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Abstract

Let Mh be the moduli scheme of canonically polarized manifolds with Hilbert
polynomial h. We construct for � � 2 with h.�/ > 0 a projective compactification
M h of the reduced moduli scheme .Mh/red such that the ample invertible sheaf
�� , corresponding to det.f�!�X0=Y0/ on the moduli stack, has a natural extension

�� 2 Pic.M h/Q. A similar result is shown for moduli of polarized minimal models
of Kodaira dimension zero. In both cases “natural” means that the pullback of �� to
a curve ' WC !M h, induced by a family f0 WX0!C0D '

�1.Mh/, is isomorphic
to det.f�!�X=C / whenever f0 extends to a semistable model f WX ! C .

Besides of the weak semistable reduction of Abramovich-Karu and the exten-
sion theorem of Gabber there are new tools, hopefully of interest by themselves. In
particular we will need a theorem on the flattening of multiplier sheaves in families,
on their compatibility with pullbacks and on base change for their direct images,
twisted by certain semiample sheaves.
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Introduction

Let h0 W S0! C0 be a smooth family of complex projective manifolds over
a nonsingular curve C0. Replacing C0 by a finite covering yC0 one can extend the
family Oh0 W yS0DS0�C0 yC0! yC0 to a semistable family Oh W yS! yC . The model yS is
not unique, but the sheaves F

.�/

yC
D Oh�!

�
yS= yC

are independent of yS and compatible

with further pullback. For a smooth family f0 WX0! Y0 of n-folds over a higher
dimensional base the existence of flat semistable extension over a compactification
Y of Y0 is not known, not even the existence of a flat Cohen-Macaulay family,
except if the fibers are curves or surfaces of general type.

It is the aim of this article to perform such constructions on the sheaf level. So
we fix a finite set I of positive integers, and construct a finite coveringW0 of Y0, and
a compactification W of W0 such that for � 2 I the pullbacks of f0�!�X0=Y0 extend

to natural locally free and numerically effective (nef) sheaves F
.�/

yY
. The word

“natural” means, that one has compatibility with pullback for certain morphisms
yY !W . The precise statements are:

THEOREM 1. Let f0 W X0! Y0 be a smooth projective morphism of quasi-
projective reduced schemes such that !F is semiample for all fibers F of f0. Let
I be a finite set of positive integers. Then there exists a projective compactification
Y of Y0, a finite covering � WW ! Y with a splitting trace map, and for � 2 I a
locally free sheaf F

.�/
W on W with:

(i) For W0 D ��1.Y0/ and �0 D �jW0 one has ��0f0�!
�
X0=Y0

D F
.�/
W jW0 .

(ii) Let � W yY !W be a morphism from a nonsingular projective variety yY with
yY0 D �

�1.W0/ dense in yY . Assume either that yY is a curve, or that yY !W

is dominant. For some r � 1 let X .r/ be a nonsingular projective model of
the r-fold product family yXr0 D .X0 �Y0 � � � �Y0 X0/�Y0 yY0 which admits a
morphism f .r/ WX .r/! yY . Then f .r/� !�

X.r/= yY
D
Nr

��F
.�/
W :

The formulation of Theorem 1 is motivated by what is needed to prove posi-
tivity properties of direct image sheaves.
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THEOREM 2. Conditions (i) and (ii) in Theorem 1 imply:

(iii) The sheaf F
.�/
W is nef.

(iv) Assume that for some �1; : : : ; �s 2 I and for some a1; : : : ; as 2 N the sheafNs
iD1 det.F.�i /W /ai is ample with respect to W0. Then, if � � 2 and if F

.�/
W is

nonzero, it is ample with respect to W0.

In Section 1 we recall the definition of the positivity properties “nef”, “ample
with respect to W0” and of “weakly positive over W0” for locally free sheaves F

on W . Obviously F is nef if and only if its pullback under a surjective morphism
' WW 0!W is nef. For “nef and ample with respect to W0” the same holds if '
is finite over W0. “Weakly positive over W0” is compatible with finite coverings
with a splitting trace map, i.e., if OW is a direct factor of '�OW 0 .

In Section 2 we show that part (iii) of Theorem 2 follows from Theorem 1.
Unfortunately, as we will explain in 2.5, the verification of property (iv) is much
harder. Here multiplier ideals will enter the scene. Whereas in a neighborhood
of a smooth fiber F one can bound the threshold, introduced in 2.1, in terms of
invariants of F , a similar result fails close to the boundary. So we need a variant
of parts (i) and (ii), allowing certain multiplier sheaves, introduced in Section 9, as
well as the Flattening Theorem 6.5 for multiplier ideal sheaves on total spaces of
morphisms, and their compatibility with alterations of the base and fiber products.
So the proof of part (iv) will only be given at the end of Section 13.

There are two main ingredients which will allow the construction of W and
F
.�/
W in Section 12. The first one is the Weak Semistable Reduction Theorem

[AK00] recalled in Section 4. Roughly speaking it says that a given morphism
f WX!Y between projective varieties, with a smooth general fiber can be flattened
over some nonsingular alteration of Y without allowing horrible singularities of
the total space. However one pays a price, having to modify the smooth fibers as
well. As explained in Section 5 this theorem has some strong consequences for the
compatibility of certain sheaves on the total space of a family with base change
and products, similar to those stated in part (ii) of Theorem 1.

The second ingredient is Gabber’s Extension Theorem, stated (and proved) in
[Vie95, �5.1], which we will recall in Section 12.

The comments made in 2.5 and in 5.9 could serve as a “Leitfaden” for the sec-
ond part of the article. Here we try to indicate why certain constructions contained
in Sections 6–11 are needed for the proof of Theorem 2(iv).

From Theorem 2 one finds by Lemma 1.6 that the restriction of F
.�/
W to W0

is weakly positive over W0. We will show in Section 13 that part (iv), in a slightly
modified version, also restricts to W0. Since W0! Y0 has a splitting trace map,
one obtains by Lemma 1.7 the “weak positivity” and “weak stability” for the direct
images of powers of the dualizing sheaf, already shown in [Vie95, �6.4].

COROLLARY 3. Under the assumptions made in Theorem 1 one has:

(a) The sheaves F
.�/
Y0
D f0�!

