Abstract
In this paper we study the regularity of stationary and minimizing harmonic maps $f:B_2(p)\subseteq M\to N$ between Riemannian manifolds. If $S^k(f)\equiv\{x\in M: \text{ no tangent map at $x$ is }k+1\text{-symmetric}\}$ is the $k^{\rm th}$-stratum of the singular set of $f$, then it is well known that $\dim S^k\leq k$, however little else about the structure of $S^k(f)$ is understood in any generality. Our first result is for a general stationary harmonic map, where we prove that $S^k(f)$ is $k$-rectifiable. In fact, we prove for $k$-a.e. point $x\in S^k(f)$ that there exists a unique $k$-plane $V^k\subseteq T_xM$ such that every tangent map at $x$ is $k$-symmetric with respect to $V$.
In the case of minimizing harmonic maps we go further and prove that the singular set $S(f)$, which is well known to satisfy $\dim S(f)\leq n-3$, is in fact $n-3$-rectifiable with uniformly finite $n-3$-measure. An effective version of this allows us to prove that $|\nabla f|$ has estimates in $L^3_{\rm weak}$, an estimate that is sharp as $|\nabla f|$ may not live in $L^3$. More generally, we show that the regularity scale $r_f$ also has $L^3_{\rm weak}$ estimates.
The above results are in fact just applications of a new class of estimates we prove on the quantitative stratifications $S^k_{\epsilon,r}(f)$ and $S^k_{\epsilon}(f)\equiv S^k_{\epsilon,0}(f)$. Roughly, $S^k_{\epsilon}\subseteq M$ is the collection of points $x\in M$ for which no ball $B_r(x)$ is $\epsilon$-close to being $k+1$-symmetric. We show that $S^k_\epsilon$ is $k$-rectifiable and satisfies the Minkowski estimate $\mathrm{Vol}(B_r\,S_\epsilon^k)\leq C r^{n-k}$.
The proofs require a new $L^2$-subspace approximation theorem for stationary harmonic maps, as well as new $W^{1,p}$-Reifenberg and rectifiable-Reifenberg type theorems. These results are generalizations of the classical Reifenberg and give checkable criteria to determine when a set is $k$-rectifiable with uniform measure estimates. The new Reifenberg type theorems may be of some independent interest. The $L^2$-subspace approximation theorem we prove is then used to help break down the quantitative stratifications into pieces that satisfy these criteria.
-
[almgren_exreg]
F. J. Almgren Jr., "Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure," Ann. of Math., vol. 87, pp. 321-391, 1968.
@ARTICLE{almgren_exreg, mrkey = {0225243},
issn = {0003-486X},
author = { Almgren, Jr., F. J.},
mrclass = {53.04 (49.00)},
doi = {10.2307/1970587},
journal = {Ann. of Math.},
zblnumber = {0162.24703},
volume = {87},
mrnumber = {0225243},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {E. Baiada},
title = {Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure},
year = {1968},
pages = {321--391},
} -
[almgren_big] F. J. Almgren Jr., Almgren’s Big Regularity Paper, River Edge, NJ: World Scientific Publishing Co., 2000, vol. 1.
@BOOK{almgren_big, mrkey = {1777737},
author = { Almgren, Jr., Frederick J.},
mrclass = {49-02 (35J20 49N60 49Q20 58E12)},
series = {World Sci. Monogr. Ser. Math.},
isbn = {981-02-4108-9},
address = {River Edge, NJ},
publisher = {World Scientific Publishing Co.},
zblnumber = {0985.49001},
volume = {1},
mrnumber = {1777737},
note = {$Q$-valued functions minimizing {D}irichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2; with a preface by {J}ean {E. T}aylor and {V}ladimir {S}cheffer},
mrreviewer = {Brian Cabell White},
title = {Almgren's Big Regularity Paper},
year = {2000},
pages = {xvi+955},
} -
[AmFu] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, New York: The Clarendon Press, Oxford University Press, 2000.
