The second fundamental theorem of invariant theory for the orthogonal group

Abstract

Let $V=\mathbb{C}^n$ be endowed with an orthogonal form and $G=\mathrm{O}(V)$ be the corresponding orthogonal group. Brauer showed in 1937 that there is a surjective homomorphism $\nu:B_r(n)\to\mathrm{End}_G(V^{\otimes r})$, where $B_r(n)$ is the $r$-string Brauer algebra with parameter $n$. However the kernel of $\nu$ has remained elusive. In this paper we show that, in analogy with the case of $\mathrm{GL}(V)$, for $r\geq n+1$, $\nu$ has a kernel which is generated by a single idempotent element $E$, and we give a simple explicit formula for $E$. Using the theory of cellular algebras, we show how $E$ may be used to determine the multiplicities of the irreducible representations of $\mathrm{O}(V)$ in $V^{\otimes r}$. We also show how our results extend to the case where $\mathbb{C}$ is replaced by an appropriate field of positive characteristic, and we comment on quantum analogues of our results.

  • [ABP] Go to document M. Atiyah, R. Bott, and V. K. Patodi, "On the heat equation and the index theorem," Invent. Math., vol. 19, pp. 279-330, 1973.
    @article {ABP, MRKEY = {0650828},
      AUTHOR = {Atiyah, M. and Bott, R. and Patodi, V. K.},
      TITLE = {On the heat equation and the index theorem},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {19},
      YEAR = {1973},
      PAGES = {279--330},
      ISSN = {0020-9910},
      MRCLASS = {58G10 (35K05)},
      MRNUMBER = {0650828},
      MRREVIEWER = {Authors' review},
      ZBLNUMBER = {0257.58008},
      DOI = {10.1007/BF01425417},
     }
  • [BW] Go to document J. S. Birman and H. Wenzl, "Braids, link polynomials and a new algebra," Trans. Amer. Math. Soc., vol. 313, iss. 1, pp. 249-273, 1989.
    @article {BW, MRKEY = {0992598},
      AUTHOR = {Birman, Joan S. and Wenzl, Hans},
      TITLE = {Braids, link polynomials and a new algebra},
      JOURNAL = {Trans. Amer. Math. Soc.},
      FJOURNAL = {Transactions of the American Mathematical Society},
      VOLUME = {313},
      YEAR = {1989},
      NUMBER = {1},
      PAGES = {249--273},
      ISSN = {0002-9947},
      CODEN = {TAMTAM},
      MRCLASS = {57M25 (17B99 20F36)},
      MRNUMBER = {0992598},
      MRREVIEWER = {Mark E. Kidwell},
      DOI = {10.2307/2001074},
      ZBLNUMBER = {0684.57004},
      }
  • [Br] Go to document R. Brauer, "On algebras which are connected with the semisimple continuous groups," Ann. of Math., vol. 38, iss. 4, pp. 857-872, 1937.
    @article {Br, MRKEY = {1503378},
      AUTHOR = {Brauer, Richard},
      TITLE = {On algebras which are connected with the semisimple continuous groups},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {38},
      YEAR = {1937},
      NUMBER = {4},
      PAGES = {857--872},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {Contributed Item},
      MRNUMBER = {1503378},
      DOI = {10.2307/1968843},
      ZBLNUMBER = {0017.39105},
      }
  • [dCP] Go to document C. de Concini and C. Procesi, "A characteristic free approach to invariant theory," Advances in Math., vol. 21, iss. 3, pp. 330-354, 1976.
    @article {dCP, MRKEY = {0422314},
      AUTHOR = {de Concini, C. and Procesi, C.},
      TITLE = {A characteristic free approach to invariant theory},
      JOURNAL = {Advances in Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {21},
      YEAR = {1976},
      NUMBER = {3},
      PAGES = {330--354},
      ISSN = {0001-8708},
      MRCLASS = {15A72 (14L99)},
      MRNUMBER = {0422314},
      MRREVIEWER = {V. L. Popov},
      ZBLNUMBER = {0347.20025},
      DOI = {10.1016/S0001-8708(76)80003-5},
     }
  • [DHW] Go to document W. F. Doran IV, D. B. Wales, and P. J. Hanlon, "On the semisimplicity of the Brauer centralizer algebras," J. Algebra, vol. 211, iss. 2, pp. 647-685, 1999.
