Multiplicity one theorems

Abstract

In the local, characteristic $0$, non-Archimedean case, we consider distributions on ${\rm GL}(n+1)$ which are invariant under the adjoint action of ${\rm GL}(n)$. We prove that such distributions are invariant by transposition. This implies multiplicity at most one for restrictions from ${\rm GL}(n+1)$ to ${\rm GL}(n)$. Similar theorems are obtained for orthogonal or unitary groups.

  • [AG] A. Aizenbud and D. Gourevitch, A proof of the multiplicity one conjecture for $\mathrm{GL}(n)$ in $\mathrm{GL}(n + 1)$.
    @misc{AG,
      author={Aizenbud, Avraham and Gourevitch, Dmitry},
      TITLE={A proof of the multiplicity one conjecture for $\mathrm{GL}(n)$ in $\mathrm{GL}(n + 1)$},
      ARXIV={0707.2363v2},
      }
  • [AAG] A. Aizenbud, N. Avni, and D. Gourevitch, Spherical pairs over close local fields.
    @misc{AAG,
      author={Aizenbud, Avraham and Avni, N. and Gourevitch, Dmitry},
      TITLE={Spherical pairs over close local fields},
      ARXIV={0910.3199},
      }
  • [AG2] Go to document A. Aizenbud and D. Gourevitch, "Multiplicity one theorem for $({ GL}_{n+1}(\Bbb R),{ GL}_n(\Bbb R))$," Selecta Math., vol. 15, iss. 2, pp. 271-294, 2009.
    @article {AG2, MRKEY = {2529937},
      AUTHOR = {Aizenbud, Avraham and Gourevitch, Dmitry},
      TITLE = {Multiplicity one theorem for {$({\rm GL}\sb {n+1}(\Bbb R),{\rm GL}\sb n(\Bbb R))$}},
      JOURNAL = {Selecta Math.},
      FJOURNAL = {Selecta Mathematica. New Series},
      VOLUME = {15},
      YEAR = {2009},
      NUMBER = {2},
      PAGES = {271--294},
      ISSN = {1022-1824},
      CODEN = {SMATF6},
      MRCLASS = {20G05 (22Exx)},
      MRNUMBER = {2529937},
      DOI = {10.1007/s00029-009-0544-7},
      ZBLNUMBER = {05655349},
      }
  • [AGS1] Go to document A. Aizenbud, D. Gourevitch, and E. Sayag, "$({ GL}_{n+1}(F),{ GL}_n(F))$ is a Gelfand pair for any local field $F$," Compos. Math., vol. 144, iss. 6, pp. 1504-1524, 2008.
    @article {AGS1, MRKEY = {2474319},
      AUTHOR = {Aizenbud, Avraham and Gourevitch, Dmitry and Sayag, Eitan},
      TITLE = {{$({\rm GL}\sb {n+1}(F),{\rm GL}\sb n(F))$} is a {G}elfand pair for any local field {$F$}},
      JOURNAL = {Compos. Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {144},
      YEAR = {2008},
      NUMBER = {6},
      PAGES = {1504--1524},
      ISSN = {0010-437X},
      MRCLASS = {22E50 (20G05 20G25 22E45)},
      MRNUMBER = {2009k:22022},
      MRREVIEWER = {Dubravka Ban},
      DOI = {10.1112/S0010437X08003746},
      ZBLNUMBER = {1157.22004},
      }
  • [AGS2] Go to document A. Aizenbud, D. Gourevitch, and E. Sayag, "$({ O}(V\oplus F),{ O}(V))$ is a Gelfand pair for any quadratic space $V$ over a local field $F$," Math. Z., vol. 261, iss. 2, pp. 239-244, 2009.
    @article {AGS2, MRKEY = {2457297},
      AUTHOR = {Aizenbud, Avraham and Gourevitch, Dmitry and Sayag, Eitan},
      TITLE = {{$({\rm O}(V\oplus F),{\rm O}(V))$} is a {G}elfand pair for any quadratic space {$V$} over a local field {$F$}},
      JOURNAL = {Math. Z.},
      FJOURNAL = {Mathematische Zeitschrift},
      VOLUME = {261},
      YEAR = {2009},
