Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps

Abstract

In this paper we study the regularity of stationary and minimizing harmonic maps $f:B_2(p)\subseteq M\to N$ between Riemannian manifolds. If $S^k(f)\equiv\{x\in M: \text{ no tangent map at $x$ is }k+1\text{-symmetric}\}$ is the $k^{\rm th}$-stratum of the singular set of $f$, then it is well known that $\dim S^k\leq k$, however little else about the structure of $S^k(f)$ is understood in any generality. Our first result is for a general stationary harmonic map, where we prove that $S^k(f)$ is $k$-rectifiable. In fact, we prove for $k$-a.e. point $x\in S^k(f)$ that there exists a unique $k$-plane $V^k\subseteq T_xM$ such that every tangent map at $x$ is $k$-symmetric with respect to $V$.
In the case of minimizing harmonic maps we go further and prove that the singular set $S(f)$, which is well known to satisfy $\dim S(f)\leq n-3$, is in fact $n-3$-rectifiable with uniformly finite $n-3$-measure. An effective version of this allows us to prove that $|\nabla f|$ has estimates in $L^3_{\rm weak}$, an estimate that is sharp as $|\nabla f|$ may not live in $L^3$. More generally, we show that the regularity scale $r_f$ also has $L^3_{\rm weak}$ estimates.
The above results are in fact just applications of a new class of estimates we prove on the quantitative stratifications $S^k_{\epsilon,r}(f)$ and $S^k_{\epsilon}(f)\equiv S^k_{\epsilon,0}(f)$. Roughly, $S^k_{\epsilon}\subseteq M$ is the collection of points $x\in M$ for which no ball $B_r(x)$ is $\epsilon$-close to being $k+1$-symmetric. We show that $S^k_\epsilon$ is $k$-rectifiable and satisfies the Minkowski estimate $\mathrm{Vol}(B_r\,S_\epsilon^k)\leq C r^{n-k}$.
The proofs require a new $L^2$-subspace approximation theorem for stationary harmonic maps, as well as new $W^{1,p}$-Reifenberg and rectifiable-Reifenberg type theorems. These results are generalizations of the classical Reifenberg and give checkable criteria to determine when a set is $k$-rectifiable with uniform measure estimates. The new Reifenberg type theorems may be of some independent interest. The $L^2$-subspace approximation theorem we prove is then used to help break down the quantitative stratifications into pieces that satisfy these criteria.

  • [almgren_exreg] Go to document F. J. Almgren Jr., "Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure," Ann. of Math., vol. 87, pp. 321-391, 1968.
    @ARTICLE{almgren_exreg, mrkey = {0225243},
      issn = {0003-486X},
      author = { Almgren, Jr., F. J.},
      mrclass = {53.04 (49.00)},
      doi = {10.2307/1970587},
      journal = {Ann. of Math.},
      zblnumber = {0162.24703},
      volume = {87},
      mrnumber = {0225243},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {E. Baiada},
      title = {Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure},
      year = {1968},
      pages = {321--391},
      }
  • [almgren_big] F. J. Almgren Jr., Almgren’s Big Regularity Paper, River Edge, NJ: World Scientific Publishing Co., 2000, vol. 1.
    @BOOK{almgren_big, mrkey = {1777737},
      author = { Almgren, Jr., Frederick J.},
      mrclass = {49-02 (35J20 49N60 49Q20 58E12)},
      series = {World Sci. Monogr. Ser. Math.},
      isbn = {981-02-4108-9},
      address = {River Edge, NJ},
      publisher = {World Scientific Publishing Co.},
      zblnumber = {0985.49001},
      volume = {1},
      mrnumber = {1777737},
      note = {$Q$-valued functions minimizing {D}irichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2; with a preface by {J}ean {E. T}aylor and {V}ladimir {S}cheffer},
      mrreviewer = {Brian Cabell White},
      title = {Almgren's Big Regularity Paper},
      year = {2000},
      pages = {xvi+955},
      }
  • [AmFu] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, New York: The Clarendon Press, Oxford University Press, 2000.
