Calabi flow, geodesic rays, and uniqueness of constant scalar curvature Kähler metrics

Abstract

We prove that constant scalar curvature Kähler metric “adjacent” to a fixed Kähler class is unique up to isomorphism. The proof is based on the study of a fourth order evolution equation, namely, the Calabi flow, from a new geometric perspective, and on the geometry of the space of Kähler metrics.

  • [D1] S. K. Donaldson, "Remarks on gauge theory, complex geometry and $4$-manifold topology," in Fields Medallists’ Lectures, River Edge, NJ: World Sci. Publ., 1997, vol. 5, pp. 384-403.
    @incollection{D1, address = {River Edge, NJ},
      author = {Donaldson, Simon K.},
      booktitle = {Fields {M}edallists' Lectures},
      pages = {384--403},
      publisher = {World Sci. Publ.},
      series = {World Sci. Ser. 20th Century Math.},
      title = {Remarks on gauge theory, complex geometry and {$4$}-manifold topology},
      volume = {5},
      year = {1997},
      }
  • [Fu] A. Fujiki, "Moduli space of polarized algebraic manifolds and Kähler metrics [translation of Sûgaku 42 (1990), no. 3, 231–243; \mr1073369]," Sugaku Expositions, vol. 5, iss. 2, pp. 173-191, 1992.
    @article{Fu,
      author = {Fujiki, Akira},
      journal = {Sugaku Expositions},
      number = {2},
      pages = {173--191},
      title = {Moduli space of polarized algebraic manifolds and {K}ähler metrics [translation of {S}ûgaku {\bf 42} (1990), no. 3, 231--243; \mr{1073369}]},
      volume = {5},
      year = {1992},
      issn = {0898-9583},
      }
  • [Th] Go to document R. P. Thomas, "Notes on GIT and symplectic reduction for bundles and varieties," in Surveys in Differential Geometry. Vol. X, Somerville, MA: Int. Press, 2006, vol. 10, pp. 221-273.
    @incollection{Th, address = {Somerville, MA},
      author = {Thomas, R. P.},
      booktitle = {Surveys in Differential Geometry. {V}ol. {X}},
      pages = {221--273},
      publisher = {Int. Press},
      series = {Surv. Differ. Geom.},
      title = {Notes on {GIT} and symplectic reduction for bundles and varieties},
      volume = {10},
      year = {2006},
      doi = {10.4310/SDG.2005.v10.n1.a7},
      }
  • [Ti1] Go to document G. Tian, "Kähler-Einstein metrics with positive scalar curvature," Invent. Math., vol. 130, iss. 1, pp. 1-37, 1997.
    @article{Ti1,
      author = {Tian, Gang},
      journal = {Invent. Math.},
      number = {1},
      pages = {1--37},
      title = {Kähler-{E}instein metrics with positive scalar curvature},
      volume = {130},
      year = {1997},
      doi = {10.1007/s002220050176},
      issn = {0020-9910},
      }
  • [D5] S. K. Donaldson, "Conjectures in Kähler geometry," in Strings and Geometry, Providence, RI: Amer. Math. Soc., 2004, vol. 3, pp. 71-78.
    @incollection{D5, address = {Providence, RI},
      author = {Donaldson, Simon K.},
      booktitle = {Strings and Geometry},
      pages = {71--78},
      publisher = {Amer. Math. Soc.},
      series = {Clay Math. Proc.},
      title = {Conjectures in {K}ähler geometry},
      volume = {3},
      year = {2004},
      }
  • [RT] Go to document J. Ross and R. Thomas, "A study of the Hilbert-Mumford criterion for the stability of projective varieties," J. Algebraic Geom., vol. 16, iss. 2, pp. 201-255, 2007.
    @article{RT,
      author = {Ross, Julius and Thomas, Richard},
      journal = {J. Algebraic Geom.},
      number = {2},
      pages = {201--255},
      title = {A study of the {H}ilbert-{M}umford criterion for the stability of projective varieties},
      volume = {16},
      year = {2007},
      doi = {10.1090/S1056-3911-06-00461-9},
      issn = {1056-3911},
      }
  • [Pa] Go to document S. T. Paul, "Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics," Ann. of Math., vol. 175, iss. 1, pp. 255-296, 2012.
