Abstract
We prove that given a Hitchin representation in a split real rank 2 group $\mathsf{G}_0$, there exists a unique equivariant minimal surface in the corresponding symmetric space. As a corollary, we obtain a parametrisation of the Hitchin component by a Hermitian bundle over Teichmüller space. The proof goes through introducing holomorphic curves in a suitable bundle over the symmetric space of $\mathsf{G}_0$. Some partial extensions of the construction hold for cyclic bundles in higher rank.
-
[Anderson:1983cm]
M. T. Anderson, "Complete minimal hypersurfaces in hyperbolic $n$-manifolds," Comment. Math. Helv., vol. 58, iss. 2, pp. 264-290, 1983.
@ARTICLE{Anderson:1983cm, mrkey = {0705537},
number = {2},
issn = {0010-2571},
author = {Anderson, Michael T.},
mrclass = {53C42 (30F35 49F20 53A10)},
doi = {10.1007/BF02564636},
journal = {Comment. Math. Helv.},
zblnumber = {0549.53058},
volume = {58},
mrnumber = {0705537},
fjournal = {Commentarii Mathematici Helvetici},
mrreviewer = {Keiichi Shibata},
coden = {COMHAX},
title = {Complete minimal hypersurfaces in hyperbolic {$n$}-manifolds},
year = {1983},
pages = {264--290},
} -
[Atiyah:1983]
M. F. Atiyah and R. Bott, "The Yang-Mills equations over Riemann surfaces," Philos. Trans. Roy. Soc. London Ser. A, vol. 308, iss. 1505, pp. 523-615, 1983.
@ARTICLE{Atiyah:1983, mrkey = {0702806},
number = {1505},
issn = {0080-4614},
author = {Atiyah, M. F. and Bott, R.},
mrclass = {14F05 (14D22 32G13 32L05 53C05 58E05 58E20 81E13)},
doi = {10.1098/rsta.1983.0017},
journal = {Philos. Trans. Roy. Soc. London Ser. A},
zblnumber = {0509.14014},
volume = {308},
mrnumber = {0702806},
fjournal = {Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences},
mrreviewer = {Martin A. Guest},
coden = {PTRMAD},
title = {The {Y}ang-{M}ills equations over {R}iemann surfaces},
year = {1983},
pages = {523--615},
} -
[Baraglia:2010vi]
D. Baraglia, "Cyclic Higgs bundles and the affine Toda equations," Geom. Dedicata, vol. 174, pp. 25-42, 2015.
@ARTICLE{Baraglia:2010vi, mrkey = {3303039},
issn = {0046-5755},
author = {Baraglia, David},
mrclass = {53C07 (17B80 53C43)},
doi = {10.1007/s10711-014-0003-2},
journal = {Geom. Dedicata},
zblnumber = {1321.53027},
volume = {174},
mrnumber = {3303039},
fjournal = {Geometriae Dedicata},
title = {Cyclic {H}iggs bundles and the affine {T}oda equations},
year = {2015},
pages = {25--42},
} -
[Benoist:2013vx]
Y. Benoist and D. Hulin, "Cubic differentials and hyperbolic convex sets," J. Differential Geom., vol. 98, iss. 1, pp. 1-19, 2014.
@ARTICLE{Benoist:2013vx, mrkey = {3238310},
number = {1},
issn = {0022-040X},
author = {Benoist, Yves and Hulin, Dominique},
mrclass = {53A15 (51F99 52A01)},
url = {http://projecteuclid.org/euclid.jdg/1406137694},
journal = {J. Differential Geom.},
zblnumber = {1301.53040},
volume = {98},
mrnumber = {3238310},
fjournal = {Journal of Differential Geometry},
mrreviewer = {Athanase Papadopoulos},
title = {Cubic differentials and hyperbolic convex sets},
year = {2014},
pages = {1--19},
} -
[Berndtsson:2009hr]
B. Berndtsson, "Curvature of vector bundles associated to holomorphic fibrations," Ann. of Math., vol. 169, iss. 2, pp. 531-560, 2009.
@ARTICLE{Berndtsson:2009hr, mrkey = {2480611},
number = {2},
issn = {0003-486X},
author = {Berndtsson, Bo},
mrclass = {32L05 (32A36 32L15)},
doi = {10.4007/annals.2009.169.531},
journal = {Ann. of Math.},
zblnumber = {1195.32012},
volume = {169},
mrnumber = {2480611},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {Bianca Santoro},
coden = {ANMAAH},
title = {Curvature of vector bundles associated to holomorphic fibrations},
year = {2009},
pages = {531--560},
} -
[Bolton:1995vx]
J. Bolton, F. Pedit, and L. Woodward, "Minimal surfaces and the affine Toda field model," J. Reine Angew. Math., vol. 459, pp. 119-150, 1995.
