Klein forms and the generalized superelliptic equation

Abstract

If $F(x,y) \in \mathbb{Z}[x,y]$ is an irreducible binary form of degree $k \geq 3$, then a theorem of Darmon and Granville implies that the generalized superelliptic equation $$ F(x,y)=z^l $$ has, given an integer $l \geq \mathrm{max} \{ 2, 7-k \}$, at most finitely many solutions in coprime integers $x, y$ and $z$. In this paper, for large classes of forms of degree $k=3, 4, 6$ and $12$ (including, heuristically, “most” cubic forms), we extend this to prove a like result, where the parameter $l$ is now taken to be variable. In the case of irreducible cubic forms, this provides the first examples where such a conclusion has been proven. The method of proof combines classical invariant theory, modular Galois representations, and properties of elliptic curves with isomorphic mod-$n$ Galois representations.

  • [Bea] Go to document M. A. Bean, "An isoperimetric inequality for the area of plane regions defined by binary forms," Compositio Math., vol. 92, iss. 2, pp. 115-131, 1994.
    @article {Bea, MRKEY = {1283225},
      AUTHOR = {Bean, Michael A.},
      TITLE = {An isoperimetric inequality for the area of plane regions defined by binary forms},
      JOURNAL = {Compositio Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {92},
      YEAR = {1994},
      NUMBER = {2},
      PAGES = {115--131},
      ISSN = {0010-437X},
      CODEN = {CMPMAF},
      MRCLASS = {11J25 (11D75)},
      MRNUMBER = {1283225},
      MRREVIEWER = {Jeffrey Lin Thunder},
      URL = {http://www.numdam.org/item?id=CM_1994__92_2_115_0},
      ZBLNUMBER = {0816.11026},
      }
  • [BEN] Go to document M. A. Bennett, J. S. Ellenberg, and N. C. Ng, "The Diophantine equation $A^4+2^\delta B^2=C^n$," Int. J. Number Theory, vol. 6, iss. 2, pp. 311-338, 2010.
    @article {BEN, MRKEY = {2646760},
      AUTHOR = {Bennett, Michael A. and Ellenberg, Jordan S. and Ng, Nathan C.},
      TITLE = {The {D}iophantine equation {$A\sp 4+2\sp \delta B\sp 2=C\sp n$}},
      JOURNAL = {Int. J. Number Theory},
      FJOURNAL = {International Journal of Number Theory},
      VOLUME = {6},
      YEAR = {2010},
      NUMBER = {2},
      PAGES = {311--338},
      ISSN = {1793-0421},
      MRCLASS = {11D41 (11F67 11G05)},
      MRNUMBER = {2646760},
      MRREVIEWER = {Henri Darmon},
      DOI = {10.1142/S1793042110002971},
      ZBLNUMBER = {1218.11035},
      }
  • [Beuk] Go to document F. Beukers, The generalized Fermat equation.
    @misc{Beuk,
      author={Beukers, F.},
      TITLE={The generalized {F}ermat equation},
      URL={http://www.math.uu.nl/people/beukers/Fermatlectures.pdf},
     }
  • [BCDT] Go to document C. Breuil, B. Conrad, F. Diamond, and R. Taylor, "On the modularity of elliptic curves over $\Bbb Q$: wild 3-adic exercises," J. Amer. Math. Soc., vol. 14, iss. 4, pp. 843-939, 2001.
    @article {BCDT, MRKEY = {1839918},
      AUTHOR = {Breuil, Christophe and Conrad, Brian and Diamond, Fred and Taylor, Richard},
      TITLE = {On the modularity of elliptic curves over {$\bold Q$}: wild 3-adic exercises},
      JOURNAL = {J. Amer. Math. Soc.},
      FJOURNAL = {Journal of the American Mathematical Society},
      VOLUME = {14},
      YEAR = {2001},
      NUMBER = {4},
      PAGES = {843--939},
      ISSN = {0894-0347},
      MRCLASS = {11G05 (11F80 11G07 14G35)},
      MRNUMBER = {1839918},
      MRREVIEWER = {Karl Rubin},
      DOI = {10.1090/S0894-0347-01-00370-8},
      ZBLNUMBER = {0982.11033},
      }
  • [Carayol] Go to document H. Carayol, "Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet," in $p$-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture, Providence, RI: Amer. Math. Soc., 1994, vol. 165, pp. 213-237.
    @incollection {Carayol, MRKEY = {1279611},
      AUTHOR = {Carayol, Henri},
      TITLE = {Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet},
      BOOKTITLE = {{$p$}-adic Monodromy and the {B}irch and {S}winnerton-{D}yer Conjecture},
      VENUE={{B}oston, {MA},
      1991},
      SERIES = {Contemp. Math.},
      VOLUME = {165},
      PAGES = {213--237},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {1994},
      MRCLASS = {11G18 (11F75 11F80)},
      MRNUMBER = {1279611},
      MRREVIEWER = {Douglas L. Ulmer},
      DOI = {10.1090/conm/165/01601},
      ZBLNUMBER = {0812.11036},
      }
  • [Cr] J. E. Cremona, "Reduction of binary cubic and quartic forms," LMS J. Comput. Math., vol. 2, pp. 62-92, 1999.
    @article {Cr, MRKEY = {1693411},
      AUTHOR = {Cremona, J. E.},
      TITLE = {Reduction of binary cubic and quartic forms},
      JOURNAL = {LMS J. Comput. Math.},
      FJOURNAL = {LMS Journal of Computation and Mathematics},
      VOLUME = {2},
      YEAR = {1999},
      PAGES = {62--92},
      ISSN = {1461-1570},
      MRCLASS = {11E76 (11H55)},
      MRNUMBER = {1693411},
      MRREVIEWER = {Renaud Coulangeon},
      ZBLNUMBER = {0927.11020},
     }
  • [Dah] Go to document S. Dahmen, Classical and modular methods applied to Diophantine equations.