    @article{Pa,
      author = {Paul, Sean Timothy},
      journal = {Ann. of Math.},
      number = {1},
      pages = {255--296},
      title = {Hyperdiscriminant polytopes, {C}how polytopes, and {M}abuchi energy asymptotics},
      volume = {175},
      year = {2012},
      doi = {10.4007/annals.2012.175.1.7},
      issn = {0003-486X},
      }
  • [D6] Go to document S. K. Donaldson, "Constant scalar curvature metrics on toric surfaces," Geom. Funct. Anal., vol. 19, iss. 1, pp. 83-136, 2009.
    @article{D6,
      author = {Donaldson, Simon K.},
      journal = {Geom. Funct. Anal.},
      number = {1},
      pages = {83--136},
      title = {Constant scalar curvature metrics on toric surfaces},
      volume = {19},
      year = {2009},
      doi = {10.1007/s00039-009-0714-y},
      issn = {1016-443X},
      }
  • [D3] Go to document S. K. Donaldson, "Scalar curvature and projective embeddings. I," J. Differential Geom., vol. 59, iss. 3, pp. 479-522, 2001.
    @article{D3,
      author = {Donaldson, Simon K.},
      journal = {J. Differential Geom.},
      number = {3},
      pages = {479--522},
      title = {Scalar curvature and projective embeddings. {I}},
      volume = {59},
      year = {2001},
      issn = {0022-040X},
      url = {http://projecteuclid.org/euclid.jdg/1090349449},
      }
  • [CT] Go to document X. Chen and G. Tian, "Geometry of Kähler metrics and foliations by holomorphic discs," Publ. Math. IHES, vol. 107, pp. 1-107, 2008.
    @article{CT,
      author = {Chen, X. and Tian, G.},
      journal = {Publ. Math. IHES},
      pages = {1--107},
      title = {Geometry of {K}ähler metrics and foliations by holomorphic discs},
      volume = {107},
      year = {2008},
      doi = {10.1007/s10240-008-0013-4},
      }
  • [BM] S. Bando and T. Mabuchi, "Uniqueness of Einstein Kähler metrics modulo connected group actions," in Algebraic Geometry, Sendai, 1985, Amsterdam: North-Holland, 1987, vol. 10, pp. 11-40.
    @incollection{BM, address = {Amsterdam},
      author = {Bando, Shigetoshi and Mabuchi, Toshiki},
      booktitle = {Algebraic Geometry, {S}endai, 1985},
      pages = {11--40},
      publisher = {North-Holland},
      series = {Adv. Stud. Pure Math.},
      title = {Uniqueness of {E}instein {K}ähler metrics modulo connected group actions},
      volume = {10},
      year = {1987},
      }
  • [TZ1] Go to document G. Tian and X. Zhu, "A new holomorphic invariant and uniqueness of Kähler-Ricci solitons," Comment. Math. Helv., vol. 77, iss. 2, pp. 297-325, 2002.
    @article{TZ1,
      author = {Tian, Gang and Zhu, Xiaohua},
      journal = {Comment. Math. Helv.},
      number = {2},
      pages = {297--325},
      title = {A new holomorphic invariant and uniqueness of {K}ähler-{R}icci solitons},
      volume = {77},
      year = {2002},
      doi = {10.1007/s00014-002-8341-3},
      issn = {0010-2571},
      }
  • [Ch1] Go to document X. Chen, "The space of Kähler metrics," J. Differential Geom., vol. 56, iss. 2, pp. 189-234, 2000.
    @article{Ch1,
      author = {Chen, X.},
      journal = {J. Differential Geom.},
      number = {2},
      pages = {189--234},
      title = {The space of {K}ähler metrics},
      volume = {56},
      year = {2000},
      issn = {0022-040X},
      url = {http://projecteuclid.org/euclid.jdg/1090347643},
      }
  • [Ti2] G. Tian, "Extremal metrics and geometric stability," Houston J. Math., vol. 28, iss. 2, pp. 411-432, 2002.
