Compactifications of smooth families and of moduli spaces of polarized manifolds

Abstract

Let $M_h$ be the moduli scheme of canonically polarized manifolds with Hilbert polynomial $h$. We construct for $\nu\geq 2$ with $h(\nu)>0$ a projective compactification $\overline{M}_h$ of the reduced moduli scheme $(M_h)_{\rm red}$ such that the ample invertible sheaf $\lambda_\nu$, corresponding to ${\rm det}(f_*\omega_{X_0/Y_0}^\nu)$ on the moduli stack, has a natural extension $\overline{\lambda}_\nu\in {\rm Pic}(\overline{M}_h)_\Bbb{Q}$. A similar result is shown for moduli of polarized minimal models of Kodaira dimension zero. In both cases “natural” means that the pullback of $\overline{\lambda}_\nu$ to a curve $\varphi:C\to \overline{M}_h$, induced by a family $f_0:X_0\to C_0=\varphi^{-1}(M_h)$, is isomorphic to ${\rm det}(f_*\omega_{X/C}^\nu)$ whenever $f_0$ extends to a semistable model $f:X\to C$.

Besides of the weak semistable reduction of Abramovich-Karu and the extension theorem of Gabber there are new tools, hopefully of interest by themselves. In particular we will need a theorem on the flattening of multiplier sheaves in families, on their compatibility with pullbacks and on base change for their direct images, twisted by certain semiample sheaves.