�
X0=Y0

are weakly positive over Y0.
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(b) Assume that for some positive integers �1; : : : ; �s and a1; : : : ; as 2N the sheafNs
iD1 det.F.�i /Y0

/ai is ample. Then for all � � 2 the sheaf F
.�/
Y0

is either ample
or zero.
As explained in [Vie95] this is just what is needed for the construction of quasi-

projective moduli schemes Mh for families of canonically polarized manifolds
with Hilbert polynomial h. At the time [Vie95] was written, the Weak Semistable
Reduction Theorem of Abramovich and Karu was not known. So we were only
able to use Gabber’s Extension Theorem to construct W and F

.�/
W for � D 1, and

correspondingly to prove the weak positivity just for F
.1/
Y0

. A large part of [Vie95]

is needed to reduce the proof of Corollary 3 to this case. Having W and F
.�/
W for

all � clarifies this part considerably. We could not resist recalling in Section 3 how
to apply Corollary 3 to construct Mh together with an ample invertible sheaf.

There are several ways. One can first construct the moduli scheme as an
algebraic space, and then show the existence of an ample sheaf. Or one can use
geometric invariant theory, and stability criteria. Guided by personal taste, we
restrict ourselves to the second method in Section 3, applying the Stability Criterion
[Vie95, Th. 4.25].

If one uses instead the first method, starting from the existence of Mh as an
algebraic space, it has been shown in [Vie95] how to deduce from Corollary 3
the quasi-projectivity of the normalization of Mh. The starting point is Seshadri’s
Theorem on the elimination of finite isotropies (see [Vie95, Th. 3.49]) or the direct
construction in [Kol90]. Both allow us to get a universal family f0 W X0 ! Y0
over some reduced covering 0 W Y0!Mh. Then one can try to apply arguments
similar to those used in the proof of Lemma 1.9 and in Section 14 to get the quasi-
projectivity of .Mh/red, hence of Mh itself.

As stated in the report on [ST04] in Mathematical Reviews, J. Kollár pointed
out that the proof of the quasi-projectivity of the algebraic moduli space Mh seems
to contain a gap, even in the canonically polarized case. The authors claim without
any justification that for a certain line bundle, which descends to a quotient of the
Hilbert scheme, the curvature current descends as well. In a more recent attempt to
handle moduli of canonically polarized manifolds Tsuji avoids this point by claim-
ing that a certain determinant sheaf extends to some compactification in a natural
way, again without giving an argument. Suitable variants of Theorems 1 and 2
could allow one to fill those gaps, and to get another proof of the quasi-projectivity
of Mh, replacing the GIT-approach in Section 3 by the analytic methods presented
in the second part of [ST04].

Either one of the constructions of moduli schemes mentioned above gives an
explicit ample sheaf on Mh.

Notation 4. For �; p 2 N we write �.p/0;� for an invertible sheaf satisfying
(¾) If a morphism ' W Y0!Mh factors through the moduli stack, hence if it is

induced by a family f0 WX0! Y0, one has '��.p/0;� D det.f0�!�X0=Y0/
p.
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Of course, �.p/0;� can only exist if H 0.F; !�F /¤ 0 for all manifolds F paramet-
rized by Mh, for example in the canonically polarized case if � � 2 and h.�/¤ 0.
As we will recall in Addendum 3.1 for those values of � the sheaf �.p/0;� is ample.

As indicated in the title of this article we want to construct compactification
of moduli schemes Mh. Assume for a moment that Mh is reduced and a fine
moduli scheme, hence that there is a universal family X0!Mh with X0 reduced.
Here one may choose p D 1 and applying Theorems 1 and 2, and Lemma 1.9 it is
easy to see that �.1/0;� D det.g0�!�X=Mh/ extends to an invertible sheaf �.1/� on SMh,
which is nef and ample with respect to Mh for � � 2. It is compatible with the
restriction to curves, provided the induced family has a smooth general fiber and a
semistable model. In Section 14 we will use a variant of Theorems 1 and 2 to obtain
a similar result for coarse moduli schemes, using the Seshadri-Kollár construction
mentioned above.

THEOREM 5. Let Mh be the coarse moduli scheme of canonically polarized
manifolds with Hilbert polynomial h. Given a finite set I of integers � � 2 with
h.�/ > 0, one finds a projective compactification SMh of .Mh/red and for � 2 I and
some p > 0 invertible sheaves �.p/� on SMh with:

(1) �.p/� is nef , and it is ample with respect to .Mh/red.

(2) The restrictions of �.p/� and of �.p/0;� to .Mh/red coincide.

(3) Let & WC ! SMh be a morphism from a nonsingular curve with C0D &�1.Mh/

dense in C and such that C0!Mh is induced by a family h0 W S0! C0. If
h0 extends to a semistable family h W S ! C , then &��.p/� D det.h�!�S=C /

p.

It would be nicer to have an extension of �.p/0;� to an invertible sheaf �.p/� on a
compactification of Mh itself, but we were not able to get hold of it. On the other
hand, since the compatibility condition in part (3) only sees the reduced structure
of Mh, such an extension would not really be of help for possible applications of
Theorem 5.

The compactification SMh depends on the set I and the points in SMhnMh have
no interpretation as moduli of geometric objects. Shortly after a first version of this
article was submitted there was a “quantum leap” in the minimal model program
due to [BCHM10] (see also [Siu06]). By [Kar00] the existence of a minimal model
in dimension deg.h/C 1 should allow the construction of a compactification SMh

which has an interpretation as a moduli scheme. Unfortunately at the present time
a proper explanation of this implication is not in the literature and there is not
even a conjectural picture explaining how to construct geometrically meaningful
compactifications of moduli of polarized manifolds.

Only part of what was described up to now carries over to families or moduli
of smooth minimal models with an arbitrary polarization. Theorems 1 and 2 ap-
ply, but even if f0 W X0! Y0 is the universal family over a fine moduli scheme,
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the sheaf det.F.�/Y0 / might not be ample. Theorem 12.12 is a generalization of
Theorem 1 for direct images of the form f0�.!

�
X0=Y0

˝L
�
0 / with L0 semiample

over Y0. The corresponding variant of Corollary 3 is stated in Lemma 3.2 and we
will sketch how to use it to show the existence of quasi-projective moduli schemes
in the second half of Section 3. However we are not able to generalize Theorem 2.
Thus, we are not able to apply Lemma 1.9 which will be essential for the proof of
Theorem 5 in Section 14 and we are not able to extend the natural ample sheaf to
some compactification.