      NUMBER = {2},
      PAGES = {239--244},
      ISSN = {0025-5874},
      CODEN = {MAZEAX},
      MRCLASS = {22E50 (20G25)},
      MRNUMBER = {2010a:22020},
      MRREVIEWER = {Nadia P. Mazza},
      DOI = {10.1007/s00209-008-0318-5},
      ZBLNUMBER = {1179.22017},
      }
  • [Ber] J. N. Bernstein, "$P$-invariant distributions on ${ GL}(N)$ and the classification of unitary representations of ${ GL}(N)$ (non-Archimedean case)," in Lie Group Representations, II, New York: Springer-Verlag, 1984, vol. 1041, pp. 50-102.
    @incollection {Ber, MRKEY = {748505},
      AUTHOR = {Bernstein, Joseph N.},
      TITLE = {{$P$}-invariant distributions on {${\rm GL}(N)$} and the classification of unitary representations of {${\rm GL}(N)$} (non-{A}rchimedean case)},
      BOOKTITLE = {Lie Group Representations, {\rm II}},
      VENUE={{C}ollege {P}ark, {M}d., 1982/1983},
      SERIES = {Lecture Notes in Math.},
      VOLUME = {1041},
      PAGES = {50--102},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1984},
      MRCLASS = {22E50},
      MRNUMBER = {86b:22028},
      MRREVIEWER = {Stephen Gelbart},
      ZBLNUMBER={0541.22009},
      }
  • [BZ] I. N. Bernvsteuin and A. V. Zelevinskiui, "Representations of the group $\mathrm{GL}(n,F),$ where $F$ is a local non-Archimedean field," Uspehi Mat. Nauk, vol. 10, iss. 3(189), pp. 5-70, 1976.
    @article {BZ, MRKEY = {0425030},
      AUTHOR = {Bern{š}te{\u\i}n, I. N. and Zelevinski{\u\i},
      A. V.},
      TITLE = {Representations of the group {$\mathrm{GL}(n,F),$} where {$F$} is a local non-{A}rchimedean field},
      JOURNAL = {Uspehi Mat. Nauk},
      FJOURNAL = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
      VOLUME = {10},
      YEAR = {1976},
      NUMBER = {3(189)},
      PAGES = {5--70},
      ISSN = {0042-1316},
      MRCLASS = {22E50},
      MRNUMBER = {54 \#12988},
      MRREVIEWER = {G. I. Olsanskii},
      ZBLNUMBER={0348.43007},
      }
  • [GGP] W. T. Gan, B. H. Gross, and D. Prasad, Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups.
    @misc{GGP,
      author={Gan, W. T. and Gross, B. H. and Prasad, D.},
      TITLE={Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups},
      ARXIV={0909.2999},
      }
  • [GK] I. M. Gel$’$fand and D. A. Kajdan, "Representations of the group ${ GL}(n,K)$ where $K$ is a local field," in Lie Groups and Their Representations, New York: Halsted, 1975, pp. 95-118.
    @incollection {GK, MRKEY = {0404534},
      AUTHOR = {Gel$'$fand, I. M. and Kajdan, D. A.},
      TITLE = {Representations of the group {${\rm GL}(n,K)$} where {$K$} is a local field},
      BOOKTITLE = {Lie Groups and Their Representations},
      VENUE={{P}roc. {S}ummer {S}chool, {B}olyai {J}ános {M}ath. {S}oc., {B}udapest, 1971)},
      PAGES = {95--118},
      PUBLISHER = {Halsted},
      ADDRESS={ New York},
      YEAR = {1975},
      MRCLASS = {22E50 (10D20 12A65)},
      MRNUMBER = {53 \#8334},
      MRREVIEWER = {Stephen Gelbart},
      ZBLNUMBER = {0348.22011},
      }
  • [GP] B. H. Gross and D. Prasad, "On the decomposition of a representation of ${ SO}_n$ when restricted to ${ SO}_{n-1}$," Canad. J. Math., vol. 44, iss. 5, pp. 974-1002, 1992.