@ARTICLE{Bolton:1995vx, mrkey = {1319519},
issn = {0075-4102},
author = {Bolton, John and Pedit, Franz and Woodward, Lyndon},
mrclass = {58E20 (53C42 58F07)},
journal = {J. Reine Angew. Math.},
zblnumber = {0810.53048},
volume = {459},
mrnumber = {1319519},
fjournal = {Journal für die Reine und Angewandte Mathematik},
mrreviewer = {John C. Wood},
coden = {JRMAA8},
title = {Minimal surfaces and the affine {T}oda field model},
year = {1995},
pages = {119--150},
doi = {10.1515/crll.1995.459.119},
} -
[Bonsante:2010gk]
F. Bonsante and J. Schlenker, "Maximal surfaces and the universal Teichmüller space," Invent. Math., vol. 182, iss. 2, pp. 279-333, 2010.
@ARTICLE{Bonsante:2010gk, mrkey = {2729269},
number = {2},
issn = {0020-9910},
author = {Bonsante, Francesco and Schlenker, Jean-Marc},
mrclass = {30F60},
doi = {10.1007/s00222-010-0263-x},
journal = {Invent. Math.},
zblnumber = {1222.53063},
volume = {182},
mrnumber = {2729269},
fjournal = {Inventiones Mathematicae},
coden = {INVMBH},
title = {Maximal surfaces and the universal {T}eichmüller space},
year = {2010},
pages = {279--333},
} -
[Bourbaki:owAvyv1m] N. Bourbaki, Lie Groups and Lie Algebras. Chapters 7–9, New York: Springer-Verlag, 2005.
@BOOK{Bourbaki:owAvyv1m, mrkey = {2109105},
author = {Bourbaki, Nicolas},
mrclass = {17-01 (01A75 22-01)},
series = {Elements of Mathematics (Berlin)},
address = {New York},
isbn = {3-540-43405-4},
publisher = {Springer-Verlag},
zblnumber = {1139.17002},
mrnumber = {2109105},
title = {Lie Groups and {L}ie Algebras. {C}hapters 7--9},
year = {2005},
pages = {xii+434},
} -
[Bradlow:2012dl]
S. B. Bradlow, O. Garc’ia-Prada, and P. B. Gothen, "Deformations of maximal representations in ${ Sp}(4,\Bbb R)$," Q. J. Math., vol. 63, iss. 4, pp. 795-843, 2012.
@ARTICLE{Bradlow:2012dl, mrkey = {2999985},
number = {4},
issn = {0033-5606},
author = {Bradlow, Steven B. and Garc{\'ı}a-Prada, Oscar and Gothen, Peter B.},
mrclass = {14D20 (14F45 14H60)},
doi = {10.1093/qmath/har010},
journal = {Q. J. Math.},
zblnumber = {1261.14018},
volume = {63},
mrnumber = {2999985},
fjournal = {The Quarterly Journal of Mathematics},
mrreviewer = {Matthias Stemmler},
title = {Deformations of maximal representations in {${\rm Sp}(4,\Bbb R)$}},
year = {2012},
pages = {795--843},
} -
[Bridgeman:2013tn]
M. Bridgeman, R. Canary, F. Labourie, and A. Sambarino, "The pressure metric for Anosov representations," Geom. Funct. Anal., vol. 25, iss. 4, pp. 1089-1179, 2015.
@ARTICLE{Bridgeman:2013tn, mrkey = {3385630},
number = {4},
issn = {1016-443X},
author = {Bridgeman, Martin and Canary, Richard and Labourie, Fran{ç}ois and Sambarino, Andres},
mrclass = {37D35 (20F65 37D40 57M50 58D29)},
doi = {10.1007/s00039-015-0333-8},
journal = {Geom. Funct. Anal.},
zblnumber = {06483696},
volume = {25},
mrnumber = {3385630},
fjournal = {Geometric and Functional Analysis},
mrreviewer = {Boris Hasselblatt},
title = {The pressure metric for {A}nosov representations},
year = {2015},
pages = {1089--1179},
} -
[Collier:2014tn] B. Collier and Q. Li, Asymptotics of certain families of Higgs bundles in the Hitchin component, 2014.