    @BOOK{AmFu, mrkey = {1857292},
      author = {Ambrosio, Luigi and Fusco, Nicola and Pallara, Diego},
      mrclass = {49-02 (49J45 49K10 49Qxx)},
      series = {Oxford Math. Monogr.},
      isbn = {0-19-850245-1},
      address = {New York},
      publisher = {The Clarendon Press, Oxford University Press},
      zblnumber = {0957.49001},
      mrnumber = {1857292},
      mrreviewer = {J. E. Brothers},
      title = {Functions of Bounded Variation and Free Discontinuity Problems},
      year = {2000},
      pages = {xviii+434},
      }
  • [AzzTol] Go to document J. Azzam and X. Tolsa, "Characterization of $n$-rectifiability in terms of Jones’ square function: Part II," Geom. Funct. Anal., vol. 25, iss. 5, pp. 1371-1412, 2015.
    @ARTICLE{AzzTol, mrkey = {3426057},
      number = {5},
      issn = {1016-443X},
      author = {Azzam, Jonas and Tolsa, Xavier},
      mrclass = {42B20 (28A75 28A78)},
      doi = {10.1007/s00039-015-0334-7},
      journal = {Geom. Funct. Anal.},
      zblnumber = {1334.28010},
      volume = {25},
      mrnumber = {3426057},
      fjournal = {Geometric and Functional Analysis},
      mrreviewer = {Christopher Bishop},
      title = {Characterization of {$n$}-rectifiability in terms of {J}ones' square function: {P}art {II}},
      year = {2015},
      pages = {1371--1412},
      }
  • [monti] Go to document Z. M. Balogh, R. Monti, and J. T. Tyson, "Frequency of Sobolev and quasiconformal dimension distortion," J. Math. Pures Appl., vol. 99, iss. 2, pp. 125-149, 2013.
    @ARTICLE{monti, mrkey = {3007840},
      number = {2},
      issn = {0021-7824},
      author = {Balogh, Zolt{á}n M. and Monti, Roberto and Tyson, Jeremy T.},
      mrclass = {30C65 (28A78 30L10 31B15 46E35)},
      doi = {10.1016/j.matpur.2012.06.005},
      journal = {J. Math. Pures Appl.},
      zblnumber = {1266.28003},
      volume = {99},
      mrnumber = {3007840},
      fjournal = {Journal de Mathématiques Pures et Appliquées. Neuvième Série},
      mrreviewer = {Matthew Badger},
      title = {Frequency of {S}obolev and quasiconformal dimension distortion},
      year = {2013},
      pages = {125--149},
      }
  • [beth] Go to document F. Bethuel, "On the singular set of stationary harmonic maps," Manuscripta Math., vol. 78, iss. 4, pp. 417-443, 1993.
    @ARTICLE{beth, mrkey = {1208652},
      number = {4},
      issn = {0025-2611},
      author = {Bethuel, Fabrice},
      mrclass = {58E20},
      doi = {10.1007/BF02599324},
      journal = {Manuscripta Math.},
      zblnumber = {0792.53039},
      volume = {78},
      mrnumber = {1208652},
      fjournal = {Manuscripta Mathematica},
      mrreviewer = {Caio J. C. Negreiros},
      coden = {MSMHB2},
      title = {On the singular set of stationary harmonic maps},
      year = {1993},
      pages = {417--443},
      }
  • [brelamm] Go to document C. Breiner and T. Lamm, "Quantitative stratification and higher regularity for biharmonic maps," Manuscripta Math., vol. 148, iss. 3-4, pp. 379-398, 2015.
    @ARTICLE{brelamm, mrkey = {3414482},
      number = {3-4},
      issn = {0025-2611},
      author = {Breiner, Christine and Lamm, Tobias},
      mrclass = {58E20 (35B65 35J48 53C43)},
      doi = {10.1007/s00229-015-0750-x},
      journal = {Manuscripta Math.},
      zblnumber = {1327.53079},
      volume = {148},
      mrnumber = {3414482},
      fjournal = {Manuscripta Mathematica},
      mrreviewer = {Andreas Gastel},
      title = {Quantitative stratification and higher regularity for biharmonic maps},
      year = {2015},
      pages = {379--398},
      }
  • [ChNaHa2] Go to document J. Cheeger, R. Haslhofer, and A. Naber, "Quantitative stratification and the regularity of harmonic map flow," Calc. Var. Partial Differential Equations, vol. 53, iss. 1-2, pp. 365-381, 2015.