    @misc{Dah,
      author={Dahmen, S.},
      TITLE={Classical and modular methods applied to {D}iophantine equations},
      NOTE={Ph.D. thesis, University of Utrecht, 2008},
      URL = {http://igitur-archive.library.uu.nl/dissertations/2008-0820-200949/dahmen.pdf},
     }
  • [DG] Go to document H. Darmon and A. Granville, "On the equations $z^m=F(x,y)$ and $Ax^p+By^q=Cz^r$," Bull. London Math. Soc., vol. 27, iss. 6, pp. 513-543, 1995.
    @article {DG, MRKEY = {1348707},
      AUTHOR = {Darmon, Henri and Granville, Andrew},
      TITLE = {On the equations {$z\sp m=F(x,y)$} and {$Ax\sp p+By\sp q=Cz\sp r$}},
      JOURNAL = {Bull. London Math. Soc.},
      FJOURNAL = {The Bulletin of the London Mathematical Society},
      VOLUME = {27},
      YEAR = {1995},
      NUMBER = {6},
      PAGES = {513--543},
      ISSN = {0024-6093},
      CODEN = {LMSBBT},
      MRCLASS = {11D41},
      MRNUMBER = {1348707},
      MRREVIEWER = {Nigel Boston},
      DOI = {10.1112/blms/27.6.513},
      ZBLNUMBER = {0838.11023},
      }
  • [DM] Go to document H. Darmon and L. Merel, "Winding quotients and some variants of Fermat’s last theorem," J. Reine Angew. Math., vol. 490, pp. 81-100, 1997.
    @article {DM, MRKEY = {1468926},
      AUTHOR = {Darmon, Henri and Merel, Lo{ï}c},
      TITLE = {Winding quotients and some variants of {F}ermat's last theorem},
      JOURNAL = {J. Reine Angew. Math.},
      FJOURNAL = {Journal für die Reine und Angewandte Mathematik},
      VOLUME = {490},
      YEAR = {1997},
      PAGES = {81--100},
      ISSN = {0075-4102},
      CODEN = {JRMAA8},
      MRCLASS = {11G18 (11D41 11F80 11G05)},
      MRNUMBER = {1468926},
      MRREVIEWER = {Kenneth Kramer},
      ZBLNUMBER = {0976.11017},
      DOI = {10.1515/crll.1997.490.81},
     }
  • [Dav2] Go to document H. Davenport, "On the class-number of binary cubic forms. I," J. London Math. Soc., vol. 26, pp. 183-192, 1951.
    @article {Dav2, MRKEY = {0043822},
      AUTHOR = {Davenport, H.},
      TITLE = {On the class-number of binary cubic forms. {I}},
      JOURNAL = {J. London Math. Soc.},
      FJOURNAL = {Journal of the London Mathematical Society. Second Series},
      VOLUME = {26},
      YEAR = {1951},
      PAGES = {183--192},
      ISSN = {0024-6107},
      MRCLASS = {10.0X},
      MRNUMBER = {0043822},
      MRREVIEWER = {W. H. Mills},
      DOI = {10.1112/jlms/s1-26.3.183},
      ZBLNUMBER = {0044.27002},
      }
  • [Dav3] Go to document H. Davenport, "On the class-number of binary cubic forms. II," J. London Math. Soc., vol. 26, pp. 192-198, 1951.
    @article {Dav3, MRKEY = {0043823},
      AUTHOR = {Davenport, H.},
      TITLE = {On the class-number of binary cubic forms. {II}},
      JOURNAL = {J. London Math. Soc.},
      FJOURNAL = {Journal of the London Mathematical Society. Second Series},
      VOLUME = {26},
      YEAR = {1951},
      PAGES = {192--198},
      ISSN = {0024-6107},
      MRCLASS = {10.0X},
      MRNUMBER = {0043823},
      MRREVIEWER = {W. H. Mills},
      DOI = {10.1112/jlms/s1-26.3.192},
      ZBLNUMBER = {0044.27002},
      }
  • [DJ] Go to document L. V. Dieulefait and J. relax Jiménez Urroz, "Solving Fermat-type equations $x^4 + d y^2 = z^p$ via modular $\mathbb{Q}$-curves over polyquadratic fields," J. Reine Angew. Math., vol. 633, pp. 183-196, 2009.
    @article{DJ,
      author={Dieulefait, L. V. and {\relax Jiménez Urroz},
      J.},
      TITLE={Solving {F}ermat-type equations $x^4 + d y^2 = z^p$ via modular {$\mathbb{Q}$}-curves over polyquadratic fields},
      JOURNAL={J. Reine Angew. Math.},
      VOLUME={633},
      YEAR={2009},
      PAGES={183--196},
      MRNUMBER = {2561200},
      ZBLNUMBER = {05640144},
      DOI = {10.1515/CRELLE.2009.064},
      }
  • [Edwards] Go to document J. Edwards, Platonic solids and solutions to ${X}^2+{Y}^3=d{Z}^r$.
    @misc{Edwards,
      author={Edwards, Johnny},
      TITLE={Platonic solids and solutions to {${X}^2+{Y}^3=d{Z}^r$}},
      URL ={http://igitur-archive.library.uu.nl/dissertations/2006-0208-200155/full.pdf},
      SORTYEAR={2010},
     }
  • [EdwardsCrelle] Go to document J. Edwards, "A complete solution to $X^2+Y^3+Z^5=0$," J. Reine Angew. Math., vol. 571, pp. 213-236, 2004.
    @article {EdwardsCrelle, MRKEY = {2070150},
      AUTHOR = {Edwards, Johnny},
      TITLE = {A complete solution to {$X\sp 2+Y\sp 3+Z\sp 5=0$}},
      JOURNAL = {J. Reine Angew. Math.},
      FJOURNAL = {Journal für die Reine und Angewandte Mathematik},
      VOLUME = {571},
      YEAR = {2004},
      PAGES = {213--236},
      ISSN = {0075-4102},
      CODEN = {JRMAA8},
      MRCLASS = {11D41},
      MRNUMBER = {2070150},
      MRREVIEWER = {Henri Darmon},
      DOI = {10.1515/crll.2004.043},
      ZBLNUMBER = {1208.11045},
      }
  • [El] Go to document J. S. Ellenberg, "Galois representations attached to $\Bbb Q$-curves and the generalized Fermat equation $A^4+B^2=C^p$," Amer. J. Math., vol. 126, iss. 4, pp. 763-787, 2004.