The situation is better for the moduli functor Mh of polarized minimal mani-
folds .F;H/ of Kodaira dimension zero and with Hilbert polynomial h. Replacing
the corresponding moduli scheme Mh by a connected component, we may assume
that for some � > 0 and for all .F;H/ 2 Mh one has !�F D OF . Notation 4
carries over and there exists a sheaf �.p/0;� with the property (¾) or equivalently

with f �0 '
��
.p/
0;� D !

p��

X0=Y0
. As we will recall in Addendum 3.4 the sheaf �.p/0;� is

again ample. In fact, the natural ample invertible sheaf first looks quite different,
but an easy calculation identifies it with some power of �.p/0;� . This calculation
only extends to boundary points if the polarization is saturated, as explained in
Remark 8.1. This together with the need to consider multiplier ideals makes the
notation even more unpleasant, but the general line of arguments remain as in the
canonically polarized case.

THEOREM 6. Let Mh be the coarse moduli scheme of polarized manifolds
.F;H/ with !�F D OF , for some � > 0 and with Hilbert polynomial h.�/D �.H�/.
Then there exists a projective compactification SMh of .Mh/red and for some p > 0
an invertible sheaf �.p/� on SMh with:

(1) �.p/� is nef and ample with respect to .Mh/red.

(2) Let Y0 be reduced and ' W Y0 ! Mh induced by a family f0 W X0 ! Y0 in
Mh.Y0/. Then '��.p/� D f0�!

p��

X0=Y0
.

(3) Let & W C ! SMh be a morphism from a nonsingular curve C , with C0 D
&�1.Mh/ dense in C and such that C0!Mh is induced by a family h0 WS0!
C0. If h0 extends to a semistable family h W S ! C , then &��.p/� D h�!

p��

S=C
.

Consider, for example, the moduli schemes Ag of g-dimensional polarized
Abelian varieties. To stay close to the usual notation we write SAg for the com-
pactification in Theorem 6 in this case. One may assume that there is a morphism
SAg!A�g to the Baily-Borel compactification A�g . With �D 1 the ample sheaf �.p/0;1
extends to an ample sheaf on A�g . So the sheaf �.p/1 in Theorem 6 is semiample

and A�g is the image under the morphism defined by a high power of �.p/1 .

In general we are not able to verify in Theorem 6 the semiampleness of �.p/� .
One of the obstacles is the missing geometric interpretation of the boundary points
as moduli of certain varieties. So the theorem can only be seen as a very weak
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substitute for the Baily-Borel compactification. Nevertheless, since �.p/� is nef and
ample with respect to Mh the degree of &��.p/� D h�!

p��

S=C
can serve as a height

function for curves in the moduli stack. An upper bound for this height function in
terms of the genus of C and #.C nC0/ was given in [VZ02], and it played its role in
the proof of the Brody hyperbolicity of the moduli stack of canonically polarized
manifolds in [VZ03]. In both articles we had to use unpleasant ad hoc arguments
to control the positivity along the boundary of the moduli schemes and some of
those arguments were precursors of methods used here.

A second motivation for this article was the hope that compactifications could
help to generalize the uniform boundedness, obtained in [Cap02] for families of
curves, to families of higher dimensional manifolds. The missing point was the
construction of moduli of morphisms from curves to the corresponding moduli
stacks, as was done in [AV02] for compact moduli problems. In between, this
has been achieved in [KL] for families of canonically polarized manifolds, using
Theorem 5. It is likely that referring to Theorem 6 instead, their methods allow
one to handle polarized manifolds of Kodaira dimension zero, as well.

I was invited to lecture on the construction of moduli schemes at the workshop
“Compact moduli spaces and birational geometry” (American Institute of Mathe-
matics, 2004), an occasion to reconsider some of the constructions in [Vie95] in
view of the Weak Semistable Reduction Theorem. A preliminary version of this
article, handling just the canonically polarized case, was written during a visit to
the I.H.E.S., Bures sur Yvette, September and October 2005. I thank the members
of the Institute for their hospitality.

I am grateful for the referee’s suggestions on how to improve the presentation
of the results and the methods leading to their proofs.

Conventions 7. All schemes and varieties will be defined over the field C of
complex numbers (or over an algebraically closed field K of characteristic zero).
A quasi-projective variety Y is a reduced quasi-projective scheme. In particular
we do not require Y to be irreducible or connected. A locally free sheaf on Y will
always be locally free of constant finite rank and a finite covering will denote a
finite surjective morphism.

� If … is an effective divisor and � W Y n…red! Y , then O.� �…/D ��OY n…red .
� An alteration ‰ W yY ! Y is a proper, surjective, generically finite morphism

between quasi-projective varieties.
� An alteration ‰ is called a modification if it is birational. If U � Y is an open

subscheme with ‰j‰�1.U / an isomorphism, we say that the center of ‰ lies
in Y nU .

� For a nonsingular (or normal) alteration or modification we require in addition
that yY be nonsingular (or normal).

� A modification ‰ will be called a desingularization (or resolution of singular-
ities), if yY is nonsingular and if the center of ‰ lies in the singular locus of Y .
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� Given a Cartier divisor D on Y we call ‰ a log-resolution (for D) if it is a
nonsingular modification and if ‰�D is a normal crossing divisor.

� If f0 WX0!Y0 is a projective morphism, we call f WX!Y a projective model
of f0 if X and Y are projective, Y0 open in Y and X0 Š f �1.Y0/ over Y0.

� If f W X ! Y is a projective morphism, we call f0 W X0 ! Y0 the smooth
part of f if Y0 � Y is the largest open subscheme with X0 D f �1.Y0/! Y0
smooth. In particular, if X and Y are nonsingular, or if f is a mild morphism,
as defined in 4.1, Y0 is dense in Y .

Finally the numbering of displayed formulas follows the numbering of the
theorems, lemmas etc. Hence (2.1.1) is after Definition 2.1 and before Lemma 2.2.

Note to the reader. Eckart Viehweg died on January 30, 2010. He had not yet
received the proofs of this article from the journal. We, Dan Abramovich, Hélène
Esnault and Sándor Kovács, corrected them. We apologize if we introduced any
inaccuracies.