    @ARTICLE{ChNaHa2, mrkey = {3336324},
      number = {1-2},
      issn = {0944-2669},
      author = {Cheeger, Jeff and Haslhofer, Robert and Naber, Aaron},
      mrclass = {53C44 (35K45 35K55 58E20)},
      doi = {10.1007/s00526-014-0752-7},
      journal = {Calc. Var. Partial Differential Equations},
      zblnumber = {1317.53081},
      volume = {53},
      mrnumber = {3336324},
      fjournal = {Calculus of Variations and Partial Differential Equations},
      mrreviewer = {Wei-Jun Lu},
      title = {Quantitative stratification and the regularity of harmonic map flow},
      year = {2015},
      pages = {365--381},
      }
  • [ChNaHa1] Go to document J. Cheeger, R. Haslhofer, and A. Naber, "Quantitative stratification and the regularity of mean curvature flow," Geom. Funct. Anal., vol. 23, iss. 3, pp. 828-847, 2013.
    @ARTICLE{ChNaHa1, mrkey = {3061773},
      number = {3},
      issn = {1016-443X},
      author = {Cheeger, Jeff and Haslhofer, Robert and Naber, Aaron},
      mrclass = {53C44},
      doi = {10.1007/s00039-013-0224-9},
      journal = {Geom. Funct. Anal.},
      zblnumber = {1277.53064},
      volume = {23},
      mrnumber = {3061773},
      fjournal = {Geometric and Functional Analysis},
      mrreviewer = {Nam Q. Le},
      title = {Quantitative stratification and the regularity of mean curvature flow},
      year = {2013},
      pages = {828--847},
      }
  • [ChNa1] Go to document J. Cheeger and A. Naber, "Lower bounds on Ricci curvature and quantitative behavior of singular sets," Invent. Math., vol. 191, iss. 2, pp. 321-339, 2013.
    @ARTICLE{ChNa1, mrkey = {3010378},
      number = {2},
      issn = {0020-9910},
      author = {Cheeger, Jeff and Naber, Aaron},
      mrclass = {53C21 (32Q20 53C23 53C25)},
      doi = {10.1007/s00222-012-0394-3},
      journal = {Invent. Math.},
      zblnumber = {1268.53053},
      volume = {191},
      mrnumber = {3010378},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {Leonid V. Kovalev},
      coden = {INVMBH},
      title = {Lower bounds on {R}icci curvature and quantitative behavior of singular sets},
      year = {2013},
      pages = {321--339},
      }
  • [ChNa2] Go to document J. Cheeger and A. Naber, "Quantitative stratification and the regularity of harmonic maps and minimal currents," Comm. Pure Appl. Math., vol. 66, iss. 6, pp. 965-990, 2013.
    @ARTICLE{ChNa2, mrkey = {3043387},
      number = {6},
      issn = {0010-3640},
      author = {Cheeger, Jeff and Naber, Aaron},
      mrclass = {58E20 (49Q15 53C43 58A25)},
      doi = {10.1002/cpa.21446},
      journal = {Comm. Pure Appl. Math.},
      zblnumber = {1269.53063},
      volume = {66},
      mrnumber = {3043387},
      fjournal = {Communications on Pure and Applied Mathematics},
      mrreviewer = {Leonid V. Kovalev},
      title = {Quantitative stratification and the regularity of harmonic maps and minimal currents},
      year = {2013},
      pages = {965--990},
      }
  • [ChNaVa] Go to document J. Cheeger, A. Naber, and D. Valtorta, "Critical sets of elliptic equations," Comm. Pure Appl. Math., vol. 68, iss. 2, pp. 173-209, 2015.
