Small scale creation for solutions of the incompressible two-dimensional Euler equation

Abstract

We construct an initial data for the two-dimensional Euler equation in a disk for which the gradient of vorticity exhibits double exponential growth in time for all times. This estimate is known to be sharp — the double exponential growth is the fastest possible growth rate.

  • [Wolibner] Go to document W. Wolibner, "Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long," Math. Z., vol. 37, iss. 1, pp. 698-726, 1933.
    @article{Wolibner,
      author = {Wolibner, W.},
      journal = {Math. Z.},
      number = {1},
      pages = {698--726},
      title = {Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long},
      volume = {37},
      year = {1933},
      doi = {10.1007/BF01474610},
      issn = {0025-5874},
      }
  • [Holder] Go to document E. Hölder, "Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit," Math. Z., vol. 37, iss. 1, pp. 727-738, 1933.
    @article{Holder,
      author = {H{ö}lder, Ernst},
      journal = {Math. Z.},
      number = {1},
      pages = {727--738},
      title = {Über die unbeschränkte {F}ortsetzbarkeit einer stetigen ebenen {B}ewegung in einer unbegrenzten inkompressiblen {F}lüssigkeit},
      volume = {37},
      year = {1933},
      doi = {10.1007/BF01474611},
      issn = {0025-5874},
      }
  • [Kato2] Go to document T. Kato, "On classical solutions of the two-dimensional non-stationary Euler equation," Arch. Rational Mech. Anal., vol. 25, pp. 188-200, 1967.
    @article{Kato2,
      author = {Kato, Tosio},
      journal = {Arch. Rational Mech. Anal.},
      pages = {188--200},
      title = {On classical solutions of the two-dimensional non-stationary {E}uler equation},
      volume = {25},
      year = {1967},
      doi = {10.1007/BF00251588},
      issn = {0003-9527},
      }
  • [Koch] Go to document H. Koch, "Transport and instability for perfect fluids," Math. Ann., vol. 323, iss. 3, pp. 491-523, 2002.
    @article{Koch,
      author = {Koch, Herbert},
      journal = {Math. Ann.},
      number = {3},
      pages = {491--523},
      title = {Transport and instability for perfect fluids},
      volume = {323},
      year = {2002},
      doi = {10.1007/s002080200312},
      issn = {0025-5831},
      }
  • [MP] Go to document C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, New York: Springer-Verlag, 1994, vol. 96.
    @book{MP, address = {New York},
      author = {Marchioro, Carlo and Pulvirenti, Mario},
      pages = {xii+283},
      publisher = {Springer-Verlag},
      series = {Appl. Math. Sci.},
      title = {Mathematical Theory of Incompressible Nonviscous Fluids},
      volume = {96},
      year = {1994},
      doi = {10.1007/978-1-4612-4284-0},
      isbn = {0-387-94044-8},
      }
  • [Chemin] J. Chemin, Perfect Incompressible Fluids, New York: The Clarendon Press, Oxford University Press, 1998, vol. 14.
    @book{Chemin, address = {New York},
      author = {Chemin, Jean-Yves},
      pages = {x+187},
      publisher = {The Clarendon Press, Oxford University Press},
      series = {Oxford Lecture Ser. Math. Appl.},
      title = {Perfect Incompressible Fluids},
      volume = {14},
      year = {1998},
      isbn = {0-19-850397-0},
      }
  • [YudDE] V. I. Yudovich, "The flow of a perfect, incompressible liquid through a given region," Soviet Phys. Dokl., vol. 7, pp. 789-791, 1962.
    @article{YudDE,
      author = {Yudovich, V. I.},
      journal = {Soviet Phys. Dokl.},
      pages = {789--791},
      title = {The flow of a perfect, incompressible liquid through a given region},
      volume = {7},
      year = {1962},
      issn = {0038-5689},
      }
  • [Jud1] V. I. Judovivc, "The loss of smoothness of the solutions of Euler equations with time," Dinamika Sploshn. Sredy, vol. 16, pp. 71-78, 121, 1974.
    @article{Jud1,
      author = {Judovi{\v{c}},
      V. I.},
      journal = {Dinamika Sploshn. Sredy},
      pages = {71--78, 121},
      title = {The loss of smoothness of the solutions of {E}uler equations with time},
      volume = {16},
      year = {1974},
      }
  • [Yud2] Go to document V. I. Yudovich, "On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid," Chaos, vol. 10, iss. 3, pp. 705-719, 2000.
    @article{Yud2,