1. Numerically effective and weakly positive sheaves

Definition 1.1. Let G be a locally free sheaf on a projective reduced variety W.
Then G is numerically effective (nef) if for all morphisms � W C ! W from a
projective curve C and for all invertible quotients ��G! L one has deg.L/� 0.

Definition 1.2. Let G be a locally free sheaf on a quasi-projective reduced
variety W and let W0 � W be an open dense subvariety. Let H be an ample
invertible sheaf on W .

(a) G is globally generated overW0 if the natural morphismH 0.W;G/˝OW !G

is surjective over W0.
(b) G is weakly positive over W0 if for all ˛ > 0 there exists some ˇ > 0 such that

S˛�ˇ .G/˝Hˇ is globally generated over W0.
(c) G is ample with respect to W0 if for some � > 0 the sheaf S�.G/˝ H�1

is weakly positive over W0, or equivalently, if for some �0 > 0 one has a
morphism

L
H! S�

0

.G/, which is surjective over W0.

It is obvious, that “nef” is related to “weakly positive” and that it is compatible
with pullbacks.

LEMMA 1.3. For a locally free sheaf G on a projective variety W the follow-
ing conditions are equivalent:

(1) G is nef.

(2) G is weakly positive over W .

(3) There exists a projective surjective morphism � W yY !W with ��G nef.

(4) The sheaf OP.G/.1/ on P.G/ is nef.
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(5) There exists some integer � > 0 such that for all projective surjective mor-
phisms � W yY ! W and for all ample invertible sheaves �H on yY the sheaf�H�˝ ��G is nef.

Remark 1.4. As we will see in the proof it is sufficient in Lemma 1.3(5) to
require the existence of a tower of finite maps � W yY !W , such that for each N > 0

there is some � W yY !W with ��H the N -th power of an invertible sheaf. Such
coverings exist by [Vie95, Lemma 2.1], and one may even assume that they have
splitting trace maps.

Proof. The equivalence of the first four conditions has been shown in [Vie95,
Prop. 2.9], and of course they imply (5). The equivalence of (5) and (2) is a special
case of [Vie95, Lemma 2.15, 3)]. Nevertheless let us give the argument. Let H be
ample and invertible on W . Let � WC !W be a curve and N an invertible quotient
of ��G of degree d . By [Vie95, Lemma 2.1] for all N there exist a finite covering
� W yY !W and an invertible sheaf �H with ��HD �HN . By assumption �H�˝ ��G

is nef, hence if � W yC ! C is a finite covering such that � lifts to � 0 W yC ! yY one
has

0� deg.�/ � d C� � deg.� 0��H/D deg.�/ �
�
d C

�

N
� deg.��H/

�
:

This being true for all N , the degree d cannot be negative. �

Obviously the notion “nef” is compatible with tensor products, direct sums,
symmetric products and wedge products. For the corresponding properties for
weakly positive sheaves, one has to work a bit more, or to refer to [Vie95, �2.3].

LEMMA 1.5. Let F and G be locally free sheaves on W .

(1) Let L be an invertible sheaf. Assume that for all ˛ > 0 there exists some ˇ > 0
such that S˛�ˇ .G/˝ Lˇ is globally generated over W0. Then G is weakly
positive over W0. In particular Definition 1.2(b), is independent of H.

(2) If G is weakly positive over W0 and if � W yY ! W is a dominant morphism,
then ��G is weakly positive over ��1.W0/.

(3) If G is weakly positive over W0 and if G! F is a morphism, surjective over
W0, then F is weakly positive over W0.

(4) If F and G are weakly positive over W0, the same holds for F˚G, for F˝G,
for S�.G/ and for

V�
.G/, where � and �� rk.G/ are natural numbers.

The equivalence of (1) and (3) in Lemma 1.3 does not carry over to “weakly
positive over W0”; one needs in addition that the morphism is finite with a splitting
trace map.

LEMMA 1.6. For a locally free sheaf G on W and an open and dense sub-
scheme W0 �W the following conditions are equivalent:

(1) G is weakly positive over W0.

(2)
Nr G is weakly positive over W0 for some r > 0.
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(3) SrG is weakly positive over W0 for some r > 0.

(4) There exists an invertible sheaf A onW such that A˝Sr.G/ is weakly positive
over W0, for all r > 0.

(5) For all (or some) ample invertible sheaves A on W and for all r > 0 the sheaf
A˝Sr.G/ is ample with respect to W0.

(6) There exists an alteration � W �W !W such that ��G is weakly positive over
��1.W0/, and such that for �W0 D ��1.W0/ the restriction �0 W �W0!W0 is
finite with a splitting trace map (i.e., with a splitting of OW0 ! �0�O �W0).

(7) There exists a constant � > 0 such that for all � W yY ! W and for all am-
ple invertible sheaves H0 on yY the sheaf H0�˝ ��G is weakly positive over
��1.W0/.

Remark 1.4 applies to Lemma 1.6(7) as well, if one assumes that for all � W
yY !W the trace map splits.

Proof. The equivalence of the first three conditions has been shown in [Vie95,
Lemma 2.16]. The equivalence of (1), (4) and (5) follows directly from the defini-
tion, and the equivalence of (1), (6) and (7) is in [Vie95, Lemma 2.15]. �

Let us consider next the condition “ample with respect to W0”.

LEMMA 1.7. Let G and F be locally free sheaves on W and let W0 �W be
open and dense.

(1) G is ample with respect to W0 if and only if there exists an ample invertible
sheaf H on W and a finite morphism � WW 0!W with a splitting trace map,
and with ��HDH0�, for some positive integer �, such that ��.G/˝H0�1 is
weakly positive over ��1.W0/.

(2) If F is ample with respect toW0 and if G is weakly positive overW0, then F˝G

is ample with respect to W0. In particular, Definition 1.2(c) is independent of
the ample invertible sheaf H.

(3) If F is invertible and ample with respect to W0, and if S�.G/˝F�1 is weakly
positive over W0, then G is ample over W0.

(4) The following conditions are equivalent:

(a) G is ample with respect to W0.
(b) There exists an alteration � W �W !W with �W0 D ��1.W0/!W0 finite

and with a splitting trace map, such that ��G is ample with respect to �W0.

(5) If G is ample with respect to W0 and if G!F is a morphism, surjective over
W0, then F is ample with respect to W0.

