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Abstract

In the local, characteristic 0, non-Archimedean case, we consider distributions
on GL.nC 1/ which are invariant under the adjoint action of GL.n/. We prove that
such distributions are invariant by transposition. This implies multiplicity at most
one for restrictions from GL.nC 1/ to GL.n/. Similar theorems are obtained for
orthogonal or unitary groups.

Introduction

Let F be a local field non-Archimedean and of characteristic 0. Let W be a
vector space over F of finite dimension nC 1> 1, and let W D V ˚U be a direct
sum decomposition with dimV D n. Then we have an imbedding of GL.V / into
GL.W /. Our goal is to prove the following theorem:

THEOREM 1. If � (resp. �) is an irreducible admissible representation of
GL.W / (resp. of GL.V /), then

dim
�
HomGL.V /.�jGL.V / ; �/

�
6 1:

We choose a basis of V and a nonzero vector in U thus getting a basis of W .
We can identify GL.W / with GL.nC 1; F/ and GL.V / with GL.n; F/. The trans-
position map is an involutive anti-automorphism of GL.nC 1; F/ which leaves
GL.n; F/ stable. It acts on the space of distributions on GL.nC 1; F/.

Theorem 1 is a corollary of:

THEOREM 2. A distribution on GL.W / which is invariant under the adjoint
action of GL.V / is invariant by transposition.

One can raise a similar question for orthogonal and unitary groups. Let D be
either F or a quadratic extension of F. If x 2 D, then xx is the conjugate of x if
D¤ F, and is equal to x if DD F.
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Let W be a vector space over D of finite dimension nC 1> 1. Let h: ; :i be a
nondegenerate hermitian form on W . This form is bi-additive and

hdw; d 0w0i D d d 0hw;w0i; hw0; wi D hw;w0i:

Given a D-linear map u from W into itself, its adjoint u� is defined by the usual
formula

hu.w/;w0i D hw; u�.w0/i:

Choose a vector e in W such that he; ei ¤ 0; let U D De and V D U?

the orthogonal complement. Then V has dimension n and the restriction of the
hermitian form to V is nondegenerate.

Let M be the unitary group of W that is to say the group of all D-linear maps
m of W into itself which preserve the hermitian form or equivalently such that
mm� D 1. Let G be the unitary group of V . With the p-adic topology both groups
are of type lctd (locally compact, totally disconnected) and countable at infinity.
They are reductive groups of classical type.

The group G is naturally imbedded into M .

THEOREM 10. If � (resp �) is an irreducible admissible representation of M
(resp of G), then

dim
�
HomG.�jG ; �/

�
� 1:

Choose a basis e1; : : : en of V such that hei ; ej i 2 F. For

w D x0eC

nX
1

xiei ;

put

xw D xx0eC

nX
1

xi ei :

If u is a D-linear map from W into itself, then let xu be defined by

xu.w/D u. xw/:

Let � be the anti-involution �.m/D xm�1 of M ; Theorem 10 is a consequence
of

THEOREM 20. A distribution on M which is invariant under the adjoint action
of G is invariant under � .

Let us describe briefly our proof. In Section 1 we recall why Theorem 2.20/
implies Theorem 1.10/.

For the proofs of Theorems 2 and 20 we systematically use two classical
results: Bernstein’s localization principle and a variant of Frobenius reciprocity
which we call Frobenius descent. For the convenience of the reader they are both
recalled in Section 2.
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Then we proceed with GL.n/. The proof is by induction on n; the case nD 0
is trivial. In general we first linearize the problem by replacing the action of G
on GL.W / by the action on the Lie algebra of GL.W /. As a G-module this Lie
algebra is isomorphic to a direct sum g˚V ˚V �˚F with g the Lie algebra ofG and
V � the dual space of V . The group G D GL.V / acts trivially on F, by the adjoint
action on its Lie algebra and the natural actions on V and V �. The component F

plays no role. Let u be a linear bijection of V onto V � which transforms some
basis of V into its dual basis. The involution may be taken as

.X; v; v�/ 7! .u�1 tX u; u�1.v�/; u.v//:

We have to show that a distribution T on g˚V ˚V � which is invariant under G
and skew relative to the involution is 0.

In Section 3 we prove that the support of such a distribution must be contained
in a certain singular set. On the g side, using Harish-Chandra descent we get that
the support of T must be contained in .zCN/� .V ˚V �/, where z is the center of
g and N the cone of nilpotent elements in g. On the V ˚V � side we show that the
support must be contained in g�� , where � is the cone hv; v�i D 0 in V ˚ V �.
On z the action is trivial so we are reduced to the case of a distribution on N�� .

In Section 4 we consider such distributions. The end of the proof is based on
two remarks. First, viewing the distribution as a distribution on N� .V ˚V �/, its
partial Fourier transform relative to V ˚V � has the same invariance properties and
hence must also be supported on N�� . This implies, in particular, a homogeneity
condition on V ˚V �. The idea of using Fourier transform in this kind of situation
goes back at least to Harish-Chandra ([HC99]) and it is conveniently expressed
using a particular case of the Weil or oscillator representation.

For .v; v�/ 2 � , let Xv;v� be the map x 7! hx; v�iv of V into itself. The
second remark is that the one parameter group of transformations

.X; v; v�/ 7! .X C�Xv;v� ; v; v
�/

is a group of (nonlinear) homeomorphisms of Œg; g��� which commute with G
and the involution. It follows that the image of the support of our distribution must
also be singular. This allows us to replace the condition hv; v�i D 0 by the stricter
condition Xv;v� 2 Im adX .

Using the stratification of N we proceed one nilpotent orbit at a time, transfer-
ring the problem to V ˚V � and a fixed nilpotent matrix X . The support condition
turns out to be compatible with direct sum so that it is enough to consider the case
of a principal nilpotent element. In this last situation the key is the homogeneity
condition coupled with an easy induction.

The orthogonal and unitary cases are proved roughly in the same way. In
Section 5 we reduce the support to the singular set. Here the main difference is
that we use Harish-Chandra descent directly on the group. Note that some sub-
groups that occur in the Harish-Chandra descent have components of type GL so
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that Theorem 2 has to be used. Finally, in Section 6, we consider the case of a
distribution supported in the singular set; the proof follows the same line as in
Section 4.

As for the archimedean case, partial analogs of the results of this paper were
obtained in [AGS08], [AGS09], and [vD09]. Recently, the full analogs were ob-
tained in [AG09] and [SZ].

Recently, it was shown that Theorem 1 implies an analogous theorem for
general linear groups over local fields of positive characteristic (see [AAG]).

Let us add some comments on the theorems themselves. First note that The-
orem 2 gives an independent proof of a well-known theorem of Bernstein: choose
a basis e1; : : : ; en of V , add some vector e0 of W to obtain a basis of W , and
let P be the isotropy of e0 in GL.W /. Then Theorem B of [Ber84] says that a
distribution on GL.W / which is invariant under the action of P is invariant under
the action of GL.W /. Now, by Theorem 2 such a distribution is invariant under
the adjoint action of the transpose of P and the group of inner automorphisms is
generated by the images of P and its transpose. We thus get an independent proof
of Kirillov conjecture in the characteristic 0, non-Archimedean case.

The occurrence of involutions in multiplicity at most one problems is of course
nothing new. The situation is fairly simple when all the orbits are stable by the
involution thanks to Bernstein’s localization principle and constructivity theorem
([BZ76], [GK75]). In our case this is not true: only generic orbits are stable. Non-
stable orbits may carry invariant measures but they do not extend to the ambient
space (a similar situation is already present in [Ber84]).

An illustrative example is the case nD 1 for GL. It reduces to F� acting on
F2 as .x; y/ 7! .tx; t�1y/. On the x axis the measure d�x D dx=jxj is invariant
but does not extend invariantly. However the symmetric measure

f 7!