    @article{Ti2,
      author = {Tian, Gang},
      journal = {Houston J. Math.},
      note = {special issue for S. S. Chern},
      number = {2},
      pages = {411--432},
      title = {Extremal metrics and geometric stability},
      volume = {28},
      year = {2002},
      issn = {0362-1588},
      }
  • [M1] Go to document T. Mabuchi, "Some symplectic geometry on compact Kähler manifolds. I," Osaka J. Math., vol. 24, iss. 2, pp. 227-252, 1987.
    @article{M1,
      author = {Mabuchi, Toshiki},
      journal = {Osaka J. Math.},
      number = {2},
      pages = {227--252},
      title = {Some symplectic geometry on compact {K}ähler manifolds. {I}},
      volume = {24},
      year = {1987},
      issn = {0030-6126},
      url = {http://projecteuclid.org/euclid.ojm/1200780161},
      }
  • [Se] Go to document S. Semmes, "Complex Monge-Ampère and symplectic manifolds," Amer. J. Math., vol. 114, iss. 3, pp. 495-550, 1992.
    @article{Se,
      author = {Semmes, Stephen},
      journal = {Amer. J. Math.},
      number = {3},
      pages = {495--550},
      title = {Complex {M}onge-{A}mpère and symplectic manifolds},
      volume = {114},
      year = {1992},
      doi = {10.2307/2374768},
      issn = {0002-9327},
      }
  • [D2] S. K. Donaldson, "Symmetric spaces, Kähler geometry and Hamiltonian dynamics," in Northern California Symplectic Geometry Seminar, Providence, RI: Amer. Math. Soc., 1999, vol. 196, pp. 13-33.
    @incollection{D2, address = {Providence, RI},
      author = {Donaldson, Simon K.},
      booktitle = {Northern {C}alifornia {S}ymplectic {G}eometry {S}eminar},
      pages = {13--33},
      publisher = {Amer. Math. Soc.},
      series = {Amer. Math. Soc. Transl. Ser. 2},
      title = {Symmetric spaces, {K}ähler geometry and {H}amiltonian dynamics},
      volume = {196},
      year = {1999},
      }
  • [CC] Go to document E. Calabi and X. Chen, "The space of Kähler metrics II," J. Differential Geom., vol. 61, iss. 2, pp. 173-193, 2002.
    @article{CC,
      author = {Calabi, E. and Chen, X.},
      journal = {J. Differential Geom.},
      number = {2},
      pages = {173--193},
      title = {The space of {K}ähler metrics {II}},
      volume = {61},
      year = {2002},
      issn = {0022-040X},
      url = {http://projecteuclid.org/euclid.jdg/1090351383},
      }
  • [Ch3] Go to document X. Chen, "Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance," Invent. Math., vol. 175, iss. 3, pp. 453-503, 2009.
    @article{Ch3,
      author = {Chen, X.},
      journal = {Invent. Math.},
      number = {3},
      pages = {453--503},
      title = {Space of {K}ähler metrics. {III}. {O}n the lower bound of the {C}alabi energy and geodesic distance},
      volume = {175},
      year = {2009},
      doi = {10.1007/s00222-008-0153-7},
      issn = {0020-9910},
      }
  • [Ch2] Go to document X. Chen, "On the lower bound of the Mabuchi energy and its application," Internat. Math. Res. Notices, iss. 12, pp. 607-623, 2000.
    @article{Ch2,
      author = {Chen, X.},
      journal = {Internat. Math. Res. Notices},
      number = {12},
      pages = {607--623},
      title = {On the lower bound of the {M}abuchi energy and its application},
      year = {2000},
      doi = {10.1155/S1073792800000337},
      issn = {1073-7928},
      }
  • [CS] Go to document X. Chen and S. Sun, "Space of Kähler metrics (V) — Kähler quantization," in Metric and Differential Geometry. The Jeff Cheeger Volume, Boston: Birkhäuer, 2012, vol. 297, pp. 19-41.
    @incollection{CS, address = {Boston},
      author = {Chen, X. and Sun, S.},
      booktitle = {Metric and Differential Geometry. The Jeff Cheeger Volume},
      pages = {19--41},
      publisher = {Birkhäuer},
      series = {Progr. Math.},
      title = {Space of {K}ähler metrics {(V)} --- {K}ähler quantization},
      volume = {297},
      year = {2012},
      doi = {10.1007/978-3-0348-0257-4_2},
      }
  • [Be] B. Berndtsson, Probability measures related to geodesics in the space of Kähler metrics.