(6) If F and G are both ample with respect to W0, then the same holds for F˚G,
for S�.G/ and for

V�
.G/, where � and �� rk.G/ are natural numbers.
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(7) If F is an invertible sheaf , then F is ample with respect to W0, if and only if
for some ˇ > 0 the sheaf Fˇ is globally generated over W0 and the induced
morphism � WW0! P.H 0.W;Fˇ // is finite over its image.

Proof. If in (1) the sheaf G is ample with respect to W0 there is some � such
that S�.G/˝H�1 is weakly positive. By [Vie95, Lemma 2.1] there is a covering
� W W 0 ! W with a splitting trace map, such that ��H is the �-th power of an
invertible sheaf H0, necessarily ample. Then ��.S�.G/˝H�1/ is weakly positive
over ��1.W0/, hence by Lemma 1.6 the sheaf ��G˝H0�1 is as well. On the other
hand, the weak positivity of ��.G/˝H0�1 in (1) implies that ��S�.G/˝ ��H�1

is weakly positive over ��1.W0/, hence S�.G/˝H�1 is weakly positive over W0,
again by Lemma 1.6.

For (2) one can use (1), assume that G˝H�1 is weakly positive, and then
apply Lemma 1.5(4). In the same way one obtains (6). Part (3) is a special case of
(2) and (5) follows from Lemma 1.5(3).

Let us next verify (7). If F is ample with respect to W0, one has for a very
ample invertible sheaf H on W and for some �0, a morphism

Ls H! F�
0

, sur-
jective over W0. Let V denote the image of H 0.W;

Ls H/ in H 0.W;F�
0

/. Then
F�
0

is generated by V over W0 and one has embeddings

W �!

s

�P.H 0.W;H// �! P

� sO
H 0.W;H/

�
:

The restriction of the composite to W0 factors through

W0! P.V /� P

� sO
H 0.W;H/

�
;

and W0! P.V /, hence W0! P.H 0.W;F�
0

// are embeddings.
If on the other hand Fˇ is globally generated over W0 and if

� WW0! PD P
�
H 0

�
W;Fˇ

��
is finite over its image, consider a blowing up � W �W ! W with centers outside
of W0 such that � extends to a morphism � 0 W W ! P. We may choose � such
that for some effective exceptional divisor E the sheaf O �W .�E/ is � 0-ample. For
˛ sufficiently large A D O �W .�E/˝ � 0�OP.˛/ will be ample. Replacing E and
˛ by some multiple, one may assume that for a given ample sheaf H on W the
sheaf ��H�1 ˝A is globally generated, hence nef. Since one has an inclusion
A!��F�

0�˛ , which is an isomorphism over ��1.W0/, the sheaf ��F�
0�˛˝H�1 is

weakly positive over ��1.W0/, and by Lemma 1.6 one obtains the weak positivity
of F�

0�˛˝H�1.
For (4) we use (7). Consider in (4a), an ample invertible sheaf F on W .

Obviously the condition (7) holds for ��F; hence this sheaf is again ample with
respect to ��1.W0/. If G is ample with respect to W0, by definition S�.G/˝F�1
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is weakly positive over W0. Then by Lemma 1.7 (6) the sheaf ��S�.G/˝��F�1

is weakly positive over ��1.W0/ and (4b), follows from (3).
So assume that the condition (b) in (4) holds. Let H and A be ample invertible

sheaves on W and Y . Then A˝ ��H is ample. By definition we find some ˇ
such that Sˇ .��G/˝A�1˝��H�1 is weakly positive over Y0. Then Sˇ .��G/˝

��H�1 has the same property, and by Lemma 1.6, Sˇ .G/˝H�1 is weakly positive
over W0. �

LEMMA 1.8. A locally free sheaf G on W is ample with respect to W0 if and
only if on the projective bundle � W P.G/! W the sheaf OP.G/.1/ is ample with
respect to P0 D �

�1.W0/.

Proof. If G is ample with respect to W0 choose a very ample invertible sheaf
H on W and for some �0 > 0 the morphism

sM
H �! S�

0

.G/D ��OP.G/.�
0/;

surjective over W0. The composite
sM
��H �! S�

0

.��G/ �! OP.G/.�
0/

induces a rational map � W P.G/! Ps�1, whose restriction to P0 D �
�1.W0/ is

an embedding, and OP.G/.�
0/ is globally generated over P0. So by Lemma 1.7(7)

OP.G/.1/ is ample with respect to P0.
Assume now that OP.G/.1/ is ample with respect to P0. Choose ample invert-

ible sheaves H on W and A on P.G/ such that ��H�1˝A is globally generated.
Then for some �0 and for all ˛ > 0 one has morphismsM

��H˛ ‰
�!

M
A˛ ˆ
�! OP.G/.�

0
�˛/

with ‰ surjective and ˆ surjective over P0. For ˛ sufficiently large, this defines
a rational map P.G/! PM �W whose restriction to P0 is an embedding. For
ˇ� 1 the multiplication map

Sˇ
�M

H˛
�
�! ��OP.G/.�

0
�ˇ �˛/D S�

0�ˇ �˛.G/

will be surjective over W0; hence G is ample with respect to W0. �
For the compatibility of “ample with respect to W0” under arbitrary finite

morphisms one either needs that the nonnormal locus of W0 is proper (see [Vie95,
Prop. 2.22] and the references given there) or one has to add the condition “nef”:

LEMMA 1.9. For a locally free sheaf G on a projective variety W , and for an
open dense subscheme W0 �W the following conditions are equivalent:

(1) G is nef and ample with respect to W0.

(2) There exists a finite morphism � W W 0 ! W such that G0 D ��G is nef and
ample with respect to W 00 D �

�1.W0/.
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(3) There exists an alteration � W �W !W with ��1.W0/!W0 finite, such that
��G is nef and ample with respect to �W0 D ��1.W0/.
Proof. Of course (1) implies (2) and (2) implies (3). In order to see that (3)

implies (2) choose for � WW 0!W the Stein factorization of � W �W !W . Since�W !W 0 is an isomorphism over W 00, Lemma 1.7(4) says that G0 D ��G is ample
with respect to W 00 if and only if ��G is ample with respect to �W0. Since by Lemma
1.3 the same holds for nef, one obtains (2).