    @ARTICLE{ChNaVa, mrkey = {3298662},
      number = {2},
      issn = {0010-3640},
      author = {Cheeger, Jeff and Naber, Aaron and Valtorta, Daniele},
      mrclass = {35J25 (35B05)},
      doi = {10.1002/cpa.21518},
      journal = {Comm. Pure Appl. Math.},
      zblnumber = {1309.35012},
      volume = {68},
      mrnumber = {3298662},
      fjournal = {Communications on Pure and Applied Mathematics},
      mrreviewer = {Marco Bramanti},
      title = {Critical sets of elliptic equations},
      year = {2015},
      pages = {173--209},
      }
  • [corgul] Go to document J. Coron and R. Gulliver, "Minimizing $p$-harmonic maps into spheres," J. Reine Angew. Math., vol. 401, pp. 82-100, 1989.
    @ARTICLE{corgul, mrkey = {1018054},
      issn = {0075-4102},
      author = {Coron, Jean-Michel and Gulliver, Robert},
      mrclass = {58E20},
      doi = {10.1515/crll.1989.401.82},
      journal = {J. Reine Angew. Math.},
      zblnumber = {0677.58021},
      volume = {401},
      mrnumber = {1018054},
      fjournal = {Journal für die Reine und Angewandte Mathematik},
      mrreviewer = {Helmut Kaul},
      coden = {JRMAA8},
      title = {Minimizing {$p$}-harmonic maps into spheres},
      year = {1989},
      pages = {82--100},
      }
  • [david_semmes] Go to document G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Providence, RI: Amer. Math. Soc., 1993, vol. 38.
    @BOOK{david_semmes, mrkey = {1251061},
      author = {David, Guy and Semmes, Stephen},
      mrclass = {28A75 (30C65 30E20 42B20 42B25)},
      series = {Math. Surveys Monogr.},
      isbn = {0-8218-1537-7},
      address = {Providence, RI},
      publisher = {Amer. Math. Soc.},
      doi = {10.1090/surv/038},
      zblnumber = {0832.42008},
      volume = {38},
      mrnumber = {1251061},
      mrreviewer = {Christopher Bishop},
      title = {Analysis of and on Uniformly Rectifiable Sets},
      year = {1993},
      pages = {xii+356},
      }
  • [davidtoro] Go to document G. David and T. Toro, "Reifenberg parameterizations for sets with holes," Mem. Amer. Math. Soc., vol. 215, iss. 1012, p. vi, 2012.
    @ARTICLE{davidtoro, mrkey = {2907827},
      number = {1012},
      issn = {0065-9266},
      author = {David, Guy and Toro, Tatiana},
      mrclass = {49Q20 (28A75 42B10)},
      isbn = {978-0-8218-5310-8},
      doi = {10.1090/S0065-9266-2011-00629-5},
      journal = {Mem. Amer. Math. Soc.},
      zblnumber = {1236.28002},
      volume = {215},
      mrnumber = {2907827},
      fjournal = {Memoirs of the American Mathematical Society},
      mrreviewer = {Christopher Bishop},
      coden = {MAMCAU},
      title = {Reifenberg parameterizations for sets with holes},
      year = {2012},
      pages = {vi+102},
      }
  • [EG] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Boca Raton, FL: CRC Press, 1992.
    @BOOK{EG, mrkey = {1158660},
      author = {Evans, Lawrence C. and Gariepy, Ronald F.},
      mrclass = {28-02 (26-02 26Bxx 46E35)},
      series = {Stud. Adv. Math.},
      isbn = {0-8493-7157-0},
      address = {Boca Raton, FL},
      publisher = {CRC Press},
      zblnumber = {0804.28001},
      mrnumber = {1158660},
      mrreviewer = {R. G. Bartle},
      title = {Measure Theory and Fine Properties of Functions},
      year = {1992},
      pages = {viii+268},
      }
  • [Fed] H. Federer, Geometric Measure Theory, New York: Springer-Verlag, 1969, vol. 153.
