarsely comparable to a geodesic, a

local condition. In this paper, we show that every quasigeodesic flow on a closed

hyperbolic 3-manifold contains a closed orbit, as conjectured by Calegari.

Our argument works by studying the transverse behavior of a quasi-

geodesic flow, which displays a kind of “coarse hyperbolicity” whenever the

ambient manifold is hyperbolic. In fact, our argument can be applied to a

larger class of flows with coarsely hyperbolic transverse structures.

Keywords: quasigeodesic flows, pseudo-Anosov flows, closed orbits, periodic orbits, hy-

perbolic dynamics, hyperbolic manifolds

AMS Classification: Primary: 57M60, 57M50, 37C27.

c© 2018 Department of Mathematics, Princeton University.

1

http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2018.188.1.1


2 STEVEN FRANKEL

In addition, one can think of this coarse transverse hyperbolicity as a

topological analogue of the transverse hyperbolicity exhibited by a pseudo-

Anosov flow. This analogy is taken further in a proof, announced by the

author, of Calegari’s Flow Conjecture, which asserts that any quasigeodesic

flow on a closed hyperbolic 3-manifold can be deformed to a flow that is both

quasigeodesic and pseudo-Anosov.

1.1. Quasigeodesic flows. A flow on a manifold M is a continuous map

Φ(·)(·) : R×M →M

such that

• Φ0(x) = x for all x ∈M , and

• Φs(Φt(x)) = Φt+s(x) for all x ∈M and t, s ∈ R.

For each t ∈ R, the time-t map Φt(·) : M → M is a homeomorphism, so we

can think of a flow as a continuous action M x R, writing x · t = Φt(x). A

flow is nonsingular if it has no global fixed points, i.e., for each x ∈ M there

is a time t ∈ R such that Φt(x) 6= x.

A flow Φ on a manifold M is quasigeodesic if each orbit lifts to a quasi-

geodesic in the universal cover M̃ . That is, each lifted orbit admits a para-

metrization γ : R→ M̃ satisfying

1

k
· d(γ(s), γ(t))− ε ≤ |s− t| ≤ k · d(γ(x), γ(y)) + ε

for constants k > 0, ε ≥ 0 that may depend on the orbit. It is uniformly

quasigeodesic if the constants k, ε can be chosen independent of the orbit.

If M is a closed hyperbolic 3-manifold, then the universal cover M̃ is iden-

tified with H3, so it has a natural compactification to a closed 3-ball M̃ t S2
∞.

Here, the sphere at infinity S2
∞ is identified with the boundary of hyperbolic

space in the unit ball model. The action of π1(M) on the universal cover is

isometric, so it extends to the sphere at infinity.

A flow Φ on M lifts to a flow ‹Φ on M̃ , but the orbits of the lifted flow

need not behave well with respect to the sphere at infinity. In particular,

they may remain in bounded subsets of M̃ , or accumulate on arbitrary closed

subsets of S2
∞. When Φ is quasigeodesic, however, the following so-called Morse

Lemma implies that each lifted orbit has well-defined and distinct endpoints

in S2
∞. See [13], [15, Cor. 3.44], or [3, §III.H].

Morse Lemma. Every quasigeodesic in H3 lies at a bounded distance

from a unique geodesic. Furthermore, there are constants C(k, ε) such that ev-

ery (k, ε)-quasigeodesic in H3 lies in the C(k, ε)-neighborhood of its associated

geodesic.
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In addition, the endpoints of lifted orbits vary continuously, and this be-

havior characterizes the quasigeodesic flows on a closed hyperbolic 3-manifold.

They are exactly the flows that can be studied “from infinity” in the following

sense.

Proposition 1.1 ([8, Th. B] and [4, Lemma 4.3]). Let Φ be a flow on a

closed hyperbolic 3-manifold M , and let ‹Φ be the lifted flow on the universal

cover M̃ . Then Φ is quasigeodesic if and only if

(1) each orbit of ‹Φ has well-defined and distinct endpoints in S2
∞, and

(2) the positive and negative endpoints of x ·R vary continuously with x ∈ M̃ .

The simplest examples of quasigeodesic flows come from fibrations.

Example 1.2. Zeghib showed that any flow on a closed 3-manifold M (not

necessarily hyperbolic) that is transverse to a fibration is quasigeodesic [30].

The idea is to lift such a flow to the infinite cyclic cover dual to a fiber Σ ⊂M ,

which may be identified with Σ×R in such a way that the lifts of Σ are of the

form Σ×{i} for i ∈ Z. Quasigeodesity follows from the observation that there

are upper and lower bounds on the distance between adjacent lifts, as well as

the time it takes for the flow to move points from one lift to the next.

On the other hand, there are many quasigeodesic flows that are not trans-

verse to fibrations, even virtually (i.e., after passing to a finite cover).

Example 1.3. Gabai showed that any nontrivial second cohomology class

on a closed 3-manifold represents the depth-zero leaf of a taut, finite-depth fo-

liation [12]. Fenley and Mosher showed that there is a quasigeodesic flow that

is transverse or “almost transverse” to such a foliation [8]. If one takes a co-

homology class that is not virtually represented by a fiber, then the associated

quasigeodesic flow is not virtually transverse to a fibration.

1.2. Transverse hyperbolicity. For motivation, we recall the Anosov Clos-

ing Lemma, which produces closed orbits for Anosov and pseudo-Anosov flows.

A smooth flow Φ on a 3-manifold M is Anosov if it preserves a splitting

of the tangent bundle TM into three one-dimensional sub-bundles

TM = Es ⊕ T Φ⊕ Eu

where T Φ is tangent to the flow, and the flow exponentially contracts the

stable bundle Es and exponentially expands the unstable bundle Eu. Here

and throughout, we use the convention that “expansion” means contraction

in backwards time. This gives rise to a transverse pair of two-dimensional

foliations, the weak stable and weak unstable foliations, obtained by integrating

the 2-dimensional sub-bundles T Φ⊕ Es and T Φ⊕ Eu.
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A flow on a 3-manifold is pseudo-Anosov if it is Anosov everywhere except

near a collection of isolated closed orbits, and the weak stable and unstable

foliations on the complement of these orbits extend to singular foliations on

the entire manifold. Figure 1 illustrates the local picture near a singularity of

order 4.

Figure 1. Singularities of stable and unstable foliations.

Let φ : Σ→ Σ be a homeomorphism of a closed surface, and consider the

surface bundle Mφ with monodromy φ, i.e., the closed 3-manifold

Mφ = Σ× [0, 1]
¿

(x, 1) ∼ (φ(x), 0).

The semi-flow (x, y) · t = (x, y + t) on M × [0, 1] glues up to produce a flow Φ

on Mφ called the suspension flow associated to φ.

The suspension flow associated to an arbitrary homeomorphism is quasi-

geodesic since it is transverse to the fibration of Mφ by the images of the sur-

faces Σ×{y}. In addition, the suspension flow associated to a pseudo-Anosov

homeomorphism is a pseudo-Anosov flow. Its 2-dimensional (singular) weak

stable and unstable foliations can be seen explicitly by flowing the 1-dimen-

sional (singular) stable and unstable foliations of the associated homeomor-

phism, thought of as living on a fiber.

An almost-cycle in a flow is a closed loop obtained by concatenating a

long flow segment with a short arc. More concretely, an (ε, T )-cycle consists

of a flow segment of the form x · [0, t] for t ≥ T , concatenated with an arc from

x to x · t with length at most ε. The Anosov Closing Lemma leverages the

contracting/expanding, or “transversely hyperbolic,” behavior of an Anosov

flow to find closed orbits near almost-cycles.
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Anosov Closing Lemma. Let Φ be an Anosov flow on a closed 3-mani-

fold M . Then for each D > 0, there are constants T, ε > 0 such that any

(ε, T )-cycle contains a closed orbit in its D-neighborhood.

An analogous result holds for pseudo-Anosov flows, but one must be care-

ful with almost-cycles that lie near the singular orbits [21].

The idea behind the Anosov Closing Lemma is illustrated in Figure 2.

The left side of the figure depicts the local structure near the ends of a long

flow segment x · [0, t], while the right side depicts the local structure near a

point x′ = x · t2 in the middle. Since x is close to x · t, the local stable/unstable

leaf through x intersects the local unstable/stable leaf through x · t.

x x · t

y

stab.

unst.

x′

y · t′− y · t′+

Figure 2. The Anosov closing lemma.

Take a point y where the stable leaf through x intersects the unstable

leaf through x · t. Flowing forward, we arrive at a point y · t′+ that lies very

close to x′ along its stable leaf; flowing backwards, we arrive at a point y · t′−
that lies very close to x′ along its unstable leaf. This produces a flow segment

y · [t′−, t′+] whose length is comparable to x · [0, t], but whose ends are much

closer together, which we can close up to obtain an almost-cycle. Repeating,

one obtains a sequence of better and better almost-cycles, which limit to a

closed orbit.

1.3. Coarse transverse hyperbolicity. At first glance, the tangent condition

that defines a quasigeodesic flow seems unrelated to the hyperbolic transverse

structure that defines a pseudo-Anosov flow. In the presence of ambient hyper-

bolicity, however, we will see that a quasigeodesic flows admits an analogous

transverse structure that is coarsely hyperbolic.

In a pseudo-Anosov flow, a weak stable or unstable leaf is a maximal

connected set of orbits that are forwards or backwards asymptotic to each

other. In a quasigeodesic flow, one defines a weak positive or weak negative leaf
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to be a maximal connected set of orbits that share their positive or negative

endpoints in the universal cover. Any pair of orbits in a weak positive or

negative leaf are coarsely forwards or backwards asymptotic, in the sense that

they contain forwards or backwards rays that lie a uniformly bounded distance

apart in the universal cover.

This “coarse transverse hyperbolicity” is a far cry from the strict form of

hyperbolicity needed for the Anosov closing lemma. Besides the coarseness of

the contraction/expansion, there is little control over the topology of the weak

leaves. They may have nontrivial interior, and may not be path-connected or

even locally connected. In particular, there is no natural notion of transver-

sality between weak positive and negative leaves. Nevertheless, we will prove

a “Homotopy Closing Lemma,” which finds closed orbits in the free homotopy

classes of certain almost-cycles. This can be seen as a coarse analogue of the

Anosov Closing Lemma, which finds closed orbits geometrically near certain

almost-cycles.

1.4. Outline and results. Fix a quasigeodesic flow Φ on a closed hyperbolic

3-manifold M , which lifts to a flow ‹Φ on the universal cover M̃ ' H3. To

avoid confusion, the orbits of ‹Φ will be called flowlines. In M̃ , the collections

of all weak positive and weak negative leaves form a pair of π1(M)-equivariant

decompositions, D+
w and D−w .

Because of the topological and geometric difficulties in working with weak

leaves, our argument will take a very different form than that of the Anosov

Closing Lemma. Instead of working directly in the manifold, we will reduce

the 3-dimensional problem of finding closed orbits to a 2-dimensional problem

in the flowspace. This is a topological plane P , the orbit space of the lifted

flow, which comes equipped with a natural action of π1(M). See Section 3.

Each point in P corresponds to a flowline in M̃ , which projects to an orbit

in M , and the periodicity or recurrence of this orbit can be seen in terms of

the flowspace action. In particular, a point in P corresponds to a closed orbit

in M if and only if it is fixed by some nontrivial element of π1(M). Thus, to

show the existence of a closed orbit it suffices to show that the flowspace action

is not free.

The flowspace is also useful for understanding the topology of the weak

leaves. The decompositions D±w of M̃ project to decompositions D± of P ,

whose elements are simply called positive leaves and negative leaves. These

positive and negative decompositions are monotone, unbounded, and intersect

compactly. That is, each positive or negative leaf is a closed, connected, un-

bounded planar set, and the intersection between a positive leaf and a neg-

ative leaf is compact. Note that the unboundedness of the leaves represents

a “transverse unboundedness” of the weak leaves, which would be difficult to

express without using the flowspace.
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We will use these properties to treat the positive and negative decom-

positions as a generalization of a pair of singular foliations. This analogy is

realized by ignoring the local topology of leaves and focusing on their separa-

tion properties, which can be understood using Calegari’s universal circle [4],

a topological circle S1
u, equipped with a faithful action of π1(M). Although the

original construction of this circle is abstract, coming from a cyclic ordering

of the Freudenthal ends of leaves, we showed in [9] that it can be thought of

as the boundary of the flowspace. That is, the disjoint union P = P t S1
u has

a natural topology with which it is homeomorphic to a closed disc, and the

flowspace and universal circle actions combine to form an action π1(M) y P.

