Abstract
Let $M_h$ be the moduli scheme of canonically polarized manifolds with Hilbert polynomial $h$. We construct for $\nu\geq 2$ with $h(\nu)>0$ a projective compactification $\overline{M}_h$ of the reduced moduli scheme $(M_h)_{\rm red}$ such that the ample invertible sheaf $\lambda_\nu$, corresponding to ${\rm det}(f_*\omega_{X_0/Y_0}^\nu)$ on the moduli stack, has a natural extension $\overline{\lambda}_\nu\in {\rm Pic}(\overline{M}_h)_\Bbb{Q}$. A similar result is shown for moduli of polarized minimal models of Kodaira dimension zero. In both cases “natural” means that the pullback of $\overline{\lambda}_\nu$ to a curve $\varphi:C\to \overline{M}_h$, induced by a family $f_0:X_0\to C_0=\varphi^{-1}(M_h)$, is isomorphic to ${\rm det}(f_*\omega_{X/C}^\nu)$ whenever $f_0$ extends to a semistable model $f:X\to C$.
Besides of the weak semistable reduction of Abramovich-Karu and the extension theorem of Gabber there are new tools, hopefully of interest by themselves. In particular we will need a theorem on the flattening of multiplier sheaves in families, on their compatibility with pullbacks and on base change for their direct images, twisted by certain semiample sheaves.
-
[AK]
D. Abramovich and K. Karu, "Weak semistable reduction in characteristic 0," Invent. Math., vol. 139, iss. 2, pp. 241-273, 2000.
@article {AK, MRKEY = {1738451},
AUTHOR = {Abramovich, D. and Karu, K.},
TITLE = {Weak semistable reduction in characteristic 0},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {139},
YEAR = {2000},
NUMBER = {2},
PAGES = {241--273},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {14D06 (14J10)},
MRNUMBER = {2001f:14021},
MRREVIEWER = {S{á}ndor J. Kov{á}cs},
DOI = {10.1007/s002229900024},
ZBLNUMBER = {0958.14006},
} -
[AV]
D. Abramovich and A. Vistoli, "Compactifying the space of stable maps," J. Amer. Math. Soc., vol. 15, iss. 1, pp. 27-75, 2002.
@article {AV, MRKEY = {1862797},
AUTHOR = {Abramovich, Dan and Vistoli, Angelo},
TITLE = {Compactifying the space of stable maps},
JOURNAL = {J. Amer. Math. Soc.},
FJOURNAL = {Journal of the American Mathematical Society},
VOLUME = {15},
YEAR = {2002},
NUMBER = {1},
PAGES = {27--75},
ISSN = {0894-0347},
MRCLASS = {14H10 (14A20 14D20 14N35)},
MRNUMBER = {2002i:14030},
MRREVIEWER = {Tyler J. Jarvis},
DOI = {10.1090/S0894-0347-01-00380-0},
ZBLNUMBER = {0991.14007},
} -
[BCHM]
C. Birkar, P. Cascini, C. -D. Hacon, and J. McKernan, "Existence of minimal models for varieties of log general type," J. Amer. Math. Soc., vol. 23, pp. 405-468, 2010.
@article{BCHM,
author={Birkar, C. and Cascini, P. and Hacon, C.-D. and McKernan, J.},
TITLE={Existence of minimal models for varieties of log general type},
JOURNAL={J. Amer. Math. Soc.},
VOLUME={23},
YEAR={2010},
PAGES={405--468},
MRNUMBER={2601039},
DOI={10.1090/S0894-0347-09-00649-3},
} -
[Cap]
L. Caporaso, "On certain uniformity properties of curves over function fields," Compositio Math., vol. 130, iss. 1, pp. 1-19, 2002.
@article {Cap, MRKEY = {1883689},
AUTHOR = {Caporaso, Lucia},
TITLE = {On certain uniformity properties of curves over function fields},
JOURNAL = {Compositio Math.},
FJOURNAL = {Compositio Mathematica},
VOLUME = {130},
YEAR = {2002},
NUMBER = {1},
PAGES = {1--19},
ISSN = {0010-437X},
CODEN = {CMPMAF},
MRCLASS = {14H05 (14H10)},
MRNUMBER = {2003a:14038},
MRREVIEWER = {Carlo Gasbarri},
DOI = {10.1023/A:1013703430436},
ZBLNUMBER = {1067.14022},
} -
[Eis] D. Eisenbud, Commutative Algebra, New York: Springer-Verlag, 1995, vol. 150.
@book {Eis, MRKEY = {1322960},
AUTHOR = {Eisenbud, David},
TITLE = {Commutative Algebra},
SERIES = {Grad. Texts in Math.},
VOLUME = {150},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1995},
PAGES = {xvi+785},
ISBN = {0-387-94268-8; 0-387-94269-6},
MRCLASS = {13-01 (14A05)},
MRNUMBER = {97a:13001},
MRREVIEWER = {Matthew Miller},
ZBLNUMBER = {0819.13001},
} -
[EGA] A. Grothendieck and J. Dieudonné, "Eléments de géométrie algébrique, III," Publ. Math. I.H.E.S., vol. 11, 1961.