Note that (2) implies that the sheaf G is nef, as well as the sheaf OP.G/.1/ on
P.G/. Consider the induced morphism � 0 W P.G0/! P.G/. Lemma 1.8 implies that
OP.G0/.1/D �

0�OP.G/.1/ is ample with respect to the preimage of W 00 if and only
if G0 is ample with respect to W 00, and that the same holds for G instead of G0.

Now it will be sufficient to consider an invertible nef sheaf G on W , and a
finite covering � WW 0!W , such that G0 D ��G is ample with respect to W 00, and
we have to show that G is ample with respect to W0.

As we have already seen, that (1) implies (2), we may replace W 0 by any
dominating finite covering. In particular we may assume W 0 to be normal. By
[Vie95, Lemma 2.2] the morphism � W W 0 ! W factors like W 0


�! W 00

�
�!W;

where � has a splitting trace map, and where  is birational.
At this point we could also apply Lemma 12.3, replacing W 0 by a larger

normal covering. In any case ���G is again ample with respect to �1��1.W0/
and by Lemma 1.7(4) one knows the equivalence of (1) and (2) with W 0 replaced
by W 00. Hence it is sufficient to study V !W 00, and by abuse of notation we may
assume that W 0 is normal and � birational.

Let � W yY !W 0 be a desingularization, ı D � ı � W yY !W and let U �W
be the complement of the center of ı. Choose a sheaf of ideals J on W with
OW =J supported in W nU and such that ����J maps to OW . One can assume
that ı�J=torsion is invertible hence of the form O yY .�E/ for an effective divisor
supported in yY n ı�1.U /. Then ı�O yY .�E/ is contained in OW . One may assume
in addition that O yY .�E/ is ı-ample. Finally choose an ample invertible sheaf H

on W , such that ı�H˝O yY .�E/ is ample and such that H˝ ��OW 0 is generated
by global sections.

By assumption, for some � there are morphisms

(1.9.1)
M

��H �! ��G� and hence
M

ı�H �! ı�G�;

surjective over W 00 and ı�1.W0/, respectively. Blowing up a bit more, we can
assume that the image of the second map is of the form ı�G� ˝ O yY .��/ for a
divisor �. Then ı�G� ˝ O yY .�� � E/ as a quotient of an ample sheaf will be
ample. Replacing �, � and E by some multiple, one may also assume that

ı�G�˝O yY .���E/˝!
�1
yY
˝ ı�H�1

is ample. Define I0 D ��O yY .���E// on W 0 and ID ��I0.
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Since G is nef, for all ˛ � � and for all ˇ � �1 the sheaf

ı�G˛˝O yY .���E/˝ ı
�Hˇ

has no higher cohomology. For ˇ� 1 this can only hold if for all i > 0

Riı�.ı
�G˛˝O yY .���E//D 0:

For ˇ D�1 one finds that H i .W;G˛˝H�1˝I/D 0.
For some ˇ� 1 the sheaf ��Hˇ�2˝I0 is generated by global sections. Using

the left-hand side of (1.9.1) one obtains a morphismM
��Hˇ

˝I0 �! ��G��ˇ ˝I0;

surjective over W 00. Therefore the sheaf ��.G��ˇ ˝H�2/˝ I0 will be globally
generated over W 00; hence there are morphisms

L
��H! ��Hˇ�1˝I0 and

(1.9.2)
M

H˝ ��OW 0 �! G��ˇ ˝H�1˝I;

surjective over W 00 and W0. By the choice of H the left-hand side of (1.9.2) is
globally generated over W0; hence the right-hand side as well. For all positive
multiples ˛ of � �ˇ, one has an exact sequence

0!H 0.W;G˛˝H�1˝I/�!H 0.W;G˛˝H�1/�!H 0.W;G˛˝H�1jT 0/!0;

where T 0 denotes the subscheme of W defined by I. If T 0 \W0 D ∅ we are
done. Otherwise let T be the closure of T 0red [W0 in W . So there is a coherent
sheaf F, supported on T and an inclusion F! OT 0 which is an isomorphism on
W0\T

0 DW0\T .
By induction on the dimension of W we may assume that GjT is ample with

respect to T \W0. Then for each ˇ0 > 0 one finds �0 and morphismsM
Hˇ 0�1

jT �! .G�
0�ˇ 0
˝H�1/jT ;

surjective over Z\W0. Choose ˇ0, such that F˝Hj
ˇ 0�1
T is globally generated, and

˛D�0 �ˇ0 a multiple of ��ˇ. Then the sheaf .G˛˝H�1/jT˝F is globally generated
over T \W0, as well as G˛ ˝H�1jT 0 . Since all global sections of this sheaf lift
to H 0.W;G˛˝H�1/ we find that G˛˝H�1 is globally generated over W0. �

2. Positivity of direct images I

Examples of nef sheaves are direct images of powers of dualizing sheaves.
We will see in this section that Theorem 1 is just what is needed to verify this
property in Theorem 2 for F

.�/

yY
. Then the compatibility F

.�/

yY
D ��F

.�/
W allows us

to deduce the nefness of F
.�/
W . At the end of the section we will make a first step

towards Theorem 2(iv), assuming that W0 is nonsingular. This will allow us in 2.5
to explain why we have to include the study of multiplier ideals in Sections 6–11.
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Let us recall the definitions of multiplier ideal sheaves and of the correspond-
ing threshold.

Definition 2.1. Let Z be a normal projective variety with at most rational
Gorenstein singularities; let N be an invertible sheaf on Z and let D be the zero
divisor of a section of N.

(i) For a2Q the multiplier ideal is defined as J.�a�D/D ��! zZ=Z˝O zZ.�Œa�
zD�/,

where � W zZ!Z is a log-resolution, zD D ��D, and where Œa � zD�D xa � zDy
denotes the integral part of the Q-divisor a � zD.

(ii) For b > 0 one defines the threshold

e.b �D/ WDMin
n
a 2 Z>0I J

�
�
b

a
�D
�
D OZ

o
:

(iii) Finally e.N/ WDMax
˚
e.D/I D the zero divisor of a section of N

	
.

Most authors write J.a �D/ instead of J.�a �D/. We prefer the second notion,
since, for a smooth divisor OZ.�D/DJ.�D/, and since it is closer to the classical
notion !Zf�a �Dg D !Z ˝J.�a �D/ used in [Vie95] and [EV92].