    @article {DHW, MRKEY = {1666664},
      AUTHOR = {Doran, IV, William F. and Wales, David B. and Hanlon, Philip J.},
      TITLE = {On the semisimplicity of the {B}rauer centralizer algebras},
      JOURNAL = {J. Algebra},
      FJOURNAL = {Journal of Algebra},
      VOLUME = {211},
      YEAR = {1999},
      NUMBER = {2},
      PAGES = {647--685},
      ISSN = {0021-8693},
      CODEN = {JALGA4},
      MRCLASS = {16G99 (20G05)},
      MRNUMBER = {1666664},
      MRREVIEWER = {Fabio Gavarini},
      DOI = {10.1006/jabr.1998.7592},
      ZBLNUMBER = {0944.16002},
      }
  • [GL96] Go to document J. J. Graham and G. I. Lehrer, "Cellular algebras," Invent. Math., vol. 123, iss. 1, pp. 1-34, 1996.
    @article {GL96, MRKEY = {1376244},
      AUTHOR = {Graham, J. J. and Lehrer, G. I.},
      TITLE = {Cellular algebras},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {123},
      YEAR = {1996},
      NUMBER = {1},
      PAGES = {1--34},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {20C99},
      MRNUMBER = {1376244},
      DOI = {10.1007/BF01232365},
      ZBLNUMBER = {0853.20029},
      }
  • [GL03] Go to document J. J. Graham and G. I. Lehrer, "Diagram algebras, Hecke algebras and decomposition numbers at roots of unity," Ann. Sci. École Norm. Sup., vol. 36, iss. 4, pp. 479-524, 2003.
    @article {GL03, MRKEY = {2013924},
      AUTHOR = {Graham, J. J. and Lehrer, G. I.},
      TITLE = {Diagram algebras, {H}ecke algebras and decomposition numbers at roots of unity},
      JOURNAL = {Ann. Sci. École Norm. Sup.},
      FJOURNAL = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      VOLUME = {36},
      YEAR = {2003},
      NUMBER = {4},
      PAGES = {479--524},
      ISSN = {0012-9593},
      CODEN = {ASENAH},
      MRCLASS = {20C08 (20F36)},
      MRNUMBER = {2013924},
      MRREVIEWER = {Richard M. Green},
      DOI = {10.1016/S0012-9593(03)00020-X},
      ZBLNUMBER = {1062.20003},
      }
  • [GL04] J. J. Graham and G. I. Lehrer, "Cellular algebras and diagram algebras in representation theory," in Representation Theory of Algebraic Groups and Quantum Groups, Tokyo: Math. Soc. Japan, 2004, vol. 40, pp. 141-173.
    @incollection {GL04, MRKEY = {2074593},
      AUTHOR = {Graham, J. J. and Lehrer, G. I.},
      TITLE = {Cellular algebras and diagram algebras in representation theory},
      BOOKTITLE = {Representation Theory of Algebraic Groups and Quantum Groups},
      SERIES = {Adv. Stud. Pure Math.},
      VOLUME = {40},
      PAGES = {141--173},
      PUBLISHER = {Math. Soc. Japan},
      ADDRESS = {Tokyo},
      YEAR = {2004},
      MRCLASS = {20C08 (20F36)},
      MRNUMBER = {2074593},
      MRREVIEWER = {Andrew Mathas},
      ZBLNUMBER = {1135.20302},
      }
  • [HX] Go to document J. Hu and Z. Xiao, "On tensor spaces for Birman-Murakami-Wenzl algebras," J. Algebra, vol. 324, iss. 10, pp. 2893-2922, 2010.