@article{EGA,
author={Grothendieck, A. and Dieudonné, J.},
TITLE={Eléments de géométrie algébrique, III},
JOURNAL={Publ. Math. I.H.E.S.},
VOLUME={11},
YEAR={1961},
NOTE={and {\bf 17} (1963)},
} -
[EV] H. Esnault and E. Viehweg, Lectures on Vanishing Theorems, Basel: Birkhäuser, 1992, vol. 20.
@book {EV, MRKEY = {1193913},
AUTHOR = {Esnault, H{é}l{è}ne and Viehweg, Eckart},
TITLE = {Lectures on Vanishing Theorems},
SERIES = {DMV Seminar},
VOLUME = {20},
PUBLISHER = {Birkhäuser},
ADDRESS = {Basel},
YEAR = {1992},
PAGES = {vi+164},
ISBN = {3-7643-2822-3},
MRCLASS = {14F17 (14F40 32L10 32L20)},
MRNUMBER = {94a:14017},
MRREVIEWER = {Marko Roczen},
ZBLNUMBER = {0779.14003},
} -
[Gie]
D. Gieseker, "Global moduli for surfaces of general type," Invent. Math., vol. 43, iss. 3, pp. 233-282, 1977.
@article {Gie, MRKEY = {0498596},
AUTHOR = {Gieseker, D.},
TITLE = {Global moduli for surfaces of general type},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {43},
YEAR = {1977},
NUMBER = {3},
PAGES = {233--282},
ISSN = {0020-9910},
MRCLASS = {14J10 (14D20)},
MRNUMBER = {58 \#16687},
MRREVIEWER = {Miles Reid},
DOI = {10.1007/BF01390081},
ZBLNUMBER = {0389.14006},
} -
[Kar] K. Karu, "Minimal models and boundedness of stable varieties," J. Algebraic Geom., vol. 9, iss. 1, pp. 93-109, 2000.
@article {Kar, MRKEY = {1713521},
AUTHOR = {Karu, Kalle},
TITLE = {Minimal models and boundedness of stable varieties},
JOURNAL = {J. Algebraic Geom.},
FJOURNAL = {Journal of Algebraic Geometry},
VOLUME = {9},
YEAR = {2000},
NUMBER = {1},
PAGES = {93--109},
ISSN = {1056-3911},
MRCLASS = {14J10 (14D20 14E30 14J17)},
MRNUMBER = {2001g:14059},
MRREVIEWER = {Alessio Corti},
ZBLNUMBER = {0980.14008},
} -
[Kaw] Y. Kawamata, "On the extension problem of pluricanonical forms," in Algebraic Geometry: Hirzebruch 70, Providence, RI: Amer. Math. Soc., 1999, vol. 241, pp. 193-207.
@incollection {Kaw, MRKEY = {1718145},
AUTHOR = {Kawamata, Yujiro},
TITLE = {On the extension problem of pluricanonical forms},
BOOKTITLE = {Algebraic Geometry: {H}irzebruch 70},
VENUE={ {W}arsaw, 1998},
SERIES = {Contemp. Math.},
VOLUME = {241},
PAGES = {193--207},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {1999},
MRCLASS = {14J10 (14E30)},
MRNUMBER = {2000i:14053},
MRREVIEWER = {S{á}ndor J. Kov{á}cs},
ZBLNUMBER = {0972.14005},
} -
[KKMS] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal Embeddings. I, New York: Springer-Verlag, 1973, vol. 339.
@book {KKMS, MRKEY = {0335518},
AUTHOR = {Kempf, G. and Knudsen, Finn Faye and Mumford, D. and Saint-Donat, B.},
TITLE = {Toroidal Embeddings. {\rm I}},
SERIES = {Lecture Notes in Math.},
VOLUME={339},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1973},
PAGES = {viii+209},
MRCLASS = {14E15 (14D20 14E05 14M20 20G15)},
MRNUMBER = {49 \#299},
MRREVIEWER = {G. Harder},
ZBLNUMBER = {0271.14017},
} -
[Kol]
J. Kollár, "Projectivity of complete moduli," J. Differential Geom., vol. 32, iss. 1, pp. 235-268, 1990.
@article {Kol, MRKEY = {1064874},
AUTHOR = {Koll{á}r, J{á}nos},
TITLE = {Projectivity of complete moduli},
JOURNAL = {J. Differential Geom.},
FJOURNAL = {Journal of Differential Geometry},
VOLUME = {32},
YEAR = {1990},
NUMBER = {1},
PAGES = {235--268},
ISSN = {0022-040X},
CODEN = {JDGEAS},
MRCLASS = {14D22 (14H10 14J10)},
MRNUMBER = {92e:14008},
MRREVIEWER = {Autorreferat},
URL = {http://projecteuclid.org/getRecord?id=euclid.jdg/1214445046},
ZBLNUMBER = {0684.14002},
} -
[KL] S. J. Kovács and M. Lieblich, Boundedness of families of canonically polarized manifolds: A higher dimensional analogue of Shafarevich’s conjecture.