@BOOK{AmFu, mrkey = {1857292},
author = {Ambrosio, Luigi and Fusco, Nicola and Pallara, Diego},
mrclass = {49-02 (49J45 49K10 49Qxx)},
series = {Oxford Math. Monogr.},
isbn = {0-19-850245-1},
address = {New York},
publisher = {The Clarendon Press, Oxford University Press},
zblnumber = {0957.49001},
mrnumber = {1857292},
mrreviewer = {J. E. Brothers},
title = {Functions of Bounded Variation and Free Discontinuity Problems},
year = {2000},
pages = {xviii+434},
} -
[AzzTol]
J. Azzam and X. Tolsa, "Characterization of $n$-rectifiability in terms of Jones’ square function: Part II," Geom. Funct. Anal., vol. 25, iss. 5, pp. 1371-1412, 2015.
@ARTICLE{AzzTol, mrkey = {3426057},
number = {5},
issn = {1016-443X},
author = {Azzam, Jonas and Tolsa, Xavier},
mrclass = {42B20 (28A75 28A78)},
doi = {10.1007/s00039-015-0334-7},
journal = {Geom. Funct. Anal.},
zblnumber = {1334.28010},
volume = {25},
mrnumber = {3426057},
fjournal = {Geometric and Functional Analysis},
mrreviewer = {Christopher Bishop},
title = {Characterization of {$n$}-rectifiability in terms of {J}ones' square function: {P}art {II}},
year = {2015},
pages = {1371--1412},
} -
[monti]
Z. M. Balogh, R. Monti, and J. T. Tyson, "Frequency of Sobolev and quasiconformal dimension distortion," J. Math. Pures Appl., vol. 99, iss. 2, pp. 125-149, 2013.
@ARTICLE{monti, mrkey = {3007840},
number = {2},
issn = {0021-7824},
author = {Balogh, Zolt{á}n M. and Monti, Roberto and Tyson, Jeremy T.},
mrclass = {30C65 (28A78 30L10 31B15 46E35)},
doi = {10.1016/j.matpur.2012.06.005},
journal = {J. Math. Pures Appl.},
zblnumber = {1266.28003},
volume = {99},
mrnumber = {3007840},
fjournal = {Journal de Mathématiques Pures et Appliquées. Neuvième Série},
mrreviewer = {Matthew Badger},
title = {Frequency of {S}obolev and quasiconformal dimension distortion},
year = {2013},
pages = {125--149},
} -
[beth]
F. Bethuel, "On the singular set of stationary harmonic maps," Manuscripta Math., vol. 78, iss. 4, pp. 417-443, 1993.
@ARTICLE{beth, mrkey = {1208652},
number = {4},
issn = {0025-2611},
author = {Bethuel, Fabrice},
mrclass = {58E20},
doi = {10.1007/BF02599324},
journal = {Manuscripta Math.},
zblnumber = {0792.53039},
volume = {78},
mrnumber = {1208652},
fjournal = {Manuscripta Mathematica},
mrreviewer = {Caio J. C. Negreiros},
coden = {MSMHB2},
title = {On the singular set of stationary harmonic maps},
year = {1993},
pages = {417--443},
} -
[brelamm]
C. Breiner and T. Lamm, "Quantitative stratification and higher regularity for biharmonic maps," Manuscripta Math., vol. 148, iss. 3-4, pp. 379-398, 2015.
@ARTICLE{brelamm, mrkey = {3414482},
number = {3-4},
issn = {0025-2611},
author = {Breiner, Christine and Lamm, Tobias},
mrclass = {58E20 (35B65 35J48 53C43)},
doi = {10.1007/s00229-015-0750-x},
journal = {Manuscripta Math.},
zblnumber = {1327.53079},
volume = {148},
mrnumber = {3414482},
fjournal = {Manuscripta Mathematica},
mrreviewer = {Andreas Gastel},
title = {Quantitative stratification and higher regularity for biharmonic maps},
year = {2015},
pages = {379--398},
} -
[ChNaHa2]
J. Cheeger, R. Haslhofer, and A. Naber, "Quantitative stratification and the regularity of harmonic map flow," Calc. Var. Partial Differential Equations, vol. 53, iss. 1-2, pp. 365-381, 2015.