@MISC{Collier:2014tn,
author = {Collier, Brian and Li, Qiongling},
note = {preprint},
title = {Asymptotics of certain families of {H}iggs bundles in the {H}itchin component},
year = {2014},
arxiv = {1405.1106},
} -
[C-L] B. Collier and F. Labourie, Cyclic surfaces for products of $\ms{SL}(2,\mathbb R)$.
@MISC{C-L,
author = {Collier, Brian and Labourie, François},
note = {in preparation},
title = {Cyclic surfaces for products of {$\ms{SL}(2,\mathbb R)$}},
} -
[Demailly:2012um] J. Demailly, Analytic Methods in Algebraic Geometry, Somerville, MA: International Press, 2012, vol. 1.
@BOOK{Demailly:2012um, mrkey = {2978333},
author = {Demailly, Jean-Pierre},
mrclass = {32-02 (14C30 14F18 32J25 32Q15 32U40)},
series = {Surv. Modern Math.},
isbn = {978-1-57146-234-3},
address = {Somerville, MA},
publisher = {International Press},
zblnumber = {1271.14001},
volume = {1},
mrnumber = {2978333},
mrreviewer = {Valentino Tosatti},
title = {Analytic Methods in Algebraic Geometry},
year = {2012},
pages = {viii+231},
} -
[Donaldson:1987]
S. K. Donaldson, "Twisted harmonic maps and the self-duality equations," Proc. London Math. Soc., vol. 55, iss. 1, pp. 127-131, 1987.
@ARTICLE{Donaldson:1987, mrkey = {0887285},
number = {1},
issn = {0024-6115},
author = {Donaldson, S. K.},
mrclass = {58E20 (32L15 53C05)},
doi = {10.1112/plms/s3-55.1.127},
journal = {Proc. London Math. Soc.},
zblnumber = {0634.53046},
volume = {55},
mrnumber = {0887285},
fjournal = {Proceedings of the London Mathematical Society. Third Series},
mrreviewer = {Mitsuhiro Itoh},
coden = {PLMTAL},
title = {Twisted harmonic maps and the self-duality equations},
year = {1987},
pages = {127--131},
} -
[Dumas:2014wz]
D. Dumas and M. Wolf, "Polynomial cubic differentials and convex polygons in the projective plane," Geom. Funct. Anal., vol. 25, iss. 6, pp. 1734-1798, 2015.
@ARTICLE{Dumas:2014wz, mrkey = {3432157},
number = {6},
issn = {1016-443X},
author = {Dumas, David and Wolf, Michael},
mrclass = {53A15 (30F45 30F60)},
doi = {10.1007/s00039-015-0344-5},
journal = {Geom. Funct. Anal.},
zblnumber = {1335.30013},
volume = {25},
mrnumber = {3432157},
fjournal = {Geometric and Functional Analysis},
mrreviewer = {Huiping Zhang},
title = {Polynomial cubic differentials and convex polygons in the projective plane},
year = {2015},
pages = {1734--1798},
} -
[Fock:2006a]
V. Fock and A. Goncharov, "Moduli spaces of local systems and higher Teichmüller theory," Publ. Math. Inst. Hautes Études Sci., vol. 103, iss. 103, pp. 1-211, 2006.
@ARTICLE{Fock:2006a, mrkey = {2233852},
number = {103},
issn = {0073-8301},
author = {Fock, Vladimir and Goncharov, Alexander},
mrclass = {32G15 (14D22 20F34 57M50)},
doi = {10.1007/s10240-006-0039-4},
journal = {Publ. Math. Inst. Hautes Études Sci.},
volume = {103},
zblnumber = {1099.14025},
mrnumber = {2233852},
fjournal = {Publications Mathématiques. Institut de Hautes Études Scientifiques},
mrreviewer = {William Goldman},
title = {Moduli spaces of local systems and higher {T}eichmüller theory},
year = {2006},
pages = {1--211},
} -
[GarciaPrada:2013be]
O. García-Prada, P. B. Gothen, and I. Mundet i Riera, "Higgs bundles and surface group representations in the real symplectic group," J. Topol., vol. 6, pp. 64-118, 2013.