    @article {El, MRKEY = {2075481},
      AUTHOR = {Ellenberg, Jordan S.},
      TITLE = {Galois representations attached to {$\Bbb Q$}-curves and the generalized {F}ermat equation {$A\sp 4+B\sp 2=C\sp p$}},
      JOURNAL = {Amer. J. Math.},
      FJOURNAL = {American Journal of Mathematics},
      VOLUME = {126},
      YEAR = {2004},
      NUMBER = {4},
      PAGES = {763--787},
      ISSN = {0002-9327},
      CODEN = {AJMAAN},
      MRCLASS = {11F80 (11D41 11G30)},
      MRNUMBER = {2075481},
      MRREVIEWER = {Imin Chen},
      DOI = {10.1353/ajm.2004.0027},
      ZBLNUMBER = {1059.11041},
      }
  • [Elk] Go to document N. D. Elkies, "$ABC$ implies Mordell," Internat. Math. Res. Notices, iss. 7, pp. 99-109, 1991.
    @article {Elk, MRKEY = {1141316},
      AUTHOR = {Elkies, Noam D.},
      TITLE = {{$ABC$} implies {M}ordell},
      JOURNAL = {Internat. Math. Res. Notices},
      FJOURNAL = {International Mathematics Research Notices},
      YEAR = {1991},
      NUMBER = {7},
      PAGES = {99--109},
      ISSN = {1073-7928},
      MRCLASS = {11G30 (11D41)},
      MRNUMBER = {1141316},
      MRREVIEWER = {Joseph H. Silverman},
      DOI = {10.1155/S1073792891000144},
      ZBLNUMBER = {0763.11016},
      }
  • [Erd] Go to document P. Erdös, "Arithmetical properties of polynomials," J. London Math. Soc., vol. 28, pp. 416-425, 1953.
    @article {Erd, MRKEY = {0056635},
      AUTHOR = {Erd{ö}s, P.},
      TITLE = {Arithmetical properties of polynomials},
      JOURNAL = {J. London Math. Soc.},
      FJOURNAL = {Journal of the London Mathematical Society. Second Series},
      VOLUME = {28},
      YEAR = {1953},
      PAGES = {416--425},
      ISSN = {0024-6107},
      MRCLASS = {10.0X},
      MRNUMBER = {0056635},
      MRREVIEWER = {L. Carlitz},
      DOI = {10.1112/jlms/s1-28.4.416},
      ZBLNUMBER = {0051.27703},
      }
  • [Fa] Go to document G. Faltings, "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern," Invent. Math., vol. 73, iss. 3, pp. 349-366, 1983.
    @article {Fa, MRKEY = {0718935},
      AUTHOR = {Faltings, G.},
      TITLE = {Endlichkeitssätze für abelsche {V}arietäten über {Z}ahlkörpern},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {73},
      YEAR = {1983},
      NUMBER = {3},
      PAGES = {349--366},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {11D41 (11G30 14G25)},
      MRNUMBER = {0718935},
      MRREVIEWER = {James Milne},
      DOI = {10.1007/BF01388432},
      ZBLNUMBER = {0588.14026},
     }
  • [Fisher] Go to document T. Fisher, "The Hessian of a genus one curve," Proc. Lond. Math. Soc. (3), vol. 104, iss. 3, pp. 613-648, 2012.
    @article{Fisher, MRKEY={2900238},
      AUTHOR={Fisher, T.},
      TITLE={The {H}essian of a genus one curve},
      JOURNAL = {Proc. Lond. Math. Soc. (3)},
      VOLUME = {104},
      YEAR = {2012},
      NUMBER = {3},
      PAGES = {613--648},
      ISSN = {0024-6115},
      MRCLASS = {11Gxx (14Hxx)},
      MRNUMBER = {2900238},
      DOI = {10.1112/plms/pdr039},
      URL = {http://dx.doi.org/10.1112/plms/pdr039},
      }%%%%
  • [Gor] P. Gordan, "Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist," J. Reine Angew. Math., vol. 69, pp. 323-354, 1868.
    @article{Gor,
      author={Gordan, P.},
      TITLE={Beweis, dass jede {C}ovariante und {I}nvariante einer binären {F}orm eine ganze {F}unction mit numerischen {C}oefficienten einer endlichen {A}nzahl solcher {F}ormen ist},
      JOURNAL={J. Reine Angew. Math.},
      VOLUME={69},
      YEAR={1868},
      PAGES={323--354},
     }
  • [Gor2] P. Gordan, Vorlesungen über Invariantentheorie, Teubner, Leipzig, 1887.
    @misc{Gor2,
      author={Gordan, P.},
      TITLE={Vorlesungen über {I}nvariantentheorie, {T}eubner, {L}eipzig},
      YEAR={1887},
     }
  • [Gra] A. Granville, "Smooth numbers: computational number theory and beyond," in Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, Cambridge: Cambridge Univ. Press, 2008, vol. 44, pp. 267-323.
    @incollection {Gra, MRKEY = {2467549},
      AUTHOR = {Granville, Andrew},
      TITLE = {Smooth numbers: computational number theory and beyond},
      BOOKTITLE = {Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography},
      SERIES = {Math. Sci. Res. Inst. Publ.},
      VOLUME = {44},
      PAGES = {267--323},
      PUBLISHER = {Cambridge Univ. Press},
      ADDRESS = {Cambridge},
      YEAR = {2008},
      MRCLASS = {11Y35 (11P05 11R47 11Y16 11Y60 11Y70)},
      MRNUMBER = {2467549},
      MRREVIEWER = {Ra{ú}l Dur{á}n D{\'ı}az},
      ZBLNUMBER = {1230.11157},
      }
  • [Hi] D. Hilbert, Theory of Algebraic Invariants, Cambridge: Cambridge Univ. Press, 1993.