In Section 4, we will see that decompositions D± of P extend to decompo-

sitions D± of P whose elements are called positive sprigs and negative sprigs.

Each sprig has a natural set of ends, the points at which it intersects the uni-

versal circle, and the separation properties of a sprig are reflected in those of

its ends. Although sprigs contain leaves, and hence display the same kinds of

topological pathologies, they are still easier to deal with since they are compact

and have nice convergence properties.

In Section 5, we study the relationship between the positive and negative

sprig decompositions, and we show that they form a spidery pair (cf. Defini-

tions 4.11 and 5.7), whose topological properties are studied in Sections 6–7.

Although there is no natural notion of a transverse intersection point between

a positive and negative sprig, there is a generalization of this idea called a

linked point. A point p ∈ P is said to be linked if the ends of its positive and

negative sprigs contain 0-spheres that are linked in the 1-sphere S1
u. We show

that the set Pl ⊂ P of linked points has the following properties.

Recurrent Links Lemma. The linked region Pl is closed, nontrivial,

π1(M)-invariant, and contains an ω-recurrent point.

Here, an ω-recurrent point is one that corresponds to an ω-recurrent orbit

in M . If p ∈ P is ω-recurrent, then a sequence of almost-cycles (γi) that

approximate the corresponding forward orbit are represented by a sequence of

elements (gi) in the fundamental group, called an ω-sequence, with the property

that lim gi(p) = p.

In Section 8, we show that the coarse contraction of positive sprigs is

reflected in the action of an ω-sequence on the flowspace. In particular, if

p ∈ P is an ω-recurrent point, then a corresponding ω-sequence (gi) takes any

point p′ ∈ P in the same positive sprig towards an a priori determined compact

region. We use this in Section 9 to prove our closing lemma.

Homotopy Closing Lemma. Let p ∈ Pl be an ω-recurrent point, and

let (gi)
∞
i=1 be a corresponding ω-sequence. Then for all i sufficiently large, gi

fixes a point in P .
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Since a point in P that is fixed by a nontrivial element of π1(M) corre-

sponds to a closed orbit, our main theorem follows immediately.

Closed Orbits Theorem. Every quasigeodesic flow on a closed hyper-

bolic 3-manifold contains a closed orbit.

In addition, we will see in Section 9.2 that certain closed orbits can be

seen purely in terms of the universal circle.
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Foundation.

2. Topological background

In this section we will review some topological background that will be

used throughout the sequel. See [29], [19], [20], and [14] for more details.

2.1. Limits. Let (Ai)
∞
i=1 be a sequence of subsets of a metric space X.

The limit inferior
limAi

is the set of all x ∈ X such that each neighborhood of x intersects all but

finitely many of the Ai. The limit superior

limAi

is the set of all x ∈ X such that every neighborhood of x intersects infinitely

many of the Ai.

In other words, x ∈ limAi if and only if there is a sequence of points

xi ∈ Ai that converge to x, and y ∈ limAi if and only if there is a sequence

of points yi ∈ Ai that accumulate on y. The limits inferior and superior are

always closed, and
limAi ⊂ limAi.

If the limits inferior and superior of agree, then (Ai) is said to be (Kuratowski)

convergent, and we write

limAi := limAi = limAi.

When X is a compact metric space, this is equivalent to Hausdorff conver-

gence, and we can avail ourselves of the following useful properties of Hausdorff

limits [14, §2].
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Theorem 2.1. Let X be compact metrizable space X . Then

(1) every sequence of subsets has a convergent subsequence;

(2) if (Ai) is a sequence of connected subsets, and limAi is not empty, then

limAi is connected ;

(2′) if (Ai) is a convergent sequence of connected subsets then limAi is con-

nected.

2.2. Decompositions. Let X be a topological space. A partition of X is

a collection of pairwise disjoint subsets that cover X. A decomposition of

X is a partition whose elements are closed. A partition or decomposition is

nontrivial if it contains more than one element and monotone if its elements

are connected.

Let D be a decomposition of a space X. A subset A ⊂ X is said to

be D-saturated if each decomposition element K ∈ D that intersects A is

contained in A; equivalently, if A is a union of decomposition elements. The

D-saturation of a subsetB ⊂ X is the smallestD-saturated set that containsB,

which we denote by D(B); equivalently, D(B) is the union of all decomposition

elements K ∈ D that intersect B. When the decomposition D is implicit, we

will speak simply of saturated sets and saturations.

Given a decomposition D of a space X, the corresponding decomposition

space is the identification space X
¿
D , equipped with the quotient topology.

Alternatively, one can think of the decomposition space as the set D itself,

with the topology defined by declaring that U ⊂ D is open whenever
⋃
K∈U K

is open in X.

Definition 2.2 ([19, §I.19]). A decomposition D of a space X is upper

semicontinuous if it satisfies the following equivalent conditions:

(1) The quotient map X → X
¿
D is closed (i.e., the image of every closed set

is closed).

(2) U ⊂ X is open ⇒ the union of all decomposition elements that are con-

tained in U is open.

(3) A ⊂ X is closed ⇒ the union of all decomposition elements that intersect

A is closed. Equivalently, the saturation of every closed set is closed.

In a compact metric space, the upper semicontinuity of a decomposition

can be understood in terms of the convergence properties of its elements.

Theorem 2.3 ([20, Th. IV.43.2]). Let D be a decomposition of a compact

metrizable space X . The following are equivalent :

(1) D is upper semicontinuous ;

(2) if K1,K2, . . . ∈ D is a sequence of decomposition elements, and limKi

intersects a decomposition element K ∈ D, then limKi ⊂ K .

(3) if K1,K2, . . . ∈ D is a convergent sequence of decomposition elements, then

limKi is contained in some decomposition element K ∈ D.
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Lemma 2.4 ([20, Th. IV.43.1]). Let D be an upper semicontinuous decom-

position of a compact Hausdorff space X . Then the decomposition space X
¿
D

is compact Hausdorff.

The following easy lemmas are useful for constructing upper semicontin-

uous decompositions.

Lemma 2.5 ([14, Th. 3-31]). If f : X → Y is a continuous map between

compact metrizable spaces, then the decomposition {f−1(y) | y ∈ Y } by point-

preimages is upper semicontinuous.

The monotonization of a decomposition D is the decomposition whose

elements are the connected components of elements of D.

Lemma 2.6 ([14, Th. 3-39]). In a compact metrizable space, the mono-

tonization of an upper semicontinuous decomposition is upper semicontinuous.

If D is a nontrivial monotone upper semicontinuous decomposition of a

closed interval I, then it is easy to see that the associated decomposition space
I
¿
D is homeomorphic to a closed interval. The following theorem generalizes

this to dimension 2.

Moore’s Theorem ([23]). Let D be a monotone upper semicontinuous

decomposition of a closed 2-disc D, and suppose that each decomposition ele-

ment K ∈ D is nonseparating in D. Then the decomposition space D
¿
D is

homeomorphic to a closed 2-disc.

This fails in higher dimensions.

3. Leaves

Fix, once and for all, a quasigeodesic flow Φ on a closed hyperbolic 3-mani-

fold M . We assume throughout that M is orientable; this does not result in a

loss of generality since passing to a double cover does not affect the existence

of closed orbits.

We will work mostly with the lifted flow ‹Φ on the universal cover M̃ ' H3,

whose orbits we call flowlines. Since M is compact, each nontrivial element

g ∈ π1(M) acts as a loxodromic isometry on M̃ and has two fixed points in S2
∞

in an attracting-repelling pair. Since M is closed, the action on S2
∞ is minimal,

in the sense that every orbit is dense. See [28].

The Morse Lemma implies that each flowline has well-defined and distinct

endpoints in S2
∞. These endpoints vary continuously [4, Lemma 4.3], so we

have a pair of π1(M)-equivariant maps

E± : M̃ → S2
∞

x 7→ lim
t→±∞

x · t.
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Since quasigeodesics have distinct endpoints, we have

E+(x) 6= E−(x) for all x ∈ M̃.

Fix a point z ∈ S2
∞. Then (E+)−1(z) is the union of all flowlines with

positive endpoint at z, and each connected component of this set is called a

weak positive leaf rooted at z. Similarly, (E−)−1(z) is the union of all flowlines

with negative endpoint at z, each component of which is called a weak negative

leaf rooted at z.

The collections of all weak positive and weak negative leaves form a pair

of monotone decompositions of M̃ ,

D+
w := {components of (E+)−1(z) | z ∈ S2

∞}
and

D−w := {components of (E−)−1(z) | z ∈ S2
∞}.

The action of π1(M) preserves these decompositions, so they descend under

the covering map π : M̃ → M to a pair of monotone partitions of M . These

are only partitions, not decompositions, since the image of a weak leaf need

not be closed.

A quasigeodesic flow on a closed hyperbolic manifold is always uniformly

quasigeodesic [4, Lemma 3.10], so there is a uniform constant C := C(k, ε)

such that the flowline through each x ∈ M̃ lies in the C-neighborhood of the

geodesic from E−(x) to E+(x). We will use this in Section 8 to see that the

the flowlines in each weak positive/negative leaf are coarsely asymptotic in the

forwards/backwards direction.

3.1. The flowspace. Let P be the orbit space of the lifted flow ‹Φ, i.e., the

set of flowlines in M̃ together with quotient topology induced by the map

ν : M̃ → P.

The deck group preserves the decomposition of M̃ into flowlines, so there is an

induced action π1(M) y P . The space P , together with this action, is called

the flowspace of Φ.

Using uniform quasigeodesity, Calegari showed that P is Hausdorff, and

therefore homeomorphic to the plane [4, Th. 3.12]. The deck transformations

preserve the orientation on the flowlines, as well as the orientation on the

universal cover, so the flowspace action is orientation-preserving.

Although the flowspace is constructed as a quotient of the universal cover,

we can use the following theorem to think of it as a transversal to the lifted

flow.

Theorem 3.1 (Montgomery-Zippin [22]). Let Ψ be a flow on R3 whose

orbit space P is Hausdorff. Then the quotient map ν : R3 → P admits a

continuous section σ : P → R3.
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Given such a section

σ : P → M̃,

the map

Σ : P × R→M

(p, h) 7→ σ(p) · h

is a homeomorphism that conjugates the “vertical flow” on P ×R, defined by

(p, h) · t = (p, h+ t), to the lifted flow ‹Φ on M̃ .

We will write

〈p〉 := ν−1(p)

for the flowline corresponding to a point p ∈ P , and

〈A〉 := ν−1(A)

for the union of flowlines corresponding to a subset A ⊂ P . From the homeo-

morphism Σ one sees that 〈A〉 is homeomorphic to A× R for any A ⊂ P .

3.2. Leaves. Let

e± : P → S2
∞

be the maps that take each point p ∈ P to the positive and negative endpoints

of the corresponding flowline 〈p〉. These are just the factorizations of E±

through the quotient map ν, so they are continuous, π1(M)-equivariant, and

satisfy

e+(p) 6= e−(p) for all p ∈ P.
For each z ∈ S2

∞, the connected components of (e+)−1(z) are called positive

leaves rooted at z, while the connected components of (e−)−1(z) are called

negative leaves rooted at z. Equivalently, a positive or negative leaf rooted at

z is the image under ν of a weak positive or weak negative leaf rooted at z.

See Figure 3.

The collections of all positive and negative leaves form a pair of π1(M)-

invariant monotone decompositions of P , the positive and negative decomposi-

tions

D+ := {components of (e+)−1(z) | z ∈ S2
∞}

and

D− := {components of (e−)−1(z) | z ∈ S2
∞}.

These have two important properties.

Proposition 3.2 ([4, Lemmas 4.8 and 5.8]).

(1) Each leaf K ∈ D+ ∪ D− is unbounded.

(2) If K ∈ D+ is a positive leaf and L ∈ D− is a negative leaf, then K ∩ L is

compact (and possibly empty).
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π1(M) y P

(e+)−1(z)

(e−)−1(w)

p

e+

∂

ν

e−
∂

π1(M) y M̃ ∪ S2
∞

z = e+(p)

w = e−(p)

〈p〉

Figure 3. The positive and negative leaves through a point p ∈ P .

We say that D+ and D− are unbounded decompositions that intersect

compactly. We will use these properties to treat the positive and negative

decompositions as a broad generalization of a transverse pair of foliations.

Property (2) can be generalized as follows.

Lemma 3.3. Let A and B be disjoint compact subsets of S2
∞. Then

(e−)−1(A) ∩ (e+)−1(B) is compact.