      author = {Yudovich, V. I.},
      journal = {Chaos},
      number = {3},
      pages = {705--719},
      title = {On the loss of smoothness of the solutions of the {E}uler equations and the inherent instability of flows of an ideal fluid},
      volume = {10},
      year = {2000},
      doi = {10.1063/1.1287066},
      issn = {1054-1500},
      }
  • [MSY] Go to document A. Morgulis, A. Shnirelman, and V. Yudovich, "Loss of smoothness and inherent instability of 2D inviscid fluid flows," Comm. Partial Differential Equations, vol. 33, iss. 4-6, pp. 943-968, 2008.
    @article{MSY,
      author = {Morgulis, Andrey and Shnirelman, Alexander and Yudovich, Victor},
      journal = {Comm. Partial Differential Equations},
      number = {4-6},
      pages = {943--968},
      title = {Loss of smoothness and inherent instability of 2{D} inviscid fluid flows},
      volume = {33},
      year = {2008},
      doi = {10.1080/03605300802108016},
      issn = {0360-5302},
      }
  • [Nad1] Go to document N. S. Nadirashvili, "Wandering solutions of the two-dimensional Euler equation," Funktsional. Anal. i Prilozhen., vol. 25, iss. 3, pp. 70-71, 1991.
    @article{Nad1,
      author = {Nadirashvili, N. S.},
      journal = {Funktsional. Anal. i Prilozhen.},
      note = {translation in \emph{Funct. Anal. Appl.} {\bf 25} (1992), 220--221},
      number = {3},
      pages = {70--71},
      title = {Wandering solutions of the two-dimensional {E}uler equation},
      volume = {25},
      year = {1991},
      doi = {10.1007/BF01085491},
      issn = {0374-1990},
      }
  • [BC] Go to document H. Bahouri and J. -Y. Chemin, "Equations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides," Arch. Rational Mech. Anal., vol. 127, iss. 2, pp. 159-181, 1994.
    @article{BC,
      author = {Bahouri, H. and Chemin, J.-Y.},
      journal = {Arch. Rational Mech. Anal.},
      number = {2},
      pages = {159--181},
      title = {Equations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides},
      volume = {127},
      year = {1994},
      doi = {10.1007/BF00377659},
      issn = {0003-9527},
      }
  • [Den1] Go to document S. A. Denisov, "Infinite superlinear growth of the gradient for the two-dimensional Euler equation," Discrete Contin. Dyn. Syst., vol. 23, iss. 3, pp. 755-764, 2009.
    @article{Den1,
      author = {Denisov, Sergey A.},
      journal = {Discrete Contin. Dyn. Syst.},
      number = {3},
      pages = {755--764},
      title = {Infinite superlinear growth of the gradient for the two-dimensional {E}uler equation},
      volume = {23},
      year = {2009},
      doi = {10.3934/dcds.2009.23.755},
      issn = {1078-0947},
      }
  • [Den2] S. A. Denisov, Double exponential growth of the vorticity gradient for the two-dimensional Euler equation.
    @misc{Den2,
      author = {Denisov, Sergey A.},
      note = {to appear in \emph{Proc. Amer. Math. Soc.}},
      title = {Double exponential growth of the vorticity gradient for the two-dimensional {E}uler equation},
      }
  • [Den3] S. A. Denisov, The sharp corner formation in 2D Euler dynamics of patches: infinite double exponential rate of merging.
    @misc{Den3,
      author = {Denisov, Sergey A.},
      title = {The sharp corner formation in 2{D} {E}uler dynamics of patches: infinite double exponential rate of merging},
      }
  • [Tao] Go to document T. Tao, Why global regularity for Navier-Stokes is hard.
    @misc{Tao,
      author = {Tao, T.},
      note = {post by {N}ets {K}atz on 20 March, 2007 at 12:21 am and the following thread},
      title = {Why global regularity for {N}avier-{S}tokes is hard},
      url = {http://terrytao.wordpress.com/2007/03/18/ why-global-regularity-for-navier-stokes-is-hard/},
      }
  • [Kato] Go to document T. Kato, "Remarks on the Euler and Navier-Stokes equations in ${\bf R}^2$," in Nonlinear Functional Analysis and its Applications, Part 2, Providence, RI: Amer. Math. Soc., 1986, vol. 45, pp. 1-7.
    @incollection{Kato, address = {Providence, RI},
      author = {Kato, Tosio},
      booktitle = {Nonlinear Functional Analysis and its Applications, {P}art 2},
      pages = {1--7},
      publisher = {Amer. Math. Soc.},
      series = {Proc. Sympos. Pure Math.},