    @book {Hi, MRKEY = {1266168},
      AUTHOR = {Hilbert, David},
      TITLE = {Theory of Algebraic Invariants},
      PUBLISHER = {Cambridge Univ. Press},
      ADDRESS = {Cambridge},
      YEAR = {1993},
      PAGES = {xiv+191},
      ISBN = {0-521-44457-8; 0-521-44903-0},
      MRCLASS = {01A75 (13A50)},
      MRNUMBER = {1266168},
      MRREVIEWER = {Luchezar L. Avramov},
      ZBLNUMBER = {0801.13001},
      }
  • [Ho] A. Hoshi and K. Miyake, "A geometric framework for the subfield problem of generic polynomials via Tschirnhausen transformation," in Number Theory and Applications, New Delhi: Hindustan Book Agency, 2009, pp. 65-104.
    @incollection {Ho, MRKEY = {2547493},
      AUTHOR = {Hoshi, Akinari and Miyake, Katsuya},
      TITLE = {A geometric framework for the subfield problem of generic polynomials via {T}schirnhausen transformation},
      BOOKTITLE = {Number Theory and Applications},
      PAGES = {65--104},
      PUBLISHER = {Hindustan Book Agency},
      ADDRESS = {New Delhi},
      YEAR = {2009},
      MRCLASS = {12F10 (11R16)},
      MRNUMBER = {2547493},
      MRREVIEWER = {David P. Roberts},
      ZBLNUMBER = {06009957},
      }
  • [Kl] F. Klein, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, revised ed., New York, N.Y.: Dover Publications, 1956.
    @book {Kl, MRKEY = {0080930},
      AUTHOR = {Klein, Felix},
      TITLE = {Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree},
      EDITION = {revised},
      NOTE = {translation of original 1884 edition},
      PUBLISHER = {Dover Publications},
      ADDRESS = {New York, N.Y.},
      YEAR = {1956},
      PAGES = {xvi+289},
      MRCLASS = {50.0X},
      MRNUMBER = {0080930},
      ZBLNUMBER = {0072.25901},
      }
  • [Kraus97] Go to document A. Kraus, "Majorations effectives pour l’équation de Fermat généralisée," Canad. J. Math., vol. 49, iss. 6, pp. 1139-1161, 1997.
    @article {Kraus97, MRKEY = {1611640},
      AUTHOR = {Kraus, Alain},
      TITLE = {Majorations effectives pour l'équation de {F}ermat généralisée},
      JOURNAL = {Canad. J. Math.},
      FJOURNAL = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
      VOLUME = {49},
      YEAR = {1997},
      NUMBER = {6},
      PAGES = {1139--1161},
      ISSN = {0008-414X},
      CODEN = {CJMAAB},
      MRCLASS = {11D41 (11F33 11F80 11G05)},
      MRNUMBER = {1611640},
      MRREVIEWER = {Kenneth Kramer},
      DOI = {10.4153/CJM-1997-056-2},
      ZBLNUMBER = {0908.11017},
      }
  • [LMO] Go to document J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko, "A bound for the least prime ideal in the Chebotarev density theorem," Invent. Math., vol. 54, iss. 3, pp. 271-296, 1979.
    @article {LMO, MRKEY = {0553223},
      AUTHOR = {Lagarias, J. C. and Montgomery, H. L. and Odlyzko, A. M.},
      TITLE = {A bound for the least prime ideal in the {C}hebotarev density theorem},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {54},
      YEAR = {1979},
      NUMBER = {3},
      PAGES = {271--296},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {12A75 (10H08)},
      MRNUMBER = {0553223},
      MRREVIEWER = {Larry J. Goldstein},
      DOI = {10.1007/BF01390234},
      ZBLNUMBER = {0401.12014},
      }
  • [LPV] Go to document G. Lettl, A. PethHo, and P. Voutier, "Simple families of Thue inequalities," Trans. Amer. Math. Soc., vol. 351, iss. 5, pp. 1871-1894, 1999.
    @article {LPV, MRKEY = {1487624},
      AUTHOR = {Lettl, G{ü}nter and Peth{ő},
      Attila and Voutier, Paul},
      TITLE = {Simple families of {T}hue inequalities},
      JOURNAL = {Trans. Amer. Math. Soc.},
      FJOURNAL = {Transactions of the American Mathematical Society},
      VOLUME = {351},
      YEAR = {1999},
      NUMBER = {5},
      PAGES = {1871--1894},
      ISSN = {0002-9947},
      CODEN = {TAMTAM},
      MRCLASS = {11J25 (11D75)},
      MRNUMBER = {1487624},
      MRREVIEWER = {Michael A. Bennett},
      DOI = {10.1090/S0002-9947-99-02244-8},
      ZBLNUMBER = {0920.11041},
     }
  • [Le] Go to document W. J. LeVeque, "On the equation {$y^m=f(x)$}," Acta Arith., vol. 9, pp. 209-219, 1964.
    @article {Le, MRKEY = {0169813},
      AUTHOR = {LeVeque, W. J.},
      TITLE = {On the equation {$y\spm=f(x)$}},
      JOURNAL = {Acta Arith.},
      FJOURNAL = {Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica},
      VOLUME = {9},
      YEAR = {1964},
      PAGES = {209--219},
      ISSN = {0065-1036},
      MRCLASS = {10.43},
      MRNUMBER = {0169813},
      MRREVIEWER = {J. Sur{á}nyi},
      ZBLNUMBER = {0127.27201},
      URL = {http://pldml.icm.edu.pl/mathbwn/element/bwmeta1.element.bwnjournal-article-aav3 1i2p199bwm?q=fa25ec38-e096-4a42-9787-505a81bd47c1$1&qt=IN_PAGE,
     
  • [Martin] Go to document G. Martin, "Dimensions of the spaces of cusp forms and newforms on $\Gamma_0(N)$ and $\Gamma_1(N)$," J. Number Theory, vol. 112, iss. 2, pp. 298-331, 2005.