Proof. By uniform quasigeodesity, (E−)−1(A) ∩ (E+)−1(B) is contained

in the C-neighborhood of the union of all geodesics from A to B. Since A and

B are compact and disjoint, we can find a compact set D ⊂ M̃ that intersects

every one of these flowlines. Then (e−)−1(A) ∩ (e+)−1(B) is compact since it

is a closed subset of the compact set ν(D). �

Remark 3.4. Let Ψ be a pseudo-Anosov flow on a closed 3-manifold N , not

necessarily hyperbolic. Then the flowspace π1(N) y P , defined in the same

manner, is also a topological plane. The 2-dimensional singular weak stable

and unstable foliations lift to the universal cover and project to 1-dimensional

singular foliations of the flowspace P which we will call the stable and unstable

foliations; see [7].

If N is hyperbolic, and Ψ is quasigeodesic in addition to pseudo-Anosov,

then the positive and negative decompositions that come from its quasigeodesic

structure are exactly the stable and unstable foliations that come from its

pseudo-Anosov structure.



14 STEVEN FRANKEL

3.3. Dynamics in the flowspace. Each point p ∈ P corresponds to a flow-

line 〈p〉 in M̃ and to an orbit π(〈p〉) in M .

Lemma 3.5. A point p ∈ P corresponds to a closed orbit in M if and only

if there is a nontrivial element g ∈ π1(M) such that g(p) = p. Any such g

represents a multiple of the free homotopy class of the corresponding orbit.

Proof. Let g be a nontrivial element of π1(M) that fixes p. Then g fixes

the corresponding flowline 〈p〉 ⊂ M̃ , so the image π(〈p〉) is a closed orbit, and

g represents a multiple of its free homotopy class.

If π(〈p〉) is closed, then it is homotopically nontrivial, since it has a lift 〈p〉
that is homeomorphic to a line. Take a point x ∈ 〈p〉 as the basepoint for M̃ ,

and take x0 = π(x) as the basepoint for M . Then an element g ∈ π1(M,x0)

that represents its homotopy class is nontrivial and fixes 〈p〉 and hence p. �

Thus the Closed Orbits Theorem reduces to showing that the flowspace

action is not free.

A point x ∈ M is called ω-recurrent (α-recurrent) if there is a sequence

of times ti → ∞ (resp. ti → −∞) such that limi→∞ x · ti = x. If x, y ∈ M
are in the same orbit, then x is α- or ω-recurrent if and only if y is, so we can

speak of orbits being α- or ω-recurrent. A recurrent point or orbit is one that

is either α- or ω-recurrent. A point p ∈ P is said to be recurrent, α-recurrent,

or ω-recurrent when this holds for the corresponding orbit in M .

Lemma 3.6. A point p ∈ P is recurrent if and only if there is a sequence

of nontrivial elements g1, g2, . . . ∈ π1(M) such that limi→∞ gi(p) = p.

Proof. Take a point x ∈ 〈p〉 as the basepoint for M̃ , and take x0 = π(x)

as the basepoint for M .

If π(〈p〉) is ω-recurrent, then we can find a sequence of times ti → ∞
such that limi→∞ x0 · ti = x0. For each i, let gi be the element of π1(M,x0)

that represents the almost-cycle obtained by concatenating the flow segment

x0 · [0, ti] with an arc ci of shortest possible length. The corresponding lift is

the concatenation of x · [0, ti] with the lift c̃i of ci that starts at x · ti, and gi
takes the terminal endpoint of c̃i to x. The length of c̃i goes to 0, so we have

limi→∞ gi(x · ti) = x, and hence limi→∞ gi(p) = p. A similar argument applies

if p is α-recurrent.

On the other hand, suppose that we have a sequence (gi)
∞
i=1 of nontrivial

elements of π1(M) such that limi→∞ gi(p) = p. Then we can find a sequence of

times ti such that limi→∞ gi(x · ti) = x, which means that limi→∞ x0 · ti = x0.

Since the injectivity radius of M is bounded below, it follows that the ti are

unbounded, so we can take a subsequence with either ti → ∞ or ti → −∞.

Thus p is either ω- or α-recurrent. �
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Such a sequence (gi)
∞
i=1 is called a recurrence sequence for the recurrent

point p. Note that p is ω-recurrent (α-recurrent) if and only if we can find a

recurrence sequence with the property that limi→∞ gi(x · ti) = x for a point

x ∈ 〈p〉 and a sequence of times ti →∞ (resp. ti → −∞). Such a sequence is

called an ω-sequence (resp. α-sequence) for p.

More generally, we will denote the ω- and α-limit sets of a point x ∈ M
by ω(x) and α(x). That is, y ∈ ω(x) (y ∈ α(x)) if and only if there is a

sequence of times ti → ∞ (resp. ti → −∞) such that limi→∞ x · ti = y. As

with recurrence, we can treat ω- and α-limit sets on the level of orbits. Note

that a point or orbit is ω- or α-recurrent if and only if it is contained in its own

ω- or α-limit set. In the flowspace, we write q ∈ ω(p) or q ∈ α(p) whenever

this holds for the corresponding orbits in M .

Lemma 3.7. Let p, q ∈ P . Then q ∈ ω(p) ∪ α(p) if and only if there is a

sequence of nontrivial elements g1, g2, . . . ∈ π1(M) such that limi→∞ gi(q) = p.

The proof is similar to that of the preceding lemma, and we can extend

the notions of ω- and α-sequences in the obvious way. In particular, q ∈ ω(p)

if and only if there is a sequence (gi)
∞
i=1 such that limi→∞ gi(x · ti) = y for

points x ∈ 〈p〉 and y ∈ 〈q〉 and times ti → ∞. We call this an ω-sequence for

q ∈ ω(p).

In the sequel, we will restrict attention to ω-sequences, though all of our

results have corresponding versions for α-sequences.

4. Sprigs

A compactification of a space X consists a compact space Y , together

with an identification of X with a dense subset of Y . In [9], we showed that

any finite collection {Di}ki=1 of unbounded decompositions of a plane P that

intersect compactly determines a universal compactification to a closed disc

P = P tS1
u with interior P and boundary circle S1

u. This may be characterized

by the following properties:

(1) the closure of each K ∈ ⋃
iDi in P intersects the boundary circle in a

nontrivial totally disconnected set K ∩ S1
u,

(2)
⋃
K∈

⋃
i
Di K ∩ S1

u is dense in S1
u,

(3) any other compactification with these properties is a quotient of P.

It follows that any group action Γ y P that preserves each Di extends uniquely

to an action on the corresponding universal compactification.

In particular, this construction can be applied to the decompositions D±
that come from a quasigeodesic flow (in which case the boundary circle, to-

gether with the restricted action, is identified with the universal circle con-

structed by Calegari in [4]). In [10], we showed that the endpoint maps
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e± : P → S2
∞ extend uniquely to π1(M)-equivariant maps e± : P → S2

∞.

These agree on the boundary circle, in the sense that e+(s) = e−(s) for all

s ∈ S1
u.

4.1. The compactified flowspace. For convenience, we will work with the

variant of this compactification provided by the following theorem.

Theorem 4.1. There is a compactification of P to a closed disc P =

P t S1
u with the following properties :

(1) the flowspace action π1(M)yP extends uniquely to an action π1(M)yP;

(2) the endpoint maps e± : P → S2
∞ extend uniquely to π1(M)-equivariant

maps

e± : P→ S2
∞;

(3) the extended endpoint maps agree on the universal circle, i.e.

e+(s) = e−(s) for all s ∈ S1
u;

and

(4) for each z ∈ S2
∞,

(e+)−1(z) ∩ S1
u = (e−)−1(z) ∩ S1

u

is totally disconnected.

Proof. In [9, Th. 7.9, Construction 5.7] and [10, Th. 2.10, Prop. 2.11], we

constructed a compactification P = P tS1
u of P with extended endpoint maps

e± : P→ S2
∞ that satisfies properties (1)–(3). To obtain (4) we will pass to a

quotient of this compactification.

Let

C := {components of (e+)−1(z) ∩ S1
u | z ∈ S2

∞} ∪ {{p} | p ∈ P}.

This is a monotone upper semicontinuous of P by nonseparating subsets, so

Moore’s Theorem says that the decomposition space P
¿
C is a closed disc.

The decomposition C is trivial on the interior of P, so the interior of the

quotient is still identified with P . It is preserved by the action of π1(M), so

there is an induced action on the quotient. Each element of C maps to a single

point under e+ and e−, so these descend to π1(M)-equivariant maps on the

quotient. Thus the theorem is satisfied after replacing P by P
¿
C . �

The space P, together with the action of π1(M), is called the compactified

flowspace. The boundary circle S1
u, together with the restricted action, is called

the universal circle.

Since the extended endpoint maps agree on the universal circle, we will

denote their mutual restriction by

e : S1
u → S2

∞.
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This is π1(M)-equivariant, and since the action on S2
∞ is minimal, its image

must be the entire sphere at infinity. This generalizes the Cannon-Thurston

Theorem, which produces such equivariant sphere-filling curves for fibered hy-

perbolic 3-manifolds [5].

4.2. Ends of leaves. Given a subset A ⊂ P, we define ∂A := A∩S1
u. Given

a positive or negative leaf K ∈ D±, the points in ∂K are called ends of K.1

Lemma 4.2. Each leaf has a nontrivial and totally disconnected set of ends.

Proof. Nontriviality follows from that fact that the leaves are unbounded

subsets of P . The ends of a leaf rooted at z are contained in the totally

disconnected set e−1(z), and hence totally disconnected. �

Although distinct positive leaves K,L ∈ D+ are disjoint in the flowspace,

their closures may intersect in the universal circle, so that they “share an end”

s ∈ ∂K ∩ ∂L. Negative leaves may also share ends, and a positive leaf may

share an end with a negative leaf.

Lemma 4.3. Any two leaves (both positive, both negative, or one of each)

that share an end are rooted at the same point.

Proof. If s is an end of a leaf K ∈ D±, then K is rooted at e(s). Indeed,

if K is a positive leaf, then its root is e+(K) = e+(K) = e+(s) = e(s), and if

K is a negative leaf, then its root is e−(K) = e−(K) = e−(s) = e(s).

Therefore, two leaves K and L that share an end s ∈ ∂K ∩ ∂L are both

rooted at e(s). �

On the other hand, a positive leaf cannot both intersect and share an end

with a negative leaf.

Lemma 4.4. If K ∈ D+ and L ∈ D− share an end, then K ∩ L = ∅.

Proof. If K and L share an end s ∈ ∂K ∩ ∂L, then we have e+(K) =

e(s) = e−(L) by the preceding lemma. Then K and L must be disjoint, since

any point p ∈ K ∩ L would have e+(p) = e−(p), which contradicts the fact

that quasigeodesics have distinct endpoints. �

4.3. Sprigs. Since distinct positive/negative leaves can share ends, the

collection of positive/negative leaf-closures does not form a decomposition of

the compactified flowspace. In addition, there may be points in S1
u that are

1Our usage of the word “end” differs slightly from that of [9] and [10], where it refers to

a Freudenthal end. Each Freudenthal end of a leaf K maps to a point in the universal circle,

and ∂K is the closure of the image of K’s Freudenthal ends. We will not need this, but the

reader may refer to [9, Lemma 7.8] for more details.
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not in the closure of a positive or negative leaf. However, there are natural

decompositions of P obtained using the extended endpoint maps.

For each z ∈ S2
∞, the connected components of (e+)−1(z) and (e−)−1(z)

are called, respectively, positive sprigs rooted at z and negative sprigs rooted

at z. The collections of all positive and negative sprigs form a pair of π1(M)-

invariant monotone decompositions of P, the positive and negative sprig de-

compositions

D+ := {components of (e+)−1(z) | z ∈ S2
∞},

D− := {components of (e−)−1(z) | z ∈ S2
∞}.

Let K ∈ D± be a positive or negative sprig. Then the points in ∂K =

K∩S1
u are called ends of K, while K̊ := K∩P is called its bounded part. Note

that

K = K̊ t ∂K.

Lemma 4.5. Each sprig has a nontrivial and totally disconnected set of

ends.

The proof is the same as in the case of leaves. A sprig K ∈ D± is said to

be trivial if K̊ = ∅, and nontrivial otherwise.

Lemma 4.6. Let K ∈ D± be a positive/negative sprig rooted at z.

(1) If K is trivial, then it consists a single point in S1
u.