@ARTICLE{ChNaHa2, mrkey = {3336324},
number = {1-2},
issn = {0944-2669},
author = {Cheeger, Jeff and Haslhofer, Robert and Naber, Aaron},
mrclass = {53C44 (35K45 35K55 58E20)},
doi = {10.1007/s00526-014-0752-7},
journal = {Calc. Var. Partial Differential Equations},
zblnumber = {1317.53081},
volume = {53},
mrnumber = {3336324},
fjournal = {Calculus of Variations and Partial Differential Equations},
mrreviewer = {Wei-Jun Lu},
title = {Quantitative stratification and the regularity of harmonic map flow},
year = {2015},
pages = {365--381},
} -
[ChNaHa1]
J. Cheeger, R. Haslhofer, and A. Naber, "Quantitative stratification and the regularity of mean curvature flow," Geom. Funct. Anal., vol. 23, iss. 3, pp. 828-847, 2013.
@ARTICLE{ChNaHa1, mrkey = {3061773},
number = {3},
issn = {1016-443X},
author = {Cheeger, Jeff and Haslhofer, Robert and Naber, Aaron},
mrclass = {53C44},
doi = {10.1007/s00039-013-0224-9},
journal = {Geom. Funct. Anal.},
zblnumber = {1277.53064},
volume = {23},
mrnumber = {3061773},
fjournal = {Geometric and Functional Analysis},
mrreviewer = {Nam Q. Le},
title = {Quantitative stratification and the regularity of mean curvature flow},
year = {2013},
pages = {828--847},
} -
[ChNa1]
J. Cheeger and A. Naber, "Lower bounds on Ricci curvature and quantitative behavior of singular sets," Invent. Math., vol. 191, iss. 2, pp. 321-339, 2013.
@ARTICLE{ChNa1, mrkey = {3010378},
number = {2},
issn = {0020-9910},
author = {Cheeger, Jeff and Naber, Aaron},
mrclass = {53C21 (32Q20 53C23 53C25)},
doi = {10.1007/s00222-012-0394-3},
journal = {Invent. Math.},
zblnumber = {1268.53053},
volume = {191},
mrnumber = {3010378},
fjournal = {Inventiones Mathematicae},
mrreviewer = {Leonid V. Kovalev},
coden = {INVMBH},
title = {Lower bounds on {R}icci curvature and quantitative behavior of singular sets},
year = {2013},
pages = {321--339},
} -
[ChNa2]
J. Cheeger and A. Naber, "Quantitative stratification and the regularity of harmonic maps and minimal currents," Comm. Pure Appl. Math., vol. 66, iss. 6, pp. 965-990, 2013.
@ARTICLE{ChNa2, mrkey = {3043387},
number = {6},
issn = {0010-3640},
author = {Cheeger, Jeff and Naber, Aaron},
mrclass = {58E20 (49Q15 53C43 58A25)},
doi = {10.1002/cpa.21446},
journal = {Comm. Pure Appl. Math.},
zblnumber = {1269.53063},
volume = {66},
mrnumber = {3043387},
fjournal = {Communications on Pure and Applied Mathematics},
mrreviewer = {Leonid V. Kovalev},
title = {Quantitative stratification and the regularity of harmonic maps and minimal currents},
year = {2013},
pages = {965--990},
} -
[ChNaVa]
J. Cheeger, A. Naber, and D. Valtorta, "Critical sets of elliptic equations," Comm. Pure Appl. Math., vol. 68, iss. 2, pp. 173-209, 2015.