Z
F�
f .x; 0/d�xC

Z
F�
f .0; y/d�y

does extend.
As in similar cases (for example [JR96]) our proof does not give a simple ex-

planation of why all invariant distributions are symmetric. The situation would be
much better if we had some kind of density theorem. For example, in the GL case,
let us say that an element .X; v; v�/ of g˚V ˚V � is regular if .v;Xv; : : : Xn�1v/
is a basis of V and .v�; : : : ; tXn�1v�/ is basis of V �. The set of regular elements is
a nonempty Zariski open subset; regular elements have trivial isotropy subgroups.
The regular orbits are the orbits of the regular elements; they are closed, separated
by the invariant polynomials, and stable by the involution (see [RS]). In particular
they carry invariant measures which, the orbits being closed, do extend and are
invariant by the involution. It is tempting to conjecture that the subspace of the
space of invariant distributions generated by these measures is weakly dense. This
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would provide a better understanding of Theorem 2. Unfortunately, if true at all,
such a density theorem is likely to be much harder to prove.

Assuming multiplicity at most one, a more difficult question is to find when
it is one. Some partial results are known. For the orthogonal group (in fact the
special orthogonal group) this question has been studied by B. Gross and D. Prasad
([GP92], [Pra93]) who formulated a precise conjecture. An up to date account is
given by B. Gross and M. Reeder ([GR06]). For an even more recent account see
[GGP], [MW], [Wala], [Walb].

In a different setup, in their work on “Shintani” functions, A. Murase and
T. Sugano obtained complete results for GL.n/ and the split orthogonal case but
only for spherical representations ([KMS03], [MS96]). Finally, we should mention
that Hakim’s publication [Hak03], which, at least for the discrete series, could
perhaps lead to a different kind of proof.

Recently, Waldspurger showed how to adapt our proofs of Theorems 10 and
20 to include the case of special orthogonal groups (see [Walc]). Also, [GGP] and
[Sun] showed that our results imply the uniqueness of general Bessel and Fourier-
Jacobi models over p-adic local fields in almost all cases (see [GGP, Cors. 15.2,
16.2, and 16.3]).

“Multiplicity at most one” theorems have important applications to the relative
trace formula, to automorphic descent, to local and global liftings of automorphic
representations, and to determinations of L-functions. In particular, multiplicity at
most one is used as a hypothesis in the work [GPSR97] on the study of automorphic
L-functions on classical groups. At least for the last two authors, the original
motivation for this work came in fact from [GPSR97].

1. Theorem 2.20/ implies Theorem 1.10/

A group of type lctd is a locally compact, totally disconnected group which
is countable at infinity. We consider smooth representations of such groups. If
.�;E�/ is such a representation, then .��; E��/ is the smooth contragredient. We
denote smooth induction by Ind and compact induction by ind. For any topological
space T of type lctd, S.T / is the space of functions locally constant, complex
valued, defined on T , and with compact support. The space S0.T / of distributions
on T is the dual space to S.T /.

PROPOSITION 1.1. Let M be a lctd group and N a closed subgroup, both
unimodular. Suppose that there exists an involutive anti-automorphism � of M
such that �.N /DN and such that any distribution on M , biinvariant under N , is
fixed by � . Then, for any irreducible admissible representation � of M

dim
�

HomM
�
indMN .1/; �

��
� dim

�
HomM

�
indMN .1/; �

�
��
� 1:

This is well known (see for example [Pra90]).

Remark. There is a variant for the nonunimodular case; we will not need it.
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COROLLARY 1.1. Let M be a lctd group and N a closed subgroup, both uni-
modular. Suppose that there exists an involutive anti-automorphism � of M such
that �.N /DN and such that any distribution on M , invariant under the adjoint
action of N , is fixed by � . Then, for any irreducible admissible representation �
of M and any irreducible admissible representation � of N

dim
�
HomN .�jN ; �

�/
�
� dim

�
HomN ..��/jN ; �/

�
� 1:

Proof. Let M 0 DM �N and N 0 be the closed subgroup of M 0 which is the
image of the homomorphism n 7! .n; n/ of N into M . The map .m; n/ 7!mn�1

of M 0 onto M defines a homeomorphism of M 0=N 0 onto M . The inverse map
is m 7! .m; 1/N 0. On M 0=N 0 left translations by N 0 correspond to the adjoint
action of N on M . We have a bijection between the space of distributions T on
M invariant under the adjoint action of N and the space of distributions S on M 0

which are biinvariant under N 0. Explicitly,

hS; f .m; n/i D
D
T;

Z
N

f .mn; n/dn
E
:

Suppose that T is invariant under � and consider the involutive anti-automorphism
� 0 of M 0 given by � 0.m; n/D .�.m/; �.n//. Then

hS; f ı � 0i D
D
T;

Z
N

f .�.n/�.m/; �.n//dn
E
:

Using the invariance under � and for the adjoint action of N , we getD
T;

Z
N

f .�.n/�.m/; �.n//dn
E
D

D
T;

Z
N

f .�.n/m; �.n//dn
E

D

D
T;

Z
N

f .mn; n/dn
E

D

D
S; f

E
:

Hence S is invariant under � 0. Conversely, if S is invariant under � 0, then the
same computation shows that T is invariant under � . Under the assumption of the
corollary we can now apply Proposition 1.1 and we obtain the inequality

dim
�

HomM 0
�
indM

0

N 0 .1/; � ˝ �
��
� dim

�
HomM 0

�
indM

0

N 0 .1/; �
�
˝ ��

��
� 1:

We know that IndM
0

N 0 .1/ is the smooth contragredient representation of indM
0

N 0 .1/;
hence

HomM 0
�
indM

0

N 0 .1/; �
�
˝ ��

�
� HomM 0.� ˝ �; IndM

0

N 0 .1//:

Frobenius reciprocity tells us that

HomM 0
�
� ˝ �; IndM

0

N 0 .1/
�
� HomN 0

�
.� ˝ �/jN 0 ; 1

�
:

Clearly,

HomN 0
�
.� ˝ �/jN 0 ; 1

�
� HomN

�
�; .�jN /

�
�
� HomN .�jN ; �

�/:
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Using again Frobenius reciprocity we get

HomN
�
�; .�jN /

�
�
� HomM

�
indMN .�/; �

�
�
:

In the above computations we may replace � by �� and � by ��. Finally,

HomM 0.indM
0

N 0 .1/; �
�
˝ ��/� HomN .�; .�jN /

�/

� HomN .�jN ; �
�/

� HomM .indMN .�/; �
�/;

HomM 0.indM
0

N 0 .1/; � ˝ �/� HomN .��; ..��/jN /
�/

� HomN ..��/jN ; �/

� HomM .indMN .�
�/; �/: �

Going back to our situation and keeping the notation of the introduction, we
consider first the case of the general linear group. We take M D GL.W / and
N DGL.V /. Let E� be the space of the representation � and let E�� be the smooth
dual (relative to the action of GL.W //. Let E� be the space of � and E�� be the
smooth dual for the action of GL.V /. We know ([BZ76, �7]) that the contragredient
representation �� in E�� is isomorphic to the representation g 7! �.tg�1/ in E� .
The same is true for ��. Therefore an element of HomN .�jN ; ��/may be described
as a linear map A from E� into E� such that, for g 2N ,

A�.g/D �.tg�1/A:

An element of HomN ..��/jN ; �/ may be described as a linear map A0 from E�
into E� such that, for g 2N ,

A0�.tg�1/D �.g/A0:

We have obtained the same set of linear maps:

HomN
��
��
�
jN
; �
�
� HomN .�jN ; �

�/:

We are left with two possibilities: either both spaces have dimension 0 or they both
have dimension 1 which is exactly what we want.

From now on we forget Theorem 1 and prove Theorem 2.
Consider the orthogonal/unitary case, with the notation of the introduction. In

Chapter 4 of [MVW87] the following result is proved. Choose ı 2GLF.W / such
that hıw; ıw0i D hw0; wi. If � is an irreducible admissible representation of M ,
let �� be its smooth contragredient and define �ı by

�ı.x/D �.ıxı�1/:

Then �ı and �� are equivalent. We choose ı D 1 in the orthogonal case DD F.
In the unitary case, fix an orthogonal basis of W , say e1; : : : ; enC1, such that
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e2; : : : ; enC1 is a basis of V ; put hei ; ei i D ai . ThenDX
xiei ;

X
yj ej

E
D

X
aixiyi :

Define ı by
ı
�X

xiei

�
D

X
xiei :

Note that ı2 D 1.
Let E� be the space of � . Then, up to equivalence, �� is the representation

m 7! �.ımı�1/. If � is an admissible irreducible representation of G in a vector
space E�, then an element A of Hom

�
��
jG
; �
�

is a linear map from E� into E�
such that

A�.ıgı�1/D �.g/A; g 2G:

In turn the contragredient �� of � is equivalent to the representation g 7! �.ıgı�1/

in E�. Then an element B of Hom
�
�jG ; �

�
�

is a linear map from E� into E� such
that

B�.g/D �.ıgı�1/B; g 2G:

As ı2 D 1 the conditions on A and B are the same:

Hom
�
��
jG ; �

�
� Hom

�
�jG ; �

�
�
:

However, assuming Theorem 20, by Corollary 1.1, we have

dim
�

Hom
�
��
jG ; �

��
� dim

�
Hom

�
�jG ; �

�
��
� 1;

so that both dimensions are 0 or 1. Replacing � by �� we get Theorem 10. From
now on we forget about Theorem 10.