    @article {HX, MRKEY = {2725207},
      AUTHOR = {Hu, Jun and Xiao, Zhankui},
      TITLE = {On tensor spaces for {B}irman-{M}urakami-{W}enzl algebras},
      JOURNAL = {J. Algebra},
      FJOURNAL = {Journal of Algebra},
      VOLUME = {324},
      YEAR = {2010},
      NUMBER = {10},
      PAGES = {2893--2922},
      ISSN = {0021-8693},
      CODEN = {JALGA4},
      MRCLASS = {17B37 (16S99 20C08 20G05)},
      MRNUMBER = {2725207},
      MRREVIEWER = {Simon Riche},
      DOI = {10.1016/j.jalgebra.2010.08.017},
      ZBLNUMBER = {05840426},
      }
  • [Jo] Go to document V. F. R. Jones, "Hecke algebra representations of braid groups and link polynomials," Ann. of Math., vol. 126, iss. 2, pp. 335-388, 1987.
    @article {Jo, MRKEY = {0908150},
      AUTHOR = {Jones, V. F. R.},
      TITLE = {Hecke algebra representations of braid groups and link polynomials},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {126},
      YEAR = {1987},
      NUMBER = {2},
      PAGES = {335--388},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {46L99 (20F36 22D25 46L35 46L55 57M25)},
      MRNUMBER = {0908150},
      MRREVIEWER = {Pierre de la Harpe},
      DOI = {10.2307/1971403},
      ZBLNUMBER = {0631.57005},
      }
  • [Lo] J. Loday, Cyclic Homology, Second ed., New York: Springer-Verlag, 1998, vol. 301.
    @book {Lo, MRKEY = {1600246},
      AUTHOR = {Loday, Jean-Louis},
      TITLE = {Cyclic Homology},
      SERIES = {Grundlhern Math. Wissen.},
      VOLUME = {301},
      EDITION = {Second},
      NOTE = {Appendix E by Mar{\'ı}a O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1998},
      PAGES = {xx+513},
      ISBN = {3-540-63074-0},
      MRCLASS = {16E40 (13D03 17B55 18G60 19D55)},
      MRNUMBER = {1600246},
      ZBLNUMBER = {0928.19001},
      ZBLNUMBER = {0885.18007},
      }
  • [LZ1] Go to document G. I. Lehrer and R. B. Zhang, "Strongly multiplicity free modules for Lie algebras and quantum groups," J. Algebra, vol. 306, iss. 1, pp. 138-174, 2006.
    @article {LZ1, MRKEY = {2271576},
      AUTHOR = {Lehrer, G. I. and Zhang, R. B.},
      TITLE = {Strongly multiplicity free modules for {L}ie algebras and quantum groups},
      JOURNAL = {J. Algebra},
      FJOURNAL = {Journal of Algebra},
      VOLUME = {306},
      YEAR = {2006},
      NUMBER = {1},
      PAGES = {138--174},
      ISSN = {0021-8693},
      CODEN = {JALGA4},
      MRCLASS = {17B10 (17B37 20G42)},
      MRNUMBER = {2271576},
      MRREVIEWER = {Jan E. Grabowski},
      DOI = {10.1016/j.jalgebra.2006.03.043},
      ZBLNUMBER = {1169.17003},
      }
  • [LZ2] Go to document G. I. Lehrer and R. B. Zhang, "A Temperley-Lieb analogue for the BMV algebra," in Representation Theory of Algebraic Groups and Quantum Groups, New York: Springer-Verlag, 2010, vol. 284, pp. 155-190.
    @incollection {LZ2, MRKEY = {2761939},
      AUTHOR = {Lehrer, G. I. and Zhang, R. B.},
      TITLE = {A {T}emperley-{L}ieb analogue for the {BMV} algebra},
      BOOKTITLE = {Representation Theory of Algebraic Groups and Quantum Groups},
      SERIES = {Progr. Math.},
      VOLUME = {284},
      PAGES = {155--190},
      PUBLISHER = {Springer-Verlag},
      YEAR = {2010},
      MRCLASS = {16T20 (20C08)},
      MRNUMBER = {2761939},
      MRREVIEWER = {Oleg V. Ogievetsky},
      DOI = {10.1007/978-0-8176-4697-4_7},
      ADDRESS = {New York},
      ZBLNUMBER = {05919683},
     }
  • [LZ3] Go to document G. I. Lehrer and R. Zhang, "On endomorphisms of quantum tensor space," Lett. Math. Phys., vol. 86, iss. 2-3, pp. 209-227, 2008.