@ARTICLE{ChNaVa, mrkey = {3298662},
number = {2},
issn = {0010-3640},
author = {Cheeger, Jeff and Naber, Aaron and Valtorta, Daniele},
mrclass = {35J25 (35B05)},
doi = {10.1002/cpa.21518},
journal = {Comm. Pure Appl. Math.},
zblnumber = {1309.35012},
volume = {68},
mrnumber = {3298662},
fjournal = {Communications on Pure and Applied Mathematics},
mrreviewer = {Marco Bramanti},
title = {Critical sets of elliptic equations},
year = {2015},
pages = {173--209},
} -
[corgul]
J. Coron and R. Gulliver, "Minimizing $p$-harmonic maps into spheres," J. Reine Angew. Math., vol. 401, pp. 82-100, 1989.
@ARTICLE{corgul, mrkey = {1018054},
issn = {0075-4102},
author = {Coron, Jean-Michel and Gulliver, Robert},
mrclass = {58E20},
doi = {10.1515/crll.1989.401.82},
journal = {J. Reine Angew. Math.},
zblnumber = {0677.58021},
volume = {401},
mrnumber = {1018054},
fjournal = {Journal für die Reine und Angewandte Mathematik},
mrreviewer = {Helmut Kaul},
coden = {JRMAA8},
title = {Minimizing {$p$}-harmonic maps into spheres},
year = {1989},
pages = {82--100},
} -
[david_semmes]
G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Providence, RI: Amer. Math. Soc., 1993, vol. 38.
@BOOK{david_semmes, mrkey = {1251061},
author = {David, Guy and Semmes, Stephen},
mrclass = {28A75 (30C65 30E20 42B20 42B25)},
series = {Math. Surveys Monogr.},
isbn = {0-8218-1537-7},
address = {Providence, RI},
publisher = {Amer. Math. Soc.},
doi = {10.1090/surv/038},
zblnumber = {0832.42008},
volume = {38},
mrnumber = {1251061},
mrreviewer = {Christopher Bishop},
title = {Analysis of and on Uniformly Rectifiable Sets},
year = {1993},
pages = {xii+356},
} -
[davidtoro]
G. David and T. Toro, "Reifenberg parameterizations for sets with holes," Mem. Amer. Math. Soc., vol. 215, iss. 1012, p. vi, 2012.
@ARTICLE{davidtoro, mrkey = {2907827},
number = {1012},
issn = {0065-9266},
author = {David, Guy and Toro, Tatiana},
mrclass = {49Q20 (28A75 42B10)},
isbn = {978-0-8218-5310-8},
doi = {10.1090/S0065-9266-2011-00629-5},
journal = {Mem. Amer. Math. Soc.},
zblnumber = {1236.28002},
volume = {215},
mrnumber = {2907827},
fjournal = {Memoirs of the American Mathematical Society},
mrreviewer = {Christopher Bishop},
coden = {MAMCAU},
title = {Reifenberg parameterizations for sets with holes},
year = {2012},
pages = {vi+102},
} -
[EG] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Boca Raton, FL: CRC Press, 1992.
@BOOK{EG, mrkey = {1158660},
author = {Evans, Lawrence C. and Gariepy, Ronald F.},
mrclass = {28-02 (26-02 26Bxx 46E35)},
series = {Stud. Adv. Math.},
isbn = {0-8493-7157-0},
address = {Boca Raton, FL},
publisher = {CRC Press},
zblnumber = {0804.28001},
mrnumber = {1158660},
mrreviewer = {R. G. Bartle},
title = {Measure Theory and Fine Properties of Functions},
year = {1992},
pages = {viii+268},
} -
[Fed] H. Federer, Geometric Measure Theory, New York: Springer-Verlag, 1969, vol. 153.