      title = {Remarks on the {E}uler and {N}avier-{S}tokes equations in {${\bf R}\sp 2$}},
      volume = {45},
      year = {1986},
      doi = {10.1090/pspum/045.2},
      }
  • [BKM] Go to document J. T. Beale, T. Kato, and A. Majda, "Remarks on the breakdown of smooth solutions for the $3$-D Euler equations," Comm. Math. Phys., vol. 94, iss. 1, pp. 61-66, 1984.
    @article{BKM,
      author = {Beale, J. T. and Kato, T. and Majda, A.},
      journal = {Comm. Math. Phys.},
      number = {1},
      pages = {61--66},
      title = {Remarks on the breakdown of smooth solutions for the {$3$}-{D} {E}uler equations},
      volume = {94},
      year = {1984},
      doi = {10.1007/BF01212349},
      issn = {0010-3616},
      }
  • [MB] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Univ. Press, Cambridge, 2002, vol. 27.
    @book{MB,
      author = {Majda, Andrew J. and Bertozzi, Andrea L.},
      pages = {xii+545},
      publisher = {Cambridge Univ. Press, Cambridge},
      series = {Cambridge Texts Appl. Math.},
      title = {Vorticity and Incompressible Flow},
      volume = {27},
      year = {2002},
      isbn = {0-521-63057-6; 0-521-63948-4},
      }
  • [Evans] L. C. Evans, Partial Differential Equations, Amer. Math. Soc., 1998, vol. 19.
    @book{Evans,
      author = {Evans, Lawrence C.},
      pages = {xviii+662},
      publisher = {Amer. Math. Soc.},
      series = {Grad. Stud. Math.},
      title = {Partial Differential Equations},
      volume = {19},
      year = {1998},
      isbn = {0-8218-0772-2},
      }
  • [GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, New York: Springer-Verlag, 2001.
    @book{GT, address = {New York},
      author = {Gilbarg, David and Trudinger, Neil S.},
      pages = {xiv+517},
      publisher = {Springer-Verlag},
      series = {Classics in Math.},
      title = {Elliptic Partial Differential Equations of Second Order},
      year = {2001},
      isbn = {3-540-41160-7},
      }
  • [Miller1990] Go to document J. Miller, "Statistical mechanics of Euler equations in two dimensions," Phys. Rev. Lett., vol. 65, iss. 17, pp. 2137-2140, 1990.
    @article{Miller1990,
      author = {Miller, Jonathan},
      journal = {Phys. Rev. Lett.},
      number = {17},
      pages = {2137--2140},
      title = {Statistical mechanics of {E}uler equations in two dimensions},
      volume = {65},
      year = {1990},
      doi = {10.1103/PhysRevLett.65.2137},
      issn = {0031-9007},
      }
  • [Robert1991] Go to document R. Robert, "A maximum-entropy principle for two-dimensional perfect fluid dynamics," J. Statist. Phys., vol. 65, iss. 3-4, pp. 531-553, 1991.
    @article{Robert1991,
      author = {Robert, Raoul},
      journal = {J. Statist. Phys.},
      number = {3-4},
      pages = {531--553},
      title = {A maximum-entropy principle for two-dimensional perfect fluid dynamics},
      volume = {65},
      year = {1991},
      doi = {10.1007/BF01053743},
      issn = {0022-4715},
      }
  • [Shnirelman1993] A. I. Shnirelman, "Lattice theory and flows of ideal incompressible fluid," Russian J. Math. Phys., vol. 1, iss. 1, pp. 105-114, 1993.
    @article{Shnirelman1993,
      author = {Shnirelman, Alexander I.},
      journal = {Russian J. Math. Phys.},
      number = {1},
      pages = {105--114},
      title = {Lattice theory and flows of ideal incompressible fluid},
      volume = {1},
      year = {1993},
      issn = {1061-9208},
      }
  • [MW2006] Go to document A. J. Majda and X. Wang, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge: Cambridge Univ. Press, 2006.
    @book{MW2006, address = {Cambridge},
      author = {Majda, Andrew J. and Wang, Xiaoming},
      pages = {xii+551},
      publisher = {Cambridge Univ. Press},
      title = {Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows},
      year = {2006},
      doi = {10.1017/CBO9780511616778},
      isbn = {978-0-521-83441-4; 0-521-83441-4},
      }
  • [HouLuo] T. Hou and G. Luo, Potentially singular solutions of the 3D incompressible Euler equations.
    @misc{HouLuo,
      author = {Hou, T. and Luo, G.},
      title = {Potentially singular solutions of the 3{D} incompressible {E}uler equations},
      }

Authors

Alexander Kiselev

Rice University, Houston, TX

Vladimir Šverák

University of Minnesota, Minneapolis, MN