One easily shows that the multiplier ideal is independent of the log resolution.
In [EV92] and [Vie95] one finds a long list of properties of multiplier ideals and of
e.b �D/ and e.N/. In particular, if N is a globally generated invertible sheaf on Z,
then

(2.1.1) J.�a �D/D J.�a � .DCH//

for the divisor H of a general section of N and for 0 � a < 1. In fact, using
the notation introduced above, zH D ��H will be nonsingular and it intersects zD
transversely. Then Œa � zD�D Œa � . zDC zH/�.

Let f0 WX0! Y0 be a flat morphism over a nonsingular variety Y0, with irre-
ducible normal fibers with at most rational singularities. Then for a Q-divisor �0
on X0 not containing fibers, the threshold e.�jf �10 .y// is upper semi-continuous for
the Zariski topology (see [Vie95, Prop. 5.17]). This implies in [Vie95, Cor. 5.21]
that for Z and N as in Definition 2.1 one has:

(2.1.2) e.N/D e.pr�1N˝ � � �˝ pr�rN/ for Zr DZ � � � � �Z:

If one replaces Z>0 in Definition 2.1(ii) by Q>0 one obtains the inverse of the
logarithmic threshold.

The multiplier ideals occur in a natural way as direct images of relative dual-
izing sheaves for certain alterations:

LEMMA 2.2. Let Z0 and Z be normal with rational Gorenstein singularities
and let � WZ0!Z be an alteration. If OZ.D/DLN for an invertible sheaf L and
if ��D is divisible by N , then J

�
�
1
N
�D
�

is a direct factor of L�1˝��!Z0=Z .

Proof. The sheaf ��!Z0=Z does not change, if we replace Z0 by a nonsingular
modification. So we may assume that Z0 is nonsingular and that it dominates a log
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resolution � W zZ!Z forD. When � WZ0! zZ for the induced morphism, ��.��D/
is still divisible by N . So � factors through the cyclic covering z� W zZ0 ! zZ,
obtained by taking the N -th root out of ��D. By [EV92, �3] the sheaf

��L˝! zZ=Z ˝O zZ

�
�

h 1
N
� ��D

i�
is a direct factor of z��! zZ0=Z . The latter is a direct factor of ��!Z0=Z . Applying
�� one obtains L˝J

�
�
1
N
�D
�

as a direct factor of ��!Z0=Z . �

One starting point for the study of positivity of direct image sheaves is the
following corollary of Kollár’s Vanishing Theorem.

LEMMA 2.3. Let X be a projective normal variety with at most rational
Gorenstein singularities, let f WX!Y be a surjection to a projectivem-dimensional
variety Y , and let U � Y be open and dense. Let A be a very ample invertible sheaf
on Y , let M be an invertible sheaf on X , let � be an effective divisor, and let E be
a locally free sheaf on Y , weakly positive over U . Assume that for some N > 0

there is a morphism E! f�MN .��/ for which the composite

f �E �! f �f�MN .��/ �!MN .��/

is surjective over V D f �1.U /. Then for all ˇ the sheaf

AmC2
˝f�

�
Mˇ
˝!X ˝J

�
�
ˇ

N
�
��

is globally generated over U .

Proof. We can replace X by a desingularization. The sheaf AN ˝E is ample
with respect to U ; hence for some M > 0 the sheaf AN �M ˝ SM .E/ is globally
generated over U . Blowing up X with centers outside of V we may assume that
the image B of the evaluation map f �SM .E/!MN �M .�M ��/ is invertible. Let
D be the divisor, supported in X nV with B˝OX .D/DMN �M .�M ��/. Then

B˝f �
�
AN �M

�
DMN �M .�M �� �D/˝f �

�
AN �M

�
is generated by global sections over V . Blowing up again, we find a divisor �
supported in X nV such that MN �M .�M �� �D��/˝f �.AN �M / is generated
by global sections, and such that �CDC� is a normal crossing divisor.

Now, MN �M .�M � � �D � �/˝ f �AN �M is semiample. As in [Vie95,
Cor. 2.37, 2)], Kollár’s Vanishing Theorem implies that the sheaf

A�
˝f�

�
Mˇ

�
�

h
ˇ

N �M
.M �� �D��/

i�
˝!X ˝ Of

�A

�
has no higher cohomology for � > 1. Then by an argument due to N. Nakayama
(see [Kaw99, Lemma 2.11]),

PDAmC1
˝f�

�
Mˇ

�
�

h
ˇ

N �M
.M �� �D��/

i�
˝!X ˝ Of

�A

�
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is generated by global sections. On the other hand, P is contained in

AmC2
˝f�

�
Mˇ

�
�
� ˇ
N
�
��
˝!X

�
;

and since .DC�/\V D∅, both coincide over U . �

Kawamata’s Semipositivity Theorem, saying that the direct image sheaves
F
.1/

yY
in Theorem 2(iii) are nef, can be shown by using Lemma 2.3. This in turn

implies part (iii) for all �. We will give a slightly different argument:

Proof of Theorem 2(iii). Let yY !W be any nonsingular alteration of W . In
Theorem 1(ii) the sheaf f .r/� !�

X.r/= yY
remains the same if one replaces X .r/ by a

nonsingular modification. Hence by abuse of notation one may assume that for
some normal crossing divisor … on yX the evaluation map induces a surjection

f .r/
�

F
.�/

yY

˝r
�! !�

X.r/= yY
˝OX.r/.�…/:

Let H be an ample invertible sheaf on yY and define

s.�/DMin
˚
� > 0IF

.�/

yY
˝H��� is nef

	
:

Then .Hs.�/�� ˝F
.�/

yY
/˝r D Hs.�/���r ˝ Of�!