@BOOK{Fed, mrkey = {0257325},
author = {Federer, Herbert},
mrclass = {28.80 (26.00)},
series = {Grundlehren Math. Wiss.},
address = {New York},
publisher = {Springer-Verlag},
volume = {153},
mrnumber = {0257325},
mrreviewer = {J. E. Brothers},
title = {Geometric Measure Theory},
year = {1969},
pages = {xiv+676},
zblnumber = {0176.00801},
} -
[FoMaSpa]
M. Focardi, A. Marchese, and E. Spadaro, "Improved estimate of the singular set of Dir-minimizing $Q$-valued functions via an abstract regularity result," J. Funct. Anal., vol. 268, iss. 11, pp. 3290-3325, 2015.
@ARTICLE{FoMaSpa, mrkey = {3336726},
number = {11},
issn = {0022-1236},
author = {Focardi, Matteo and Marchese, Andrea and Spadaro, Emanuele},
mrclass = {49Q20 (54E40)},
doi = {10.1016/j.jfa.2015.02.011},
journal = {J. Funct. Anal.},
zblnumber = {1330.49045},
volume = {268},
mrnumber = {3336726},
fjournal = {Journal of Functional Analysis},
mrreviewer = {Juha K. Kinnunen},
title = {Improved estimate of the singular set of {D}ir-minimizing {$Q$}-valued functions via an abstract regularity result},
year = {2015},
pages = {3290--3325},
} -
[HL42]
R. Hardt and F. Lin, "The singular set of an energy minimizing map from $B^4$ to $S^2$," Manuscripta Math., vol. 69, iss. 3, pp. 275-289, 1990.
@ARTICLE{HL42, mrkey = {1078359},
number = {3},
issn = {0025-2611},
author = {Hardt, Robert and Lin, Fang-Hua},
mrclass = {58E15},
doi = {10.1007/BF02567926},
journal = {Manuscripta Math.},
zblnumber = {0713.58006},
volume = {69},
mrnumber = {1078359},
fjournal = {Manuscripta Mathematica},
mrreviewer = {Helmut Kaul},
coden = {MSMHB2},
title = {The singular set of an energy minimizing map from {$B\sp 4$} to {$S\sp 2$}},
year = {1990},
pages = {275--289},
} -
[lin_min] F. Lin, "A remark on the map $x/\vert x\vert $," C. R. Acad. Sci. Paris Sér. I Math., vol. 305, iss. 12, pp. 529-531, 1987.
@ARTICLE{lin_min, mrkey = {0916327},
number = {12},
issn = {0249-6291},
author = {Lin, Fang-Hua},
mrclass = {58E20 (53C42 81E99)},
journal = {C. R. Acad. Sci. Paris Sér. I Math.},
zblnumber = {0652.58022},
volume = {305},
mrnumber = {0916327},
fjournal = {Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique},
mrreviewer = {John C. Wood},
coden = {CASMEI},
title = {A remark on the map {$x/\vert x\vert $}},
year = {1987},
pages = {529--531},
} -
[lin_stat]
F. Lin, "Gradient estimates and blow-up analysis for stationary harmonic maps," Ann. of Math., vol. 149, iss. 3, pp. 785-829, 1999.
@ARTICLE{lin_stat, mrkey = {1709303},
number = {3},
issn = {0003-486X},
author = {Lin, Fang-Hua},
mrclass = {58E20 (49Q20)},
doi = {10.2307/121073},
journal = {Ann. of Math.},
zblnumber = {0949.58017},
volume = {149},
mrnumber = {1709303},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {Harold Parks},
coden = {ANMAAH},
title = {Gradient estimates and blow-up analysis for stationary harmonic maps},
year = {1999},
pages = {785--829},
} -
[linwang]
F. H. Lin and C. Y. Wang, "Stable stationary harmonic maps to spheres," Acta Math. Sin. $($Engl. Ser.$)$, vol. 22, iss. 2, pp. 319-330, 2006.