(2) If K is nontrivial, then each component of K̊ is a positive/negative leaf

rooted at z.

Proof. Suppose without loss of generality that K is a positive sprig. If K

is trivial, then K = ∂K is a connected subset of the totally disconnected set

e−1(z), and hence a single point. If K is nontrivial, then each component of K̊

is a connected component of (e+)−1(z) ∩ S1
u = (e+)−1(z), which is a positive

sprig rooted at z. �

On the other hand,

Lemma 4.7. Any two positive leaves that share an end are contained in

the same positive sprig, and any two negative leaves that share an end are

contained in the same negative sprig.

Proof. If K and L are positive leaves that share an end s ∈ ∂K∩∂L, then

K∪L is connected. By Lemma 4.3, e+(K∪L) is a single point, so e+(K∪L) is a

single point. The same argument holds for negative sprigs using e− and e−. �

Distinct positive sprigs are disjoint by definition, as are distinct negative

sprigs. However, a positive sprig might share an end with a negative sprig,

and we have the following analogue of Lemmas 4.3 and 4.4.
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Lemma 4.8. Let K ∈ D+ and L ∈ D− be positive and negative sprigs

with ∂K ∩ ∂L 6= ∅. Then e+(K) = e−(L) and K̊ ∩ L̊ = ∅

Conversely, sprigs whose bounded parts intersect must have disjoint ends,

which we express as follows.

Corollary 4.9. For each p ∈ P , we have ∂D+(p) ∩ ∂D−(p) = ∅.

Here, we are using the notation from Section 2.2: D+(p) and D−(p) are

the D+- and D−-saturations of the set {p}, which are just the positive and

negative sprigs through p.

As illustrated in Figure 4, one can have a sequence of positive leaves that

limits on more than one positive leaf. Note, however, that the two limit leaves

share an end and refore contained in a single positive sprig. This is a result

of the following lemma, which is an immediate consequence of Lemmas 2.5

and 2.6.

Figure 4. Leaves that split in the limit.

Lemma 4.10. The sprig decompositions D+ and D− are upper semicon-

tinuous.

In particular, the sprig decompositions have the following properties from

Definition 2.2 and Theorem 2.3.

(1) Let K1,K2, . . . be a sequence of positive (resp. negative) sprigs for which

lim Ki 6= ∅. Then lim Ki is contained in a single positive (negative) sprig.

(2) Let p1, p2, . . . be a convergent sequence of points in P. Then limD±(pi) ⊂
D±(lim pi).
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(3) If A ⊂ P is closed, then the saturations D+(A) and D−(A) are closed.

We can abstract the properties of the sprig decompositions as follows.

Definition 4.11. A decomposition D of the closed disc D = D t S1 is

spidery if it is upper semicontinuous, and each decomposition element K ∈ D
intersects the boundary circle in a nontrivial totally disconnected set K ∩ S1.

We do not yet have a satisfactory notion of transversality between the

spidery decompositions D±. This is done in Section 5.5.

5. Master sprigs

Using the compactified flowspace, we will construct a compactification

of M̃ , called the flow ideal compactification, that is especially adapted to the

lifted flow. The boundary of this compactification is a 2-sphere S2
u, called the

universal sphere, which we will use to understand the relationship between

positive and negative sprigs.

Remark 5.1. Cannon-Thurston constructed flow ideal compactifications for

pseudo-Anosov suspension flows [5], and Fenley generalized this to all pseudo-

Anosov flows [7].

5.1. Master sets. For each z ∈ S2
∞, the set

Z = (e+)−1(z) ∪ (e−)−1(z) ⊂ P,

which consists of all positive and negative sprigs rooted at z, is called the

master set rooted at z.

Lemma 5.2. Each master set is connected.

Proof. Fix a master set Z rooted at a point z ∈ S2
∞, and let D1 ⊃ D2 ⊃ · · ·

be a nested sequence of open discs in S2
∞ centered at z, with

⋂∞
i=1Di = z. For

each i, let Hi ⊂ M̃ be the union of all geodesics with both endpoints in Di.

Each Hi projects to a connected subset Xi := ν(Hi) of the flowspace,

where p ∈ Xi if and only if 〈p〉 intersects Hi. The closures Xi are compact

connected subsets of the compactified flowspace, so
⋂
iXi is compact and con-

nected. To complete the proof, we will show that
⋂
iXi = Z.

Let us show that Z ⊂ ⋂
iXi. Let p ∈ Z. If p ∈ Z ∩ P , then either

e+(p) = z or e−(p) = z, so we have p ∈ Xi ⊂ Xi for every i, and hence

p ∈ ⋂
iXi. If p ∈ Z ∩ S1

u, then e+(p) = z = e−(p). Take a sequence of points

pj ∈ P that converge to p, and note that lim e+(pj) = e+(p) = z. Then after

taking a subsequence of these points, we can assume that e+(pj) ⊂ Di for all

j ≥ i, which means that pj ∈ Xi for all j ≥ i. Then p = limj→∞ pj ∈ Xi for

all i, and hence p ∈ ⋂
iXi.
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Now we will show that P \ Z is disjoint from
⋂
iXi. Observe that if

A ⊂ S2
∞ is compact, and z /∈ A, then union of all flowlines with both ends in

A is eventually disjoint from Hi, since it is contained in the C-neighborhood

of union of all geodesics with both endpoints in A. Alternatively, if B ⊂ P has

the property that e+(B) ∪ e−(B) is bounded away from z, then we eventually

have B ∩Xi = ∅.
Let p be a point in P \ Z, which means that e+(p) 6= z 6= e−(p). If

p ∈ P , then this is the same as e+(p) 6= z 6= e−(p), so we can find an open

neighborhood U ⊂ P of p such that e+(U)∪e−(U) is bounded away from z, and

hence U is eventually disjoint from Xi. Then U is eventually disjoint from Xi,

and hence p /∈ ⋂
iXi. If p ∈ S1

u, then we can find an open neighborhood

U ⊂ P of p such that e+(U)∪e−(U) is bounded away from z. Then e+(U ∩P )

;∪e+(U ∩P ) is bounded away from z, so U ∩P is eventually disjoint from Xi.

Any sequence of points in P that approaches a point in U ∩ S1
u is eventually

contained in U ∩P , so U is eventually disjoint from Xi, and hence p /∈ X. �

Let Z be a master set rooted at a point z. As with sprigs, we write

Z = Z̊ t ∂Z, where the points in ∂Z = Z ∩ S1
u are called ends of Z and

Z̊ := Z ∩ P is called its bounded part. Since ∂Z = e−1(z), each master set

has a nontrivial, closed, and totally disconnected set of ends. We say that Z

is trivial if Z̊ = ∅, in which case Z = ∂Z consists of a single point, being a

connected subset of a totally disconnected set.

Note, however, that the master sets do not form a decomposition of P,

since each point p ∈ P is contained in two master sets, those rooted at e+(p)

and e−(p).

5.2. The flow ideal compactification. Recall from Section 3.1 that we can

identify M̃ with the open cylinder

C := P × R

in such a way that the flowlines of ‹Φ correspond to vertical lines {p}×R in C.

We can compactify C by thinking of it as the interior of the closed cylinder

C := P× R,

where R = [−∞,∞] is the usual two-point compactification of R = (−∞,∞).

The action of π1(M) on C ' M̃ can be extended to the upper and lower

horizontal faces

∂±C := P× {±∞}

of the closed cylinder, since they are identified with the compactified flowspace,

but not to the vertical face

∂vC := S1
u × R.
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However, it does extend to the “closed lens”

L := C
¿
{{s} × R | s ∈ S1

u}
obtained by collapsing the vertical lines in the vertical face. This space, to-

gether with the action π1(M) y L, is called the flow ideal compactification

of M̃ .

Let S2
u denote the boundary sphere of L which, together with the action

of π1(M), is called the universal sphere. This consists of two copies of the

compactified flowspace glued along their universal circles. We will denote these

by P+ and P− and think of them as the upper and lower hemispheres of S2
u.

5.3. Master sprigs. We can think of the extended endpoint maps as maps

e± : P± → S2
∞

supported on the two hemispheres of the universal sphere. These agree on the

equator, so they combine to form a π1(M)-equivariant map

m : S2
u → S2

∞.

Alternatively, the identifications P± ' P define a flattening map

f : S2
u → P,

and we can define m by

m(p) =

e+ ◦ f(p) for p ∈ P+

e− ◦ f(p) for p ∈ P−.

For each z ∈ S2
∞, the set m−1(z) ⊂ S2

u consists of all positive sprigs rooted

at z lying in the upper hemisphere, together with all negative sprigs rooted at

z lying in the lower hemisphere. We call this the master sprig rooted at z. Note

that the flattening map f takes each master sprig to the master set rooted at

the same point. See Figure 5.

Although the master sets do not form a decomposition of P, the master

sprigs form a decomposition of S2
u, the master decomposition

M := {m−1(z) | z ∈ S2
∞}.

This is upper semicontinuous by Lemma 2.5 and monotone by the following

lemma.

Lemma 5.3. Each master sprig is connected.

Proof. Suppose that some master sprig Z = m−1(z) is disconnected. Then

we can write it as a disjoint union

Z = A tB
of nontrivial compact sets. Since f restricts to a homeomorphism from the

equator to S1
u, and takes only points in the equator to S1

u, it follows that
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∂vC
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Figure 5. The universal sphere.

f(A) ∩ S1
u is disjoint from f(B) ∩ S1

u. Furthermore, f(A) ∩ P is disjoint from

f(B)∩P , since a point p ∈ f(A)∩ f(B)∩P would have e+(p) = e−(p), which

contradicts the fact that quasigeodesics have distinct endpoints. Thus we can

write the corresponding master set as a disjoint union of compact sets

f(Z) = f(A) t f(B),

which contradicts Lemma 5.2. �

5.4. Recovering the sphere at infinity. The map m : S2
u → S2

∞ takes each

master sprig to a point, so it factors through a π1(M)-equivariant map“m : S
2
u

/
M → S2

∞

defined on the decomposition space of M.

Lemma 5.4. “m is a homeomorphism.

Proof. SinceM is upper semicontinuous, the decomposition space S
2
u

/
M

is compact Hausdorff by Lemma 2.4. SinceM is monotone, and m is surjective,

the map “m is bijective, and a continuous bijection between compact Hausdorff

spaces is a homeomorphism. �
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Thus we recover the sphere at infinity as a quotient of the universal sphere.

As a consequence, we have the following observation.

Lemma 5.5. Each master sprig is nonseparating in S2
u.

Proof. Suppose that some master sprig Z = m−1(z) separates S2
u. Choose

some complementary component U of Z, and let V be the union of all other

complementary components. Then U and V are open unions of master sprigs,

so they map to disjoint open sets “m(U), “m(V ) ⊂ S2
∞, and S2

∞ = “m(U) t z t“m(V ). But this means that z is a cutpoint of S2
∞, which is impossible. �

5.5. Spidery pairs. Let K ∈ D+ and L ∈ D− be positive and negative

sprigs. If K and L share more than one end, then we can think of them as

forming a kind of “ideal bigon” in P. The following lemma says that this

cannot happen. One can also show that there are no “ideal polygons.” That

is, one cannot have an alternating sequence of positive and negative sprigs

K0,K1,K2, . . . ,Kn−1 where each Ki shares an end with Ki+1 (mod n).

Lemma 5.6 (No bigons). Let K ∈ D+ and L ∈ D− be positive and nega-

tive sprigs. Then ∂K intersects ∂L in at most one point.

Proof. We will use the following fact from classical analysis situs [29, Th.

II.5.28a]: If A and B are compact connected subsets of S2, and A ∩ B is

disconnected, then A ∪B separates S2.

Think of K as a subset of P+ and L as a subset of P−. If they intersect

in S1
u, then they are contained in a single master sprig. If they intersect at

more than one point in S1
u, then this master sprig is separating, contradicting

the preceding lemma. �

It follows that the sprig decompositions satisfy the following definition.

Definition 5.7. A spidery pair consists of two spidery decompositions D±
of the closed disc D = D t S1 with the following property: for each K ∈ D+

and L ∈ D−, the intersection K ∩ L is either empty, a compact subset of D,

or a single point in S1.

5.6. Fixed sprigs. As with sprigs and master sets, a master sprig is said

to be trivial if it is contained entirely in S1
u, thought of as the equator of S2

u.

Equivalently, a master sprig m−1(z) is trivial if and only if the corresponding

master set f(m−1(z)) is trivial. We will use the following lemma to simplify

the process of finding closed orbits.