    @BOOK{Fed, mrkey = {0257325},
      author = {Federer, Herbert},
      mrclass = {28.80 (26.00)},
      series = {Grundlehren Math. Wiss.},
      address = {New York},
      publisher = {Springer-Verlag},
      volume = {153},
      mrnumber = {0257325},
      mrreviewer = {J. E. Brothers},
      title = {Geometric Measure Theory},
      year = {1969},
      pages = {xiv+676},
      zblnumber = {0176.00801},
      }
  • [FoMaSpa] Go to document M. Focardi, A. Marchese, and E. Spadaro, "Improved estimate of the singular set of Dir-minimizing $Q$-valued functions via an abstract regularity result," J. Funct. Anal., vol. 268, iss. 11, pp. 3290-3325, 2015.
    @ARTICLE{FoMaSpa, mrkey = {3336726},
      number = {11},
      issn = {0022-1236},
      author = {Focardi, Matteo and Marchese, Andrea and Spadaro, Emanuele},
      mrclass = {49Q20 (54E40)},
      doi = {10.1016/j.jfa.2015.02.011},
      journal = {J. Funct. Anal.},
      zblnumber = {1330.49045},
      volume = {268},
      mrnumber = {3336726},
      fjournal = {Journal of Functional Analysis},
      mrreviewer = {Juha K. Kinnunen},
      title = {Improved estimate of the singular set of {D}ir-minimizing {$Q$}-valued functions via an abstract regularity result},
      year = {2015},
      pages = {3290--3325},
      }
  • [HL42] Go to document R. Hardt and F. Lin, "The singular set of an energy minimizing map from $B^4$ to $S^2$," Manuscripta Math., vol. 69, iss. 3, pp. 275-289, 1990.
    @ARTICLE{HL42, mrkey = {1078359},
      number = {3},
      issn = {0025-2611},
      author = {Hardt, Robert and Lin, Fang-Hua},
      mrclass = {58E15},
      doi = {10.1007/BF02567926},
      journal = {Manuscripta Math.},
      zblnumber = {0713.58006},
      volume = {69},
      mrnumber = {1078359},
      fjournal = {Manuscripta Mathematica},
      mrreviewer = {Helmut Kaul},
      coden = {MSMHB2},
      title = {The singular set of an energy minimizing map from {$B\sp 4$} to {$S\sp 2$}},
      year = {1990},
      pages = {275--289},
      }
  • [lin_min] F. Lin, "A remark on the map $x/\vert x\vert $," C. R. Acad. Sci. Paris Sér. I Math., vol. 305, iss. 12, pp. 529-531, 1987.
    @ARTICLE{lin_min, mrkey = {0916327},
      number = {12},
      issn = {0249-6291},
      author = {Lin, Fang-Hua},
      mrclass = {58E20 (53C42 81E99)},
      journal = {C. R. Acad. Sci. Paris Sér. I Math.},
      zblnumber = {0652.58022},
      volume = {305},
      mrnumber = {0916327},
      fjournal = {Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique},
      mrreviewer = {John C. Wood},
      coden = {CASMEI},
      title = {A remark on the map {$x/\vert x\vert $}},
      year = {1987},
      pages = {529--531},
      }
  • [lin_stat] Go to document F. Lin, "Gradient estimates and blow-up analysis for stationary harmonic maps," Ann. of Math., vol. 149, iss. 3, pp. 785-829, 1999.
    @ARTICLE{lin_stat, mrkey = {1709303},
      number = {3},
      issn = {0003-486X},
      author = {Lin, Fang-Hua},
      mrclass = {58E20 (49Q20)},
      doi = {10.2307/121073},
      journal = {Ann. of Math.},
      zblnumber = {0949.58017},
      volume = {149},
      mrnumber = {1709303},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Harold Parks},
      coden = {ANMAAH},
      title = {Gradient estimates and blow-up analysis for stationary harmonic maps},
      year = {1999},
      pages = {785--829},
      }
  • [linwang] Go to document F. H. Lin and C. Y. Wang, "Stable stationary harmonic maps to spheres," Acta Math. Sin. $($Engl. Ser.$)$, vol. 22, iss. 2, pp. 319-330, 2006.