@ARTICLE{linwang, mrkey = {2214353},
number = {2},
issn = {1439-8516},
author = {Lin, Fang Hua and Wang, Chang You},
mrclass = {58E20 (35J20 35J60)},
doi = {10.1007/s10114-005-0673-7},
journal = {Acta Math. Sin. $($Engl. Ser.$)$},
zblnumber = {1121.58017},
volume = {22},
mrnumber = {2214353},
fjournal = {Acta Mathematica Sinica (English Series)},
mrreviewer = {Futoshi Takahashi},
title = {Stable stationary harmonic maps to spheres},
year = {2006},
pages = {319--330},
} -
[mattila]
P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995, vol. 44.
@BOOK{mattila, mrkey = {1333890},
author = {Mattila, Pertti},
mrclass = {28A75 (49Q20)},
series = {Cambridge Stud. Adv. Math.},
isbn = {0-521-46576-1; 0-521-65595-1},
publisher = {Cambridge Univ. Press, Cambridge},
doi = {10.1017/CBO9780511623813},
zblnumber = {0819.28004},
volume = {44},
mrnumber = {1333890},
note = {Fractals and rectifiability},
mrreviewer = {Harold Parks},
title = {Geometry of Sets and Measures in {E}uclidean Spaces},
year = {1995},
pages = {xii+343},
} -
[morrey] C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, New York: Springer-Verlag, 1966, vol. 130.
@BOOK{morrey, mrkey = {0202511},
author = { Morrey, Jr., Charles B.},
mrclass = {49.00 (00.00)},
series = {Grundlehren Math. Wissen.},
address = {New York},
publisher = {Springer-Verlag},
zblnumber = {1213.49002},
volume = {130},
mrnumber = {0202511},
mrreviewer = {M. Schechter},
title = {Multiple Integrals in the Calculus of Variations},
year = {1966},
pages = {ix+506},
} -
[NaVa] A. Naber and D. Valtorta, Volume estimates on the critical sets of solutions to elliptic pdes, 2014.
@MISC{NaVa,
author = {Naber, A. and Valtorta, D.},
arxiv = {1403.4176},
title = {Volume estimates on the critical sets of solutions to elliptic pdes},
year = {2014},
} -
[reif_orig]
E. R. Reifenberg, "Solution of the Plateau Problem for $m$-dimensional surfaces of varying topological type," Acta Math., vol. 104, pp. 1-92, 1960.
@ARTICLE{reif_orig, mrkey = {0114145},
issn = {0001-5962},
author = {Reifenberg, E. R.},
mrclass = {49.00},
doi = {10.1007/BF02547186},
journal = {Acta Math.},
zblnumber = {0099.08503},
volume = {104},
mrnumber = {0114145},
fjournal = {Acta Mathematica},
mrreviewer = {W. H. Fleming},
title = {Solution of the {P}lateau {P}roblem for {$m$}-dimensional surfaces of varying topological type},
year = {1960},
pages = {1--92},
} -
[ScUh_RegHarm]
R. Schoen and K. Uhlenbeck, "A regularity theory for harmonic maps," J. Differential Geom., vol. 17, iss. 2, pp. 307-335, 1982.
@ARTICLE{ScUh_RegHarm, mrkey = {0664498},
number = {2},
issn = {0022-040X},
author = {Schoen, Richard and Uhlenbeck, Karen},
mrclass = {58E20 (35J20)},
url = {http://projecteuclid.org/euclid.jdg/1214436923},
journal = {J. Differential Geom.},
zblnumber = {0521.58021},
volume = {17},
mrnumber = {0664498},
fjournal = {Journal of Differential Geometry},
mrreviewer = {J. Eells},
coden = {JDGEAS},
title = {A regularity theory for harmonic maps},
year = {1982},
pages = {307--335},
} -
@MISC{simon_reif,
author = {Simon, L.},
url = {http://www.math.uni-tuebingen.de/ab/analysis/pub/leon/reifenberg/reifenberg.html},
title = {Reifenberg's topological disc theorem},
} -
[simon_stat] L. Simon, Lectures on Geometric Measure Theory, Canberra: Australian National University, Centre for Mathematical Analysis, 1983, vol. 3.