    @misc{Be,
      author = {Berndtsson, B.},
      title = {Probability measures related to geodesics in the space of {K}ähler metrics},
      }
  • [DK] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, New York: The Clarendon Press, Oxford University Press, 1990.
    @book{DK, address = {New York},
      author = {Donaldson, Simon K. and Kronheimer, P. B.},
      pages = {x+440},
      publisher = {The Clarendon Press, Oxford University Press},
      series = {Oxford Math. Monogr.},
      title = {The Geometry of Four-Manifolds},
      year = {1990},
      isbn = {0-19-853553-8},
      }
  • [Le] E. Lerman, "Gradient flow of the norm squared of a moment map," Enseign. Math., vol. 51, iss. 1-2, pp. 117-127, 2005.
    @article{Le,
      author = {Lerman, Eugene},
      journal = {Enseign. Math.},
      number = {1-2},
      pages = {117--127},
      title = {Gradient flow of the norm squared of a moment map},
      volume = {51},
      year = {2005},
      issn = {0013-8584},
      }
  • [Ke] Go to document G. R. Kempf, "Instability in invariant theory," Ann. of Math., vol. 108, iss. 2, pp. 299-316, 1978.
    @article{Ke,
      author = {Kempf, George R.},
      journal = {Ann. of Math.},
      number = {2},
      pages = {299--316},
      title = {Instability in invariant theory},
      volume = {108},
      year = {1978},
      doi = {10.2307/1971168},
      issn = {0003-486X},
      }
  • [Ne] Go to document L. Ness, "A stratification of the null cone via the moment map," Amer. J. Math., vol. 106, iss. 6, pp. 1281-1329, 1984.
    @article{Ne,
      author = {Ness, Linda},
      journal = {Amer. J. Math.},
      note = {with an appendix by David Mumford},
      number = {6},
      pages = {1281--1329},
      title = {A stratification of the null cone via the moment map},
      volume = {106},
      year = {1984},
      doi = {10.2307/2374395},
      issn = {0002-9327},
      }
  • [Ki] F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton, NJ: Princeton Univ. Press, 1984, vol. 31.
    @book{Ki, address = {Princeton, NJ},
      author = {Kirwan, Frances Clare},
      pages = {i+211},
      publisher = {Princeton Univ. Press},
      series = {Math. Notes},
      title = {Cohomology of Quotients in Symplectic and Algebraic Geometry},
      volume = {31},
      year = {1984},
      isbn = {0-691-08370-3},
      }
  • [GS] V. Guillemin and S. Sternberg, "A normal form for the moment map," in Differential Geometric Methods in Mathematical Physics, Dordrecht: Reidel, 1984, vol. 6, pp. 161-175.
    @incollection{GS, address = {Dordrecht},
      author = {Guillemin, Victor and Sternberg, Shlomo},
      booktitle = {Differential Geometric Methods in Mathematical Physics},
      pages = {161--175},
      publisher = {Reidel},
      series = {Math. Phys. Stud.},
      title = {A normal form for the moment map},
      volume = {6},
      year = {1984},
      }
  • [OR] J. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Boston: Birkhäuser, 2004, vol. 222.
    @book{OR, address = {Boston},
      author = {Ortega, Juan-Pablo and Ratiu, Tudor S.},
      pages = {xxxiv+497},
      publisher = {Birkhäuser},
      series = {Progr. Math.},
      title = {Momentum Maps and {H}amiltonian Reduction},
      volume = {222},
      year = {2004},
      isbn = {0-8176-4307-9},
      }
  • [CxH2] Go to document X. Chen and W. He, "The Calabi flow on Kähler surfaces with bounded Sobolev constant (I)," Math. Ann., vol. 354, iss. 1, pp. 227-261, 2012.