    @ARTICLE{linwang, mrkey = {2214353},
      number = {2},
      issn = {1439-8516},
      author = {Lin, Fang Hua and Wang, Chang You},
      mrclass = {58E20 (35J20 35J60)},
      doi = {10.1007/s10114-005-0673-7},
      journal = {Acta Math. Sin. $($Engl. Ser.$)$},
      zblnumber = {1121.58017},
      volume = {22},
      mrnumber = {2214353},
      fjournal = {Acta Mathematica Sinica (English Series)},
      mrreviewer = {Futoshi Takahashi},
      title = {Stable stationary harmonic maps to spheres},
      year = {2006},
      pages = {319--330},
      }
  • [mattila] Go to document P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995, vol. 44.
    @BOOK{mattila, mrkey = {1333890},
      author = {Mattila, Pertti},
      mrclass = {28A75 (49Q20)},
      series = {Cambridge Stud. Adv. Math.},
      isbn = {0-521-46576-1; 0-521-65595-1},
      publisher = {Cambridge Univ. Press, Cambridge},
      doi = {10.1017/CBO9780511623813},
      zblnumber = {0819.28004},
      volume = {44},
      mrnumber = {1333890},
      note = {Fractals and rectifiability},
      mrreviewer = {Harold Parks},
      title = {Geometry of Sets and Measures in {E}uclidean Spaces},
      year = {1995},
      pages = {xii+343},
      }
  • [morrey] C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, New York: Springer-Verlag, 1966, vol. 130.
    @BOOK{morrey, mrkey = {0202511},
      author = { Morrey, Jr., Charles B.},
      mrclass = {49.00 (00.00)},
      series = {Grundlehren Math. Wissen.},
      address = {New York},
      publisher = {Springer-Verlag},
      zblnumber = {1213.49002},
      volume = {130},
      mrnumber = {0202511},
      mrreviewer = {M. Schechter},
      title = {Multiple Integrals in the Calculus of Variations},
      year = {1966},
      pages = {ix+506},
      }
  • [NaVa] A. Naber and D. Valtorta, Volume estimates on the critical sets of solutions to elliptic pdes, 2014.
    @MISC{NaVa,
      author = {Naber, A. and Valtorta, D.},
      arxiv = {1403.4176},
      title = {Volume estimates on the critical sets of solutions to elliptic pdes},
      year = {2014},
      }
  • [reif_orig] Go to document E. R. Reifenberg, "Solution of the Plateau Problem for $m$-dimensional surfaces of varying topological type," Acta Math., vol. 104, pp. 1-92, 1960.
    @ARTICLE{reif_orig, mrkey = {0114145},
      issn = {0001-5962},
      author = {Reifenberg, E. R.},
      mrclass = {49.00},
      doi = {10.1007/BF02547186},
      journal = {Acta Math.},
      zblnumber = {0099.08503},
      volume = {104},
      mrnumber = {0114145},
      fjournal = {Acta Mathematica},
      mrreviewer = {W. H. Fleming},
      title = {Solution of the {P}lateau {P}roblem for {$m$}-dimensional surfaces of varying topological type},
      year = {1960},
      pages = {1--92},
      }
  • [ScUh_RegHarm] Go to document R. Schoen and K. Uhlenbeck, "A regularity theory for harmonic maps," J. Differential Geom., vol. 17, iss. 2, pp. 307-335, 1982.
    @ARTICLE{ScUh_RegHarm, mrkey = {0664498},
      number = {2},
      issn = {0022-040X},
      author = {Schoen, Richard and Uhlenbeck, Karen},
      mrclass = {58E20 (35J20)},
      url = {http://projecteuclid.org/euclid.jdg/1214436923},
      journal = {J. Differential Geom.},
      zblnumber = {0521.58021},
      volume = {17},
      mrnumber = {0664498},
      fjournal = {Journal of Differential Geometry},
      mrreviewer = {J. Eells},
      coden = {JDGEAS},
      title = {A regularity theory for harmonic maps},
      year = {1982},
      pages = {307--335},
      }
  • [simon_reif] Go to document L. Simon, Reifenberg’s topological disc theorem.