@BOOK{simon_stat, mrkey = {0756417},
author = {Simon, Leon},
mrclass = {49-01 (28A75 49F20)},
series = {Proc. Centre Math.Anal., Australian National Univ.},
isbn = {0-86784-429-9},
address = {Canberra},
publisher = {Australian National University, Centre for Mathematical Analysis},
zblnumber = {0546.49019},
volume = {3},
mrnumber = {0756417},
mrreviewer = {J. S. Joel},
title = {Lectures on Geometric Measure Theory},
year = {1983},
pages = {vii+272},
} -
[Simon_RegMin]
L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Basel: Birkhäuser, 1996.
@BOOK{Simon_RegMin, mrkey = {1399562},
author = {Simon, Leon},
mrclass = {58E20 (35J60 49N60 58G03)},
series = {Lectures in Math. ETH Zürich},
isbn = {3-7643-5397-X},
address = {Basel},
publisher = {Birkhäuser},
doi = {10.1007/978-3-0348-9193-6},
zblnumber = {0864.58015},
mrnumber = {1399562},
note = {based on lecture notes by Norbert Hungerb{ü}hler},
mrreviewer = {Nathan Smale},
title = {Theorems on Regularity and Singularity of Energy Minimizing Maps},
year = {1996},
pages = {viii+152},
} -
[Tol]
X. Tolsa, "Characterization of $n$-rectifiability in terms of Jones’ square function: part I," Calc. Var. Partial Differential Equations, vol. 54, iss. 4, pp. 3643-3665, 2015.
@ARTICLE{Tol, mrkey = {3426090},
number = {4},
issn = {0944-2669},
author = {Tolsa, Xavier},
mrclass = {42B20 (28A75 28A78)},
doi = {10.1007/s00526-015-0917-z},
journal = {Calc. Var. Partial Differential Equations},
zblnumber = {06544048},
volume = {54},
mrnumber = {3426090},
fjournal = {Calculus of Variations and Partial Differential Equations},
mrreviewer = {Christopher Bishop},
title = {Characterization of {$n$}-rectifiability in terms of {J}ones' square function: part {I}},
year = {2015},
pages = {3643--3665},
} -
[Toro_reif]
T. Toro, "Geometric conditions and existence of bi-Lipschitz parameterizations," Duke Math. J., vol. 77, iss. 1, pp. 193-227, 1995.
@ARTICLE{Toro_reif, mrkey = {1317632},
number = {1},
issn = {0012-7094},
author = {Toro, Tatiana},
mrclass = {28A78},
doi = {10.1215/S0012-7094-95-07708-4},
journal = {Duke Math. J.},
zblnumber = {0847.42011},
volume = {77},
mrnumber = {1317632},
fjournal = {Duke Mathematical Journal},
mrreviewer = {J. G. Krzy{\.z}},
coden = {DUMJAO},
title = {Geometric conditions and existence of bi-{L}ipschitz parameterizations},
year = {1995},
pages = {193--227},
} -
[ziemer]
W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, New York: Springer-Verlag, 1989.
@BOOK{ziemer, mrkey = {1014685},
number = {120},
author = {Ziemer, William P.},
mrclass = {46E35},
series = {Grad. Texts in Math.},
address = {New York},
isbn = {0-387-97017-7},
publisher = {Springer-Verlag},
doi = {10.1007/978-1-4612-1015-3},
zblnumber = {0692.46022},
mrnumber = {1014685},
mrreviewer = {V. M. Gol{\cprime}dshte{\u\i}n},
title = {Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation},
year = {1989},
pages = {xvi+308},
}