Lemma 5.8. Let g be a nontrivial element of π1(M) that fixes a leaf,

nontrivial sprig, nontrivial master set, or nontrivial master sprig. Then g

fixes a point in P .
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Proof. We will use the Brouwer Plane Translation Theorem (cf. [11]),

which says that an orientation-preserving homeomorphism of the plane with a

bounded forward orbit must have a fixed point.

If g fixes a leaf, nontrivial sprig, or nontrivial master sprig, then it fixes

the corresponding master set, which is nontrivial. Thus we can assume that g

fixes a nontrivial master set Z.

In the sphere at infinity S2
∞, g has exactly two fixed points α and ρ in an

attracting-repelling pair, so Z must be rooted at one of these. After possibly

replacing g by its inverse, we can assume that Z is rooted at the repelling fixed

point ρ.

Since Z is nontrivial, we can choose a point p ∈ Z ∩ P . If p is con-

tained in a positive subleaf of Z, then e+(p) = ρ and e−(p) 6= ρ, so we have

limi→∞ e
+(gi(p)) = ρ and limi→∞ e

−(gi(p)) = α. Similarly, if p is contained in

a negative subleaf, then limi→∞ e
−(gi(p)) = ρ and limi→∞ e

+(gi(p)) = α.

Either way, this means that limi→∞ e
+(gi(p)) 6= limi→∞ e

−(gi(p)). Since

e+ agrees with e− on S1
u, this means that gi(p) stays in a bounded subset of P

for all i ≥ 0. Then g fixes some point in P by the Brouwer Plane Translation

theorem, as does g−1. �

6. Decompositions I: Separation

In this section we study the structure of the individual sprig decomposi-

tions and relate the separation properties of sprigs with those of their ends. In

particular, we will see that any two positive or negative sprigs are separated

from each other by an interval’s worth of positive or negative sprigs. The rela-

tionship between the positive and negative sprig decompositions is covered in

the following section.

Throughout this section, take D to be either D+ or D−, and take “sprig”

to mean a positive or negative sprig accordingly. In fact, the results in this

section apply to any spidery decomposition of the closed disc (Definition 4.11).

Lemma 6.1. Some sprig K ∈ D has at least two ends.

Proof. Suppose that each sprig has exactly one end. Then we can define

a map
r : P→ S1

u

that sends each point p ∈ P to the end r(p) of its sprig. This is continuous

by upper semicontinuity, and it restricts to the identity on S1
u. That is, it is a

retraction of P onto S1
u, which is impossible. �

6.1. Complementary regions and intervals. Fix an orientation on S1
u. Then

any ordered pair of points s, t ∈ S1
u determines an oriented open subinterval

(s, t) ⊂ S1
u running from s to t. This makes sense even when s = t, where we

take (s, s) = S1
u \ {s}.
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Given a closed subset A ⊂ P, the connected components of P \ A are

called complementary regions of A, while the connected components of S1
u \∂A

are called complementary intervals of ∂A (or of A). These are open intervals

whose initial and terminal points lie in ∂A.

Lemma 6.2. Let U be a complementary region of a sprig K ∈ D. Then

U ∩ S1
u is a complementary interval of ∂K.

Proof. Choose an arbitrary point p ∈ U . Then the sprig D(p) is contained

in U , so U ∩ S1
u is nontrivial since it contains ∂D(p). Each complementary

interval of ∂K that intersects U ∩S1
u is contained in it, so U ∩S1

u is a nontrivial

union of complementary intervals.

Suppose that U ∩ S1
u contains two distinct complementary intervals I

and J . Since U is path-connected (it is a connected open subspace of a lo-

cally path-connected space), we can find an arc c ⊂ U with initial point in I

and terminal point in J . This separates the endpoints of I, which are con-

tained in K, so it separates K. But K is connected, so U ∩S1
u must be a single

complementary interval. �

Since each complementary interval is contained in a complementary region,

it follows that U 7→ U ∩ S1
u defines a bijection between the complementary

regions of a sprig and the complementary intervals of its ends. In particular,

an n-ended sprig K has exactly n complementary regions.

Corollary 6.3. Let K,L ∈ D be distinct. Then ∂K is contained in a

single complementary interval of ∂L.

Note that this relies on the fact that sprigs are closed. For example, [6]

contains an illustration of two disjoint, connected, nonclosed subsets of the

square that connect opposite pairs of corners.

The following easy corollary says that the separation properties of sprigs

can be seen in terms of their ends.

Corollary 6.4. Let K,K′,K′′ ∈ D be distinct. Then K′ separates K

from K′′ if and only if ∂K′ separates ∂K from ∂K′′.

6.2. Saturated continua. The (D)-saturation of a connected set is con-

nected, and the saturation of a closed set is closed by upper semicontinuity;

cf. Section 2.2. A closed, connected, saturated subset of is called a saturated

continuum.

The preceding results generalize easily as follows.

Lemma 6.5. Let U be a complementary region of a saturated continuum

A ⊂ P. Then U ∩ S1
u is a complementary interval of ∂A.
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Corollary 6.6. Let A,B ⊂ P be disjoint saturated continua. Then ∂A

is contained in a single complementary interval of ∂B.

Corollary 6.7. Let A,A′,A′′ ⊂ P be disjoint saturated continua. Then

A′ separates A from A′′ if and only if ∂A′ separates ∂A from ∂A′′.

Let A ⊂ P be a saturated continuum. For each complementary region U

of A, we define the corresponding face of A by

F (U) := U ∩A.

Lemma 6.8. Let U be a complementary region of a saturated continuum

A ⊂ P. Then F (U) is a connected subset of a single sprig.

Proof. The face F (U) is connected because the disc has the Brouwer prop-

erty [29, § II.4]: If X ⊂ P is closed and connected, and U is a component of

P \X, then the frontier of U is closed and connected.

Let a, b ∈ ∂A be the endpoints of the corresponding complementary inter-

val U ∩S1
u = (a, b), and note that a, b ∈ F (U). Let Ka = D(a) and Kb = D(b)

be the sprigs through these points. We will show that F (U) ⊂ Ka ∪Kb. Since

F (U) is connected, this implies that Ka = Kb, which completes the lemma.

Fix a point p ∈ F (U), and choose a sequence of points p1, p2, . . . ∈ U that

converge to p. The ends of each D(pi) are contained in (a, b), so they must

accumulate on either a or b because limD(pi) ⊂ D(p) ⊂ A. Thus we have

either D(p) = Ka or D(p) = Kb. This applies for every point in F (U), so

F (U) ⊂ Ka ∪Kb as desired. �

6.3. Separating sprigs. Given a pair of distinct sprigs K,L ∈ D, let

U(K|L) be the complementary region of K that contains L, and let U(L|K)

be the complementary region of L that contains K. The intersection

U(K,L) := U(K|L) ∩ U(K|L)

is called the region between K and L.

Lemma 6.9. Let K,L ∈ D be distinct. Then U(K,L) is path-connected.

Moreover,

U(K,L) ∩ S1
u = I(K,L) t I(L,K),

where I(K,L) (I(L,K)) is the unique complementary interval of ∂K∪∂L with

initial endpoint in ∂K (resp. ∂L) and terminal endpoint in ∂L (resp. ∂K).

Proof. Let A = P \ U(K|L) and B = P \ U(L|K), which are disjoint,

nonseparating saturated continua. Then A ∪B is nonseparating because the

disc has the Phragmen-Brouwer property [29, § II.4]: If A,B ⊂ P are disjoint

and nonseparating, then A ∪B is nonseparating. Then U(K,L) is connected,

and hence path-connected, since it can be written as U(K,L) = P \ (A ∪B).
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Note that U(K|L)∩S1
u = (k, k′) for k, k′ ∈ ∂K, while U(L|K)∩S1

u = (l′, l)

for l′, l ∈ ∂L. See the left side of Figure 6. Thus U(K,L) ∩ S1
u = U(K|L) ∩

U(L|K) ∩ S1
u = (k, l) t (l′, k′). By Corollary 6.3, ∂K and ∂L do not separate

each other, so (k, l) is the unique complementary interval of ∂K ∪ ∂L with

initial point in ∂K and terminal point in ∂L, and similarly for (l′, k′). �

It follows that a sprig K′ ∈ D is contained in U(K,L) if and only if

∂K′ ⊂ I(K,L) t I(L,K). In addition, the preceding lemma, together with

Corollary 6.4, implies the following.

Lemma 6.10. Let K,L ∈ D be distinct. Then K′ ∈ D separates K from

L if and only if ∂K′ intersects both I(K,L) and I(L,K).

Proposition 6.11. Let K,L ∈ D be distinct. Then some K′ ∈ D sepa-

rates K from L.

Proof. See the right side of Figure 6. Since U(K,L) is path-connected, we

can find an arc c ⊂ U(K,L) with initial point in I(K,L) and terminal point in

I(L,K). Let C = D(c) be the saturation of c, which is contained in U(K,L),

and let U be the complementary region of C that contains K. Then the face

F (U) separates K from L, since it has points in both I(K,L) and I(L,K),

and F (U) is contained in a sprig K′ by Lemma 6.8. �

Note that this provides an alternative proof of Lemma 6.1: simply fix two

sprigs and take any sprig that separates them.

6.4. Separation intervals. Let us study the collection of all sprigs that

separate two fixed sprigs.

K

k

k′

L

l

l′

U(K,L) = U(L,K)

I(K,L)

I(L,K)

c

C

F(U)

U

Figure 6. Separating sprigs.
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Definition 6.12. Let (Kα,Kβ) be an ordered pair of distinct sprigs. The

corresponding separation interval is the set

σ(Kα,Kβ) := {K ∈ D | K separates Kα from Kβ},

together with the binary relation ≺ defined by setting K ≺ K′ whenever K

separates Kα from K′.

We will show that this defines a linear order and that the separation

interval between any pair of distinct sprigs is order-isomorphic to the real line.

Fix an ordered pair of distinct sprigs (Kα,Kβ). For brevity, we write

σαβ := σ(Kα,Kβ) for the corresponding separation interval, and Uαβ :=

U(Kα,Kβ) for the region between Kα and Kβ. By Lemma 6.9, this is con-

nected, and it intersects S1
u in the disjoint union of two intervals. We abbreviate

and label these intervals by

Iαβ := I(Kα,Kβ) = (kα, kβ),

Iβα := I(Kβ,Kα) = (lβ, lα),

where kα, lα ∈ ∂Kα and lβ, kβ ∈ ∂Kβ. See the left side of Figure 7.

Kα Kβ

kα kβ

Iαβ

lβlα

Iβα

Uαβ K

Iβα(K)

Iαβ(K)

K′

Iβα(K
′)

Iαβ(K
′)

Figure 7. The separation interval.

For each K ∈ D, define

∂αβK := K ∩ Iαβ,
∂βαK := K ∩ Iβα.

By Lemma 6.10, K ∈ σαβ if and only if ∂αβK 6= ∅ 6= ∂βαK.
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Definition 6.13. Given subsets X,Y of linearly ordered set (Z,<), we take

X < Y to mean that x < y for all x ∈ X and y ∈ Y . We say that X and Y

are comparable if either X < Y or Y < X.

The intervals Iαβ and Iβα come with linear orders induced by their orien-

tations. For distinct K,K′ ∈ σαβ, we would like to say that ∂αβK and ∂αβK
′

are comparable in Iαβ and that ∂βαK and ∂βαK′ are comparable in Iβα.

For each K ∈ σαβ, let Iαβ(K) be the minimal sub-interval of Iαβ that

contains ∂αβK, and let Iβα(K) be the minimal sub-interval of Iβα that contains

∂βαK. Then ∂αβK and ∂αβK
′ are comparable if and only if Iαβ(K) and Iαβ(K′)

are disjoint, and similarly for ∂βαK and ∂βαK′. See the right side of Figure 7.

Lemma 6.14. If K,K′ ∈ σαβ are distinct, then

Iαβ(K) ∩ Iαβ(K′) = ∅ = Iβα(K) ∩ Iβα(K′).

Proof. If Iαβ(K) intersects Iαβ(K′), then after possibly switching K

with K′, there must be some end of K in the interior of Iαβ(K′). But the

ends of K are contained in a single complementary interval of K′ (Corol-

lary 6.3), so this means that all of the ends of K are contained in the inte-

rior of Iαβ(K′). This is impossible, since K must also have an end in Iβα.