    @article{CxH2,
      author = {Chen, X. and He, Weiyong},
      journal = {Math. Ann.},
      number = {1},
      pages = {227--261},
      title = {The {C}alabi flow on {K}ähler surfaces with bounded {S}obolev constant ({I})},
      volume = {354},
      year = {2012},
      doi = {10.1007/s00208-011-0723-7},
      issn = {0025-5831},
      }
  • [Ca1] E. Calabi, "Extremal Kähler metrics," in Seminar on Differential Geometry, Yau, S. T., Ed., Princeton, N.J.: Princeton Univ. Press, 1982, vol. 102, pp. 259-290.
    @incollection{Ca1, address = {Princeton, N.J.},
      author = {Calabi, Eugenio},
      booktitle = {Seminar on {D}ifferential {G}eometry},
      editor = {Yau, S. T.},
      pages = {259--290},
      publisher = {Princeton Univ. Press},
      series = {Ann. of Math. Stud.},
      title = {Extremal {K}ähler metrics},
      volume = {102},
      year = {1982},
      }
  • [Ca2] E. Calabi, "Extremal Kähler metrics. II," in Differential Geometry and Complex Analysis, Chavel, I. and Farkas, H. M., Eds., New York: Springer-Verlag, 1985, pp. 95-114.
    @incollection{Ca2, address = {New York},
      author = {Calabi, Eugenio},
      booktitle = {Differential Geometry and Complex Analysis},
      editor = {Chavel, I. and Farkas, H. M.},
      pages = {95--114},
      publisher = {Springer-Verlag},
      title = {Extremal {K}ähler metrics. {II}},
      year = {1985},
      }
  • [CxH1] Go to document X. Chen and W. Y. He, "On the Calabi flow," Amer. J. Math., vol. 130, iss. 2, pp. 539-570, 2008.
    @article{CxH1,
      author = {Chen, X. and He, W. Y.},
      journal = {Amer. J. Math.},
      number = {2},
      pages = {539--570},
      title = {On the {C}alabi flow},
      volume = {130},
      year = {2008},
      doi = {10.1353/ajm.2008.0018},
      issn = {0002-9327},
      }
  • [CLW] Go to document X. Chen, H. Li, and B. Wang, "Kähler-Ricci flow with small initial energy," Geom. Funct. Anal., vol. 18, iss. 5, pp. 1525-1563, 2009.
    @article{CLW,
      author = {Chen, X. and Li, Haozhao and Wang, Bing},
      journal = {Geom. Funct. Anal.},
      number = {5},
      pages = {1525--1563},
      title = {Kähler-{R}icci flow with small initial energy},
      volume = {18},
      year = {2009},
      doi = {10.1007/s00039-008-0690-7},
      issn = {1016-443X},
      }
  • [TZ2] G. Tian and X. Zhu, Perelman’s $\mathcal{W}$-functional and stability of Kähler-Ricci flow.
    @misc{TZ2,
      author = {Tian, Gang and Zhu, Xiaohua},
      title = {Perelman's {$\mathcal{W}$}-functional and stability of {K}ähler-{R}icci flow},
      }
  • [SW] Go to document S. Sun and Y-Q. Wang, On the Kähler-Ricci flow near a Kähler-Einstein metric.
    @misc{SW,
      author = {Sun, S. and Wang, Y-Q.},
      journal = {J. Reine Angew. Math.},
      note = {published online 2013-03-19},
      title = {On the {K}ähler-{R}icci flow near a {K}ähler-{E}instein metric},
      doi = {10.1515/crelle-2013-0004},
      }
  • [Si] Go to document L. Simon, "Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems," Ann. of Math., vol. 118, iss. 3, pp. 525-571, 1983.
    @article{Si,
      author = {Simon, Leon},
      journal = {Ann. of Math.},
      number = {3},
      pages = {525--571},
      title = {Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems},
      volume = {118},
      year = {1983},
      doi = {10.2307/2006981},
      issn = {0003-486X},
      }
  • [Ra] Go to document J. Råde, "On the Yang-Mills heat equation in two and three dimensions," J. Reine Angew. Math., vol. 431, pp. 123-163, 1992.