2. Some tools

We shall state two theorems which are systematically used in our proof. If X
is a Hausdorff totally disconnected locally compact topological space (lctd space
in short) we denote by S.X/ the vector space of locally constant functions with
compact support of X into the field of complex numbers C. The dual space S0.X/

of S.X/ is the space of distributions on X . All the lctd spaces that we introduce
are countable at infinity.

If an lctd topological group G acts continuously on a lctd space X , then it
acts on S.X/ by

.gf /.x/D f .g�1x/

and on distributions by
.gT /.f /D T .g�1f /:

The space of invariant distributions is denoted by S0.X/G . More generally, if �
is a character of G we denote by S0.X/G;� the space of distributions T which
transform according to � that is to say gT D �.g/T .
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The following result is due to Bernstein [Ber84, �1.4].

THEOREM 2.1 (Localization principle). Let q WZ! T be a continuous map
between two topological spaces of type lctd. Denote Zt WD q�1.t/. Consider
S0.Z/ as S.T /-module. Let M be a closed subspace of S0.Z/ which is an S.T /-
submodule. Then M D

L
t2T .M \S0.Zt //.

COROLLARY 2.1. Let q WZ! T be a continuous map between topological
spaces of type lctd. Let an lctd group H act on Z preserving the fibers of q. Let
� be a character of H . Suppose that for any t 2 T , S0.q�1.t//H;� D 0. Then
S0.Z/H;� D 0.

The second theorem is a variant of Frobenius reciprocity ([Ber84, �1.5] and
[BZ76, ��2.21–2.36]).

THEOREM 2.2 (Frobenius descent). Let a unimodular lctd topological group
H act transitively on an lctd topological space Z. Let ' W E! Z be an H -equi-
variant map of lctd topological spaces. Let x 2 Z. Suppose that its stabilizer
StabH .x/ is unimodular. Let W be the fiber of x. Let � be a character of H . Then

(i) there exists a canonical isomorphism Fr W S0.E/H;�! S0.W /StabH .x/;�.

(ii) for any distribution � 2 S0.E/H;�, Supp.Fr.�//D Supp.�/\W .

Using the explicit formulas for Fr (see the above references) one checks that
Frobenius descent commutes with Fourier transform.

Namely, keeping our notation, let W be a finite-dimensional linear space over
F with a nondegenerate bilinear form B . Let H act on W linearly preserving B
and let FB be the Fourier transform on W .

PROPOSITION 2.1. For any �2S0.Z�W /H;�, we have FB.Fr.�//DFr.FB.�//
where Fr is taken with respect to the projection Z �W !Z.

This last proposition will be used in Sections 4 and 6.
Finally, as F is non-Archimedean, a distribution which is 0 on some open set

may be identified with a distribution on the (closed) complement. This will be used
throughout this work.

3. Reduction to the singular set: the GL.n/ case

Consider the case of the general linear group. From the decomposition W D
V ˚ Fe we get, with obvious identifications

End.W /D End.V /˚V ˚V �˚ F:

Note that End.V / is the Lie algebra g of G. The group G acts on End.W / by
g.X; v; v�; t /D .gXg�1; gv; tg�1v�; t /. As before choose a basis .e1; : : : ; en/ of
V and let .e�1 ; : : : ; e

�
n/ be the dual basis of V �. Define an isomorphism u of V

onto V � by u.ei /D e�i . On GL.W / the involution � is h 7! u�1th�1u. It depends
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upon the choice of the basis but the action on the space of invariant distributions
does not depend upon this choice.

It will be convenient to introduce an extension zG of G. Let Iso.V; V �/ be the
set of isomorphisms of V onto V �. We define zG D G [ Iso.V; V �/. The group
law for g; g0 2G and u; u0 2 Iso.V; V �/ is

g�g0 D gg0; u�g D ug; g�uDtg�1u; u�u0 Dtu�1u0:

Now from W D V ˚ Fe we obtain an identification of the dual space W � with
V � ˚ Fe�, with he�; V i D .0/ and he�; ei D 1. Any u as above extends to an
isomorphism of W onto W � by defining u.e/D e�. The group zG acts on GL.W /:

h 7! ghg�1; h 7!t.uhu�1/; g 2G; h 2 GL.W /; u 2 Iso.V; V �/

and also on End.W / with the same formulas.
Let � be the character of zG which is 1 on G and �1 on Iso.V; V �/. Our goal

is to prove that S0.GL.W // zG;� D .0/.

PROPOSITION 3.1. If S0.g˚V ˚V �/
zG;� D .0/, then S0.GL.W // zG;� D .0/.

Proof. We have End.W /D
�
End.V /˚V ˚V �

�
˚F and the action of zG on F

is trivial. Thus S0.g˚V ˚V �/
zG;� D .0/ implies that S0.End.W // zG;� D .0/: Let

T 2 S0.GL.W // zG;�. Let h 2 GL.W / and choose a compact open neighborhood
K of Det h such that 0 … K. For x 2 End.W / define '.x/ D 1 if Detx 2 K
and '.x/D 0 otherwise. Then ' is a locally constant function. The distribution
.'jGL.W //T has a support which is closed in End.W / hence may be viewed as a

distribution on End.W /. This distribution belongs to S0.End.W // zG;� so it must
be equal to 0. It follows that T is 0 in the neighborhood of h. As h is arbitrary we
conclude that T D 0. �

Our task is now to prove that S0.g˚V ˚V �/
zG;�D .0/. We shall use induction

on the dimension n of V . The action of zG is, for X 2 g, v 2 V , v� 2 V �, g 2 G,
and u 2 Iso.V; V �/,

.X; v; v�/ 7! .gXg�1; gv;tg�1v�/; .X; v; v�/ 7! .t.uXu�1/;tu�1v�; uv/:

The case nD 0 is trivial.
We suppose that V is of dimension n� 1, assuming the result up to dimension

n�1 and for all F. If T 2S0.g˚V ˚V �/
zG;� we are going to show that its support

is contained in the “singular set”. This will be done in two stages.
On V ˚V � let � be the cone hv�; vi D 0. It is stable under zG.

LEMMA 3.1. The support of T is contained in g�� .

Proof. For .X; v; v�/ 2 g˚ V ˚ V � put q.X; v; v�/ D hv�; vi. Let � be
the open subset q ¤ 0. We have to show that S0.�/

zG;� D .0/. By Bernstein’s
localization principle (Corollary 2.1) it is enough to prove that, for any fiber �t D
q�1.t/; t ¤ 0, one has S0.�t /

zG;� D .0/.
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G acts transitively on the quadric hv�; vi D t . Fix a decomposition V D
F"˚ V1 and identify V � D F"� ˚ V �1 with h"�; "i D 1. Then .X; "; t "�/ 2 �t
and the isotropy subgroup of ."; t "�/ in zG is, with an obvious notation, zGn�1. By
Frobenius descent (Theorem 2.2) there is a linear bijection between S0.�t /

zG;� and
the space S0.g/

zG1;�1 and this last space is .0/ by induction. �
Let z be the center of g that is to say the space of scalar matrices. Let N� Œg; g�

be the nilpotent cone in g.

PROPOSITION 3.2. If T 2 S0.g˚V ˚V �/
zG;�, then the support of T is con-

tained in .zCN/�� . If S0.N��/
zG;� D .0/, then S0.g˚V ˚V �/

zG;� D .0/.