    @article {Martin, MRKEY = {2141534},
      AUTHOR = {Martin, Greg},
      TITLE = {Dimensions of the spaces of cusp forms and newforms on {$\Gamma\sb 0(N)$} and {$\Gamma\sb 1(N)$}},
      JOURNAL = {J. Number Theory},
      FJOURNAL = {Journal of Number Theory},
      VOLUME = {112},
      YEAR = {2005},
      NUMBER = {2},
      PAGES = {298--331},
      ISSN = {0022-314X},
      CODEN = {JNUTA9},
      MRCLASS = {11F11 (11F25)},
      MRNUMBER = {2141534},
      MRREVIEWER = {Amir Akbary},
      DOI = {10.1016/j.jnt.2004.10.009},
      ZBLNUMBER = {1095.11026},
      }
  • [Mazur] Go to document B. Mazur, "Rational isogenies of prime degree (with an appendix by D. Goldfeld)," Invent. Math., vol. 44, iss. 2, pp. 129-162, 1978.
    @article {Mazur, MRKEY = {0482230},
      AUTHOR = {Mazur, B.},
      TITLE = {Rational isogenies of prime degree (with an appendix by {D}. {G}oldfeld)},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {44},
      YEAR = {1978},
      NUMBER = {2},
      PAGES = {129--162},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {14K07 (10D35 14G25)},
      MRNUMBER = {0482230},
      MRREVIEWER = {V. V. Shokurov},
      DOI = {10.1007/BF01390348},
      ZBLNUMBER = {0386.14009},
     }
  • [Mer] L. Merel, "Normalizers of split Cartan subgroups and supersingular elliptic curves," in Diophantine Geometry, Ed. Norm., Pisa, 2007, vol. 4, pp. 237-255.
    @incollection {Mer, MRKEY = {2349658},
      AUTHOR = {Merel, Lo{ï}c},
      TITLE = {Normalizers of split {C}artan subgroups and supersingular elliptic curves},
      BOOKTITLE = {Diophantine Geometry},
      SERIES = {CRM Series},
      VOLUME = {4},
      PAGES = {237--255},
      PUBLISHER = {Ed. Norm., Pisa},
      YEAR = {2007},
      MRCLASS = {11G05 (11G18 11G35)},
      MRNUMBER = {2349658},
      MRREVIEWER = {Andrew Bremner},
      ZBLNUMBER = {1220.11074},
      }
  • [Momose] Go to document F. Momose, "Rational points on the modular curves $X_{{ split}}(p)$," Compositio Math., vol. 52, iss. 1, pp. 115-137, 1984.
    @article {Momose, MRKEY = {0742701},
      AUTHOR = {Momose, Fumiyuki},
      TITLE = {Rational points on the modular curves {$X\sb {{\rm split}}(p)$}},
      JOURNAL = {Compositio Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {52},
      YEAR = {1984},
      NUMBER = {1},
      PAGES = {115--137},
      ISSN = {0010-437X},
      CODEN = {CMPMAF},
      MRCLASS = {11G18 (11F11 11G30 14G05 14G25)},
      MRNUMBER = {0742701},
      MRREVIEWER = {Ernst Kani},
      URL = {http://www.numdam.org/item?id=CM_1984__52_1_115_0},
      ZBLNUMBER = {0574.14023},
      }
  • [Mor] Go to document L. J. Mordell, "On numbers represented by binary cubic forms," Proc. London Math. Soc., vol. 48, pp. 198-228, 1943.
    @article {Mor, MRKEY = {0009610},
      AUTHOR = {Mordell, L. J.},
      TITLE = {On numbers represented by binary cubic forms},
      JOURNAL = {Proc. London Math. Soc.},
      FJOURNAL = {Proceedings of the London Mathematical Society. Second Series},
      VOLUME = {48},
      YEAR = {1943},
      PAGES = {198--228},
      ISSN = {0024-6115},
      MRCLASS = {10.0X},
      MRNUMBER = {0009610},
      MRREVIEWER = {C. L. Siegel},
      DOI = {10.1112/plms/s2-48.1.198},
      ZBLNUMBER = {0060.12002},
      }
  • [Mort] Go to document P. Morton, "Characterizing cyclic cubic extensions by automorphism polynomials," J. Number Theory, vol. 49, iss. 2, pp. 183-208, 1994.
    @article {Mort, MRKEY = {1305089},
      AUTHOR = {Morton, Patrick},
      TITLE = {Characterizing cyclic cubic extensions by automorphism polynomials},
      JOURNAL = {J. Number Theory},
      FJOURNAL = {Journal of Number Theory},
      VOLUME = {49},
      YEAR = {1994},
      NUMBER = {2},
      PAGES = {183--208},
      ISSN = {0022-314X},
      CODEN = {JNUTA9},
      MRCLASS = {12F10 (11R16)},
      MRNUMBER = {1305089},
      MRREVIEWER = {Joseph H. Silverman},
      DOI = {10.1006/jnth.1994.1089},
      ZBLNUMBER = {0810.12003},
      }
  • [Pap] Go to document I. Papadopoulos, "Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle $2$ et $3$," J. Number Theory, vol. 44, iss. 2, pp. 119-152, 1993.
    @article {Pap, MRKEY = {1225948},
      AUTHOR = {Papadopoulos, Ioannis},
      TITLE = {Sur la classification de {N}éron des courbes elliptiques en caractéristique résiduelle {$2$} et {$3$}},
      JOURNAL = {J. Number Theory},
      FJOURNAL = {Journal of Number Theory},
      VOLUME = {44},
      YEAR = {1993},
      NUMBER = {2},
      PAGES = {119--152},
      ISSN = {0022-314X},
      CODEN = {JNUTA9},
      MRCLASS = {11G07 (14H52)},
      MRNUMBER = {1225948},
      MRREVIEWER = {Salvador Comalada},
      DOI = {10.1006/jnth.1993.1040},
      ZBLNUMBER = {0786.14020},
      }
  • [Ribet90] Go to document K. A. Ribet, "On modular representations of ${ Gal}(\overline{\bf Q}/{\bf Q})$ arising from modular forms," Invent. Math., vol. 100, iss. 2, pp. 431-476, 1990.