@ARTICLE{GarciaPrada:2013be, zblnumber = {1303.14043},
volume = {6},
author = {Garc{\'\i}a-Prada, Oscar and Gothen, Peter Band and Mundet~i~Riera, I.},
title = {Higgs bundles and surface group representations in the real symplectic group},
pages = {64--118},
year = {2013},
journal = {J. Topol.},
mrnumber = {3029422},
doi = {10.1112/jtopol/jts030},
} -
[Garcia-Prada:2004]
O. Garc’ia-Prada and I. Mundet i Riera, "Representations of the fundamental group of a closed oriented surface in ${ Sp}(4,{\Bbb R})$," Topology, vol. 43, iss. 4, pp. 831-855, 2004.
@ARTICLE{Garcia-Prada:2004, mrkey = {2061209},
number = {4},
issn = {0040-9383},
author = {Garc{\'ı}a-Prada, Oscar and Mundet~i~Riera, I},
mrclass = {14D20 (32G13 53D30)},
doi = {10.1016/S0040-9383(03)00081-8},
journal = {Topology},
zblnumber = {1070.14014},
volume = {43},
mrnumber = {2061209},
fjournal = {Topology. An International Journal of Mathematics},
coden = {TPLGAF},
title = {Representations of the fundamental group of a closed oriented surface in {${\rm Sp}(4,{\Bbb R})$}},
year = {2004},
pages = {831--855},
} -
[Goldman:1984]
W. M. Goldman, "The symplectic nature of fundamental groups of surfaces," Adv. in Math., vol. 54, iss. 2, pp. 200-225, 1984.
@ARTICLE{Goldman:1984, mrkey = {0762512},
number = {2},
issn = {0001-8708},
author = {Goldman, William M.},
mrclass = {32G15 (57M05)},
doi = {10.1016/0001-8708(84)90040-9},
journal = {Adv. in Math.},
zblnumber = {0574.32032},
volume = {54},
mrnumber = {0762512},
fjournal = {Advances in Mathematics},
mrreviewer = {C. Earle},
coden = {ADMTA4},
title = {The symplectic nature of fundamental groups of surfaces},
year = {1984},
pages = {200--225},
} -
[Choi:1993vr]
S. Choi and W. M. Goldman, "Convex real projective structures on closed surfaces are closed," Proc. Amer. Math. Soc., vol. 118, iss. 2, pp. 657-661, 1993.
@ARTICLE{Choi:1993vr, mrkey = {1145415},
number = {2},
issn = {0002-9939},
author = {Choi, Suhyoung and Goldman, William M.},
mrclass = {57M50 (14P05 53C15 58D27)},
doi = {10.2307/2160352},
journal = {Proc. Amer. Math. Soc.},
zblnumber = {0810.57005},
volume = {118},
mrnumber = {1145415},
fjournal = {Proceedings of the American Mathematical Society},
mrreviewer = {Michael Kapovich},
coden = {PAMYAR},
title = {Convex real projective structures on closed surfaces are closed},
year = {1993},
pages = {657--661},
} -
[Griffiths:1965wc] P. A. Griffiths, "Hermitian differential geometry and the theory of positive and ample holomorphic vector bundles," J. Math. Mech., vol. 14, pp. 117-140, 1965.
@ARTICLE{Griffiths:1965wc, mrkey = {0171289},
author = {Griffiths, Phillip A.},
mrclass = {53.80 (32.50)},
journal = {J. Math. Mech.},
zblnumber = {0134.39703},
volume = {14},
mrnumber = {0171289},
mrreviewer = {R. L. E. Schwarzenberger},
title = {Hermitian differential geometry and the theory of positive and ample holomorphic vector bundles},
year = {1965},
pages = {117--140},
} -
[Guichard:2008cv]
O. Guichard and A. Wienhard, "Convex foliated projective structures and the Hitchin component for ${ PSL}_4({\bf R})$," Duke Math. J., vol. 144, iss. 3, pp. 381-445, 2008.
@ARTICLE{Guichard:2008cv, mrkey = {2444302},
number = {3},
issn = {0012-7094},
author = {Guichard, Olivier and Wienhard, Anna},
mrclass = {53D30 (57M50)},
doi = {10.1215/00127094-2008-040},
journal = {Duke Math. J.},
zblnumber = {1148.57027},
volume = {144},
mrnumber = {2444302},
fjournal = {Duke Mathematical Journal},
mrreviewer = {John C. Loftin},
coden = {DUMJAO},
title = {Convex foliated projective structures and the {H}itchin component for {${\rm PSL}\sb 4({\bf R})$}},
year = {2008},
pages = {381--445},
} -
[Guichard:2012eg]
O. Guichard and A. Wienhard, "Anosov representations: domains of discontinuity and applications," Invent. Math., vol. 190, iss. 2, pp. 357-438, 2012.