Proof. Let us prove that the support of such a distribution T is contained in
.zCN/ � .V ˚ V �/. We use Harish-Chandra’s descent method. For X 2 g let
X D Xs CXn be the Jordan decomposition of X with Xs semi-simple and Xn
nilpotent. This decomposition commutes with the action of zG. The centralizer
ZG.X/ of an element X 2 g is unimodular ([SS70, p. 235]) and there exists an
isomorphism u of V onto V � such that tX D uXu�1 (any matrix is conjugate to its
transpose). It follows that the centralizer Z zG.X/ of X in zG, which is a semi-direct
product of ZG.X/ and S2, is also unimodular.

Let E be the space of monic polynomials of degree n with coefficients in F.
For p 2E, let gp be the set of all X 2 g with characteristic polynomial p. Note that
gp is fixed by zG. By the Bernstein localization principle (Theorem 2.1) it is enough
to prove that if p is not .T ��/n for some �, then S0.gp �V �V

�/
zG;� D .0/.

Fix p. We claim that the map X 7!Xs restricted to gp is continuous. Indeed
let zF be a finite Galois extension of F containing all the roots of p. Let

p.�/D

sY
1

.� ��i /
ni

be the decomposition of p. Recall that if X 2 gp and Vi D Ker.X � �I /ni , then
V D˚Vi and the restriction of Xs to Vi is the multiplication by �i . Then choose
a polynomial R with coefficients in zF such that for all i , R is congruent to �i
modulo .� ��i /ni and R.0/D 0. Clearly Xs D R.X/. As the Galois group of zF
over F permutes the �i , we may even choose R 2 FŒ��. This implies the required
continuity.

There is only one semi-simple orbit p in gp and it is closed. We use Frobenius
descent (Theorem 2.2) for the map .X; v; v�/ 7!Xs from gp �V �V

� to p.
Fix a 2 p; its fiber is the product of V ˚V � by the set of nilpotent elements

which commute with a. It is a closed subset of the centralizer mD Zg.a/ of a in g.
Let M DZG.a/ and �M DZ zG.a/.

Following [SS70], let us describe these centralizers. Let P be the minimal
polynomial of a; all its roots are simple. Let P D P1 : : : Pr be the decomposition
of P into irreducible factors over F. Then the Pi are two-by-two relatively prime.
If Vi D KerPi .a/, then V D ˚Vi and V � D ˚V �i . An element x of G which
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commutes with a is given by a family fx1; : : : ; xrg where each xi is a linear map
from Vi to Vi , commuting with the restriction of a to Vi . Now FŒ�� acts on Vi ,
by specializing � to ajVi

, and Pi acts trivially so that, if Fi D FŒ��=.Pi /, then Vi
becomes a vector space over Fi . The F-linear map xi commutes with a if and only
if it is Fi -linear.

Fix i . Let ` be a nonzero F-linear form on Fi . If vi 2 Vi and v0i 2 V
�
i ,

then � 7! h�vi ; v0i i is an F-linear form on Fi ; hence there exists a unique element
S.vi ; v

0
i / of Fi such that h�vi ; v0i i D `

�
�S.vi ; v

0
i /
�
. One checks trivially that S is

Fi -linear with respect to each variable and defines a nondegenerate duality, over Fi

between Vi and V �i . Here Fi acts on V �i by transposition, relative to the F-duality
h: ; :i of the action on Vi . Finally, if xi 2 EndFi

Vi , then its transpose, relative to the
duality S.: ; :/, is the same as its transpose relative to the duality h: ; :i.

Thus M is a product of linear groups and the situation .M; V; V �/ is a com-
posite case, each component being a linear case (over various extensions of F).

Let u be an isomorphism of V onto V � such that ta D uau�1 and that, for
each i , u.Vi /D V �i . Then u 2 �M and �M DM [uM .

Suppose that a does not belong to the center of g. Then each Vi has dimension
strictly smaller than n and we can use the inductive assumption. Therefore

S0.m˚V ˚V �/
�M;�
D .0/:

However the nilpotent cone Nm in m is a closed subset so

S0.Nm �V �V
�/
zM;�
D .0/:

Together with Lemma 3.1 this proves the first assertion of the proposition.
If a belongs to the center, then �MD zG and the fiber is .aCN/�V �V �. This

implies the second assertion. �

Remark. Strictly speaking the singular set is defined as the set of all .X; v; v�/
such that for any polynomial P invariant under zG one has P.X; v; v�/D P.0/. So
we should take care of the invariants P.X; v; v�/D hv�; Xpvi for all p and not
only for p D 0. It can be proved, a priori, that the support of the distribution T
has to satisfy these extra conditions. As this is not needed in the sequel we omit
the proof.

4. End of the proof for GL.n/

In this section we consider a distribution T 2 S0.N� �/
zG;� and prove that

T D 0. The following observation will play a crucial role. Choose a nontrivial
additive character  of F. On V ˚V � we have the bilinear form�

.v1; v
�
1 /; .v2; v

�
2 /
�
7! hv�1 ; v2iC hv

�
2 ; v1i

Define the Fourier transform by

y'.v2; v
�
2 /D

Z
V˚V �

'.v1; v
�
1 /  .hv

�
1 ; v2iC hv

�
2 ; v1i/ dv1dv

�
1 ;
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with dv1dv�1 normalized so that there is no constant factor appearing in the inver-
sion formula.

This Fourier transform commutes with the action of zG; hence the (partial)
Fourier transform bT of our distribution T has the same invariance properties and
the same support conditions as T itself.

Let Ni be the union of nilpotent orbits of dimension at most i . We will prove,
by descending induction on i , that the support of any . zG;�/-equivariant distribu-
tion on Œg; g�� � must be contained in Ni � � . Suppose we already know that,
for some i , the support must be contained in Ni �� . We must show that, for any
nilpotent orbit O of dimension i , the restriction of the distribution to O�� is 0.

If v 2 V and v� 2 V �, then we call Xv;v� the rank one map x 7! hv�; xiv.
Let

��.X; v; v
�/D .X C�Xv;v� ; v; v

�/; .X; v; v�/ 2 g��; � 2 F:

Then �� is a one parameter group of homeomorphisms of g � � , and note that
Œg; g��� is invariant. The key observation is that �� commutes with the action of
zG . Therefore the image of T by �� transforms according to the character � of zG.
Its support is contained in Œg; g��� and hence must be contained in N�� and in
fact in Ni �� . This means that if .X; v; v�/ belongs to the support of T , then, for
all �, .X C�Xv;v� ; v; v�/ must belong to Ni �� .

The orbit O is open in Ni . Thus if X 2 O the condition X C �Xv;v� 2 Ni
implies that, at least for j�j small enough, X C�Xv;v� 2 O. It follows that Xv;v�
belongs to the tangent space to O at the point X ; this tangent space is the image of
adX .

DefineQ.X/ to be the set of all pairs .v; v�/ such Xv;v� 2 Im adX . Therefore
it is enough to prove the following lemma:

LEMMA 4.1. Let T 2 S0.O�V �V �/
zG;�. Suppose that the support of T and

of bT are contained in the set of triplets .X; v; v�/ such that .v; v�/ 2Q.X/. Then
T D 0.

Note that the trace of Xv;v� is hv�; vi and that Xv;v� 2 Im adX implies that
its trace is 0. Therefore Q.X/ is contained in � .

We proceed in three steps. First we transfer the problem to V ˚V � and a fixed
nilpotent endomorphism X . Then we show that if Lemma 4.1 is true for .V1; X1/
and .V2; X2/ then it is true for the direct sum .V1˚V2; X1˚; X2/. Finally, using
the decomposition of X in Jordan blocks, we are left with the case of a principal
nilpotent element for which we give a direct proof, using Weil representation.

Consider the map .X; v; v�/ 7! X from O� V � V � onto O. Choose X 2 O

and let C (resp zC ) be the stabilizer in G (resp. in zG) of an element X of O; both
groups are unimodular; hence we may use Frobenius descent (Theorem 2.2).

Now we have to deal with a distribution, which we still call T , which belongs
to S0.V ˚ V �/

zC;� such that both T and its Fourier transform are supported by
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Q.X/ (Proposition 2.1). Let us say that X is nice if the only such distribution is 0.
We want to prove that all nilpotent endomorphisms are nice.