Thus we must have Iαβ(K) ∩ Iαβ(K′) = ∅, and a similar argument shows that

Iβα(K) ∩ Iβα(K′) = ∅. �

Consequently, the linear orders on Iαβ and Iβα induce linear orders on

Iαβ := {Iαβ(K) | K ∈ σ}
and

Iβα := {Iβα(K) | K ∈ σ}.

By the following lemma, we can think of K 7→ Iαβ(K) as an order-isomorphism

σαβ → Iαβ, and K 7→ Iβα(K) as an anti-order-isomorphism σαβ → Iβα.

Lemma 6.15. The following are equivalent for all K,K′ ∈ σ:

(1) Iαβ(K) < Iαβ(K′),

(2) Iβα(K) > Iβα(K′),

(3) K separates Kα from K′, and

(4) K′ separates K from Kβ .

Proof. The equivalence (1) ⇔ (2) follows from Corollary 6.3, while the

equivalences (1) + (2)⇔ (3) and (1) + (2)⇔ (4) follow from Corollary 6.4. �

In particular,

Corollary 6.16. Let Kα,Kβ ∈ D be distinct. Then the separation

interval σ(Kα,Kβ) is a linearly ordered set.
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Let ⋃
Iαβ :=

⋃
K∈σαβ

Iαβ(K)

and ⋃
Iβα :=

⋃
K∈σαβ

Iβα(K).

We will use the following lemma to show that σαβ is order-isomorphic to the

real line.

Lemma 6.17.
⋃ Iαβ = Iαβ and

⋃ Iβα = Iβα.

Proof. Let A be the union of Kα, Kβ, and all sprigs in D that inter-

sect Iβα. This is a saturated continuum, since it is the saturation of the closed

interval Iβα.

Fix a point s ∈ Iαβ. If s ∈ A, then the sprig D(s) is contained in σαβ
since it has ends in both Iαβ and Iβα, and hence s ∈ ⋃ Iαβ.

If s /∈ A, then it is contained in U ∩ S1
u for some complementary region

U of A. By Lemma 6.8, the face F (U) is contained in some sprig K ⊂ A. It

follows that K ∈ σαβ and s ∈ Iαβ(K), so we have once again that s ∈ ⋃ Iαβ.

Thus
⋃ Iαβ = Iαβ, and a similar argument shows that

⋃ Iβα = Iβα. �

Proposition 6.18. Let Kα,Kβ ∈ D be distinct. Then the separation

interval σ(Kα,Kβ) is order-isomorphic to the real line.

Proof. The preceding lemma implies that Iαβ is a separable and complete

linearly ordered set with no maximum and minimum, which characterizes the

linear order on R. Since σ(Kα,Kβ) is order-isomorphic to Iαβ, it is also order-

isomorphic to R. �

The following properties of separation intervals follow immediately from

Lemma 6.15.

Lemma 6.19. Let Kα,Kβ ∈ D be distinct.

(1) Then K 7→K defines an anti-order-isomorphism σ(Kα,Kβ)→σ(Kβ,Kα).

(2) Let Ka,Kb ∈ σ(Kα,Kβ), with Ka ≺ Kb. Then

σ(Ka,Kb) = {K ∈ σ(Kα,Kβ) | Ka ≺ K ≺ Kb},

and the inclusion σ(Ka,Kb) ↪→ σ(Kα,Kβ) is order-preserving.

7. Decompositions II: Linking

Now that we have some tools to work with the individual sprig decom-

positions, we can study the relationship between them. In fact, the results in

this section apply to any spidery pair in the disc (Definition 5.7).
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Let A,B ⊂ S1 be closed, disjoint, nontrivial subsets of the circle. We de-

fine the linking number lk(A,B) to be the number of complementary intervals

of A that intersect B, which is finite and symmetric by the following lemma.

We say that A and B are unlinked if lk(A,B) = 1, and linked if lk(A,B) ≥ 2.

The terminology comes from the fact that A and B are linked if and only if

there are pairs {a, a′} ⊂ A and {b, b′} ⊂ B that are linked as 0-spheres in S1.

Lemma 7.1. Let A,B ⊂ S1 be closed, disjoint, and nontrivial. Then

lk(A,B) is finite and equal to lk(B,A).

Proof. Fix an orientation on S1. An AB-interstitial interval is an oriented

interval (a, b) ⊂ S1 that is disjoint from A ∪ B, with a ∈ A and b ∈ B. It is

easy to see that each complementary interval of A that intersects B contains a

unique AB-interstitial interval, and each AB-interstitial interval is contained

in a unique complementary interval of A that intersects B. Similarly, each com-

plementary interval of B that intersects A contains a unique AB-interstitial

interval, and each AB-interstitial interval is contained in a unique complemen-

tary interval of B that intersects A. Thus there is a bijective correspondence

between the complementary intervals of B that intersect A, the AB-interstitial

intervals, and the complementary intervals of B that intersect A, and hence

lk(A,B) = lk(B,A).

To complete the lemma, it suffices to show that there are only finitely

many AB-interstitial intervals. Otherwise, we would have an infinite sequence

of distinct AB-interstitial intervals (ai, bi)
∞
i=1. These are pairwise disjoint in-

tervals in the circle, so their diameters must go to zero, and we can assume

after taking a subsequence that they converge to a single point s ∈ S1. Then

since A and B are closed, we have s = lim ai ∈ A and s = lim bi ∈ B, which

contradicts the assumption that A and B are disjoint. �

The following lemma is an immediate consequence of the usual pigeonhole

principle; we will use it repeatedly.

Lemma 7.2 (Linking Pigeonhole Principle). Let A,B ⊂ S1 be closed,

disjoint, and nontrivial, and let X ⊂ S1 be a subset with A ⊂ X . If X has

fewer than lk(A,B) connected components, then X ∩B 6= ∅.
In particular, if A,B ⊂ S1 are linked, then any connected set that contains

A must intersect B.

7.1. The linked region. Let K ∈ D+ and L ∈ D− be positive and negative

sprigs. If ∂K ∩ ∂L = ∅, then we define their linking number by

lk(K,L) := lk(∂K, ∂L).

We say that K and L are unlinked when lk(K,L) = 1 and linked when

lk(K,L) ≥ 2. If ∂K ∩ ∂L 6= ∅, then their linking number is undefined, and
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they are neither linked nor unlinked. One could also define linking numbers for

pairs of sprigs of the same kind, but these are always unlinked by Corollary 6.3.

The sprigs through a point p ∈ P always have disjoint ends (Corollary 4.9),

so

lk(p) := lk(D+(p),D−(p))

is always defined, and we call p a linked point or unlinked point accordingly.

The set of all linked points is called the linked region and denoted by Pl ⊂ P .

We will show that Pl is closed in P and nontrivial.

7.2. Linked sequences. The following lemma will be useful when consid-

ering sequences of linked points.

Lemma 7.3. Let (pi)
∞
i=1 be a sequence of points in Pl that converge to a

point p ∈ P . Then {pi} intersects at most finitely many complementary regions

of D+(p) and of D−(p).

Proof. Let Ki = D+(pi) and Li = D−(pi) be the positive and negative

sprigs through each pi, and let K = D+(p) and L = D−(p) be the positive

and negative sprigs through p. We have lim ∂Ki ⊂ ∂K and lim ∂Li ⊂ ∂L by

upper semicontinuity. Since p ∈ P , Corollary 4.9 implies that ∂K is disjoint

from ∂L, so lim ∂Ki is disjoint from lim ∂Li.

Suppose that {pi} intersects infinitely many complementary regions of K.

Then after taking a subsequence we can assume that each pi is contained in a

distinct complementary region Ui. Then Ki ⊂ Ui and ∂Ki ⊂ Ui ∩ S1
u =: Ji for

each i.

For each i, let ki be an end of Ki, which is contained in Ji. By the Linking

Pigeonhole Principle, we can also find an end li of Li that lies in Ji. The Ji are

pairwise disjoint intervals in the circle, so their diameters must go to zero, and

we can assume after taking a subsequence that they converge to a single point

s ∈ S1
u. Then lim ki = s = lim li, which contradicts the fact that lim ∂Ki is

disjoint from lim ∂Li. Thus the pi can visit only finitely many complementary

regions of K, and the same argument shows that they can visit only finitely

many complementary regions of L. �

Lemma 7.4. Let (pi)
∞
i=1 be a sequence of points in Pl that converge to a

point p ∈ P , and suppose that there is an integer n such that lk(pi) ≥ n for

all i. Then lk(p) ≥ n.

Proof. We will continue to use the notation and observations in the first

paragraph of the preceding proof.

For each i, choose ends k0i , k
1
i , . . . , k

n
i ∈ ∂Ki and l0i , l

1
i , . . . , l

n
i ∈ ∂Li such

that k0i , l
0
i , k

1
i , l

1
i , . . . , k

n
i , l

n
i is positively ordered in S1

u. After taking a subse-

quence, we can assume that limi→∞ k
j
i converges to an end kj ∈ ∂K for each

j and limi→∞ l
j
i converges to an end lj ∈ ∂L for each j.
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It suffices to show that k0, l0, k1, l1, . . . , kn, ln are pairwise distinct and

positively ordered in S1
u. Since ∂K is disjoint from ∂L, it follows that kj 6= lj

′

for all j, j′. Suppose that kj = kj
′

for some j 6= j′. Then either limi→∞(kji , k
j′

i )

= kj or limi→∞(kj
′

i , k
j
i ) = kj . Either case is impossible, since each of these

intervals contain at least one of the lj
′′
’s, which cannot accumulate on kj ∈ ∂K.

Therefore, kj 6= kj
′

for all j 6= j′, and a similar argument shows that lj 6= lj
′

for all j 6= j′.

The fact that k0i , l
0
i , k

1
i , l

1
i , . . . , k

n
i , l

n
i is positively ordered for each i easily

implies that k0, l0, k1, l1, . . . , kn, ln is positively ordered. �

Proposition 7.5. Pl is closed in P .

Proof. Let (pi) be a sequence of points in Pl that converge to p ∈ P .

Then lk(pi) ≥ 2 for all i. By the preceding lemma, lk(p) ≥ 2, which means

that p ∈ Pl. �

The following lemma will be used in the proof of the Homotopy Closing

Lemma.

Lemma 7.6. Let (pi)
∞
i=1 be a sequence of points in P that converge to a

point p ∈ P , and suppose that lk(pi) ≥ 3 for all i. Then pi ∈ D+(p) ∩D−(p)

for all sufficiently large i.

Proof. With the notation above, suppose that there are infinitely many i

for which pi /∈ K. By Lemma 7.3 we can assume after passing to a subsequence

that each Ki is contained in the same complementary region U of K.

Then the ends of each Ki are contained in the corresponding complemen-

tary interval, which can be written in the form U ∩S1
u = (k, k′) for k, k′ ∈ ∂K.

Thus lim ∂Ki ⊂ {k, k′}, so we can find sequences of points si, s
′
i ∈ (k, k′) such

that ∂Ki(k, si) t (s′i, k
′) for each i, and lim si = k and lim s′i = k′. Since

Ki and Li have linking number at least 3, the Linking Pigeonhole Principle

implies that some end li ∈ ∂Li is contained in either (k, si) or (s′i, k
′
i). Then

lim li contains either k or k′, contradicting the fact that lim ∂Ki is disjoint

from lim ∂Li. Thus pi ∈ K for all but finitely many i, and a similar argument

shows that pi ∈ L for all but finitely many i. �

7.3. Nontriviality.

Proposition 7.7. Pl 6= ∅.

Proof. By Lemma 6.1, we can find a positive sprig K with two distinct

ends kα and kβ. By Lemma 5.6, the negative sprigs Nα,Nβ through these

points are distinct, so σ(Nα,Nβ) is nontrivial. Each N ∈ σ(Nα,Nβ) separates

kα from kβ, but N need not be linked with K since we may have ∂N∩∂K 6= ∅.
However, we can use the following lemma to find an N ∈ σ(Nα,Nβ) that

intersects K̊. Then ∂N ∩ ∂K = ∅ (Corollary 4.9), so N is linked with K. �
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Lemma 7.8. Let kα and kβ be distinct ends of a positive sprig K, and let

Nα = D+(kα) and Nβ = D+(kβ). Then the separation interval σ(Nα,Nβ)

contains a dense set of sprigs that intersect K̊.