@ARTICLE{Guichard:2012eg, mrkey = {2981818},
number = {2},
issn = {0020-9910},
author = {Guichard, Olivier and Wienhard, Anna},
mrclass = {22F30 (32G15 53C30 53D25)},
doi = {10.1007/s00222-012-0382-7},
journal = {Invent. Math.},
zblnumber = {1270.20049},
volume = {190},
mrnumber = {2981818},
fjournal = {Inventiones Mathematicae},
mrreviewer = {Pablo Su{á}rez-Serrato},
coden = {INVMBH},
title = {Anosov representations: domains of discontinuity and applications},
year = {2012},
pages = {357--438},
} -
[Gulliver:1973]
R. D. Gulliver II, R. Osserman, and H. L. Royden, "A theory of branched immersions of surfaces," Amer. J. Math., vol. 95, pp. 750-812, 1973.
@ARTICLE{Gulliver:1973, mrkey = {0362153},
issn = {0002-9327},
author = { Gulliver, II, R. D. and Osserman, R. and Royden, H. L.},
mrclass = {53C40 (49F10)},
doi = {10.2307/2373697},
journal = {Amer. J. Math.},
zblnumber = {0295.53002},
volume = {95},
mrnumber = {0362153},
fjournal = {American Journal of Mathematics},
mrreviewer = {Bang-yen Chen},
title = {A theory of branched immersions of surfaces},
year = {1973},
pages = {750--812},
} -
[Hitchin:1987]
N. Hitchin, "The self-duality equations on a Riemann surface," Proc. London Math. Soc., vol. 55, iss. 1, pp. 59-126, 1987.
@ARTICLE{Hitchin:1987, mrkey = {0887284},
number = {1},
issn = {0024-6115},
author = {Hitchin, NJ},
mrclass = {32G13 (14F05 14H15 32L10 53C05 58E99 81E13)},
doi = {10.1112/plms/s3-55.1.59},
journal = {Proc. London Math. Soc.},
zblnumber = {0634.53045},
volume = {55},
mrnumber = {0887284},
fjournal = {Proceedings of the London Mathematical Society. Third Series},
mrreviewer = {Mitsuhiro Itoh},
coden = {PLMTAL},
title = {The self-duality equations on a {R}iemann surface},
year = {1987},
pages = {59--126},
} -
[Hitchin:1992es]
N. Hitchin, "Lie groups and Teichmüller space," Topology, vol. 31, iss. 3, pp. 449-473, 1992.
@ARTICLE{Hitchin:1992es, mrkey = {1174252},
number = {3},
issn = {0040-9383},
author = {Hitchin, NJ},
mrclass = {32G13 (32G15 57M99 58D27 58E15)},
doi = {10.1016/0040-9383(92)90044-I},
journal = {Topology},
zblnumber = {0769.32008},
volume = {31},
mrnumber = {1174252},
fjournal = {Topology. An International Journal of Mathematics},
mrreviewer = {William Goldman},
title = {Lie groups and {T}eichmüller space},
year = {1992},
pages = {449--473},
} -
[Huang:2012tj]
Z. Huang and B. Wang, "Counting minimal surfaces in quasi-Fuchsian three-manifolds," Trans. Amer. Math. Soc., vol. 367, iss. 9, pp. 6063-6083, 2015.
@ARTICLE{Huang:2012tj, mrkey = {3356929},
number = {9},
issn = {0002-9947},
author = {Huang, Zheng and Wang, Biao},
mrclass = {53A10 (57M05)},
doi = {10.1090/tran/6172},
journal = {Trans. Amer. Math. Soc.},
zblnumber = {1322.53013},
volume = {367},
mrnumber = {3356929},
fjournal = {Transactions of the American Mathematical Society},
mrreviewer = {William W. Menasco},
title = {Counting minimal surfaces in quasi-{F}uchsian three-manifolds},
year = {2015},
pages = {6063--6083},
} -
[Katok:1982jz]
A. Katok, "Entropy and closed geodesics," Ergodic Theory Dynam. Systems, vol. 2, iss. 3-4, pp. 339-365 (1983), 1982.
@ARTICLE{Katok:1982jz, mrkey = {721728},
number = {3-4},
issn = {0143-3857},
author = {Katok, A.},
mrclass = {53C22 (34C25 58F17)},
doi = {10.1017/S0143385700001656},
journal = {Ergodic Theory Dynam. Systems},
zblnumber = {0525.58027},
volume = {2},
mrnumber = {721728},
fjournal = {Ergodic Theory and Dynamical Systems},
mrreviewer = {Werner Ballmann},
title = {Entropy and closed geodesics},
year = {1982},
pages = {339--365 (1983)},
} -
[Kim:2013wc] I. Kim and G. Zhang, Kähler metric on the space of convex real projective structures on surface.