    @article {LZ3, MRKEY = {2465755},
      AUTHOR = {Lehrer, Gustav Isaac and Zhang, Ruibin},
      TITLE = {On endomorphisms of quantum tensor space},
      JOURNAL = {Lett. Math. Phys.},
      FJOURNAL = {Letters in Mathematical Physics. A Journal for the Rapid Dissemination of Short Contributions in the Field of Mathematical Physics},
      VOLUME = {86},
      YEAR = {2008},
      NUMBER = {2-3},
      PAGES = {209--227},
      ISSN = {0377-9017},
      CODEN = {LMPHDY},
      MRCLASS = {17B37 (20C08)},
      MRNUMBER = {2465755},
      MRREVIEWER = {Vladislav K. Kharchenko},
      DOI = {10.1007/s11005-008-0284-1},
      ZBLNUMBER = {1213.17015},
      }
  • [LZZ] Go to document G. I. Lehrer, H. Zhang, and R. B. Zhang, "A quantum analogue of the first fundamental theorem of classical invariant theory," Comm. Math. Phys., vol. 301, iss. 1, pp. 131-174, 2011.
    @article {LZZ, MRKEY = {2753673},
      AUTHOR = {Lehrer, Gustav Isaac and Zhang, Hechun and Zhang, R. B.},
      TITLE = {A quantum analogue of the first fundamental theorem of classical invariant theory},
      JOURNAL = {Comm. Math. Phys.},
      FJOURNAL = {Communications in Mathematical Physics},
      VOLUME = {301},
      YEAR = {2011},
      NUMBER = {1},
      PAGES = {131--174},
      ISSN = {0010-3616},
      CODEN = {CMPHAY},
      MRCLASS = {17B37},
      MRNUMBER = {2753673},
      MRREVIEWER = {Nicol{á}s Andruskiewitsch},
      DOI = {10.1007/s00220-010-1143-3},
      ZBLNUMBER = {05843865},
      }
  • [Lu] G. Lusztig, Introduction to Quantum Groups, Boston, MA: Birkhäuser, 1993, vol. 110.
    @book {Lu, MRKEY = {1227098},
      AUTHOR = {Lusztig, George},
      TITLE = {Introduction to Quantum Groups},
      SERIES = {Progress in Mathematics},
      VOLUME = {110},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Boston, MA},
      YEAR = {1993},
      PAGES = {xii+341},
      ISBN = {0-8176-3712-5},
      MRCLASS = {17B37 (16W30 17-02 17B35 81R50)},
      MRNUMBER = {1227098},
      MRREVIEWER = {Jie Du},
      ZBLNUMBER = {0788.17010},
      }
  • [P1] C. Procesi, "150 years of invariant theory," in The Heritage of Emmy Noether, Ramat Gan: Bar-Ilan Univ., 1999, vol. 12, pp. 5-21.
    @incollection {P1, MRKEY = {1665432},
      AUTHOR = {Procesi, Claudio},
      TITLE = {150 years of invariant theory},
      BOOKTITLE = {The Heritage of {E}mmy {N}oether},
      VENUE={{R}amat-{G}an, 1996},
      SERIES = {Israel Math. Conf. Proc.},
      VOLUME = {12},
      PAGES = {5--21},
      PUBLISHER = {Bar-Ilan Univ.},
      ADDRESS = {Ramat Gan},
      YEAR = {1999},
      MRCLASS = {01A60 (01A50 13-03)},
      MRNUMBER = {1665432},
      MRREVIEWER = {C. R. Fletcher},
      ZBLNUMBER = {0931.15021},
      }
  • [P2] C. Procesi, Lie Groups. An Approach Through Invariants and Representations, New York: Springer-Verlag, 2007.
    @book {P2, MRKEY = {2265844},
      AUTHOR = {Procesi, Claudio},
      TITLE = {Lie Groups. An Approach Through Invariants and Representations},
      SERIES = {Universitext},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {2007},
      PAGES = {xxiv+596},
      ISBN = {978-0-387-26040-2; 0-387-26040-4},
      MRCLASS = {22E10 (05E10 05E15 14L24 14M15 17B10 20G05 22-02)},
      MRNUMBER = {2265844},
      MRREVIEWER = {James E. Humphreys},
      ZBLNUMBER = {1154.22001},
      }
  • [P3] C. Procesi, "The invariant theory of $n\times n$ matrices," Advances in Math., vol. 19, iss. 3, pp. 306-381, 1976.