    @article {GP, MRKEY = {1186476},
      AUTHOR = {Gross, Benedict H. and Prasad, Dipendra},
      TITLE = {On the decomposition of a representation of {${\rm SO}\sb n$} when restricted to {${\rm SO}\sb {n-1}$}},
      JOURNAL = {Canad. J. Math.},
      FJOURNAL = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
      VOLUME = {44},
      YEAR = {1992},
      NUMBER = {5},
      PAGES = {974--1002},
      ISSN = {0008-414X},
      CODEN = {CJMAAB},
      MRCLASS = {22E50 (11R39 22E55)},
      MRNUMBER = {93j:22031},
      MRREVIEWER = {David Joyner},
      ZBLNUMBER = {0787.22018},
      }
  • [GPSR] D. Ginzburg, I. Piatetski-Shapiro, and S. Rallis, "$L$ functions for the orthogonal group," Mem. Amer. Math. Soc., vol. 128, iss. 611, p. viii, 1997.
    @article {GPSR, MRKEY = {1357823},
      AUTHOR = {Ginzburg, D. and Piatetski-Shapiro, I. and Rallis, S.},
      TITLE = {{$L$} functions for the orthogonal group},
      JOURNAL = {Mem. Amer. Math. Soc.},
      FJOURNAL = {Memoirs of the American Mathematical Society},
      VOLUME = {128},
      YEAR = {1997},
      NUMBER = {611},
      PAGES = {viii+218},
      ISSN = {0065-9266},
      CODEN = {MAMCAU},
      MRCLASS = {11F70 (11F55 11F66 22E50 22E55)},
      MRNUMBER = {98m:11041},
      MRREVIEWER = {Solomon Friedberg},
      ZBLNUMBER={0884.11022},
      }
  • [GR] Go to document B. H. Gross and M. Reeder, "From Laplace to Langlands via representations of orthogonal groups," Bull. Amer. Math. Soc., vol. 43, iss. 2, pp. 163-205, 2006.
    @article {GR, MRKEY = {2216109},
      AUTHOR = {Gross, Benedict H. and Reeder, Mark},
      TITLE = {From {L}aplace to {L}anglands via representations of orthogonal groups},
      JOURNAL = {Bull. Amer. Math. Soc.},
      FJOURNAL = {American Mathematical Society. Bulletin. New Series},
      VOLUME = {43},
      YEAR = {2006},
      NUMBER = {2},
      PAGES = {163--205},
      ISSN = {0273-0979},
      CODEN = {BAMOAD},
      MRCLASS = {11S37 (22E50)},
      MRNUMBER = {2007a:11159},
      MRREVIEWER = {Rebecca Herb},
      DOI = {10.1090/S0273-0979-06-01100-1},
      ZBLNUMBER = {1159.11047},
      }
  • [Hi] Go to document J. Hakim, "Supercuspidal Gelfand pairs," J. Number Theory, vol. 100, iss. 2, pp. 251-269, 2003.
    @article {Hi, MRKEY = {1978455},
      AUTHOR = {Hakim, Jeffrey},
      TITLE = {Supercuspidal {G}elfand pairs},
      JOURNAL = {J. Number Theory},
      FJOURNAL = {Journal of Number Theory},
      VOLUME = {100},
      YEAR = {2003},
      NUMBER = {2},
      PAGES = {251--269},
      ISSN = {0022-314X},
      CODEN = {JNUTA9},
      MRCLASS = {22E50 (11F70)},
      MRNUMBER = {2004b:22017},
      MRREVIEWER = {Nils Byrial Andersen},
      DOI = {10.1016/S0022-314X(02)00131-2},
      ZBLNUMBER = {1016.22010},
      }
  • [H] Harish-Chandra, Admissible Invariant Distributions on Reductive $p$-adic Groups, Providence, RI: Amer. Math. Soc., 1999, vol. 16.
    @book {H, MRKEY = {1702257},
      AUTHOR = {Harish-Chandra},
      TITLE = {Admissible Invariant Distributions on Reductive {$p$}-adic Groups},
      SERIES = {University Lecture Series},