LEMMA 4.2. Suppose that we have a decomposition V D V1˚V2 such that
X.Vi / � Vi . Let Xi be the restriction of X to Vi . Then if X1 and X2 are nice, so
is X .

Proof. Let .v; v�/ 2 Q.X/ and choose A 2 g such that Xv;v� D ŒA;X�.
Decompose v D v1C v2 and v� D v�1 C v

�
2 , and put

AD

�
A1;1 A1;2
A2;1 A2;2

�
:

Writing Xv;v� as a two-by-two matrix and looking at the diagonal blocks one gets
that Xvi ;v

�
i
D ŒAi;i ; Xi �. This means that

Q.X/�Q.X1/�Q.X2/:

For i D 1; 2 let Ci be the centralizer of Xi in GL.Vi / and zCi the corresponding
extension by S2. Let T be a distribution as above and let '2 2 S.V2˚ V

�
2 /. Let

T1 be the distribution on V1˚V �1 defined by '1 7! hT; '1˝'2i. The support of
T1 is contained in Q.X1/, and T1 is invariant under the action of C1. We have

hbT 1; '1i D hT1; y'1i D hT; b'1˝'2i D hbT ; }'1˝ b'2i:
Here {'1.v1; v�1 /D '1.�v1;�v

�
1 /. By assumption the support of bT is contained in

Q.X/ so that the support of bT1 is supported in �Q.X1/DQ.X1/. Because .X1/
is nice this implies that T1 is invariant under zC1.

Extend the action of zC1 to V ˚ V � trivially. We obtain that T is invariant
with respect to zC1. Similarly it is invariant under zC2. Since the actions of zC1 and
zC2 together with the action of C generate the action of zC we obtain that T must
be invariant under zC and hence must be 0. �

Decomposing X into Jordan blocks we still have to prove Lemma 4.1 for a
principal nilpotent element. We need some preliminary results.

LEMMA 4.3. The distribution T satisfies the following homogeneity condi-
tion:

hT; f .tv; tv�/i D jt j�nhT; f .v; v�/i:

Proof. We use a particular case of Weil or oscillator representation. Let E be
a vector space over F of finite-dimension m. To simplify assume that m is even.
Let q be a nondegenerate quadratic form on E and let b be the bilinear form

b.e; e0/D q.eC e0/� q.e/� q.e0/:

Fix a continuous nontrivial additive character  of F. We define the Fourier trans-
form on E by

yf .e0/D

Z
E

f .e/ .b.e; e0//de

where de is the self-dual Haar measure.
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There exists ([RS]) a representation � of SL.2; F/ in S.E/ such that:

�

�
1 u

0 1

�
f .e/D  .uq.e//f .e/;

�

�
t 0

0 t�1

�
f .e/D

.q/

.tq/
jt jm=2f .te/;

�

�
0 1

�1 0

�
f .e/D .q/ yf .e/:

The .tq/ are complex numbers of modulus 1. In particular if .E; q/ is a sum of
hyperbolic planes, these numbers are all equal to 1.

We have a contragredient action in the dual space S0.E/. Suppose that T is a
distribution on E such that T and bT are supported on the isotropic cone q.e/D 0.
This means that�

T; �

�
1 u

0 1

�
f

�
D hT; f i and

�bT ; � �1 u
0 1

�
f

�
D hbT ; f i:

Using the relation

hbT ; 'i D �T; .q/� � 0 1

�1 0

�
f

�
;

the second relation is equivalent to�
T; �

�
1 0

�u 1

�
f

�
D hT; f i:

The matrices �
1 u

0 1

�
and

�
1 0

u 1

�
u 2 F

generate the group SL.2; F/. Therefore the distribution T is invariant by SL.2; F/.
In particular,

hT; f .te/i D
.tq/

.q/
jt j�m=2hT; f i

and T D .q/bT .

Remark. For even m, .tq/=.q/ is a character and there do exist nonzero
distributions invariant under SL.2; F/. In odd dimensions we get a representation
of the 2-fold covering of SL.2; F/ and we obtain the same homogeneity condition.
However .tq/=.q/ is not a character; hence the distribution T must be 0.

In our situation we take E D V ˚V � and q.v; v�/D hv�; vi. Then

b
�
.v1; v

�
1 /; .v2; v

�
2 /
�
D hv�1 ; v2iC hv

�
2 ; v1i:
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The Fourier transform commutes with the action of zG. Both T and bT are supported
on Q.X/ which is contained in � . As .tq/D 1 this proves the lemma and also
that T D bT . �

Remark. The same type of argument could have been used for the quadratic
form T r.XY / on sl.V /D Œg; g�. This would have given a short proof for even n
and a homogeneity condition for odd n.

Now we find Q.X/.

LEMMA 4.4. If X is principal, then Q.X/ is the set of pairs .v; v�/ such that
for 0� k < n, hv�; Xkvi D 0.

Proof. Choose a basis .e1; : : : ; en/ of V such that Xe1 D 0 and Xej D ej�1
for j � 2. Consider the map A 7! XA�AX from the space of n by n matrices
into itself. This map is anti-symmetric with respect to the Killing form and hence
its image is the orthogonal complement to its kernel. A simple computation shows
that the kernel of this map, that is to say the Lie algebra c of the centralizer C , is
the space of polynomials (of degree at most n� 1 ) in X . Therefore,

Q.X/D f.v; v�/jXv;v� 2 Im adXg D f.v; v�/j8 0� k < n; tr.Xv;v�Xk/D 0g

D f.v; v�/j8 0� k < n; hv�; Xkvi D 0g:

�
End of the proof of Lemma 4.1. For principal X , we proceed by induction on n.

Keep the above notation. The centralizer C of X is the space of polynomials (of
degree at most n� 1) in X with nonzero constant term. In particular the orbit � of
en is the open subset xn¤ 0. We shall prove that the restriction of T to ��V � is 0.
Note that the centralizer of en in C is trivial. By Frobenius descent (Theorem 2.2),
to the restriction of T corresponds a distribution R on V � with support in the set of
v� such that .en; v�/2Q.X/. By the last lemma this means that R is a multiple aı
of the Dirac measure at the origin. The distribution T satisfies the two conditions

hT; f .v; v�/i D hT; f .tv; t�1v�/i D jt jnhT; f .tv; tv�/iI

therefore,
hT; f .v; t2v�/D jt j�nhT; f .v; v�/i:

Now T is recovered from R by the formula

hT; f .v; v�/iD

Z
C

hR; f .cen;
t c�1v�/idcD a

Z
C

f .cen; 0/dc; f 2S.��V �/:

Unless aD 0 this is not compatible with this last homogeneity condition.
Exactly in the same way one proves that T is 0 on V ���, where �� is the

open orbit x�1 ¤ 0 of C in V �. The same argument is valid for bT (which is even
equal to T . . . ).

If nD 1, then T is obviously 0. If n� 2, then there exists a distribution T 0 onM
1<j<n

Fej ˚ Fe�j
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such that

T D T 0˝ ıxnD0˝ dx1˝ ıx�1D0
˝ dx�n :

Let u be the isomorphism of V onto V � given by u.ej /D e�nC1�j . Recall that it

acts on g�V �V � by .X; v; v�/ 7! .t .uXu�1/;t u�1v�; uv/. It belongs to zC but
not to C so it must transform T into �T .

The case nD1 has just been settled. If nD2 in the above formula T 0 should be
replaced by a constant. The constant must be 0 if we want u.T /D�T . If n> 2, let

V 0 D
�
˚
n�1
1 Fei

�
=Fe1

and let X 0 be the nilpotent endomorphism of V 0 defined by X . We may consider
T 0 as a distribution on V ˚V

0� and one easily checks that, with obvious notation,
it transforms according to the character � of the centralizer zC 0 of X 0 in zG0. By
induction T 0 D 0; hence T D 0. �

5. Reduction to the singular set: the orthogonal and unitary cases

We now turn our attention to the unitary case. We keep the notation of the
introduction. In particular W D V ˚De is a vector space over D of dimension
nC 1 with a nondegenerate hermitian form h: ; :i such that e is orthogonal to V .
The unitary group G of V is imbedded into the unitary group M of W .