@MISC{Kim:2013wc,
author = {Kim, Inkang and Zhang, Genkai},
note = {to appear in {\em J. Differential Geom.}},
title = {Kähler metric on the space of convex real projective structures on surface},
arxiv = {1312.1965},
} -
[Kobayashi:1987ub]
S. Kobayashi, Differential Geometry of Complex Vector Bundles, Princeton, NJ: Princeton Univ. Press, 1987, vol. 15.
@BOOK{Kobayashi:1987ub, mrkey = {0909698},
author = {Kobayashi, Shoshichi},
mrclass = {53C55 (32-02 32L05 32L10 32L20)},
series = {Publ. Math. Soc. Japan},
isbn = {0-691-08467-X},
address = {Princeton, NJ},
publisher = {Princeton Univ. Press},
doi = {10.1515/9781400858682},
zblnumber = {0708.53002},
volume = {15},
mrnumber = {0909698},
mrreviewer = {Daniel M. Burns, Jr.},
title = {Differential Geometry of Complex Vector Bundles},
year = {1987},
pages = {xii+305},
} -
[Kostant:1959wi]
B. Kostant, "The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group," Amer. J. Math., vol. 81, pp. 973-1032, 1959.
@ARTICLE{Kostant:1959wi, mrkey = {0114875},
issn = {0002-9327},
author = {Kostant, Bertram},
mrclass = {22.00},
doi = {10.2307/2372999},
journal = {Amer. J. Math.},
zblnumber = {0099.25603},
volume = {81},
mrnumber = {0114875},
fjournal = {American Journal of Mathematics},
mrreviewer = {A. J. Coleman},
title = {The principal three-dimensional subgroup and the {B}etti numbers of a complex simple {L}ie group},
year = {1959},
pages = {973--1032},
} -
[Kostant:1963vp]
B. Kostant, "Lie group representations on polynomial rings," Amer. J. Math., vol. 85, pp. 327-404, 1963.
@ARTICLE{Kostant:1963vp, mrkey = {0158024},
issn = {0002-9327},
author = {Kostant, Bertram},
mrclass = {22.60 (20.80)},
doi = {10.2307/2373130},
journal = {Amer. J. Math.},
zblnumber = {0124.26802},
volume = {85},
mrnumber = {0158024},
fjournal = {American Journal of Mathematics},
mrreviewer = {J. L. Koszul},
title = {Lie group representations on polynomial rings},
year = {1963},
pages = {327--404},
} -
[Labourie:2006]
F. Labourie, "Anosov flows, surface groups and curves in projective space," Invent. Math., vol. 165, iss. 1, pp. 51-114, 2006.
@ARTICLE{Labourie:2006, mrkey = {2221137},
number = {1},
issn = {0020-9910},
author = {Labourie, Fran{ç}ois},
mrclass = {20F65 (37D20 37F30)},
doi = {10.1007/s00222-005-0487-3},
journal = {Invent. Math.},
zblnumber = {1103.32007},
volume = {165},
mrnumber = {2221137},
fjournal = {Inventiones Mathematicae},
mrreviewer = {Richard Kenyon},
coden = {INVMBH},
title = {Anosov flows, surface groups and curves in projective space},
year = {2006},
pages = {51--114},
} -
[Labourie:2006b]
F. Labourie, "Flat projective structures on surfaces and cubic holomorphic differentials," Pure Appl. Math. Q., vol. 3, iss. 4, part 1, pp. 1057-1099, 2007.