      VOLUME = {16},
      NOTE = {preface and notes by Stephen DeBacker and Paul J. Sally, Jr.},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {1999},
      PAGES = {xiv+97},
      ISBN = {0-8218-2025-7},
      MRCLASS = {22E50 (17B15 22E35)},
      MRNUMBER = {2001b:22015},
      MRREVIEWER = {David Manderscheid},
      ZBLNUMBER = {0928.22017},
      }
  • [JR] Go to document H. Jacquet and S. Rallis, "Uniqueness of linear periods," Compositio Math., vol. 102, iss. 1, pp. 65-123, 1996.
    @article {JR, MRKEY = {1394521},
      AUTHOR = {Jacquet, Herv{é} and Rallis, Stephen},
      TITLE = {Uniqueness of linear periods},
      JOURNAL = {Compositio Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {102},
      YEAR = {1996},
      NUMBER = {1},
      PAGES = {65--123},
      ISSN = {0010-437X},
      CODEN = {CMPMAF},
      MRCLASS = {22E55 (11F70)},
      MRNUMBER = {97k:22025},
      MRREVIEWER = {Dihua Jiang},
      URL = {http://www.numdam.org/item?id=CM_1996__102_1_65_0},
      ZBLNUMBER = {0855.22018},
      }
  • [KSM] Go to document S. Kato, A. Murase, and T. Sugano, "Whittaker-Shintani functions for orthogonal groups," Tohoku Math. J., vol. 55, iss. 1, pp. 1-64, 2003.
    @article {KSM, MRKEY = {1956080},
      AUTHOR = {Kato, Shin-ichi and Murase, Atsushi and Sugano, Takashi},
      TITLE = {Whittaker-{S}hintani functions for orthogonal groups},
      JOURNAL = {Tohoku Math. J.},
      FJOURNAL = {The Tohoku Mathematical Journal. Second Series},
      VOLUME = {55},
      YEAR = {2003},
      NUMBER = {1},
      PAGES = {1--64},
      ISSN = {0040-8735},
      CODEN = {TOMJAM},
      MRCLASS = {22E50 (11F70)},
      MRNUMBER = {2003m:22020},
      MRREVIEWER = {Goran Mui{ć}},
      URL = {http://projecteuclid.org/getRecord?id=euclid.tmj/1113247445},
      ZBLNUMBER={1037.22034},
      }
  • [MS] Go to document A. Murase and T. Sugano, "Shintani functions and automorphic $L$-functions for ${ GL}(n)$," Tohoku Math. J., vol. 48, iss. 2, pp. 165-202, 1996.
    @article {MS, MRKEY = {1387815},
      AUTHOR = {Murase, Atsushi and Sugano, Takashi},
      TITLE = {Shintani functions and automorphic {$L$}-functions for {${\rm GL}(n)$}},
      JOURNAL = {Tohoku Math. J.},
      FJOURNAL = {The Tohoku Mathematical Journal. Second Series},
      VOLUME = {48},
      YEAR = {1996},
      NUMBER = {2},
      PAGES = {165--202},
      ISSN = {0040-8735},
      CODEN = {TOMJAM},
      MRCLASS = {11F70 (11F55 22E50 22E55)},
      MRNUMBER = {97i:11056},
      MRREVIEWER = {Solomon Friedberg},
      DOI = {10.2748/tmj/1178225376},
      ZBLNUMBER = {0863.11035},
      }
  • [MVW] C. Moeglin, M. Vignéras, and J. Waldspurger, Correspondances de Howe sur un Corps $p$-adique, New York: Springer-Verlag, 1987, vol. 1291.
    @book {MVW, MRKEY = {1041060},
      AUTHOR = {M{\oe}glin, Colette and Vign{é}ras, Marie-France and Waldspurger, Jean-Loup},
      TITLE = {Correspondances de {H}owe sur un Corps {$p$}-adique},
      SERIES = {Lecture Notes in Math.},
      VOLUME = {1291},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1987},
      PAGES = {viii+163},