  • [AK] Go to document D. Abramovich and K. Karu, "Weak semistable reduction in characteristic 0," Invent. Math., vol. 139, iss. 2, pp. 241-273, 2000.
    @article {AK, MRKEY = {1738451},
      AUTHOR = {Abramovich, D. and Karu, K.},
      TITLE = {Weak semistable reduction in characteristic 0},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {139},
      YEAR = {2000},
      NUMBER = {2},
      PAGES = {241--273},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {14D06 (14J10)},
      MRNUMBER = {2001f:14021},
      MRREVIEWER = {S{á}ndor J. Kov{á}cs},
      DOI = {10.1007/s002229900024},
      ZBLNUMBER = {0958.14006},
      }
  • [AV] Go to document D. Abramovich and A. Vistoli, "Compactifying the space of stable maps," J. Amer. Math. Soc., vol. 15, iss. 1, pp. 27-75, 2002.
    @article {AV, MRKEY = {1862797},
      AUTHOR = {Abramovich, Dan and Vistoli, Angelo},
      TITLE = {Compactifying the space of stable maps},
      JOURNAL = {J. Amer. Math. Soc.},
      FJOURNAL = {Journal of the American Mathematical Society},
      VOLUME = {15},
      YEAR = {2002},
      NUMBER = {1},
      PAGES = {27--75},
      ISSN = {0894-0347},
      MRCLASS = {14H10 (14A20 14D20 14N35)},
      MRNUMBER = {2002i:14030},
      MRREVIEWER = {Tyler J. Jarvis},
      DOI = {10.1090/S0894-0347-01-00380-0},
      ZBLNUMBER = {0991.14007},
      }
  • [BCHM] Go to document C. Birkar, P. Cascini, C. -D. Hacon, and J. McKernan, "Existence of minimal models for varieties of log general type," J. Amer. Math. Soc., vol. 23, pp. 405-468, 2010.
    @article{BCHM,
      author={Birkar, C. and Cascini, P. and Hacon, C.-D. and McKernan, J.},
      TITLE={Existence of minimal models for varieties of log general type},
      JOURNAL={J. Amer. Math. Soc.},
      VOLUME={23},
      YEAR={2010},
      PAGES={405--468},
      MRNUMBER={2601039},
      DOI={10.1090/S0894-0347-09-00649-3},
      }
  • [Cap] Go to document L. Caporaso, "On certain uniformity properties of curves over function fields," Compositio Math., vol. 130, iss. 1, pp. 1-19, 2002.
    @article {Cap, MRKEY = {1883689},
      AUTHOR = {Caporaso, Lucia},
      TITLE = {On certain uniformity properties of curves over function fields},
      JOURNAL = {Compositio Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {130},
      YEAR = {2002},
      NUMBER = {1},
      PAGES = {1--19},
      ISSN = {0010-437X},
      CODEN = {CMPMAF},
      MRCLASS = {14H05 (14H10)},
      MRNUMBER = {2003a:14038},
      MRREVIEWER = {Carlo Gasbarri},
      DOI = {10.1023/A:1013703430436},
      ZBLNUMBER = {1067.14022},
      }
  • [Eis] D. Eisenbud, Commutative Algebra, New York: Springer-Verlag, 1995, vol. 150.
    @book {Eis, MRKEY = {1322960},
      AUTHOR = {Eisenbud, David},
      TITLE = {Commutative Algebra},
      SERIES = {Grad. Texts in Math.},
      VOLUME = {150},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1995},
      PAGES = {xvi+785},
      ISBN = {0-387-94268-8; 0-387-94269-6},
      MRCLASS = {13-01 (14A05)},
      MRNUMBER = {97a:13001},
      MRREVIEWER = {Matthew Miller},
      ZBLNUMBER = {0819.13001},
      }
  • [EGA] A. Grothendieck and J. Dieudonné, "Eléments de géométrie algébrique, III," Publ. Math. I.H.E.S., vol. 11, 1961.
    @article{EGA,
      author={Grothendieck, A. and Dieudonné, J.},
      TITLE={Eléments de géométrie algébrique, III},
      JOURNAL={Publ. Math. I.H.E.S.},
      VOLUME={11},
      YEAR={1961},
      NOTE={and {\bf 17} (1963)},
      }
  • [EV] H. Esnault and E. Viehweg, Lectures on Vanishing Theorems, Basel: Birkhäuser, 1992, vol. 20.
    @book {EV, MRKEY = {1193913},
      AUTHOR = {Esnault, H{é}l{è}ne and Viehweg, Eckart},
      TITLE = {Lectures on Vanishing Theorems},
      SERIES = {DMV Seminar},
      VOLUME = {20},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Basel},
      YEAR = {1992},
      PAGES = {vi+164},
      ISBN = {3-7643-2822-3},
      MRCLASS = {14F17 (14F40 32L10 32L20)},
      MRNUMBER = {94a:14017},
      MRREVIEWER = {Marko Roczen},
      ZBLNUMBER = {0779.14003},
      }
  • [Gie] Go to document D. Gieseker, "Global moduli for surfaces of general type," Invent. Math., vol. 43, iss. 3, pp. 233-282, 1977.
    @article {Gie, MRKEY = {0498596},
      AUTHOR = {Gieseker, D.},
      TITLE = {Global moduli for surfaces of general type},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {43},
      YEAR = {1977},
      NUMBER = {3},
      PAGES = {233--282},
      ISSN = {0020-9910},
      MRCLASS = {14J10 (14D20)},
      MRNUMBER = {58 \#16687},
      MRREVIEWER = {Miles Reid},
      DOI = {10.1007/BF01390081},
      ZBLNUMBER = {0389.14006},
      }
  • [Kar] K. Karu, "Minimal models and boundedness of stable varieties," J. Algebraic Geom., vol. 9, iss. 1, pp. 93-109, 2000.
    @article {Kar, MRKEY = {1713521},
      AUTHOR = {Karu, Kalle},
      TITLE = {Minimal models and boundedness of stable varieties},
      JOURNAL = {J. Algebraic Geom.},
      FJOURNAL = {Journal of Algebraic Geometry},
      VOLUME = {9},
      YEAR = {2000},
      NUMBER = {1},
      PAGES = {93--109},
      ISSN = {1056-3911},
      MRCLASS = {14J10 (14D20 14E30 14J17)},
      MRNUMBER = {2001g:14059},
      MRREVIEWER = {Alessio Corti},
      ZBLNUMBER = {0980.14008},
      }
  • [Kaw] Y. Kawamata, "On the extension problem of pluricanonical forms," in Algebraic Geometry: Hirzebruch 70, Providence, RI: Amer. Math. Soc., 1999, vol. 241, pp. 193-207.
    @incollection {Kaw, MRKEY = {1718145},
      AUTHOR = {Kawamata, Yujiro},
      TITLE = {On the extension problem of pluricanonical forms},
      BOOKTITLE = {Algebraic Geometry: {H}irzebruch 70},
      VENUE={ {W}arsaw, 1998},