@ARTICLE{Labourie:2006b, mrkey = {2402597},
number = {4, part 1},
issn = {1558-8599},
author = {Labourie, Fran{ç}ois},
mrclass = {53C20 (53A15 53C56 57M50)},
doi = {10.4310/PAMQ.2007.v3.n4.a10},
journal = {Pure Appl. Math. Q.},
zblnumber = {1158.32006},
volume = {3},
mrnumber = {2402597},
fjournal = {Pure and Applied Mathematics Quarterly},
mrreviewer = {John C. Loftin},
title = {Flat projective structures on surfaces and cubic holomorphic differentials},
year = {2007},
pages = {1057--1099},
} -
[Labourie:2005a] F. Labourie, "Cross ratios, Anosov representations and the energy functional on Teichmüller space," Ann. Sci. Éc. Norm. Supér., vol. 41, pp. 439-471, 2008.
@ARTICLE{Labourie:2005a, zblnumber = {1160.37021},
author = {Labourie, Fran{ç}ois},
title = {Cross ratios, {A}nosov representations and the energy functional on {T}eichm{ü}ller space},
pages = {439--471},
journal = {Ann. Sci. Éc. Norm. Sup{é}r.},
volume = {41},
year = {2008},
mrnumber = {2482204},
} -
[Labourie:2015wz] F. cois Labourie and R. Wentworth, Variations along the Fuchsian locus, 2015.
@MISC{Labourie:2015wz,
author = {Labourie, Fran{\c c}ois and Wentworth, Richard},
title = {Variations along the {F}uchsian locus},
year = {2015},
arxiv = {1506.01686},
} -
[Li:2013to]
Q. Li, "Teichmüller space is totally geodesic in Goldman space," Asian J. Math., vol. 20, iss. 1, pp. 21-46, 2016.
@ARTICLE{Li:2013to, mrkey = {3460757},
number = {1},
issn = {1093-6106},
author = {Li, Qiongling},
mrclass = {57N16 (58B20)},
doi = {10.4310/AJM.2016.v20.n1.a2},
journal = {Asian J. Math.},
zblnumber = {1338.57019},
volume = {20},
mrnumber = {3460757},
fjournal = {Asian Journal of Mathematics},
title = {Teichmüller space is totally geodesic in {G}oldman space},
year = {2016},
pages = {21--46},
} -
[Loftin:2001]
J. C. Loftin, "Affine spheres and convex $\Bbb{RP}^n$-manifolds," Amer. J. Math., vol. 123, iss. 2, pp. 255-274, 2001.
@ARTICLE{Loftin:2001, mrkey = {1828223},
number = {2},
issn = {0002-9327},
author = {Loftin, John C.},
mrclass = {53A15 (53C05 57N16)},
journal = {Amer. J. Math.},
doi = {10.1353/ajm.2001.0011},
zblnumber = {0997.53010},
volume = {123},
mrnumber = {1828223},
fjournal = {American Journal of Mathematics},
mrreviewer = {William Goldman},
coden = {AJMAAN},
title = {Affine spheres and convex {$\Bbb{RP}\sp n$}-manifolds},
year = {2001},
pages = {255--274},
} -
[Potrie:2014ut] R. Potrie and A. Sambarino, Eigenvalues and entropy of a Hitchin representation, 2014.
@MISC{Potrie:2014ut,
author = {Potrie, Rafael and Sambarino, Andres},
title = {Eigenvalues and entropy of a {H}itchin representation},
year = {2014},
arxiv={1411.5404},
} -
[Sacks:1981]
J. Sacks and K. Uhlenbeck, "The existence of minimal immersions of $2$-spheres," Ann. of Math., vol. 113, iss. 1, pp. 1-24, 1981.
@ARTICLE{Sacks:1981, mrkey = {0604040},
number = {1},
issn = {0003-486X},
author = {Sacks, J. and Uhlenbeck, K.},
mrclass = {58E12 (53C42 58E20)},
doi = {10.2307/1971131},
journal = {Ann. of Math.},
zblnumber = {0462.58014},
volume = {113},
mrnumber = {0604040},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {John C. Wood},
coden = {ANMAAH},
title = {The existence of minimal immersions of {$2$}-spheres},
year = {1981},
pages = {1--24},
} -
[Sacks:1982]
J. Sacks and K. Uhlenbeck, "Minimal immersions of closed Riemann surfaces," Trans. Amer. Math. Soc., vol. 271, iss. 2, pp. 639-652, 1982.