      ISBN = {3-540-18699-9},
      MRCLASS = {11F70 (11E57 11F27 22E50)},
      MRNUMBER = {91f:11040},
      MRREVIEWER = {David Joyner},
      ZBLNUMBER = {0642.22002},
      }
  • [MW] C. Moeglin and J. L. Waldspurger, La conjecture locale de Gross-Prasad pour les groupes spéciaux orthogonaux: le cas général.
    @misc{MW,
      author = {M{\oe}glin, Colette and Waldspurger, J. L.},
      TITLE={La conjecture locale de Gross-Prasad pour les groupes spéciaux orthogonaux: le cas général},
      ARXIV={1001.0826},
      }
  • [Prasad] Go to document D. Prasad, "Trilinear forms for representations of ${ GL}(2)$ and local $\epsilon$-factors," Compositio Math., vol. 75, iss. 1, pp. 1-46, 1990.
    @article {Prasad, MRKEY = {1059954},
      AUTHOR = {Prasad, Dipendra},
      TITLE = {Trilinear forms for representations of {${\rm GL}(2)$} and local {$\epsilon$}-factors},
      JOURNAL = {Compositio Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {75},
      YEAR = {1990},
      NUMBER = {1},
      PAGES = {1--46},
      ISSN = {0010-437X},
      CODEN = {CMPMAF},
      MRCLASS = {22E50 (11S37)},
      MRNUMBER = {91i:22023},
      MRREVIEWER = {Joe Repka},
      URL = {http://www.numdam.org/item?id=CM_1990__75_1_1_0},
      ZBLNUMBER = {0731.22013},
      }
  • [P2] Go to document D. Prasad, "On the decomposition of a representation of ${ GL}(3)$ restricted to ${ GL}(2)$ over a $p$-adic field," Duke Math. J., vol. 69, iss. 1, pp. 167-177, 1993.
    @article {P2, MRKEY = {1201696},
      AUTHOR = {Prasad, Dipendra},
      TITLE = {On the decomposition of a representation of {${\rm GL}(3)$} restricted to {${\rm GL}(2)$} over a {$p$}-adic field},
      JOURNAL = {Duke Math. J.},
      FJOURNAL = {Duke Mathematical Journal},
      VOLUME = {69},
      YEAR = {1993},
      NUMBER = {1},
      PAGES = {167--177},
      ISSN = {0012-7094},
      CODEN = {DUMJAO},
      MRCLASS = {22E50},
      MRNUMBER = {93m:22019},
      MRREVIEWER = {David Joyner},
      DOI = {10.1215/S0012-7094-93-06908-6},
      ZBLNUMBER = {0827.22006},
      }
  • [RS1] S. Rallis and G. Schiffmann, Multiplicity one conjectures.
    @misc{RS1,
      author = {Rallis, S. and Schiffmann, G.},
      TITLE = {Multiplicity one conjectures},
      ARXIV={0705.2168v1},
      }
  • [RS2] S. Rallis and G. Schiffmann, "Représentations supercuspidales du groupe métaplectique," J. Math. Kyoto Univ., vol. 17, iss. 3, pp. 567-603, 1977.
    @article {RS2, MRKEY = {0498395},
      AUTHOR = {Rallis, S. and Schiffmann, G.},
      TITLE = {Représentations supercuspidales du groupe métaplectique},
      JOURNAL = {J. Math. Kyoto Univ.},
      FJOURNAL = {Journal of Mathematics of Kyoto University},
      VOLUME = {17},
      YEAR = {1977},
      NUMBER = {3},
      PAGES = {567--603},
      ISSN = {0023-608X},
      MRCLASS = {10D15 (22E50)},
      MRNUMBER = {58 \#16523},
      MRREVIEWER = {Stephen Gelbart},
      ZBLNUMBER = {0398.22023},
      }
  • [SS] T. A. Springer and R. Steinberg, "Conjugacy classes," in Seminar on Algebraic Groups and Related Finite Groups, New York: Springer-Verlag, 1970, vol. 131, pp. 167-266.