    @article {Ribet90, MRKEY = {1047143},
      AUTHOR = {Ribet, K. A.},
      TITLE = {On modular representations of {${\rm Gal}(\overline{\bf Q}/{\bf Q})$} arising from modular forms},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {100},
      YEAR = {1990},
      NUMBER = {2},
      PAGES = {431--476},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {11G18 (11F32 11F80 11S37)},
      MRNUMBER = {1047143},
      MRREVIEWER = {Glenn Stevens},
      DOI = {10.1007/BF01231195},
      ZBLNUMBER = {0773.11039},
      }
  • [Ribet94] K. A. Ribet, "Report on mod $l$ representations of $\mathrm{{G}al}(\overline{\mathbb{Q}}/\mathbb{Q})$," in Motives, Providence, RI: Amer. Math. Soc., 1994, vol. 55, pp. 639-676.
    @incollection{Ribet94,
      author={Ribet, K. A.},
      TITLE = {Report on mod $l$ representations of {$\mathrm{{G}al}(\overline{\mathbb{Q}}/\mathbb{Q})$}},
      BOOKTITLE={Motives},
      VENUE={Seattle, WA, 1991},
      SERIES={Proc. Sympos. Pure Math.},
      VOLUME={55},
      YEAR={1994},
      PAGES={639--676},
      MRNUMBER = {1265566},
      ZBLNUMBER = {0822.11034},
      PUBLISHER={Amer. Math. Soc.},
      ADDRESS={Providence, RI},
     }
  • [RS93] K. Rubin and A. Silverberg, "Families of elliptic curves with constant mod $p$ representations," in Elliptic Curves, Modular Forms, & Fermat’s Last Theorem, Int. Press, Cambridge, MA, 1995, vol. I, pp. 148-161.
    @incollection {RS93, MRKEY = {1363500},
      AUTHOR = {Rubin, K. and Silverberg, A.},
      TITLE = {Families of elliptic curves with constant mod {$p$} representations},
      BOOKTITLE = {Elliptic Curves, Modular Forms, \& {F}ermat's Last Theorem},
      VENUE={{H}ong {K}ong, 1993},
      SERIES = {Ser. Number Theory},
      VOLUME={I},
      PAGES = {148--161},
      PUBLISHER = {Int. Press, Cambridge, MA},
      YEAR = {1995},
      MRCLASS = {11G05},
      MRNUMBER = {1363500},
      MRREVIEWER = {Andrea Mori},
      ZBLNUMBER = {0856.11027},
      }
  • [RS01] Go to document K. Rubin and A. Silverberg, "Mod $2$ representations of elliptic curves," Proc. Amer. Math. Soc., vol. 129, iss. 1, pp. 53-57, 2001.
    @article {RS01, MRKEY = {1694877},
      AUTHOR = {Rubin, K. and Silverberg, A.},
      TITLE = {Mod {$2$} representations of elliptic curves},
      JOURNAL = {Proc. Amer. Math. Soc.},
      FJOURNAL = {Proceedings of the American Mathematical Society},
      VOLUME = {129},
      YEAR = {2001},
      NUMBER = {1},
      PAGES = {53--57},
      ISSN = {0002-9939},
      CODEN = {PAMYAR},
      MRCLASS = {11G05 (11F80)},
      MRNUMBER = {1694877},
      MRREVIEWER = {Matthew H. Baker},
      DOI = {10.1090/S0002-9939-00-05539-8},
      ZBLNUMBER = {1030.11025},
      }
  • [ScTi] Go to document A. Schinzel and R. Tijdeman, "On the equation $y^{m}=P(x)$," Acta Arith., vol. 31, iss. 2, pp. 199-204, 1976.
    @article {ScTi, MRKEY = {0422150},
      AUTHOR = {Schinzel, A. and Tijdeman, R.},
      TITLE = {On the equation {$y\sp{m}=P(x)$}},
      JOURNAL = {Acta Arith.},
      FJOURNAL = {Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica},
      VOLUME = {31},
      YEAR = {1976},
      NUMBER = {2},
      PAGES = {199--204},
      ISSN = {0065-1036},
      MRCLASS = {10B30},
      MRNUMBER = {0422150},
      MRREVIEWER = {David Lee Hilliker},
      ZBLNUMBER = {0339.10018},
      URL = {http://pldml.icm.edu.pl/mathbwn/element/bwmeta1.element.bwnjournal-article-aav31i2p199bwm?q=bwmeta1.element.bwnjournal-number-aa-1976-31-2&qt=CHILDREN-STATELESS},
     }
  • [Serre72] Go to document . J-P. Serre, "Propriétés galoisiennes des points d’ordre fini des courbes elliptiques," Invent. Math., vol. 15, iss. 4, pp. 259-331, 1972.
    @article {Serre72, MRKEY = {0387283},
      AUTHOR = {Serre, {\relax J-P}},
      TITLE = {Propriétés galoisiennes des points d'ordre fini des courbes elliptiques},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {15},
      YEAR = {1972},
      NUMBER = {4},
      PAGES = {259--331},
      ISSN = {0020-9910},
      MRCLASS = {14G25 (14K15)},
      MRNUMBER = {0387283},
      MRREVIEWER = {J. W. S. Cassels},
      DOI = {10.1007/BF01405086},
      ZBLNUMBER = {0235.14012},
      }
  • [Serre] Go to document J. Serre, "Quelques applications du théorème de densité de Chebotarev," Publ. Math. I.H.E.S., vol. 54, pp. 123-201, 1981.
    @article{Serre,
      author={Serre, Jean-Pierre},
      TITLE = {Quelques applications du théorème de densité de {C}hebotarev},
      JOURNAL={Publ. Math. I.H.E.S.},
      VOLUME={54},
      YEAR={1981},
      PAGES={123--201},
      MRNUMBER = {0644559},
      ZBLNUMBER = {0496.12011},
      DOI = {10.1007/BF02698692},
      }
  • [Shi] Go to document T. Shintani, "On Dirichlet series whose coefficients are class numbers of integral binary cubic forms," J. Math. Soc. Japan, vol. 24, pp. 132-188, 1972.