Proof. See Figure 8. Given a pair of sprigs Na ≺ Nb ∈ σ(Nα,Nβ),

we must find a sprig N ∈ σ(Na,Nb) that intersects K̊ nontrivially. To see

this, we will show that there are sprigs N′a ≺ N′b ∈ σ(Na,Nb) such that

I(N′a,N
′
b) is disjoint from ∂K. By the same argument, we can find sprigs

N′′a ≺ N′′b ∈ σ(N′a,N
′
b) such that I(N′′b ,N

′′
a) is disjoint from ∂K; note that

I(N′′a,N
′′
b ) ⊂ I(N′a,N

′
b) is already disjoint from ∂K. Then it suffices to take

any N ∈ σ(N′′a,N
′′
b ): such a sprig must intersect K because it separates kα

from kβ, and the intersection is in K̊ as opposed to ∂K because the ends of N

are contained in I(N′′a,N
′′
b ) ∪ I(N′′b ,N

′′
a).

kα

Na

N′a

N′b

Nb

kβ

I(Nα,Nβ)

I(N′a,N
′
b)

I(Nβ ,Nα)

I(N′b,N
′
a)

N′′a

N′′b

I(N′′a,N
′′
b )

I(N′′b ,N
′′
a)

Figure 8. A dense set of sprigs intersecting the bounded part of K.

Fix Na ≺ Nb ∈ σ(Nα,Nβ), and choose a point x ∈ Iab \ ∂K, where we

are using the abbreviation Iab := I(Na,Nb). By Lemma 6.17, x ∈ Iab(N′) for

some sprig N′ ∈ σ(Na,Nb). Note that the initial and terminal points of ∂abN
′,

which we will denote by ∂∓abN
′, cannot both be contained in ∂K. Indeed, if

Iab(N
′) is a point, then ∂−abN

′ = ∂+abN
′ = x, which was chosen outside of ∂K;

if it is an interval, then ∂−abN
′ and ∂+abN

′ are distinct ends of N′, which can

share at most one end with K.

If ∂+abN
′ /∈ ∂K, then we take N′a to be N′, and N′b to be any sprig in

σ(N′a,Nb) that is close to N′a, in the sense that ∂K does not separate ∂+abN
′
a

from ∂−abN
′
b}. Then no end of K lies in I(N′a,N

′
b) as desired. If ∂+ab(N

′) ∈ ∂K,

then ∂−abN /∈ ∂K, and we take N′b to be N′, and N′a to be any sprig in σ(Na,N
′
b)

that is close to N′b.
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As noted above, we can complete the proof by repeating this argument.

�

Although the proposition does not need the full power of this lemma, we

will need it for the Homotopy Closing Lemma.

8. Coarse transverse hyperbolicity

In this section, we will see that the coarsely hyperbolic behavior of our

flow is reflected in the action of an ω- or α-sequence on the flowspace.

8.1. Straightening flowlines. Given a flowline x ·R, let (x ·R)g denote the

corresponding oriented geodesic, running from E−(x) to E+(x). The nearest-

point projection restricts to a proper surjective map

ρx·R : x · R→ (x · R)g

that moves each point a uniformly bounded distance, independent of x. To

see this, recall that x · R is contained in the C-neighborhood of (x · R)g, for a

uniform constant C, which we can picture as a “banana” foliated by radius-C

hyperbolic discs. The nearest-point projection takes each point in x ·R to the

center of the corresponding disc, so d(y, ρx·R(y)) < C for all y ∈ x · R.

Since the endpoints of flowlines vary continuously, we can define a contin-

uous, π1(M)-equivariant straightening map

G : M̃ → M̃

x 7→ ρx·R(x)

that takes each flowline onto its corresponding geodesic, while moving each

point by a distance of at most C.

Lemma 8.1. There is a constant D > 0 such that

(1) if x0, x1 ∈ M̃ are contained in the same weak positive leaf, then there are

times t0, t1 ∈ R such that x0 ·[t0,∞) and x1 ·[t1,∞) have Hausdorff distance

at most D;

(2) if y0, y1 ∈ M̃ are contained in the same weak negative leaf, then there are

times s0, s1 ∈ R such that y0 · (−∞, s0] and y1 · (−∞, s1] have Hausdorff

distance at most D.

Proof. Let D = 2C+ ε for an arbitrary constant ε > 0. We will prove (1),

and (2) follows from a similar argument.

Since x0 and x1 are contained in the same weak positive leaf, the geodesics

G(x0 ·R) and G(x1 ·R) have the same positive endpoint z = E+(x0) = E+(x1).

Therefore, we can find a horosphere S centered at z such that the distance

between G(x0 ·R)∩S′ and G(x1 ·R)∩S′ is less than ε for every horosphere S′
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centered at z that lies forward of S. Since G moves each point by a distance

of at most C, it suffices to take ti = sup{t ∈ R | G(xi · t) ∈ S}. �

Let U M̃ be the unit tangent bundle of M̃ , thought of as the space of

pairs (γ, y) consisting of an oriented geodesic γ ⊂ M̃ together with a point

y ∈ γ. This comes with a natural flow, the geodesic flow ‹Θ, which takes a

vector (γ, y), after time τ ∈ R, to the vector (γ, y′) such that y′ lies at signed

distance τ from y.

Our straightening map G has a natural lift

F : M̃ → U M̃

x 7→ ((x · R)g, G(x)),

which takes each orbit of ‹Φ onto an orbit of ‹Θ. In particular, if we fix x ∈ M̃ ,

then for each time t ∈ R, there is a time τ ∈ R such that F (x · t) = ‹Θτ(t)F (x).

Since G moves each point a uniformly bounded distance, τ → ±∞ as t→ ±∞.

Each horosphere S ⊂ M̃ has two natural lifts to the unit tangent bundle,

a stable horosphere S+ consisting of inward-pointing normal vectors and an

unstable horosphere S− consisting of outward-pointing normal vectors. If S is

centered at z ∈ S2
∞, then

S+ = {(γ, y) | E+(γ) = z, y ∈ S},
and S− = {(γ, y) | E−(γ) = z, y ∈ S}.

Here, we are abusing notation and writing E±(γ) for the positive/negative

endpoint of γ. We say that S+ points towards z, and S− points away from z.

The geodesic flow is an Anosov flow whose strong stable and unstable leaves

are exactly the stable and unstable horospheres [1].

For each x ∈ M̃ , the point F (x) is contained in a unique stable horosphere

S+(x), which points towards E+(x). Since F takes the flowline through x

surjectively onto the corresponding lifted geodesic, every stable horosphere that

points towards E+(x) is of the form S+(x · t) for some t. Similar observations

hold for unstable horospheres.

8.2. Coarse contraction for ω-sequences. We will use the map F , together

with the Anosov behavior of ‹Θ, to understand the way that ω-sequences act

on positive sprigs.

For each q ∈ P, we define“Ω(q) := {q′ ∈ P | e+(q′) = e+(q) and e−(q′) = e−(q)}.

Lemma 8.2. If q ∈ P , then “Ω(q) is a compact subset of P .
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Proof. Let z = e+(q) and w = e−(q), and note that z 6= w. Then“Ω(q) = (e+)−1(z) ∩ (e−)−1(w)

= (e+)−1(z) ∩ (e−)−1(w),

where the latter equality comes from the fact that e+ agrees with e− on S1
u.

Thus “Ω(q) ⊂ P , and compactness follows from Lemma 3.3. �

Proposition 8.3 (Coarse contraction). Let (gi) be an ω-sequence for q ∈
ω(p). Then

lim
i→∞

gi(p
′) ⊂ “Ω(q)

for every p′ ∈ P with e+(p′) = e+(p).

Proof. It suffices to show that e±(gi(p
′)) converges to e±(q). Equivalently,

we will show that the geodesics F (〈gi(p)〉) converge to F (〈q〉).
By the definition of an ω-sequence, we can find a sequence of points

x0, x1, . . . ∈ 〈p〉 such that limxi = e+(p) and lim gi(xi) = y ∈ 〈q〉. For

each i, let S+
i := S+(xi) be the stable horosphere that contains F (xi). Since

e+(p) = e+(p′), each S+
i also contains F (x′i) for some point x′i ∈ 〈p′〉. See

Figure 9.

For each i, F (xi) and F (x′i) are obtained by flowing F (x0) and F (x′0)

for some time τi under the geodesic flow, where τi → ∞. The geodesic flow

exponentially contracts stable horospheres, so the distance between F (xi) and

F (x′i) goes to 0 as i → ∞. Each gi acts as an isometry on U M̃ , so we have

limF (gi(x
′
i)) = limF (gi(xi)) = F (y), and hence limF (〈gi(p′)〉) = F (〈q〉) as

desired. �

S+
i−2

S+
i−1

S+
i

F (xi−2)

F (xi−1)

F (xi)

F (x′i−2)

F (x′i−1)

F (x′i)

〈p〉g〈p′〉g

gi 〈q〉g

gi(〈p′〉g) gi(〈p〉g)

F (y) gi(F (xi))

gi(F (x′i))

S+(y)

gi(S
+
i
)

Figure 9. Coarse contraction.
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For each q ∈ P, define

Ω(q) := “Ω(q) ∩ D̊+
(q),

which is a compact subset of D̊+
(q).

Proposition 8.4 (Coarse contraction for sprigs). Let (gi) be an ω-se-

quence for q ∈ ω(p). Then

lim
i→∞

gi(p
′) ⊂ Ω(q)

for every p′ ∈ D̊+
(p)

Proof. This follows from the preceding proposition, together with the fact

that limD+(gi(p)) ⊂ D+(q). �

This is the final ingredient in our proof of the Homotopy Closing Lemma.

The corresponding result for α-sequences is obtained by switching + and − in

the proposition and in the definition of Ω(q).

9. Closed orbits for quasigeodesic flows

We turn to our main results.

Recurrent Links Lemma. The linked region Pl is closed, nontrivial,

π1(M)-invariant, and contains an ω-recurrent point.

Proof. Pl is closed by Proposition 7.5 and nontrivial by Proposition 7.7.

It is obviously π1(M)-invariant, so it corresponds to a closed, flow-invariant

subset Ml = π(〈Pl〉) ⊂ M . Since M is compact, Ml is compact, so it must

contain some minimal set. A minimal set is the closure of an almost-periodic

orbit (see, e.g., [2, Th. 1.7]), which is afortiori ω-recurrent. �

This, together with the Homotopy Closing Lemma, implies the Closed

Orbits Theorem.

9.1. Proof of the Homotopy Closing Lemma. Fix an ω-recurrent point

p ∈ Pl and a corresponding ω-sequence (gi)
∞
i=1. We must show that gi eventu-

ally fixes some point in P . By Lemma 5.8, it suffices to show that gi eventually

fixes some nontrivial sprig.

Let K = D+(p) and L = D−(p) be the positive and negative sprigs

through p. By Corollary 4.9, ∂K ∩ ∂L = ∅. Since lim gi(p) = p, upper semi-

continuity implies that lim gi(K) ⊂ K and lim gi(L) ⊂ L.

If lk(p) ≥ 3, then Lemma 7.6 implies that gi(K) = K for all i sufficiently

large. This completes the proof for the (≥ 3)-linked case, so we will assume

from now on that lk(p) = 2.
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9.1.1. A single complementary region. After deleting any elements that

fix K, we can assume that each gi takes K into one of its complementary

regions. Since lk(p) = 2, there are exactly two complementary regions that

contain ends of L.

Claim 9.1. All but finitely many of the gi take K into one of these two

complementary regions.

Let W be a complementary region of K, and suppose that there is an

infinite subsequence (hi) ⊂ (gi) such that hi(K) ⊂W for all i. Then ∂hi(K) ⊂
W ∩ S1

u for all i, so the Linking Pigeonhole Principle says that W ∩ S1
u also

contains ends li ∈ ∂hi(L). Let l ∈W ∩ S1
u be an accumulation point of the li.

This is an end of L, and l ∈ W ∩ S1
u since the endpoints of this interval are

ends of K. The gi(K) can visit only finitely many complementary regions

(Lemma 7.3), so this proves the claim.

Consequently, it suffices to prove the Homotopy Closing Lemma with the

additional assumption that gi(K) ⊂ W for all i, where W is one of the two

complementary regions that contain ends of L. The corresponding comple-

mentary interval is of the form W ∩ S1
u = (kα, kβ) for ends kα, kβ ∈ ∂K. See

Figure 10.

Let Nα and Nβ be the negative sprigs through kα and kβ. These are dis-

tinct by Lemma 5.6, so the corresponding separation interval σαβ = σ(Nα,Nβ)

is nontrivial and order-isomorphic to R (Proposition 6.18). We will show that

gi eventually acts as a contraction on some sub-interval of σαβ, which means

that it fixes some sprig in this interval.

p
L

K
W

kα

kβ

Figure 10. Homotopy closing for 2-linked points.