    @article{Ra,
      author = {R{\aa}de, Johan},
      journal = {J. Reine Angew. Math.},
      pages = {123--163},
      title = {On the {Y}ang-{M}ills heat equation in two and three dimensions},
      volume = {431},
      year = {1992},
      doi = {10.1515/crll.1992.431.123},
      issn = {0075-4102},
      }
  • [D4] Go to document S. K. Donaldson, Floer Homology Groups in Yang-Mills Theory, Cambridge: Cambridge Univ. Press, 2002, vol. 147.
    @book{D4, address = {Cambridge},
      author = {Donaldson, Simon K.},
      note = {with the assistance of M. Furuta and D. Kotschick},
      pages = {viii+236},
      publisher = {Cambridge Univ. Press},
      series = {Cambridge Tracts in Math.},
      title = {Floer Homology Groups in {Y}ang-{M}ills Theory},
      volume = {147},
      year = {2002},
      doi = {10.1017/CBO9780511543098},
      isbn = {0-521-80803-0},
      }
  • [FS] Go to document A. Fujiki and G. Schumacher, "The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics," Publ. Res. Inst. Math. Sci., vol. 26, iss. 1, pp. 101-183, 1990.
    @article{FS,
      author = {Fujiki, Akira and Schumacher, Georg},
      journal = {Publ. Res. Inst. Math. Sci.},
      number = {1},
      pages = {101--183},
      title = {The moduli space of extremal compact {K}ähler manifolds and generalized {W}eil-{P}etersson metrics},
      volume = {26},
      year = {1990},
      doi = {10.2977/prims/1195171664},
      issn = {0034-5318},
      }
  • [Ch4] X. Chen, The space of Kähler metrics (IV)—On the lower bound of the K energy.
    @misc{Ch4,
      author = {Chen, X.},
      title = {The space of {K}ähler metrics {(IV)}---On the lower bound of the {K} energy},
      }
  • [Sz] Go to document G. Székelyhidi, "The Kähler-Ricci flow and $K$-polystability," Amer. J. Math., vol. 132, iss. 4, pp. 1077-1090, 2010.
    @article{Sz,
      author = {Sz{é}kelyhidi, G{á}bor},
      journal = {Amer. J. Math.},
      number = {4},
      pages = {1077--1090},
      title = {The {K}ähler-{R}icci flow and {$K$}-polystability},
      volume = {132},
      year = {2010},
      doi = {10.1353/ajm.0.0128},
      issn = {0002-9327},
      }
  • [To] V. Tosatti, "The K-energy on small deformations of constant scalar curvature Kähler manifolds," in Advances in Geometric Analysis, Somerville, MA: Int. Press, 2012, vol. 21, pp. 139-147.
    @incollection{To, address = {Somerville, MA},
      author = {Tosatti, Valentino},
      booktitle = {Advances in Geometric Analysis},
      pages = {139--147},
      publisher = {Int. Press},
      series = {Adv. Lect. Math. (ALM)},
      title = {The {K}-energy on small deformations of constant scalar curvature {K}ähler manifolds},
      volume = {21},
      year = {2012},
      }
  • [Ku] M. Kuranishi, "New proof for the existence of locally complete families of complex structures," in Proc. Conf. Complex Analysis, New York: Springer-Verlag, 1965, pp. 142-154.
    @incollection{Ku, address = {New York},
      author = {Kuranishi, M.},
      booktitle = {Proc. {C}onf. {C}omplex {A}nalysis},
      pages = {142--154},
      publisher = {Springer-Verlag},
      title = {New proof for the existence of locally complete families of complex structures},
      year = {1965},
      }
  • [FS2] Go to document A. Fujiki and G. Schumacher, "The moduli space of Kähler structures on a real compact symplectic manifold," Publ. Res. Inst. Math. Sci., vol. 24, iss. 1, pp. 141-168, 1988.
    @article{FS2,
      author = {Fujiki, Akira and Schumacher, Georg},
      journal = {Publ. Res. Inst. Math. Sci.},
      number = {1},
      pages = {141--168},
      title = {The moduli space of {K}ähler structures on a real compact symplectic manifold},
      volume = {24},
      year = {1988},
      doi = {10.2977/prims/1195175329},
      issn = {0034-5318},
      }
  • [Fi] Go to document J. Fine, "Calabi flow and projective embeddings," J. Differential Geom., vol. 84, iss. 3, pp. 489-523, 2010.