    @incollection {SS, MRKEY = {0268192},
      AUTHOR = {Springer, T. A. and Steinberg, R.},
      TITLE = {Conjugacy classes},
      BOOKTITLE = {Seminar on {A}lgebraic {G}roups and {R}elated {F}inite {G}roups},
      VENUE={{T}he {I}nstitute for {A}dvanced {S}tudy, {P}rinceton, {N}.{J}., 1968/69},
      SERIES = {Lecture Notes in Math.},
      VOLUME={131},
      PAGES = {167--266},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1970},
      MRCLASS = {14.50 (20.00)},
      MRNUMBER = {42 \#3091},
      MRREVIEWER = {N. Burgoyne},
      ZBLNUMBER={0249.20024},
      }
  • [S] B. Sun, Multiplicity one theorems for Fourier Jacobi models.
    @misc{S,
      author={Sun, B.},
      TITLE={Multiplicity one theorems for Fourier Jacobi models},
      ARXIV={0903.1417},
      }
  • [SZ] B. Sun and C. -B. Zhu, Multiplicity one theorems: the Archimedean case.
    @misc{SZ,
      author={Sun, B. and Zhu, C.-B},
      TITLE={Multiplicity one theorems: the Archimedean case},
      ARXIV={0903.1413},
      }
  • [vD] Go to document G. van Dijk, "$({ U}(p,q), { U}(p-1,q))$ is a generalized Gelfand pair," Math. Z., vol. 261, iss. 3, pp. 525-529, 2009.
    @article {vD, MRKEY = {2471085},
      AUTHOR = {van Dijk, Gerrit},
      TITLE = {{$({\rm U}(p,q), {\rm U}(p-1,q))$} is a generalized {G}elfand pair},
      JOURNAL = {Math. Z.},
      FJOURNAL = {Mathematische Zeitschrift},
      VOLUME = {261},
      YEAR = {2009},
      NUMBER = {3},
      PAGES = {525--529},
      ISSN = {0025-5874},
      CODEN = {MAZEAX},
      MRCLASS = {22E30 (43A85)},
      MRNUMBER = {2010d:22013},
      MRREVIEWER = {Nobukazu Shimeno},
      DOI = {10.1007/s00209-008-0335-4},
      ZBLNUMBER = {1158.22010},
      }
  • [Wal1] J. L. Waldspurger, Une variante d’un résultat de Aizenbud, Gourevitch, Rallis et Schiffmann.
    @misc{Wal1,
      author={Waldspurger, J. L.},
      TITLE={Une variante d'un résultat de Aizenbud, Gourevitch, Rallis et Schiffmann},
      ARXIV={0911.1618},
      }
  • [Wal2] J. L. Waldspurger, Une formule intégrale reliée a la conjecture locale de Gross-Prasad.
    @misc{Wal2,
      author={Waldspurger, J. L.},
      TITLE={Une formule intégrale reliée a la conjecture locale de Gross-Prasad},
      ARXIV={0902.1875},
      }
  • [Wal3] J. L. Waldspurger, Une formule intégrale reliée a la conjecture locale de Gross-Prasad, 2ème partie: extension aux représentations tempérées.
    @misc{Wal3,
      author={Waldspurger, J. L.},
      TITLE={Une formule intégrale reliée a la conjecture locale de Gross-Prasad, 2ème partie: extension aux représentations tempérées},
      ARXIV={0904.0314},
      }

Authors

Avraham Aizenbud

Faculty of Mathematics and Computer Science
Weizmann Institute of Science
POB 26
Rehovot 76100
Israel

Dmitry Gourevitch

School of Mathematics
Intitute for Advanced Study
Einstein Drive
Princeton, NJ 08540
United States

Stephen Rallis

The Ohio State University
Department of Mathematics
231 West 18th Avenue
Columbus, OH 43210-1174
United States

Gérard Schiffmann

Institut de Recherche Mathématique Avancée
Université de Strasbourg et CNRS
7 rue René-Descartes
67084 Strasbourg Cedex
France