    @article {Shi, MRKEY = {0289428},
      AUTHOR = {Shintani, Takuro},
      TITLE = {On {D}irichlet series whose coefficients are class numbers of integral binary cubic forms},
      JOURNAL = {J. Math. Soc. Japan},
      FJOURNAL = {Journal of the Mathematical Society of Japan},
      VOLUME = {24},
      YEAR = {1972},
      PAGES = {132--188},
      ISSN = {0025-5645},
      MRCLASS = {10.41},
      MRNUMBER = {0289428},
      MRREVIEWER = {B. Gordon},
      DOI = {10.2969/jmsj/02410132},
      ZBLNUMBER = {0227.10031},
      }
  • [Shi2] T. Shintani, "On zeta-functions associated with the vector space of quadratic forms," J. Fac. Sci. Univ. Tokyo Sect. I A Math., vol. 22, pp. 25-65, 1975.
    @article {Shi2, MRKEY = {0384717},
      AUTHOR = {Shintani, Takuro},
      TITLE = {On zeta-functions associated with the vector space of quadratic forms},
      JOURNAL = {J. Fac. Sci. Univ. Tokyo Sect. I A Math.},
      VOLUME = {22},
      YEAR = {1975},
      PAGES = {25--65},
      MRCLASS = {10H10 (10C15)},
      MRNUMBER = {0384717},
      MRREVIEWER = {Stephen Haris},
      ZBLNUMBER = {0313.10041},
      }
  • [SiegelX] Go to document C. L. Siegel, "The integer solutions of the equation $y^2=ax^n + bx^{n-1} + \ldots + k$, extract from a letter to Prof. L. J. Mordell," J. London Math. Soc., vol. 1, pp. 66-68, 1926.
    @article{SiegelX,
      author={Siegel, C. L.},
      TITLE={The integer solutions of the equation $y^2=ax^n + bx^{n-1} + \ldots + k$, extract from a letter to {P}rof. {L. J. M}ordell},
      JOURNAL={J. London Math. Soc.},
      VOLUME={1},
      YEAR={1926},
      PAGES={66--68},
      JFMNUMBER ={52.0149.02},
      DOI = {10.1112/jlms/s1-1.2.66},
     }
  • [Si] C. L. Siegel, "Einige Anwendungen diophantischer Approximationen," Abh. Preuss. Akaad. Wiss. Phys. Math. Kl., pp. 41-69, 1929.
    @article{Si,
      author={Siegel, C. L.},
      TITLE={Einige {A}nwendungen diophantischer {A}pproximationen},
      JOURNAL={Abh. Preuss. Akaad. Wiss. Phys. Math. Kl.},
      YEAR={1929},
      PAGES={41--69},
      JFMNUMBER = {56.0180.05},
     }
  • [Silverberg] A. Silverberg, "Explicit families of elliptic curves with prescribed mod $N$ representations," in Modular Forms and Fermat’s Last Theorem, New York: Springer-Verlag, 1997, pp. 447-461.
    @incollection {Silverberg, MRKEY = {1638488},
      AUTHOR = {Silverberg, Alice},
      TITLE = {Explicit families of elliptic curves with prescribed mod {$N$} representations},
      BOOKTITLE = {Modular Forms and {F}ermat's Last Theorem},
      VENUE={{B}oston, {MA},
      1995},
      PAGES = {447--461},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1997},
      MRCLASS = {11G05 (11F80 11G18)},
      MRNUMBER = {1638488},
      ZBLNUMBER = {0912.11024},
      }
  • [Ste] Go to document H. Stender, "Lösbare Gleichungen $ax^{n}-by^{n}=c$ und Grundeinheiten für einige algebraische Zahlkörper vom Grade $n=3,4,6$," J. Reine Angew. Math., vol. 290, pp. 24-62, 1977.
    @article {Ste, MRKEY = {0472765},
      AUTHOR = {Stender, Hans-Joachim},
      TITLE = {Lösbare {G}leichungen {$ax\sp{n}-by\sp{n}=c$} und {G}rundeinheiten für einige algebraische {Z}ahlkörper vom {G}rade {$n=3,4,6$}},
      JOURNAL = {J. Reine Angew. Math.},
      FJOURNAL = {Journal für die Reine und Angewandte Mathematik},
      VOLUME = {290},
      YEAR = {1977},
      PAGES = {24--62},
      ISSN = {0075-4102},
      MRCLASS = {12A45},
      MRNUMBER = {0472765},
      MRREVIEWER = {Charles J. Parry},
      DOI = {10.1515/crll.1977.290.24},
      ZBLNUMBER = {0499.12004},
     }
  • [StCr] Go to document M. Stoll and J. E. Cremona, "On the reduction theory of binary forms," J. Reine Angew. Math., vol. 565, pp. 79-99, 2003.
    @article {StCr, MRKEY = {2024647},
      AUTHOR = {Stoll, Michael and Cremona, John E.},
      TITLE = {On the reduction theory of binary forms},
      JOURNAL = {J. Reine Angew. Math.},
      FJOURNAL = {Journal für die Reine und Angewandte Mathematik},
      VOLUME = {565},
      YEAR = {2003},
      PAGES = {79--99},
      ISSN = {0075-4102},
      CODEN = {JRMAA8},
      MRCLASS = {11H55 (11E76)},
      MRNUMBER = {2024647},
      MRREVIEWER = {Christine Bachoc},
      DOI = {10.1515/crll.2003.106},
      ZBLNUMBER = {1153.11317},
      }
  • [Th] Go to document J. L. Thunder, "On cubic {T}hue inequalities and a result of {M}ahler," Acta Arith., vol. 83, iss. 1, pp. 31-44, 1998.