@ARTICLE{Sacks:1982, mrkey = {0654854},
number = {2},
issn = {0002-9947},
author = {Sacks, J. and Uhlenbeck, K.},
mrclass = {58E12 (53A10 53C42 58E20)},
doi = {10.2307/1998902},
journal = {Trans. Amer. Math. Soc.},
zblnumber = {0527.58008},
volume = {271},
mrnumber = {0654854},
fjournal = {Transactions of the American Mathematical Society},
mrreviewer = {R. Osserman},
coden = {TAMTAM},
title = {Minimal immersions of closed {R}iemann surfaces},
year = {1982},
pages = {639--652},
} -
[Sanders:2014vb] A. Sanders, Hitchin harmonic maps are immersions, 2014.
@MISC{Sanders:2014vb,
author = {Sanders, Andrew},
title = {Hitchin harmonic maps are immersions},
year = {2014},
arxiv = {1407.4513},
} -
[Schoen:1993td] R. M. Schoen, "The role of harmonic mappings in rigidity and deformation problems," in Complex Geometry, Dekker, New York, 1993, pp. 179-200.
@INCOLLECTION{Schoen:1993td, mrkey = {1201611},
number = {143},
author = {Schoen, Richard M.},
mrclass = {58E20 (32C17 53C21)},
series = {Lecture Notes in Pure and Appl. Math.},
publisher = {Dekker, New York},
zblnumber = {0806.58013},
mrnumber = {1201611},
booktitle = {Complex Geometry},
VENUE={{O}saka, 1990},
title = {The role of harmonic mappings in rigidity and deformation problems},
pages = {179--200},
year = {1993},
} -
[Schoen:1979]
R. M. Schoen and S. T. Yau, "Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature," Ann. of Math., vol. 110, iss. 1, pp. 127-142, 1979.
@ARTICLE{Schoen:1979, mrkey = {541332},
number = {1},
issn = {0003-486X},
author = {Schoen, Richard M. and Yau, Shing Tung},
mrclass = {58E12 (49F10 53C42)},
doi = {10.2307/1971247},
journal = {Ann. of Math.},
zblnumber = {0431.53051},
volume = {110},
mrnumber = {541332},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {Jonathan Sacks},
coden = {ANMAAH},
title = {Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature},
year = {1979},
pages = {127--142},
} -
[Simpson:1988ch]
C. T. Simpson, "Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization," J. Amer. Math. Soc., vol. 1, iss. 4, pp. 867-918, 1988.
@ARTICLE{Simpson:1988ch, mrkey = {0944577},
number = {4},
issn = {0894-0347},
author = {Simpson, Carlos T.},
mrclass = {58E15 (32L15 53C25 53C55)},
doi = {10.2307/1990994},
journal = {J. Amer. Math. Soc.},
zblnumber = {0669.58008},
volume = {1},
mrnumber = {0944577},
fjournal = {Journal of the American Mathematical Society},
title = {Constructing variations of {H}odge structure using {Y}ang-{M}ills theory and applications to uniformization},
year = {1988},
pages = {867--918},
} -
[Wolf:1989uk]
M. Wolf, "The Teichmüller theory of harmonic maps," J. Differential Geom., vol. 29, iss. 2, pp. 449-479, 1989.
@ARTICLE{Wolf:1989uk, mrkey = {0982185},
number = {2},
issn = {0022-040X},
author = {Wolf, Michael},
mrclass = {58E20 (32G15 58D17)},
url = {http://projecteuclid.org/euclid.jdg/1214442885},
journal = {J. Differential Geom.},
zblnumber = {0655.58009},
volume = {29},
mrnumber = {0982185},
fjournal = {Journal of Differential Geometry},
mrreviewer = {A. J. Tromba},
coden = {JDGEAS},
title = {The {T}eichmüller theory of harmonic maps},
year = {1989},
pages = {449--479},
} -
[Wolpert:1986ie]
S. A. Wolpert, "Chern forms and the Riemann tensor for the moduli space of curves," Invent. Math., vol. 85, iss. 1, pp. 119-145, 1986.
@ARTICLE{Wolpert:1986ie, mrkey = {0842050},
number = {1},
issn = {0020-9910},
author = {Wolpert, Scott A.},
mrclass = {32G15 (14H15 53C20)},
doi = {10.1007/BF01388794},
journal = {Invent. Math.},
zblnumber = {0595.32031},
volume = {85},
mrnumber = {0842050},
fjournal = {Inventiones Mathematicae},
mrreviewer = {C. Earle},
coden = {INVMBH},
title = {Chern forms and the {R}iemann tensor for the moduli space of curves},
year = {1986},
pages = {119--145},
}