COARSE HYPERBOLICITY AND CLOSED ORBITS 41

9.1.2. Translation- and rotation-like elements. To begin, we will divide

the elements of our ω-sequence into two classes: We call gi translation-like if

gi(kα, kβ) ⊂ (kα, kβ), and rotation-like if gi(kβ, kα) ⊂ (kα, kβ). See Figure 11.

kα

kβ

gi(kα)

gi(kβ)

kα

kβ

gi(kβ)

gi(kα)

Figure 11. Translation- and rotation-like elements.

Claim 9.2.

(1) Let (hi) ⊂ (gi) be an infinite sequence of translation-like elements. Then

limhi(kα) = kα and limhi(kβ) = kβ.

(2) Let (hi) ⊂ (gi) be an infinite sequence of rotation-like elements. Then

limhi(kα) = kβ and limhi(kβ) = kα.

We will prove (1); (2) follows from a similar argument.

The ends of hi(K) are contained in (kα, kβ) and accumulate on ends of K,

so it follows that both hi(kα) and hi(kβ) accumulate on nontrivial subsets of

{kα, kβ}. Thus it suffices to show that hi(kα) does not accumulate on kβ and

hi(kβ) does not accumulate on kα.

Suppose that hi(kα) accumulates on kβ. Since the hi are translation-like,

this implies that the intervals hi(kα, kβ) accumulate on kβ. But this is impos-

sible, since each hi(kα, kβ) contains an end of hi(L), which cannot accumulate

on kβ ∈ ∂K. A similar argument shows that hi(kβ) cannot accumulate on kα,

completing the claim.

9.1.3. Eventual return. Let us show that each sprig in σαβ eventually re-

turns to σαβ.

Claim 9.3. For each N ∈ σαβ , we eventually have gi(N) ∈ σαβ .

First, we note that it suffices to prove this in the special case where N

intersects the bounded part K̊ of K. Indeed, in the general case, we can use
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Lemma 7.8 to find N′,N′′ ∈ σαβ that intersect K̊, with N′ ≺ N ≺ N′′. Then

gi(N
′), gi(N

′′) ∈ σαβ ⇒ gi(N) ∈ σαβ by Lemma 6.19(2).

Let N be an element of σαβ that intersects K̊ nontrivially, and suppose

for contradiction that there is an infinite subsequence (hi) ⊂ (gi) such that

hi(N) /∈ σαβ for all i. Choose a point q ∈ N̊∩ K̊. Then by Coarse Contraction

(Proposition 8.4), we can pass to a subsequence for which hi(q) converges to

some point q∞ ∈ K̊. Then limhi(N) ⊂ D−(q∞), and D+(q∞) = K. Since

q∞ ∈ P , this means means that lim ∂hi(N) is disjoint from ∂K.

After taking a further subsequence, we can assume that the hi are all

translation-like or all rotation-like. Suppose that the hi are all translation-like.

Since N ∈ σαβ, it separates kα from kβ, so it must have ends n ∈ (kα, kβ) and

n′ ∈ (kβ, kα). Since hi is translation-like, hi(n) ∈ (hi(kα), hi(kβ)) ⊂ (kα, kβ).

We must also have hi(n
′) ∈ (kα, kβ), since otherwise hi(N) would separate

kα from kβ. In particular, hi(n
′) must be contained in either (kα, hi(kα))

or (hi(kβ), kβ). Then hi(kα) → kα and hi(kβ) → kβ (Claim 9.2) implies

that hi(n
′) accumulates on either kα or kβ, which contradicts the fact that

lim ∂hi(N) is disjoint from ∂K.

A similar argument handles the case where the hi are rotation-like, com-

pleting the claim.

In addition, each gi preserves or reverses the order on σαβ depending on

whether it is translation- or rotation-like:

Claim 9.4. Let N,N′ ∈ σαβ , with N ≺ N′, and let j large enough so that

gj(N), gj(N
′) ∈ σαβ . Then gj(N) ≺ gj(N

′) when gj is translation-like, and

gj(N
′) ≺ gj(N) when gj is rotation-like.

This follows easily from Lemma 6.15, using the fact that I(Nα,Nβ) ⊂
(kα, kβ) and I(Nβ,Nα) ⊂ (kβ, kα).

9.1.4. Eventual contraction. To complete the proof, we will see that the

elements of σαβ not only return to σαβ, but are pulled closer together. Let

Ω(p) ⊂ K̊ be as in Section 8.2, and let Ω := Ω(p) ∩ U(Nα,Nβ). For each

p′ ∈ K̊, Proposition 8.4 says that

lim gi(p
′) ⊂ Ω(p).

In addition, if the negative sprig through p′ is contained in σαβ, then p′ is

eventually contained in U(Nα,Nβ) by Claim 9.3, so we have

lim gi(p
′) ⊂ Ω.

Since Ω is a compact subset of the open set U(Nα,Nβ), we can find

negative sprigs Na ≺ Nb in σαβ such that Ω ⊂ U(Na,Nb). By Lemma 7.8, we

can assume that Na and Nb intersect K̊ and choose points pa ∈ N̊a ∩ K̊ and

pb ∈ N̊b ∩ K̊. See Figure 12.



COARSE HYPERBOLICITY AND CLOSED ORBITS 43

Nβ

Nα

Ω(p)U(Nα,Nβ)

Nb

pb

Na
pa

U(Na,Nb) Ω

Figure 12. Eventual contraction.

By taking i sufficiently large, we can assume gi(Na) and gi(Nb) are con-

tained in σαβ. Furthermore, since lim gi(pa) and lim gi(pb) are contained in Ω,

which is a compact subset of the open set U(Na,Nb), we can assume that

gi(pa) and gi(pb) are contained in U(Na,Nb). Then gi(Na) and gi(Nb) are

contained in σ(Na,Nb) ⊂ σαβ, which means that

Na ≺ gi(Na) ≺ gi(Nb) ≺ Nb

when gi is translation-like, and

Na ≺ gi(Nb) ≺ gi(Na) ≺ Nb

when it is rotation-like. That is, gi eventually acts as an orientation-preserving

or -reversing contraction on σ(Na,Na), and hence it fixes some sprig in this

interval. Such a sprig is nontrivial because it has at least two ends (Lemma 4.6).

This completes the proof of the Homotopy Closing Lemma.

9.2. Closed orbits and the universal circle. Finally, we will show that cer-

tain closed orbits can be seen purely in terms of the universal circle.

An orientation-preserving group action Γ y S1 is pA-like if each nontrivial

element has a power that acts with an even number of fixed points, alternately

attracting and repelling.

Theorem 9.5. The action of π1(M) y S1
u is pA-like.

Proof. Fix a nontrivial element g ∈ π1(M), and let α, ρ ∈ S2
∞ be the

attracting and repelling fixed points for g y S2
∞. Let A and R be the master

sets rooted at these points, and note that ∂A = e−1(α) and ∂R = e−1(ρ) are

disjoint, closed, totally disconnected, and g-invariant.



44 STEVEN FRANKEL

Let F ⊂ S1
u be the fixed point set for g y S1

u. Then after replacing g by

some power, we can assume that F 6= ∅. Indeed, since ∂A and ∂R are closed

and disjoint, they have a finite linking number lk(∂A, ∂R) by Lemma 7.1.

Choose a complementary interval (a, r) of ∂A ∪ ∂R with a ∈ ∂A and r ∈ ∂R.

By the proof of this lemma, there are finitely many such intervals, which we

called ∂A∂R-interstitial intervals, so gn(a, r) = (a, r) for some n. Then a, r ∈ F
as desired.

Now that F 6= ∅, note that F ⊂ ∂A ∪ ∂R. Indeed, if s ∈ S1
u \ (∂A ∪ ∂R),

then e(s) /∈ {α, ρ}, so g(e(s)) 6= e(s) and hence g(s) 6= s.

Let I be a complementary interval of F . Then g acts as a transla-

tion on I, fixing its endpoints so we can write it as either I = (aI , rI) or

I = (rI , aI), where aI and rI are attracting and repelling with respect to

points in I. Then we must have aI ∈ ∂A and rI ∈ ∂R. Indeed, take

s ∈ I \ (∂A ∪ ∂R). Then aI = limi→∞ g
i(s), which is contained in ∂A be-

cause limi→∞ gi(e
+(s)) = α. Similarly, rI = limi→−∞ g

i(s), which is contained

in ∂R because limi→−∞ gi(e(s)) = ρ.

Let a ∈ ∂A. If g(a) 6= a, then a is contained in some complementary

interval J of F , and limi→−∞ g
i(a) = rJ . But ∂A is g-invariant, so this means

that rJ ∈ ∂A, a contradiction. Hence ∂A ⊂ F . Similarly, ∂R ⊂ F , so

∂A∪∂R ⊂ F . We already showed the opposite inclusion, so we have F = A∪R.

Since each complementary interval of F has its attracting and repelling

endpoints in ∂A and ∂R, it suffices to show that there are only finitely many

such complementary intervals. But these are ∂A∂R- or ∂R∂A-interstitial in-

tervals, of which there are only finitely many because lk(∂A, ∂R) is finite. �

The following result characterizes the elements of π1(M) that do not rep-

resent multiples of closed orbits. Conversely, any nontrivial element that does

not act as in the proposition represents a multiple of the free homotopy class

of some closed orbit.

Proposition 9.6. Suppose that g ∈ π1(M) does not fix a point in P .

Then it acts on S1
u with exactly two fixed points in an attracting-repelling pair.

Proof. Let F ⊂ S1
u be the fixed point set for g y S1

u. Then F 6= ∅. Indeed,

otherwise g would fix a point in P by Brouwer’s fixed point theorem.

In the previous proof, we showed that F = ∂A ∪ ∂R, where A and R are

the master sets rooted at α and ρ, and the points in ∂A and ∂R are attracting

and repelling. To complete the lemma, it suffices to show that both ∂A and

∂R consists of a single point. If ∂A contained more than one point, then A

would be nontrivial, and if ∂R contained more than one point then R would be

nontrivial. Either way, g would fix a point in P by Lemma 5.8, contradicting

our hypothesis. �



COARSE HYPERBOLICITY AND CLOSED ORBITS 45

10. Questions

Our proof of the Homotopy Closing Lemma holds just as well for pseudo-

Anosov flows, even ones that are not quasigeodesic. In fact, it can be applied

to a larger class of coarsely hyperbolic flows, defined by the existence of a

transverse pair of spidery decompositions that are coarsely contracted and

expanded.

It is easy to construct coarsely hyperbolic flows that are neither quasi-

geodesic nor pseudo-Anosov. For example, one can start with a pseudo-Anosov

flow that is not quasigeodesic and blow up some orbit to a solid cylinder or

torus. These examples are quite trivial since the Homotopy Closing Lemma

follows easily from the Anosov Closing Lemma for the original flow. It would

be interesting to construct a less trivial class of examples.

10.1. Product-covered flows. A flow on a closed 3-manifold is product cov-

ered if the lifted flow on the universal cover is conjugate to the vertical flow

on R3. By Theorem 3.1, this is equivalent to having a planar flowspace.

Question. Let Φ be a product-covered flow on a closed hyperbolic 3-mani-

fold M . Is Φ coarsely hyperbolic?

More generally, we propose the following.

Conjecture. Every product-covered flow on a closed hyperbolic 3-mani-

fold contains a closed orbit.

This would be implied by the following conjecture.

Conjecture. The fundamental group of a closed hyperbolic 3-manifold

cannot act freely and cocompactly on the plane.

Here, a cocompact action is one whose quotient space is compact, but not

necessarily Hausdorff.

10.2. Möbius-like groups. In [9] we proposed a very different method for

proving the Closed Orbits Theorem.

An action of a group Γ on a circle S1 is called Möbius-like if each g ∈ Γ

is conjugate to a Möbius transformation. It is called hyperbolic Möbius-like if

each g ∈ Γ is conjugate to a hyperbolic Möbius transformation. A Möbius-

like or hyperbolic Möbius-like action is called Möbius or hyperbolic Möbius,

respectively, if it is conjugate to an action by Möbius transformations.

The fundamental group of a closed hyperbolic 3-manifold can never act

as a hyperbolic Möbius group (see [9]). The only known examples of Möbius-

like actions that are not Möbius are found in [16]. We propose the following

conjecture.



46 STEVEN FRANKEL

Conjecture. The fundamental group of a closed hyperbolic 3-manifold

cannot act as a hyperbolic Möbius-like group.

By Proposition 9.6, this would imply the Closed Orbits Theorem.
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