    @article {Th, MRKEY = {1489565},
      AUTHOR = {Thunder, Jeffrey Lin},
      TITLE = {On cubic {T}hue inequalities and a result of {M}ahler},
      JOURNAL = {Acta Arith.},
      FJOURNAL = {Acta Arithmetica},
      VOLUME = {83},
      YEAR = {1998},
      NUMBER = {1},
      PAGES = {31--44},
      ISSN = {0065-1036},
      CODEN = {AARIA9},
      MRCLASS = {11D75 (11J25)},
      MRNUMBER = {1489565},
      MRREVIEWER = {Paul M. Voutier},
      ZBLNUMBER = {0897.11010},
      URL = {http://pldml.icm.edu.pl/mathbwn/element/bwmeta1.element.bwnjournal-article-aav83i1p31bwm?q=9358a07b-cf18-4794-83fa-7dcc1d0ca409$1&qt=IN_PAGE,
     
  • [TdW] Go to document N. Tzanakis and B. M. M. de Weger, "How to explicitly solve a Thue-Mahler equation," Compositio Math., vol. 84, iss. 3, pp. 223-288, 1992.
    @article {TdW, MRKEY = {1189890},
      AUTHOR = {Tzanakis, N. and de Weger, B. M. M.},
      TITLE = {How to explicitly solve a {T}hue-{M}ahler equation},
      JOURNAL = {Compositio Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {84},
      YEAR = {1992},
      NUMBER = {3},
      PAGES = {223--288},
      ISSN = {0010-437X},
      CODEN = {CMPMAF},
      MRCLASS = {11D61 (11J86)},
      MRNUMBER = {1189890},
      MRREVIEWER = {C. L. Stewart},
      URL = {http://www.numdam.org/item?id=CM_1992__84_3_223_0},
      ZBLNUMBER = {0773.11023},
      }
  • [Wak0] Go to document I. Wakabayashi, "Cubic Thue inequalities with negative discriminant," J. Number Theory, vol. 97, iss. 2, pp. 222-251, 2002.
    @article {Wak0, MRKEY = {1942958},
      AUTHOR = {Wakabayashi, Isao},
      TITLE = {Cubic {T}hue inequalities with negative discriminant},
      JOURNAL = {J. Number Theory},
      FJOURNAL = {Journal of Number Theory},
      VOLUME = {97},
      YEAR = {2002},
      NUMBER = {2},
      PAGES = {222--251},
      ISSN = {0022-314X},
      CODEN = {JNUTA9},
      MRCLASS = {11D59 (11D75)},
      MRNUMBER = {1942958},
      MRREVIEWER = {Michael A. Bennett},
      DOI = {10.1016/S0022-314X(02)00010-0},
      ZBLNUMBER = {1042.11021},
      }
  • [Wak1] Go to document I. Wakabayashi, "Simple families of Thue inequalities," Ann. Sci. Math. Québec, vol. 31, iss. 2, pp. 211-232 (2008), 2007.
    @article {Wak1, MRKEY = {2492925},
      AUTHOR = {Wakabayashi, Isao},
      TITLE = {Simple families of {T}hue inequalities},
      JOURNAL = {Ann. Sci. Math. Québec},
      FJOURNAL = {Annales des Sciences Mathématiques du Québec},
      VOLUME = {31},
      YEAR = {2007},
      NUMBER = {2},
      PAGES = {211--232 (2008)},
      ISSN = {0707-9109},
      MRCLASS = {11D75 (11J25)},
      MRNUMBER = {2492925},
      ZBLNUMBER = {1172.11010},
      URL = {http://www.labmath.uqam.ca/~annales/volumes/31-2/PDF/211-232.pdf},
     }
  • [Wak2] Go to document I. Wakabayashi, "Number of solutions for cubic Thue equations with automorphisms," Ramanujan J., vol. 14, iss. 1, pp. 131-154, 2007.
    @article {Wak2, MRKEY = {2299045},
      AUTHOR = {Wakabayashi, Isao},
      TITLE = {Number of solutions for cubic {T}hue equations with automorphisms},
      JOURNAL = {Ramanujan J.},
      FJOURNAL = {Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan},
      VOLUME = {14},
      YEAR = {2007},
      NUMBER = {1},
      PAGES = {131--154},
      ISSN = {1382-4090},
      CODEN = {RAJOF9},
      MRCLASS = {11D59 (11D25 11J68)},
      MRNUMBER = {2299045},
      MRREVIEWER = {Andrej Dujella},
      DOI = {10.1007/s11139-006-9001-9},
      ZBLNUMBER = {1133.11024},
      }
  • [Was] Go to document L. C. Washington, "A family of cyclic quartic fields arising from modular curves," Math. Comp., vol. 57, iss. 196, pp. 763-775, 1991.
    @article {Was, MRKEY = {1094964},
      AUTHOR = {Washington, Lawrence C.},
      TITLE = {A family of cyclic quartic fields arising from modular curves},
      JOURNAL = {Math. Comp.},
      FJOURNAL = {Mathematics of Computation},
      VOLUME = {57},
      YEAR = {1991},
      NUMBER = {196},
      PAGES = {763--775},
      ISSN = {0025-5718},
      CODEN = {MCMPAF},
      MRCLASS = {11R16 (11G05)},
      MRNUMBER = {1094964},
      MRREVIEWER = {Joseph H. Silverman},
      DOI = {10.2307/2938716},
      ZBLNUMBER = {0743.11058},
      }
  • [Wi] Go to document A. Wiles, "Modular elliptic curves and Fermat’s last theorem," Ann. of Math., vol. 141, iss. 3, pp. 443-551, 1995.
    @article {Wi, MRKEY = {1333035},
      AUTHOR = {Wiles, Andrew},
      TITLE = {Modular elliptic curves and {F}ermat's last theorem},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {141},
      YEAR = {1995},
      NUMBER = {3},
      PAGES = {443--551},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {11G05 (11D41 11F11 11F80 11G18)},
      MRNUMBER = {1333035},
      MRREVIEWER = {Karl Rubin},
      DOI = {10.2307/2118559},
      ZBLNUMBER = {0823.11029},
      }

Authors

Michael A. Bennett

Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, B.C., Canada V6T 1Z2

Sander R. Dahmen

Mathematisches Instituut, Universiteit Utrecht, P. O. Box 80 010, 3508 TA Utrecht ,The Netherlands