Let A be the set of all bijective maps u from V to V such that

u.v1C v2/D u.v1/Cu.v2/; u.�v/D x�u.v/; and hu.v1/; u.v2/i D hv1; v2i:

An example of such a map is obtained by choosing a basis e1; : : : ; en of V such
that hei ; ej i 2 F and defining

u
�X

xiei

�
D

X
xxiei :

Any u 2 A is extended to W by the rule u.vC�e/D u.v/Cx�e and we define an
action on GL.W / by m 7! um�1u�1. The group G acts on GL.W / by the adjoint
action.

Let zG be the group of bijections of GL.W / onto itself generated by the actions
of G and A. It is a semi-direct product of G and S2. We identify G to a subgroup
of zG and A to a subset. When a confusion is possible we denote the product in zG
with a �.

We define a character � of zG by �.g/ D 1 for g 2 G, and �.u/ D �1 for
u 2 zG nG. Our overall goal is to prove that S0.M/

zG;� D .0/.
Let zG act on G �V as follows:

g.x; v/ D .gxg�1; g.v//;

u.x; v/ D .ux�1u�1;�u.v//;
g 2G; u 2 A; x 2G; and v 2 V:

Our first step is to replace M by G �V .
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PROPOSITION 5.1. Suppose that S0.G � V /
zG;� D .0/ for any V and any

hermitian form on V . Then we have S0.M/
zG;� D .0/.

Proof. We have in particular S0.M �W /
�M;� D .0/. Let Y be the set of all

.m;w/ such that hw;wi D he; ei; it is a closed subset, invariant under �M , hence
S0.Y /

�M;� D .0/. By Witt’s theorem M acts transitively on � D fwjhw;wi D
he; eig. We can apply Frobenius descent (Theorem 2.2) to the map .m;w/ 7! w

of Y onto � . The centralizer of e in �M is isomorphic to zG acting as before on
the fiber M � feg. We have a linear bijection between S0.M/

zG:� and S0.Y /
�M;�;

therefore S0.M/
zG:� D .0/. �

The proof that S0.G�V /
zG;�D .0/ is by induction on n. If g is the Lie algebra

of G, we shall prove simultaneously that S0.g�V /
zG;� D .0/. In this case G acts

on its Lie algebra by the adjoint action, and for u 2 zG nG one puts, for X 2 g;

u.X/D�uXu�1.
The case nD 0 is trivial, so we may assume that n� 1. If T 2 S0.G �V /

zG;�

in this section, then we will prove that the support of T must be contained in the
“singular set”.

Let Z (resp. z) be the center of G (resp. g) and U (resp. N) the (closed) set of
all unipotent (resp. nilpotent) elements of G (resp. g).

LEMMA 5.1. If T 2S0.G�V /
zG;� (resp. T 2S0.g�V /

zG;�), then the support
of T is contained in ZU�V (resp. .zCN/�V /.

This is Harish-Chandra’s descent. We first review some facts about the cen-
tralizers of semi-simple elements, following [SS70].

Let a 2G, semi-simple; we want to describe its centralizer M (resp. �M ) in
G (resp. in zG) and to show that S0.M �V /

�M;� D .0/.
View a as a D-linear endomorphism of V and call P its minimal polynomial.

Then, as a is semi-simple, P decomposes into irreducible factors P D P1 : : : Pr
two-by-two relatively prime. Let Vi D KerPi .a/ so that V D˚Vi . Any element
x which commutes with a will satisfy xVi � Vi for each i . For

R.�/D d0C � � �C dm�
m; d0dm ¤ 0

let

R�.�/D d0�
m
C � � �C dm:

Then, from aa� D 1 we obtain, if m is the degree of P ,

hP.a/v; v0i D hv; a�mP �.a/v0i:

(Note that the constant term of P cannot be 0 because a is invertible.) It follows
that P �.a/ D 0 so that P � is proportional to P . Now P � D P �1 : : : P

�
r ; hence

there exists a bijection � from f1; 2; : : : ; rg onto itself such that P �i is proportional
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to P�.i/. Let mi be the degree of Pi . Then, for some nonzero constant c

0D hPi .a/vi ; vj i D hvi ; a
�miP �i .a/vj i

D chvi ; a
�miP�.i/.a/vj i; vi 2 Vi ; vj 2 Vj :

We have two possibilities.

Case 1: �.i/D i . The space Vi is orthogonal to Vj for j ¤ i ; the restriction
of the hermitian form to Vi is nondegenerate. Let Di D DŒ��=.Pi / and consider
Vi as a vector space over Di through the action .R.�/; v/ 7! R.a/v. As ajVi

is
invertible, � is invertible modulo .Pi /; choose � such that ��D 1 modulo .Pi /. Let
�i be the semi-linear involution of Di , as an algebra over D:X

dj �
j
7!

X
dj�

j modulo .Pi /:

Let Fi be the subfield of fixed points for �i . It is a finite extension of F, and
Di is either a quadratic extension of Fi or equal to Fi . There exists a D-linear form
`¤ 0 on Di such that `.�i .d//D `.d/ for all d 2 Di . Then any D-linear form L

on Di may be written as d 7! `.�d/ for some unique � 2 Di .
If v; v0 2 Vi , then d 7! hd.a/v; v0i is D-linear map on Di ; hence there exists

S.v; v0/ 2 Di such that

hd.a/v; v0i D `.dS.v; v0//:

One checks that S is a nondegenerate hermitian form on Vi as a vector space over
Di . Also a D-linear map xi from Vi into itself commutes with ai if and only if it is
Di -linear, and it is unitary with respect to our original hermitian form if and only
if it is unitary with respect to S . So in this case we call Gi the unitary group of S .
It does not depend upon the choice of `. As no confusion may arise, for � 2 Di

we define x�D �i .�/.
We choose an Fi -linear map ui from Vi onto itself, such that ui .�v/D x�u.v/

and S.ui .v/; ui .v0//D S.v; v0/. Then because of our original choice of ` we also
have hui .v/; ui .v0/i D hv; v0i. Note that u.ajVi

/�1u�1 D ajVi
.

Case 2. Suppose now that j D �.i/¤ i . Then Vi ˚ Vj is orthogonal to Vk
for k ¤ i; j , and the restriction of the hermitian form to Vi ˚Vj is nondegenerate,
both Vi and Vj being totally isotropic subspaces. Choose an inverse � of � modulo
Pj . Then for any P 2 DŒ��

hP.a/vi ; vj i D hvi ; xP .�.a//vj i; vi 2 Vi ; vj 2 Vj ;

where xP is the polynomial deduced from P by changing its coefficients into their
conjugate. This defines a map, which we call �i from Di onto Dj . In a similar
way we have a map �j which is the inverse of �i . Then, for � 2 Di we have
h�vi ; vj i D hvi ; �i .�/vj i.

View Vi as a vector space over Di . The action

.�; vj / 7! �i .�/vj



1426 A. AIZENBUD, D. GOUREVITCH, S. RALLIS, and G. SCHIFFMANN

defines a structure of Di -vector space on Vj . However note that for � 2D we have
�i .�/D x� so that �i .�/vj may be different from �vj . To avoid confusion we shall
write, for � 2 Di

�vi D �� vi and �i .�/vj D �� vj :

As in the first case choose a nonzero D-linear form ` on Di . For vi 2 Vi and
vj 2 Vj the map � 7! h� � vi ; vj i is a D-linear form on Di ; hence there exists a
unique element S.vi ; vj / 2 Di such that, for all �

h�� vi ; vj i D `.�S.vi ; vj //:

The form S is Di -bilinear and nondegenerate so that we can view Vj as the dual
space over Di of the Di -vector space Vi .

Let .xi ; xj / 2 EndD.Vi /�EndD.Vj /. They commute with .ai ; aj / if and only
if they are Di -linear. The original hermitian form will be preserved, if and only if
S.xivi ; xj vj / D S.vi ; vj / for all vi ; vj . This means that xj is the inverse of the
transpose of xi . In this situation we define Gi as the linear group of the Di -vector
space Vi .

Let ui be a Di -linear bijection of Vi onto Vj . Then ui .avi /D a�1ui .vi / and
u�1i .avj /D a

�1u�1i .vj /.
Recall that M is the centralizer of a in G. Then .M; V / decomposes as

a “product”, each “factor” being either of type .Gi ; Vi / with Gi a unitary group
(Case 1) or .Gi ; Vi �Vj / with Gi a general linear group (Case 2). Gluing together
the ui (Case 1) and the .ui ; u�1i / (Case 2), we get an element u 2 zG nG such that
ua�1u�1Da which means that it belongs to the centralizer of a in zG. Finally, if �M
is the centralizer of a in zG, then . �M;V / is imbedded into a product each “factor”
being either of type . zGi ; Vi / with Gi a unitary group (Case 1) or . zGi ; Vi �Vj / with
Gi a general linear group (Case 2).

If a is not central, then for each i the dimension of Vi is strictly smaller than
n and from the result for the general linear group and the inductive assumption in
the orthogonal or unitary case, we conclude that S0.M �V /

�M;� D .0/.

Proof of Lemma 5.1. In the group case, consider the map g 7! Pg where Pg
is the characteristic polynomial of g. It is a continuous map from G into the set of
polynomials of degree at most n. Each nonempty fiber F is stable under G but also
under zG nG. Bernstein’s localization principle tells us that it is enough to prove
that S0.F�V /

zG;� D .0/.
Now it follows from [SS70, Chap. IV] that F contains only a finite number

of semi-simple orbits; in particular the set of semi-simple elements Fs in F is
closed. Let us use the multiplicative Jordan decomposition into a product of a
semi-simple and a unipotent element. Consider the map � from F� V onto Fs
which associates to .g; v/ the semi-simple part gs of g. This map is continuous (see
the corresponding proof for GL) and commutes with the action of zG. In Fs each
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orbit  is both open and closed therefore ��1./ is open and closed and invariant
under zG. It is enough to prove that for each such orbit S0.��1.//

zG;� D .0/. By
Frobenius descent (Theorem 2.2), if a 2  and is not central, this follows from
the above considerations on the centralizer of such an a and the fact that ��1.a/
is a closed subset of the centralizer of a in zG, the product of the set of unipotent
element commuting with a by V . Now gs is central if and only if g belongs to
ZU, hence the lemma. For the Lie algebra the proof is similar, using the additive
Jordan decomposition. �

Going back to the group, if a is central, then we see that it suffices to prove
that S0.U�V /

zG;� D .0/, and, similarly for the Lie algebra, it is enough to prove
that S0.N�V /

zG;� D .0/.
Now the exponential map (or the Cayley transform) is a homeomorphism of

N onto U commuting with the action of zG. Therefore it is enough to consider the
Lie algebra case.

We now turn our attention to V . Let � D fv 2 V jhv; vi D 0g.

PROPOSITION 5.2. If T 2 S0.N�V /
zG;�, then the support of T is contained

in N�� .

Proof. Let
�t D fv 2 V j hv; vi D 0g:

Each �t is stable by zG, hence, by Bernstein’s localization principle, to prove that
the support of T is contained in N � �0 it is enough to prove that, for t ¤ 0,
S0.N��t /

zG;� D .0/.
By Witt’s theorem the group G acts transitively on �t . We can apply Frobe-

nius descent to the projection from N � �t onto �t . Fix a point v0 2 �t . The
fiber is N � fv0g. Let zG1 be the centralizer of v0 in zG. We have to show that
S0.N/

zG1;� D .0/, and it is enough to prove that S0.g/
zG1;� D .0/.

The vector v0 is not isotropic so we have an orthogonal decomposition

V D Dv0˚V1

with V1 orthogonal to v0. The restriction of the hermitian form to V1 is nonde-
generate and G1 is identified with the unitary group of this restriction, and zG1 is
the expected semi-direct product with S2. As a zG1-module the Lie algebra g is
isomorphic to a direct sum

g� g1˚V1˚W

where g1 is the Lie algebra of G1 and W a vector space over F of dimension 0 or
1 and on which the action of zG1 is trivial. The action on g1˚V1 is the usual one
so that, by induction, we know that S0.g1˚V1/

zG1;� D .0/. This readily implies
that S0.g/

zG1;� D .0/. �

To summarize: it remains to prove that S0.N��/
zG;� D .0/.
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6. End of the proof in the orthogonal and unitary cases

We keep our general notation. We have to show that a distribution on N�� ,
which is invariant under G, is invariant under zG. To some extent the proof will be
similar to the one we gave for the general linear group.

In particular we will use the fact that if T is such a distribution, then its partial
Fourier transform on V is also invariant under G. The Fourier transform on V is
defined using the bilinear form

.v1; v2/ 7! hv1; v2iC hv2; v1i

which is invariant under zG.
For v 2 V put

'v.x/D hx; viv; x 2 V:

It is a rank-one endomorphism of V and h'v.x/; yi D hx; 'v.y/i.

LEMMA 6.1. i) In the unitary case, for � 2 D such that �D�x� the map

��W .X; v/ 7! .X C�'v; v/

is a homeomorphism of Œg; g��� onto itself which commutes with zG.
ii) In the orthogonal case, for � 2 F the map

��W .X; v/ 7! .X C�X'vC�'vX; v/

is a homeomorphism of Œg; g��� onto itself which commutes with zG.

The proof is a trivial verification.
We now use the stratification of N. Let us first check that an adjoint orbit is

stable not only by G but by zG.
Choose a basis e1; : : : ; en of V such that hei ; ej i 2 F; this gives a conjugation

u W vD
P
xiei 7! xvD

P
xiei on V . If A is any endomorphism of V , then xA is the

endomorphism v 7! A.xv/. The conjugation u is an element of zG nG and, as such,
it acts on g�V by .X; v/ 7! .�uXu�1;�u.v//D .�SX;�xv/. In [MVW87, Chap.
4, Prop. 1.2] it is shown that for X 2 g there exists an F-linear automorphism a

of V such that ha.x/; a.y/i D hx; yi (this implies that a.�x/D x�x) and such that
aXa�1 D �X . Then g D ua 2 G and gXg�1 D �SX so that �SX belongs to the
adjoint orbit of X . Note that a 2 zG nG and as such acts as a.X; v/D .X;�a.v//;
it is an element of the centralizer of X in zG nG.

Remark. We need to check this only for nilpotent orbits and this will be done
later in an explicit way, using the canonical form of nilpotent matrices.

Let Ni be the union of all nilpotent orbits of dimension at most i . We shall
prove, by descending induction on i , that the support of a distribution T 2 S0.N�

�/
zG;� must be contained in Ni �� .
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So now assume that i � 0 and that we already know that the support of any
T 2 S0.N � �/

zG;� must be contained in Ni � � . Let O be a nilpotent orbit of
dimension i ; we have to show that the restriction of T to O is 0.

In the unitary case fix �2D such that �D�x� and consider, for every t 2 F, the
homeomorphism �t�; the image of T belongs to S0.N��/

zG;� so that the image
of the support of T must be contained in Ni �� . If .X; v/ belongs to this support
this means that X C t�'v 2 Ni .

If i D 0 so that Ni D f0g, then this implies that v D 0 so that T must be a
multiple of the Dirac measure at the point .0; 0/ and hence is invariant under zG, so
it must be 0.

If i > 0 and X 2 O, then as O is open in Ni , we get that, at least for jt j small
enough, X C t�'v 2 O and therefore �'v belongs to the tangent space Im ad.X/
of O at the point X . Define

Q.X/D fv 2 V j'v 2 Im ad.X/g; X 2 N; .unitary case/:

Then we know that the support of the restriction of T to O is contained in

f.X; v/jX 2 O; v 2Q.X/g

and the same is true for the partial Fourier transform of T on V .
In the orthogonal case for i D 0, the distribution T is the product of the Dirac

measure at the origin of g by a distribution T 0 on V . The distribution T 0 is invariant
under G but the image of zG in End.V / is the same as the image of G so that T 0 is
invariant under zG hence must be 0.

If i > 0 we proceed as in the unitary case, using ��. We define

Q.X/D fv 2 V jX'vC'vX 2 Im ad.X/g; X 2 N; .orthogonal case/

and we have the same conclusion.
In both cases, for i > 0, fix X 2 O. We use Frobenius descent for the projection

map .Y; v/ 7! Y of O� V onto O. Let C (resp. zC ) be the stabilizer of X in G
(resp. zG). We have a linear bijection of S0.O��/

zG;� onto S0.V /
zC;�.