    @article {P3, MRKEY = {0419491},
      AUTHOR = {Procesi, C.},
      TITLE = {The invariant theory of {$n\times n$} matrices},
      JOURNAL = {Advances in Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {19},
      YEAR = {1976},
      NUMBER = {3},
      PAGES = {306--381},
      ISSN = {0001-8708},
      MRCLASS = {15A72 (14L99 20G20)},
      MRNUMBER = {0419491},
      MRREVIEWER = {M. Nagata},
      ZBLNUMBER = {0331.15021},
      }
  • [Ri] Go to document D. R. Richman, "The fundamental theorems of vector invariants," Adv. in Math., vol. 73, iss. 1, pp. 43-78, 1989.
    @article {Ri, MRKEY = {0979587},
      AUTHOR = {Richman, David R.},
      TITLE = {The fundamental theorems of vector invariants},
      JOURNAL = {Adv. in Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {73},
      YEAR = {1989},
      NUMBER = {1},
      PAGES = {43--78},
      ISSN = {0001-8708},
      CODEN = {ADMTA4},
      MRCLASS = {20C07 (05A99 15A72)},
      MRNUMBER = {0979587},
      MRREVIEWER = {Andrea Brini},
      DOI = {10.1016/0001-8708(89)90059-5},
      ZBLNUMBER = {0668.15016},
      }
  • [RS] Go to document H. Rui and M. Si, "A criterion on the semisimple Brauer algebras. II," J. Combin. Theory Ser. A, vol. 113, iss. 6, pp. 1199-1203, 2006.
    @article {RS, MRKEY = {2244141},
      AUTHOR = {Rui, Hebing and Si, Mei},
      TITLE = {A criterion on the semisimple {B}rauer algebras. {II}},
      JOURNAL = {J. Combin. Theory Ser. A},
      FJOURNAL = {Journal of Combinatorial Theory. Series A},
      VOLUME = {113},
      YEAR = {2006},
      NUMBER = {6},
      PAGES = {1199--1203},
      ISSN = {0097-3165},
      CODEN = {JCBTA7},
      MRCLASS = {16S99},
      MRNUMBER = {2244141},
      MRREVIEWER = {Carl Riehm},
      DOI = {10.1016/j.jcta.2005.09.005},
      ZBLNUMBER = {1108.16009},
      }
  • [W] H. Weyl, The Classical Groups, Princeton, NJ: Princeton Univ. Press, 1997.
    @book {W, MRKEY = {1488158},
      AUTHOR = {Weyl, Hermann},
      TITLE = {The Classical Groups},
      SERIES = {Princeton Landmarks in Math. Their Invariants and Representations},
      PUBLISHER = {Princeton Univ. Press},
      ADDRESS = {Princeton, NJ},
      YEAR = {1997},
      PAGES = {xiv+320},
      ISBN = {0-691-05756-7},
      MRCLASS = {01A75 (20-03 20Cxx 20Gxx 22-01)},
      MRNUMBER = {1488158},
      ZBLNUMBER = {1024.20501},
      }
  • [X] Go to document C. Xi, "On the quasi-heredity of Birman-Wenzl algebras," Adv. Math., vol. 154, iss. 2, pp. 280-298, 2000.
    @article {X, MRKEY = {1784677},
      AUTHOR = {Xi, Changchang},
      TITLE = {On the quasi-heredity of {B}irman-{W}enzl algebras},
      JOURNAL = {Adv. Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {154},
      YEAR = {2000},
      NUMBER = {2},
      PAGES = {280--298},
      ISSN = {0001-8708},
      CODEN = {ADMTA4},
      MRCLASS = {20C08 (16E10)},
      MRNUMBER = {1784677},
      MRREVIEWER = {Steffen K{ö}nig},
      DOI = {10.1006/aima.2000.1919},
      ZBLNUMBER = {0971.16008},
      }

Authors

Gustav Lehrer

School of Mathematics and Statistics
University of Sydney
Sydney NSW 2006
Australia

Ruibin Zhang

School of Mathematics and Statistics
University of Sydney
Sydney NSW 2006
Australia