@misc{KL,
author = {Kov{á}cs, S{á}ndor J. and Lieblich, M.},
TITLE={Boundedness of families of canonically polarized manifolds: A higher dimensional analogue of Shafarevich's conjecture},
NOTE={{\it Ann. of Math.} {\bf 172} (2010), to appear},
} -
[Mum] D. Mumford, Geometric Invariant Theory, New York: Springer-Verlag, 1965, vol. 34.
@book {Mum, MRKEY = {0214602},
AUTHOR = {Mumford, David},
TITLE = {Geometric Invariant Theory},
SERIES = {Ergeb. Math. Grenzgeb.},
VOLUME={34},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1965},
PAGES = {vi+145},
MRCLASS = {14.55},
MRNUMBER = {35 \#5451},
MRREVIEWER = {F. Oort},
ZBLNUMBER = {0147.39304},
} -
[ST]
G. Schumacher and H. Tsuji, "Quasi-projectivity of moduli spaces of polarized varieties," Ann. of Math., vol. 159, iss. 2, pp. 597-639, 2004.
@article {ST, MRKEY = {2081436},
AUTHOR = {Schumacher, Georg and Tsuji, Hajime},
TITLE = {Quasi-projectivity of moduli spaces of polarized varieties},
JOURNAL = {Ann. of Math.},
FJOURNAL = {Annals of Mathematics. Second Series},
VOLUME = {159},
YEAR = {2004},
NUMBER = {2},
PAGES = {597--639},
ISSN = {0003-486X},
CODEN = {ANMAAH},
MRCLASS = {14J15 (32G05 32G20)},
MRNUMBER = {2005h:14089},
MRREVIEWER = {Vasile Br{\^ı}nz{\u{a}}nescu},
DOI = {10.4007/annals.2004.159.597},
ZBLNUMBER = {1068.32011},
} -
[Siu] Y. -T. Siu, "A general non-vanishing theorem and an analytic proof of the finite generation of the canonical ring," , preprint , 2006.
@techreport{Siu,
author={Siu, Y.-T.},
TITLE={A general non-vanishing theorem and an analytic proof of the finite generation of the canonical ring},
TYPE={preprint},
YEAR={2006},
ARXIV={math/0610740},
} -
[Vie] E. Viehweg, Quasi-Projective Moduli for Polarized Manifolds, New York: Springer-Verlag, 1995, vol. 30.
@book {Vie, MRKEY = {1368632},
AUTHOR = {Viehweg, Eckart},
TITLE = {Quasi-Projective Moduli for Polarized Manifolds},
SERIES = {Ergeb. Math. Grenzgeb.},
VOLUME = {30},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1995},
PAGES = {viii+320},
ISBN = {3-540-59255-5},
MRCLASS = {14-02 (14D20 14D22)},
MRNUMBER = {97j:14001},
MRREVIEWER = {P. E. Newstead},
ZBLNUMBER = {0844.14004},
} -
[VZ2] E. Viehweg and K. Zuo, "Base spaces of non-isotrivial families of smooth minimal models," in Complex Geometry, New York: Springer-Verlag, 2002, pp. 279-328.
@incollection {VZ2, MRKEY = {1922109},
AUTHOR = {Viehweg, Eckart and Zuo, Kang},
TITLE = {Base spaces of non-isotrivial families of smooth minimal models},
BOOKTITLE = {Complex Geometry},
VENUE={{G}öttingen, 2000},
PAGES = {279--328},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {2002},
MRCLASS = {14D06 (14E30)},
MRNUMBER = {2003h:14019},
MRREVIEWER = {Mark Gross},
ZBLNUMBER = {1006.14004},
} -
[VZ1]
E. Viehweg and K. Zuo, "On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds," Duke Math. J., vol. 118, iss. 1, pp. 103-150, 2003.
@article {VZ1, MRKEY = {1978884},
AUTHOR = {Viehweg, Eckart and Zuo, Kang},
TITLE = {On the {B}rody hyperbolicity of moduli spaces for canonically polarized manifolds},
JOURNAL = {Duke Math. J.},
FJOURNAL = {Duke Mathematical Journal},
VOLUME = {118},
YEAR = {2003},
NUMBER = {1},
PAGES = {103--150},
ISSN = {0012-7094},
CODEN = {DUMJAO},
MRCLASS = {14J15 (14J10 32G05 32Q45)},
MRNUMBER = {2004h:14042},
MRREVIEWER = {S{á}ndor J. Kov{á}cs},
DOI = {10.1215/S0012-7094-03-11815-3},
ZBLNUMBER = {1042.14010},
}