    @article{Fi,
      author = {Fine, Joel},
      journal = {J. Differential Geom.},
      number = {3},
      pages = {489--523},
      title = {Calabi flow and projective embeddings},
      volume = {84},
      year = {2010},
      issn = {0022-040X},
      url = {http://projecteuclid.org/euclid.jdg/1279114299},
      }
  • [OSY] Go to document H. Ono, Y. Sano, and N. Yotsutani, "An example of an asymptotically Chow unstable manifold with constant scalar curvature," Ann. Inst. Fourier $($Grenoble$)$, vol. 62, iss. 4, pp. 1265-1287, 2012.
    @article{OSY,
      author = {Ono, Hajime and Sano, Yuji and Yotsutani, Naoto},
      journal = {Ann. Inst. Fourier $($Grenoble$)$},
      number = {4},
      pages = {1265--1287},
      title = {An example of an asymptotically {C}how unstable manifold with constant scalar curvature},
      volume = {62},
      year = {2012},
      doi = {10.5802/aif.2722},
      issn = {0373-0956},
      }
  • [DZ] Go to document A. Della Vedova and F. Zuddas, "Scalar curvature and asymptotic Chow stability of projective bundles and blowups," Trans. Amer. Math. Soc., vol. 364, iss. 12, pp. 6495-6511, 2012.
    @article{DZ,
      author = {Della Vedova, Alberto and Zuddas, Fabio},
      journal = {Trans. Amer. Math. Soc.},
      number = {12},
      pages = {6495--6511},
      title = {Scalar curvature and asymptotic {C}how stability of projective bundles and blowups},
      volume = {364},
      year = {2012},
      doi = {10.1090/S0002-9947-2012-05587-5},
      issn = {0002-9947},
      }
  • [APS] Go to document C. Arezzo, F. Pacard, and M. Singer, "Extremal metrics on blowups," Duke Math. J., vol. 157, iss. 1, pp. 1-51, 2011.
    @article{APS,
      author = {Arezzo, Claudio and Pacard, Frank and Singer, Michael},
      journal = {Duke Math. J.},
      number = {1},
      pages = {1--51},
      title = {Extremal metrics on blowups},
      volume = {157},
      year = {2011},
      doi = {10.1215/00127094-2011-001},
      issn = {0012-7094},
      }
  • [Ha] Go to document R. S. Hamilton, "The inverse function theorem of Nash and Moser," Bull. Amer. Math. Soc., vol. 7, iss. 1, pp. 65-222, 1982.
    @article{Ha,
      author = {Hamilton, Richard S.},
      journal = {Bull. Amer. Math. Soc.},
      number = {1},
      pages = {65--222},
      title = {The inverse function theorem of {N}ash and {M}oser},
      volume = {7},
      year = {1982},
      doi = {10.1090/S0273-0979-1982-15004-2},
      issn = {0273-0979},
      }
  • [We] Go to document A. Weinstein, "Symplectic manifolds and their Lagrangian submanifolds," Advances in Math., vol. 6, pp. 329-346 (1971), 1971.
    @article{We,
      author = {Weinstein, Alan},
      journal = {Advances in Math.},
      pages = {329--346 (1971)},
      title = {Symplectic manifolds and their {L}agrangian submanifolds},
      volume = {6},
      year = {1971},
      doi = {10.1016/0001-8708(71)90020-X},
      issn = {0001-8708},
      }
  • [Ta] Go to document M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, 1991, vol. 100.
    @book{Ta,
      author = {Taylor, Michael E.},
      pages = {213},
      publisher = {Birkhäuser},
      series = {Progr. Math.},
      title = {Pseudodifferential Operators and Nonlinear {PDE}},
      volume = {100},
      year = {1991},
      doi = {10.1007/978-1-4612-0431-2},
      isbn = {0-8176-3595-5},
      }

Authors

Xiuxiong Chen

Stony Brook University, Stony Brook, NY and
School of Mathematics, University of Science and Technology of China, Hefei, Anhui, China

Song Sun

Department of Mathematics and Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY