Abstract
In the local, characteristic $0$, non-Archimedean case, we consider distributions on ${\rm GL}(n+1)$ which are invariant under the adjoint action of ${\rm GL}(n)$. We prove that such distributions are invariant by transposition. This implies multiplicity at most one for restrictions from ${\rm GL}(n+1)$ to ${\rm GL}(n)$. Similar theorems are obtained for orthogonal or unitary groups.
-
[AG] A. Aizenbud and D. Gourevitch, A proof of the multiplicity one conjecture for $\mathrm{GL}(n)$ in $\mathrm{GL}(n + 1)$.
@misc{AG,
author={Aizenbud, Avraham and Gourevitch, Dmitry},
TITLE={A proof of the multiplicity one conjecture for $\mathrm{GL}(n)$ in $\mathrm{GL}(n + 1)$},
ARXIV={0707.2363v2},
} -
[AAG] A. Aizenbud, N. Avni, and D. Gourevitch, Spherical pairs over close local fields.
@misc{AAG,
author={Aizenbud, Avraham and Avni, N. and Gourevitch, Dmitry},
TITLE={Spherical pairs over close local fields},
ARXIV={0910.3199},
} -
[AG2]
A. Aizenbud and D. Gourevitch, "Multiplicity one theorem for $({ GL}_{n+1}(\Bbb R),{ GL}_n(\Bbb R))$," Selecta Math., vol. 15, iss. 2, pp. 271-294, 2009.
@article {AG2, MRKEY = {2529937},
AUTHOR = {Aizenbud, Avraham and Gourevitch, Dmitry},
TITLE = {Multiplicity one theorem for {$({\rm GL}\sb {n+1}(\Bbb R),{\rm GL}\sb n(\Bbb R))$}},
JOURNAL = {Selecta Math.},
FJOURNAL = {Selecta Mathematica. New Series},
VOLUME = {15},
YEAR = {2009},
NUMBER = {2},
PAGES = {271--294},
ISSN = {1022-1824},
CODEN = {SMATF6},
MRCLASS = {20G05 (22Exx)},
MRNUMBER = {2529937},
DOI = {10.1007/s00029-009-0544-7},
ZBLNUMBER = {05655349},
} -
[AGS1]
A. Aizenbud, D. Gourevitch, and E. Sayag, "$({ GL}_{n+1}(F),{ GL}_n(F))$ is a Gelfand pair for any local field $F$," Compos. Math., vol. 144, iss. 6, pp. 1504-1524, 2008.
@article {AGS1, MRKEY = {2474319},
AUTHOR = {Aizenbud, Avraham and Gourevitch, Dmitry and Sayag, Eitan},
TITLE = {{$({\rm GL}\sb {n+1}(F),{\rm GL}\sb n(F))$} is a {G}elfand pair for any local field {$F$}},
JOURNAL = {Compos. Math.},
FJOURNAL = {Compositio Mathematica},
VOLUME = {144},
YEAR = {2008},
NUMBER = {6},
PAGES = {1504--1524},
ISSN = {0010-437X},
MRCLASS = {22E50 (20G05 20G25 22E45)},
MRNUMBER = {2009k:22022},
MRREVIEWER = {Dubravka Ban},
DOI = {10.1112/S0010437X08003746},
ZBLNUMBER = {1157.22004},
} -
[AGS2]
A. Aizenbud, D. Gourevitch, and E. Sayag, "$({ O}(V\oplus F),{ O}(V))$ is a Gelfand pair for any quadratic space $V$ over a local field $F$," Math. Z., vol. 261, iss. 2, pp. 239-244, 2009.
@article {AGS2, MRKEY = {2457297},
AUTHOR = {Aizenbud, Avraham and Gourevitch, Dmitry and Sayag, Eitan},
TITLE = {{$({\rm O}(V\oplus F),{\rm O}(V))$} is a {G}elfand pair for any quadratic space {$V$} over a local field {$F$}},
JOURNAL = {Math. Z.},
FJOURNAL = {Mathematische Zeitschrift},
VOLUME = {261},
YEAR = {2009},
NUMBER = {2},
PAGES = {239--244},
ISSN = {0025-5874},
CODEN = {MAZEAX},
MRCLASS = {22E50 (20G25)},
MRNUMBER = {2010a:22020},
MRREVIEWER = {Nadia P. Mazza},
DOI = {10.1007/s00209-008-0318-5},
ZBLNUMBER = {1179.22017},
} -
[Ber] J. N. Bernstein, "$P$-invariant distributions on ${ GL}(N)$ and the classification of unitary representations of ${ GL}(N)$ (non-Archimedean case)," in Lie Group Representations, II, New York: Springer-Verlag, 1984, vol. 1041, pp. 50-102.
@incollection {Ber, MRKEY = {748505},
AUTHOR = {Bernstein, Joseph N.},
TITLE = {{$P$}-invariant distributions on {${\rm GL}(N)$} and the classification of unitary representations of {${\rm GL}(N)$} (non-{A}rchimedean case)},
BOOKTITLE = {Lie Group Representations, {\rm II}},
VENUE={{C}ollege {P}ark, {M}d., 1982/1983},
SERIES = {Lecture Notes in Math.},
VOLUME = {1041},
PAGES = {50--102},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1984},
MRCLASS = {22E50},
MRNUMBER = {86b:22028},
MRREVIEWER = {Stephen Gelbart},
ZBLNUMBER={0541.22009},
} -
[BZ] I. N. Bernvsteuin and A. V. Zelevinskiui, "Representations of the group $\mathrm{GL}(n,F),$ where $F$ is a local non-Archimedean field," Uspehi Mat. Nauk, vol. 10, iss. 3(189), pp. 5-70, 1976.
@article {BZ, MRKEY = {0425030},
AUTHOR = {Bern{š}te{\u\i}n, I. N. and Zelevinski{\u\i},
A. V.},
TITLE = {Representations of the group {$\mathrm{GL}(n,F),$} where {$F$} is a local non-{A}rchimedean field},
JOURNAL = {Uspehi Mat. Nauk},
FJOURNAL = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
VOLUME = {10},
YEAR = {1976},
NUMBER = {3(189)},
PAGES = {5--70},
ISSN = {0042-1316},
MRCLASS = {22E50},
MRNUMBER = {54 \#12988},
MRREVIEWER = {G. I. Olsanskii},
ZBLNUMBER={0348.43007},
} -
[GGP] W. T. Gan, B. H. Gross, and D. Prasad, Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups.
@misc{GGP,
author={Gan, W. T. and Gross, B. H. and Prasad, D.},
TITLE={Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups},
ARXIV={0909.2999},
} -
[GK] I. M. Gel$’$fand and D. A. Kajdan, "Representations of the group ${ GL}(n,K)$ where $K$ is a local field," in Lie Groups and Their Representations, New York: Halsted, 1975, pp. 95-118.
@incollection {GK, MRKEY = {0404534},
AUTHOR = {Gel$'$fand, I. M. and Kajdan, D. A.},
TITLE = {Representations of the group {${\rm GL}(n,K)$} where {$K$} is a local field},
BOOKTITLE = {Lie Groups and Their Representations},
VENUE={{P}roc. {S}ummer {S}chool, {B}olyai {J}ános {M}ath. {S}oc., {B}udapest, 1971)},
PAGES = {95--118},
PUBLISHER = {Halsted},
ADDRESS={ New York},
YEAR = {1975},
MRCLASS = {22E50 (10D20 12A65)},
MRNUMBER = {53 \#8334},
MRREVIEWER = {Stephen Gelbart},
ZBLNUMBER = {0348.22011},
} -
[GP] B. H. Gross and D. Prasad, "On the decomposition of a representation of ${ SO}_n$ when restricted to ${ SO}_{n-1}$," Canad. J. Math., vol. 44, iss. 5, pp. 974-1002, 1992.
@article {GP, MRKEY = {1186476},
AUTHOR = {Gross, Benedict H. and Prasad, Dipendra},
TITLE = {On the decomposition of a representation of {${\rm SO}\sb n$} when restricted to {${\rm SO}\sb {n-1}$}},
JOURNAL = {Canad. J. Math.},
FJOURNAL = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
VOLUME = {44},
YEAR = {1992},
NUMBER = {5},
PAGES = {974--1002},
ISSN = {0008-414X},
CODEN = {CJMAAB},
MRCLASS = {22E50 (11R39 22E55)},
MRNUMBER = {93j:22031},
MRREVIEWER = {David Joyner},
ZBLNUMBER = {0787.22018},
} -
[GPSR] D. Ginzburg, I. Piatetski-Shapiro, and S. Rallis, "$L$ functions for the orthogonal group," Mem. Amer. Math. Soc., vol. 128, iss. 611, p. viii, 1997.
@article {GPSR, MRKEY = {1357823},
AUTHOR = {Ginzburg, D. and Piatetski-Shapiro, I. and Rallis, S.},
TITLE = {{$L$} functions for the orthogonal group},
JOURNAL = {Mem. Amer. Math. Soc.},
FJOURNAL = {Memoirs of the American Mathematical Society},
VOLUME = {128},
YEAR = {1997},
NUMBER = {611},
PAGES = {viii+218},
ISSN = {0065-9266},
CODEN = {MAMCAU},
MRCLASS = {11F70 (11F55 11F66 22E50 22E55)},
MRNUMBER = {98m:11041},
MRREVIEWER = {Solomon Friedberg},
ZBLNUMBER={0884.11022},
} -
[GR]
B. H. Gross and M. Reeder, "From Laplace to Langlands via representations of orthogonal groups," Bull. Amer. Math. Soc., vol. 43, iss. 2, pp. 163-205, 2006.
@article {GR, MRKEY = {2216109},
AUTHOR = {Gross, Benedict H. and Reeder, Mark},
TITLE = {From {L}aplace to {L}anglands via representations of orthogonal groups},
JOURNAL = {Bull. Amer. Math. Soc.},
FJOURNAL = {American Mathematical Society. Bulletin. New Series},
VOLUME = {43},
YEAR = {2006},
NUMBER = {2},
PAGES = {163--205},
ISSN = {0273-0979},
CODEN = {BAMOAD},
MRCLASS = {11S37 (22E50)},
MRNUMBER = {2007a:11159},
MRREVIEWER = {Rebecca Herb},
DOI = {10.1090/S0273-0979-06-01100-1},
ZBLNUMBER = {1159.11047},
} -
[Hi]
J. Hakim, "Supercuspidal Gelfand pairs," J. Number Theory, vol. 100, iss. 2, pp. 251-269, 2003.
@article {Hi, MRKEY = {1978455},
AUTHOR = {Hakim, Jeffrey},
TITLE = {Supercuspidal {G}elfand pairs},
JOURNAL = {J. Number Theory},
FJOURNAL = {Journal of Number Theory},
VOLUME = {100},
YEAR = {2003},
NUMBER = {2},
PAGES = {251--269},
ISSN = {0022-314X},
CODEN = {JNUTA9},
MRCLASS = {22E50 (11F70)},
MRNUMBER = {2004b:22017},
MRREVIEWER = {Nils Byrial Andersen},
DOI = {10.1016/S0022-314X(02)00131-2},
ZBLNUMBER = {1016.22010},
} -
[H] Harish-Chandra, Admissible Invariant Distributions on Reductive $p$-adic Groups, Providence, RI: Amer. Math. Soc., 1999, vol. 16.
@book {H, MRKEY = {1702257},
AUTHOR = {Harish-Chandra},
TITLE = {Admissible Invariant Distributions on Reductive {$p$}-adic Groups},
SERIES = {University Lecture Series},
VOLUME = {16},
NOTE = {preface and notes by Stephen DeBacker and Paul J. Sally, Jr.},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {1999},
PAGES = {xiv+97},
ISBN = {0-8218-2025-7},
MRCLASS = {22E50 (17B15 22E35)},
MRNUMBER = {2001b:22015},
MRREVIEWER = {David Manderscheid},
ZBLNUMBER = {0928.22017},
} -
[JR]
H. Jacquet and S. Rallis, "Uniqueness of linear periods," Compositio Math., vol. 102, iss. 1, pp. 65-123, 1996.
@article {JR, MRKEY = {1394521},
AUTHOR = {Jacquet, Herv{é} and Rallis, Stephen},
TITLE = {Uniqueness of linear periods},
JOURNAL = {Compositio Math.},
FJOURNAL = {Compositio Mathematica},
VOLUME = {102},
YEAR = {1996},
NUMBER = {1},
PAGES = {65--123},
ISSN = {0010-437X},
CODEN = {CMPMAF},
MRCLASS = {22E55 (11F70)},
MRNUMBER = {97k:22025},
MRREVIEWER = {Dihua Jiang},
URL = {http://www.numdam.org/item?id=CM_1996__102_1_65_0},
ZBLNUMBER = {0855.22018},
} -
[KSM]
S. Kato, A. Murase, and T. Sugano, "Whittaker-Shintani functions for orthogonal groups," Tohoku Math. J., vol. 55, iss. 1, pp. 1-64, 2003.
@article {KSM, MRKEY = {1956080},
AUTHOR = {Kato, Shin-ichi and Murase, Atsushi and Sugano, Takashi},
TITLE = {Whittaker-{S}hintani functions for orthogonal groups},
JOURNAL = {Tohoku Math. J.},
FJOURNAL = {The Tohoku Mathematical Journal. Second Series},
VOLUME = {55},
YEAR = {2003},
NUMBER = {1},
PAGES = {1--64},
ISSN = {0040-8735},
CODEN = {TOMJAM},
MRCLASS = {22E50 (11F70)},
MRNUMBER = {2003m:22020},
MRREVIEWER = {Goran Mui{ć}},
URL = {http://projecteuclid.org/getRecord?id=euclid.tmj/1113247445},
ZBLNUMBER={1037.22034},
} -
[MS]
A. Murase and T. Sugano, "Shintani functions and automorphic $L$-functions for ${ GL}(n)$," Tohoku Math. J., vol. 48, iss. 2, pp. 165-202, 1996.
@article {MS, MRKEY = {1387815},
AUTHOR = {Murase, Atsushi and Sugano, Takashi},
TITLE = {Shintani functions and automorphic {$L$}-functions for {${\rm GL}(n)$}},
JOURNAL = {Tohoku Math. J.},
FJOURNAL = {The Tohoku Mathematical Journal. Second Series},
VOLUME = {48},
YEAR = {1996},
NUMBER = {2},
PAGES = {165--202},
ISSN = {0040-8735},
CODEN = {TOMJAM},
MRCLASS = {11F70 (11F55 22E50 22E55)},
MRNUMBER = {97i:11056},
MRREVIEWER = {Solomon Friedberg},
DOI = {10.2748/tmj/1178225376},
ZBLNUMBER = {0863.11035},
} -
[MVW] C. Moeglin, M. Vignéras, and J. Waldspurger, Correspondances de Howe sur un Corps $p$-adique, New York: Springer-Verlag, 1987, vol. 1291.
@book {MVW, MRKEY = {1041060},
AUTHOR = {M{\oe}glin, Colette and Vign{é}ras, Marie-France and Waldspurger, Jean-Loup},
TITLE = {Correspondances de {H}owe sur un Corps {$p$}-adique},
SERIES = {Lecture Notes in Math.},
VOLUME = {1291},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1987},
PAGES = {viii+163},
ISBN = {3-540-18699-9},
MRCLASS = {11F70 (11E57 11F27 22E50)},
MRNUMBER = {91f:11040},
MRREVIEWER = {David Joyner},
ZBLNUMBER = {0642.22002},
} -
[MW] C. Moeglin and J. L. Waldspurger, La conjecture locale de Gross-Prasad pour les groupes spéciaux orthogonaux: le cas général.
@misc{MW,
author = {M{\oe}glin, Colette and Waldspurger, J. L.},
TITLE={La conjecture locale de Gross-Prasad pour les groupes spéciaux orthogonaux: le cas général},
ARXIV={1001.0826},
} -
[Prasad]
D. Prasad, "Trilinear forms for representations of ${ GL}(2)$ and local $\epsilon$-factors," Compositio Math., vol. 75, iss. 1, pp. 1-46, 1990.
@article {Prasad, MRKEY = {1059954},
AUTHOR = {Prasad, Dipendra},
TITLE = {Trilinear forms for representations of {${\rm GL}(2)$} and local {$\epsilon$}-factors},
JOURNAL = {Compositio Math.},
FJOURNAL = {Compositio Mathematica},
VOLUME = {75},
YEAR = {1990},
NUMBER = {1},
PAGES = {1--46},
ISSN = {0010-437X},
CODEN = {CMPMAF},
MRCLASS = {22E50 (11S37)},
MRNUMBER = {91i:22023},
MRREVIEWER = {Joe Repka},
URL = {http://www.numdam.org/item?id=CM_1990__75_1_1_0},
ZBLNUMBER = {0731.22013},
} -
[P2]
D. Prasad, "On the decomposition of a representation of ${ GL}(3)$ restricted to ${ GL}(2)$ over a $p$-adic field," Duke Math. J., vol. 69, iss. 1, pp. 167-177, 1993.
@article {P2, MRKEY = {1201696},
AUTHOR = {Prasad, Dipendra},
TITLE = {On the decomposition of a representation of {${\rm GL}(3)$} restricted to {${\rm GL}(2)$} over a {$p$}-adic field},
JOURNAL = {Duke Math. J.},
FJOURNAL = {Duke Mathematical Journal},
VOLUME = {69},
YEAR = {1993},
NUMBER = {1},
PAGES = {167--177},
ISSN = {0012-7094},
CODEN = {DUMJAO},
MRCLASS = {22E50},
MRNUMBER = {93m:22019},
MRREVIEWER = {David Joyner},
DOI = {10.1215/S0012-7094-93-06908-6},
ZBLNUMBER = {0827.22006},
} -
[RS1] S. Rallis and G. Schiffmann, Multiplicity one conjectures.
@misc{RS1,
author = {Rallis, S. and Schiffmann, G.},
TITLE = {Multiplicity one conjectures},
ARXIV={0705.2168v1},
} -
[RS2] S. Rallis and G. Schiffmann, "Représentations supercuspidales du groupe métaplectique," J. Math. Kyoto Univ., vol. 17, iss. 3, pp. 567-603, 1977.
@article {RS2, MRKEY = {0498395},
AUTHOR = {Rallis, S. and Schiffmann, G.},
TITLE = {Représentations supercuspidales du groupe métaplectique},
JOURNAL = {J. Math. Kyoto Univ.},
FJOURNAL = {Journal of Mathematics of Kyoto University},
VOLUME = {17},
YEAR = {1977},
NUMBER = {3},
PAGES = {567--603},
ISSN = {0023-608X},
MRCLASS = {10D15 (22E50)},
MRNUMBER = {58 \#16523},
MRREVIEWER = {Stephen Gelbart},
ZBLNUMBER = {0398.22023},
} -
[SS] T. A. Springer and R. Steinberg, "Conjugacy classes," in Seminar on Algebraic Groups and Related Finite Groups, New York: Springer-Verlag, 1970, vol. 131, pp. 167-266.
@incollection {SS, MRKEY = {0268192},
AUTHOR = {Springer, T. A. and Steinberg, R.},
TITLE = {Conjugacy classes},
BOOKTITLE = {Seminar on {A}lgebraic {G}roups and {R}elated {F}inite {G}roups},
VENUE={{T}he {I}nstitute for {A}dvanced {S}tudy, {P}rinceton, {N}.{J}., 1968/69},
SERIES = {Lecture Notes in Math.},
VOLUME={131},
PAGES = {167--266},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1970},
MRCLASS = {14.50 (20.00)},
MRNUMBER = {42 \#3091},
MRREVIEWER = {N. Burgoyne},
ZBLNUMBER={0249.20024},
} -
[S] B. Sun, Multiplicity one theorems for Fourier Jacobi models.
@misc{S,
author={Sun, B.},
TITLE={Multiplicity one theorems for Fourier Jacobi models},
ARXIV={0903.1417},
} -
[SZ] B. Sun and C. -B. Zhu, Multiplicity one theorems: the Archimedean case.
@misc{SZ,
author={Sun, B. and Zhu, C.-B},
TITLE={Multiplicity one theorems: the Archimedean case},
ARXIV={0903.1413},
} -
[vD]
G. van Dijk, "$({ U}(p,q), { U}(p-1,q))$ is a generalized Gelfand pair," Math. Z., vol. 261, iss. 3, pp. 525-529, 2009.
@article {vD, MRKEY = {2471085},
AUTHOR = {van Dijk, Gerrit},
TITLE = {{$({\rm U}(p,q), {\rm U}(p-1,q))$} is a generalized {G}elfand pair},
JOURNAL = {Math. Z.},
FJOURNAL = {Mathematische Zeitschrift},
VOLUME = {261},
YEAR = {2009},
NUMBER = {3},
PAGES = {525--529},
ISSN = {0025-5874},
CODEN = {MAZEAX},
MRCLASS = {22E30 (43A85)},
MRNUMBER = {2010d:22013},
MRREVIEWER = {Nobukazu Shimeno},
DOI = {10.1007/s00209-008-0335-4},
ZBLNUMBER = {1158.22010},
} -
[Wal1] J. L. Waldspurger, Une variante d’un résultat de Aizenbud, Gourevitch, Rallis et Schiffmann.
@misc{Wal1,
author={Waldspurger, J. L.},
TITLE={Une variante d'un résultat de Aizenbud, Gourevitch, Rallis et Schiffmann},
ARXIV={0911.1618},
} -
[Wal2] J. L. Waldspurger, Une formule intégrale reliée a la conjecture locale de Gross-Prasad.
@misc{Wal2,
author={Waldspurger, J. L.},
TITLE={Une formule intégrale reliée a la conjecture locale de Gross-Prasad},
ARXIV={0902.1875},
} -
[Wal3] J. L. Waldspurger, Une formule intégrale reliée a la conjecture locale de Gross-Prasad, 2ème partie: extension aux représentations tempérées.
@misc{Wal3,
author={Waldspurger, J. L.},
TITLE={Une formule intégrale reliée a la conjecture locale de Gross-Prasad, 2ème partie: extension aux représentations tempérées},
ARXIV={0904.0314},
}