LEMMA 6.2. Let T 2 S0.V /
zC;�. If T and its Fourier transform are supported

in Q.X/, then T D 0.

Let us say that a nilpotent element X is nice if the above lemma is true. Sup-
pose that we have a direct sum decomposition V D V1˚V2 such that V1 and V2
are orthogonal. By restriction we get nondegenerate hermitian forms h: ; :ii on Vi .
We call Gi the unitary group of h: ; :ii , gi its Lie algebra, and so on. Suppose that
X.Vi /� Vi so that Xi DXjVi

is a nilpotent element of gi .

LEMMA 6.3. If X1 and X2 are nice so is X .

Proof. We claim that Q.X/�Q.X1/�Q.X2/. Indeed if

AD

�
A1;1 A1;2
A2;1 A2;2

�
2 g;
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then from �
A

�
x1
x2

�
;

�
y1
y2

� �
C

� �
x1
x2

�
; A

�
y1
y2

� �
D 0

we get in particular
hAi;ixi ; yi iC hxi ; Ai;iyi i D 0

so that Ai;i 2 gi . Note that

ŒX;A�D

�
ŒX1; A1;1� �

� ŒX2; A2;2�

�
:

If vi 2 Vi and vj 2 Vj , then we define 'vi ;vj
W Vi 7! Vj by 'vi ;vj

.xi / D

hxi ; vi ivj . Then, for v D v1C v2

'v D

�
'v1;v1

'v2;v1

'v1;v2
'v1;v2

�
:

Therefore if, for A 2 g, we have 'v D ŒX;A�, then 'vi ;vi
D ŒXi ; Ai;i �. This proves

the assertion for the unitary case. The orthogonal case is similar.
The end of the proof is the same as the end of the proof of Lemma 4.2 �

Now in both orthogonal and unitary cases nilpotent elements have normal
forms which are orthogonal direct sums of “simple” nilpotent matrices. This is
precisely described in [SS70, IV 2.19, p. 259]. By the above lemma it is enough
to prove that each “simple” matrix is nice.

Unitary case. There is only one type to consider. There exists a basis e1; : : : ; en
of V such that Xe1 D 0 and Xei D ei�1; i � 2. The hermitian form is given by

hei ; ej i D 0 if i C j ¤ nC 1; hei ; enC1�i i D .�1/n�i˛

with ˛ ¤ 0. Note that ˛ D .�1/n�1˛. Suppose that v 2Q.X/; for some A 2 g we
have �'v DXA�AX . For any integer p � 0

Tr.�'vXp/D Tr.XAXp �AXpC1/D 0:

Now Tr.'vXp/D hXpv; vi. Let v D
P
xiei . Hence

hXpv; vi D

n�pX
1

xiCphei ; vi D

n�pX
1

.�1/n�i˛xiCpxxnC1�i D 0:

For p D n� 1 this gives xnxxn D 0. For p D n� 2 we get nothing new but for
p D n� 3 we obtain xn�1 D 0. Going on, by an easy induction, we conclude that
xi D 0 if i � .nC 1/=2.

If nD 2pC 1 is odd, put V1 D˚
p
1Dei , V0 D DepC1, and V2 D˚

2pC1
pC2 Dei .

If nD 2p is even, put V1 D˚
p
1Dei , V0 D .0/, and V2 D˚

2p
pC1Dei . In both cases

we have V D V1˚V0˚V2. We use the notation v D v2C v0C v1.
The distribution T is supported by V1. Call ıi the Dirac measure at 0 on Vi .

Then we may write T D U ˝ ı0˝ ı2 with U 2 S0.V1/. The same thing must be
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true of the Fourier transform of T . Note that yU is a distribution on V2, yı2 is a Haar
measure dv1 on V1, and that, for n odd, yı0 is a Haar measure dv0 on V0. So we
have bT D dv1˝ yU if n is even and bT D dv1˝dv0˝ yU if n is odd. In the odd case
this forces T D 0. In the even case, up to a scalar multiple, the only possibility is
T D dv1˝ ı2.

Let

a W
X

xiei 7!
X

.�1/i xxiei :

Then a 2 zG nG. It acts on g by Y 7! �aYa�1 and in particular �aXa�1 DX so
that a 2 zC nC . The action on V is given by v 7! �a.v/. It is an involution. The
subspace V1 is invariant and so dv1 is invariant. This implies that T is invariant
under zC , so it must be 0.

Orthogonal case. There are two different types of “simple” nilpotent matrices.
The first type is the same as the unitary case, with ˛ D 1 and thus n odd, but now
our condition is that X'vC'vX D ŒX;A� for some A 2 g. As before this implies
that Tr.'vXq/D 0 but only for q� 1. Put nD 2pC1; we get xj D 0 for j >pC1.
Decompose V as before: V D V1˚V0˚V2. Our distribution T is supported by
the subspace v2D 0, so we write it T DU ˝ı2 with U 2S0.V1˚V0/. This is also
true for the distribution bT , so we must have U D dv1˝R with R a distribution on
V0. Finally, T D dv1˝R˝ı2. Now �Id2C and T is invariant under C so that R
must be an even distribution. On the other end the endomorphism a of V defined by
a.ei /D .�1/

i�p�1ei belongs to C and aXa�1D�X and u W .X; v/ 7! .�X;�v/

belongs to zG nG. The product a �u of a and u in zG belongs to zC nC . Clearly T
is invariant under a �u so that T is invariant under zC , so it must be 0.

The second type is as follows. We have n D 2m, an even integer and a de-
composition V D E ˚ F with both E and F of dimension m. We have a basis
e1; : : : ; em of E and a basis f1; : : : ; fm of F such that

hei ; ej i D hfi ; fj i D 0

and

hei ; fj i D 0 if i C j ¤mC 1 and hei ; fmC1�i i D .�1/
m�i :

Finally, X is such that Xei D ei�1; Xfi D fi�1.
Let � be the matrix of the restriction of X to E or to F . Write an element

A 2 g as two-by-two matrix AD .ai;j /. Then

ŒX;A�D

�
Œ�; a1;1� Œ�; a1;2�

Œ�; a2;1� Œ�; a2;2�

�
:

Suppose that v 2Q.X/, and let

v D eCf with e D
X

xiei ; f D
X

yifi :
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We get

X'vC'vX D

�
�'f;eC'f;e� �'f;f C'f;f �

�'e;eC'e;e� �'e;f C'e;f �

�
where, for example, 'e;e is the map f 0 7!hf 0; eie from F into E. Thus, for some A,

�'e;eC'e;e� D �a2;1� a2;1�:

In this formula, using the basis .ei / and .fi /, replace all the maps by their matrices.
Then, as before, we have Tr.'e;e�q/D 0 for 1 � q �m� 1. If e0 D

P
xifi

(the xi are the coordinates of e), then Tr.�q'e;e/ is h�qe; e0i. Thus, as in the other
cases, we have xj D 0 for j > m=2 if m is even and j > .mC 1/=2 if m is odd.
The same thing is true for the yi .

IfmD2p is even, let V1D˚i�p.Fei˚Ffi / and V2D˚i>p.Fei˚Ffi /; write
v D v1C v2 the corresponding decomposition of an arbitrary element of V . Let
ı2 be the Dirac measure at the origin in V2 and dv1 a Haar measure on V1. Then,
as in the unitary case, using the Fourier transform, we see that the distribution T
must be a multiple of dv1˝ ı2.

The endomorphism a of V defined by a.ei /D .�1/iei and a.fi /D .�1/iC1fi
belongs to G and aXa�1D�X . The map u W .Y; v/ 7! .�Y;�v/ belongs to zG nG
so that the product a� u in zG belongs to zC nC . It clearly leaves T invariant so
that T D 0.

Finally, if m D 2p C 1 is odd, then we put V1 D ˚i�p.Fei ˚ Ffi /, V0 D
FepC1˚ FfpC1, V2 D ˚i�pC2.Fei ˚ Ffi /. As in the unitary case we find that
T D dv1˝R˝ ı2 with R a distribution on V0. As �Id 2 C we see that R must
be even. Then again, define a 2G by a.ei /D .�1/iei and a.fi /D .�1/ifi , and
consider a � u with u.Y; v/ D .�Y;�v/. As before a � u 2 zC nC and leaves T
invariant so we have to take T D 0. �
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