      SERIES = {Contemp. Math.},
      VOLUME = {241},
      PAGES = {193--207},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {1999},
      MRCLASS = {14J10 (14E30)},
      MRNUMBER = {2000i:14053},
      MRREVIEWER = {S{á}ndor J. Kov{á}cs},
      ZBLNUMBER = {0972.14005},
      }
  • [KKMS] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal Embeddings. I, New York: Springer-Verlag, 1973, vol. 339.
    @book {KKMS, MRKEY = {0335518},
      AUTHOR = {Kempf, G. and Knudsen, Finn Faye and Mumford, D. and Saint-Donat, B.},
      TITLE = {Toroidal Embeddings. {\rm I}},
      SERIES = {Lecture Notes in Math.},
      VOLUME={339},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1973},
      PAGES = {viii+209},
      MRCLASS = {14E15 (14D20 14E05 14M20 20G15)},
      MRNUMBER = {49 \#299},
      MRREVIEWER = {G. Harder},
      ZBLNUMBER = {0271.14017},
      }
  • [Kol] Go to document J. Kollár, "Projectivity of complete moduli," J. Differential Geom., vol. 32, iss. 1, pp. 235-268, 1990.
    @article {Kol, MRKEY = {1064874},
      AUTHOR = {Koll{á}r, J{á}nos},
      TITLE = {Projectivity of complete moduli},
      JOURNAL = {J. Differential Geom.},
      FJOURNAL = {Journal of Differential Geometry},
      VOLUME = {32},
      YEAR = {1990},
      NUMBER = {1},
      PAGES = {235--268},
      ISSN = {0022-040X},
      CODEN = {JDGEAS},
      MRCLASS = {14D22 (14H10 14J10)},
      MRNUMBER = {92e:14008},
      MRREVIEWER = {Autorreferat},
      URL = {http://projecteuclid.org/getRecord?id=euclid.jdg/1214445046},
      ZBLNUMBER = {0684.14002},
      }
  • [KL] S. J. Kovács and M. Lieblich, Boundedness of families of canonically polarized manifolds: A higher dimensional analogue of Shafarevich’s conjecture.
    @misc{KL,
      author = {Kov{á}cs, S{á}ndor J. and Lieblich, M.},
      TITLE={Boundedness of families of canonically polarized manifolds: A higher dimensional analogue of Shafarevich's conjecture},
      NOTE={{\it Ann. of Math.} {\bf 172} (2010), to appear},
      }
  • [Mum] D. Mumford, Geometric Invariant Theory, New York: Springer-Verlag, 1965, vol. 34.
    @book {Mum, MRKEY = {0214602},
      AUTHOR = {Mumford, David},
      TITLE = {Geometric Invariant Theory},
      SERIES = {Ergeb. Math. Grenzgeb.},
      VOLUME={34},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1965},
      PAGES = {vi+145},
      MRCLASS = {14.55},
      MRNUMBER = {35 \#5451},
      MRREVIEWER = {F. Oort},
      ZBLNUMBER = {0147.39304},
      }
  • [ST] Go to document G. Schumacher and H. Tsuji, "Quasi-projectivity of moduli spaces of polarized varieties," Ann. of Math., vol. 159, iss. 2, pp. 597-639, 2004.
    @article {ST, MRKEY = {2081436},
      AUTHOR = {Schumacher, Georg and Tsuji, Hajime},
      TITLE = {Quasi-projectivity of moduli spaces of polarized varieties},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {159},
      YEAR = {2004},
      NUMBER = {2},
      PAGES = {597--639},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {14J15 (32G05 32G20)},
      MRNUMBER = {2005h:14089},
      MRREVIEWER = {Vasile Br{\^ı}nz{\u{a}}nescu},
      DOI = {10.4007/annals.2004.159.597},
      ZBLNUMBER = {1068.32011},
      }
  • [Siu] Y. -T. Siu, "A general non-vanishing theorem and an analytic proof of the finite generation of the canonical ring," , preprint , 2006.
    @techreport{Siu,
      author={Siu, Y.-T.},
      TITLE={A general non-vanishing theorem and an analytic proof of the finite generation of the canonical ring},
      TYPE={preprint},
      YEAR={2006},
      ARXIV={math/0610740},
      }
  • [Vie] E. Viehweg, Quasi-Projective Moduli for Polarized Manifolds, New York: Springer-Verlag, 1995, vol. 30.
    @book {Vie, MRKEY = {1368632},
      AUTHOR = {Viehweg, Eckart},
      TITLE = {Quasi-Projective Moduli for Polarized Manifolds},
      SERIES = {Ergeb. Math. Grenzgeb.},
      VOLUME = {30},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1995},
      PAGES = {viii+320},
      ISBN = {3-540-59255-5},
      MRCLASS = {14-02 (14D20 14D22)},
      MRNUMBER = {97j:14001},
      MRREVIEWER = {P. E. Newstead},
      ZBLNUMBER = {0844.14004},
      }
  • [VZ2] E. Viehweg and K. Zuo, "Base spaces of non-isotrivial families of smooth minimal models," in Complex Geometry, New York: Springer-Verlag, 2002, pp. 279-328.
    @incollection {VZ2, MRKEY = {1922109},
      AUTHOR = {Viehweg, Eckart and Zuo, Kang},
      TITLE = {Base spaces of non-isotrivial families of smooth minimal models},
      BOOKTITLE = {Complex Geometry},
      VENUE={{G}öttingen, 2000},
      PAGES = {279--328},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {2002},
      MRCLASS = {14D06 (14E30)},
      MRNUMBER = {2003h:14019},
      MRREVIEWER = {Mark Gross},
      ZBLNUMBER = {1006.14004},
      }
  • [VZ1] Go to document E. Viehweg and K. Zuo, "On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds," Duke Math. J., vol. 118, iss. 1, pp. 103-150, 2003.
    @article {VZ1, MRKEY = {1978884},
      AUTHOR = {Viehweg, Eckart and Zuo, Kang},
      TITLE = {On the {B}rody hyperbolicity of moduli spaces for canonically polarized manifolds},
      JOURNAL = {Duke Math. J.},
      FJOURNAL = {Duke Mathematical Journal},
      VOLUME = {118},
      YEAR = {2003},
      NUMBER = {1},
      PAGES = {103--150},
      ISSN = {0012-7094},
      CODEN = {DUMJAO},
      MRCLASS = {14J15 (14J10 32G05 32Q45)},
      MRNUMBER = {2004h:14042},
      MRREVIEWER = {S{á}ndor J. Kov{á}cs},
      DOI = {10.1215/S0012-7094-03-11815-3},
      ZBLNUMBER = {1042.14010},
      }

Authors

Eckart Viehweg

Correspondence should be addressed to: Hélène Esnault
Universität Duisburg-Essen
Mathematik
45117 Essen
Germany