    @MISC{simon_reif,
      author = {Simon, L.},
      url = {http://www.math.uni-tuebingen.de/ab/analysis/pub/leon/reifenberg/reifenberg.html},
      title = {Reifenberg's topological disc theorem},
      }
  • [simon_stat] L. Simon, Lectures on Geometric Measure Theory, Canberra: Australian National University, Centre for Mathematical Analysis, 1983, vol. 3.
    @BOOK{simon_stat, mrkey = {0756417},
      author = {Simon, Leon},
      mrclass = {49-01 (28A75 49F20)},
      series = {Proc. Centre Math.Anal., Australian National Univ.},
      isbn = {0-86784-429-9},
      address = {Canberra},
      publisher = {Australian National University, Centre for Mathematical Analysis},
      zblnumber = {0546.49019},
      volume = {3},
      mrnumber = {0756417},
      mrreviewer = {J. S. Joel},
      title = {Lectures on Geometric Measure Theory},
      year = {1983},
      pages = {vii+272},
      }
  • [Simon_RegMin] Go to document L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Basel: Birkhäuser, 1996.
    @BOOK{Simon_RegMin, mrkey = {1399562},
      author = {Simon, Leon},
      mrclass = {58E20 (35J60 49N60 58G03)},
      series = {Lectures in Math. ETH Zürich},
      isbn = {3-7643-5397-X},
      address = {Basel},
      publisher = {Birkhäuser},
      doi = {10.1007/978-3-0348-9193-6},
      zblnumber = {0864.58015},
      mrnumber = {1399562},
      note = {based on lecture notes by Norbert Hungerb{ü}hler},
      mrreviewer = {Nathan Smale},
      title = {Theorems on Regularity and Singularity of Energy Minimizing Maps},
      year = {1996},
      pages = {viii+152},
      }
  • [Tol] Go to document X. Tolsa, "Characterization of $n$-rectifiability in terms of Jones’ square function: part I," Calc. Var. Partial Differential Equations, vol. 54, iss. 4, pp. 3643-3665, 2015.
    @ARTICLE{Tol, mrkey = {3426090},
      number = {4},
      issn = {0944-2669},
      author = {Tolsa, Xavier},
      mrclass = {42B20 (28A75 28A78)},
      doi = {10.1007/s00526-015-0917-z},
      journal = {Calc. Var. Partial Differential Equations},
      zblnumber = {06544048},
      volume = {54},
      mrnumber = {3426090},
      fjournal = {Calculus of Variations and Partial Differential Equations},
      mrreviewer = {Christopher Bishop},
      title = {Characterization of {$n$}-rectifiability in terms of {J}ones' square function: part {I}},
      year = {2015},
      pages = {3643--3665},
      }
  • [Toro_reif] Go to document T. Toro, "Geometric conditions and existence of bi-Lipschitz parameterizations," Duke Math. J., vol. 77, iss. 1, pp. 193-227, 1995.
    @ARTICLE{Toro_reif, mrkey = {1317632},
      number = {1},
      issn = {0012-7094},
      author = {Toro, Tatiana},
      mrclass = {28A78},
      doi = {10.1215/S0012-7094-95-07708-4},
      journal = {Duke Math. J.},
      zblnumber = {0847.42011},
      volume = {77},
      mrnumber = {1317632},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {J. G. Krzy{\.z}},
      coden = {DUMJAO},
      title = {Geometric conditions and existence of bi-{L}ipschitz parameterizations},
      year = {1995},
      pages = {193--227},
      }
  • [ziemer] Go to document W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, New York: Springer-Verlag, 1989.
    @BOOK{ziemer, mrkey = {1014685},
      number = {120},
      author = {Ziemer, William P.},
      mrclass = {46E35},
      series = {Grad. Texts in Math.},
      address = {New York},
      isbn = {0-387-97017-7},
      publisher = {Springer-Verlag},
      doi = {10.1007/978-1-4612-1015-3},
      zblnumber = {0692.46022},
      mrnumber = {1014685},
      mrreviewer = {V. M. Gol{\cprime}dshte{\u\i}n},
      title = {Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation},
      year = {1989},
      pages = {xvi+308},
      }

Authors

Aaron Naber

Northwestern University, Evanston, IL

Daniele Valtorta

University of Zürich, Zürich, Switzerland