�

X.r/= yY
is nef. Let A be a very ample

invertible sheaf on yY . By Lemma 2.3

AmC2
˝f

.r/
�

�
!X.r/ ˝

�
!
X.r/= yY

˝f .r/
�

Hs.�/�r
���1
˝O yY

�
�

h.� � 1/ �…
�

i��
is generated by global sections. It is a subsheaf of AmC2 ˝ ! yY ˝ F

.�/

yY

˝r
˝

Hs.�/�r �.��1/ and it contains the sheaf

AmC2
˝! yY ˝Hs.�/�r �.��1/

˝f
.r/
� .!�

X.r/= yY
˝O yY .�…//

DAmC2
˝! yY ˝Hs.�/�r �.��1/

˝F
.�/

yY

˝r
:

Thus, the three sheaves are equal, and the quotient sheaf

AmC2
˝! yY ˝S

r
�
Hs.�/.��1/

˝F
.�/

yY

�
is generated by global sections as well. Hence Hs.�/�.��1/˝F

.�/

yY
is weakly positive

over yY . Since H.s.�/�1/�� ˝F
.�/

yY
does not have this property, one obtains

s.�/ � .� � 1/ > .s.�/� 1/ � � or s.�/ < �:

Now, H�2 ˝F
.�/

yY
is weakly positive over yY , hence nef.

Since the same exponent �2 works for all yY mapping to W and for all ample
invertible sheaves �H on yY , the nefness of F

.�/
W follows from the equivalence of (1)

and (5) in Lemma 1.3. �
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VARIANT 2.4. Assume in Theorem 1 that the normalization of W0 is nonsin-
gular and that for some �> 0 the sheaf det.F.�/W / is ample with respect toW0. Then

for � � 2 the sheaf F
.�/
W is ample with respect to W0 or zero.

Proof. We sketch the argument, knowing that F
.�/
W is nef; Lemma 1.9 allows

us to replace W by a desingularization yY . Consider for some  and for r D  �
rk.F.�/

yY
/ the tautological map

„ W det
�
F
.�/

yY

�
�!

rO
F
.�/

yY
D f

.r/
� !

�

X.r/= yY
:

Assume that det.F.�/
yY
/DN˛ for some invertible sheaf N and for some ˛ > 0. Then

„ induces a section of !�
X.r/= yY

˝f .r/
�

N� �˛ with zero divisor � .

We know already that F
.�/

yY
is nef. So we can apply Lemma 2.3 to the sheaf

!
�

X.r/= yY
D !

�C�

X.r/= yY
˝f .r/

�
N� �˛˝OX.r/.��/:

If ˛ is divisible by �C �, for A very ample on yY , the sheaf

Adim. yY /C2
˝! yY ˝f

.r/
�

�
!�
X.r/= yY

˝f .r/
�

N�
.��1/ �˛
�C� ˝J

�
�
� � 1

�C �
�
��

is globally generated over the preimage yY0 of W0. For � sufficiently large one may
assume that �C�

��1
� e.!

�
F /, for all smooth fibers of f0. Then by [Vie95, Lemma

5.14 and Cor. 5.21] one finds that J
�
�
��1
�C�

�
�

is trivial over f .r/
�1
. yY0/. Then the

inclusion of sheaves

(2.4.1) G.r/ WD f
.r/
�

�
!�
X.r/= yY

˝J
�
�
� � 1

�C �
�
��
�

rO
F
.�/

yY

is an isomorphism over yY0 and

Adim. yY /C2
˝! yY ˝N�

.��1/ �˛
�C� ˝

rO
F
.�/

yY

DAdim. yY /C2
˝! yY ˝

O�
N�

.��1/˛
�C� ˝

rk.F.�/
yY
/O
F
.�/

yY

�
is globally generated over yY0. This being true for all  , Lemmas 1.6 and 1.5 imply
that F

.�/

yY
is ample over yY0.

By [Vie95, Lemma 2.1] the assumption that det.F yY /D N˛, with ˛ divisible
by �C �, will always be true over sufficiently large finite coverings of yY , and by
Lemma 1.7 we are done. �

Comments 2.5. We repeated the well-known proof of Variant 2.4 just to point
out the difficulties we will encounter, trying to get rid of the additional assumption
“W0 nonsingular”. The notion “ample with respect to W0” is not compatible with
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blowing ups of W0, if the center meets W0. We may assume that N is the pullback
of an invertible sheaf NW on W . In addition we have to construct a sheaf GW .r/

whose pullback to a desingularization is the sheaf G.r/ considered in the proof of
Variant 2.4. In order to be allowed to use the functorial property Lemma 1.3 the
sheaf

G.r/˝N�
.��1/ �˛
�C�

must be nef, and not just weakly positive over yY0. This would hold, if the inclusion
(2.4.1) is an isomorphism, but giving bounds for the threshold in bad fibers of a
morphism does not seem to work.

So as a way out we will modify the construction of W in such a way, that
Theorem 1 remains true for the direct images G�.r/ of invertible sheaves tensored
by multiplier ideals.

3. On the construction of moduli schemes

The weak positivity and ampleness of the direct image sheaves in Corollary 3,
together with the stability criterion [Vie95, Th. 4.25], allows the construction of a
quasi-projective moduli scheme of canonically polarized manifolds. Following a
suggestion of the referee, we sketch the argument before entering the quite techni-
cal details needed for the construction of W , hence for the proof of Corollary 3(b).

Let Mh be the moduli functor of canonically polarized manifolds with Hilbert
polynomial h. As in [Vie95, Exs. 1.4] we consider for a scheme Y0 the set

Mh.Y0/D
˚
f0 WX0! Y0I f0 smooth, projective, !X0=Y0 f0-ample

and h.�/D rk.f0�!�X0=Y0/; for � � 2
	
=�:

In order to allow the canonical models of surfaces we could also consider

M0h.Y0/D
˚
f0 WX0! Y0I f0 flat, projective; all fibers F normal

with at most rational Gorenstein singularities, !X0=Y0
f0-ample and h.�/D rk.f0�!�X0=Y0/; for � � 2

	
=�:

We leave the necessary changes of the arguments to the reader.

Outline of the construction of a coarse quasi-projective moduli scheme Mh

for Mh. One first has to verify that the functor Mh is a nice moduli functor, i.e.,
locally closed, separated and bounded (see [Vie95, Lemma 1.18]). This implies
that for some �� 1 one has the Hilbert scheme H of �-canonically embedded
manifolds in Mh.Spec.C//, together with the universal family g W X!H .

The universal property gives an action of G D PGl.h.�// on H and, as
explained in [Mum65] or [Vie95, Lemma 7.6], the separatedness of the moduli
functor implies that this action is proper and with finite stabilizers. The sheaves
�� D det.g�!

�

X=H
/ are all G-linearized.
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The moduli scheme Mh, if it exists, should be a good quotient H=G. So
one has to verify that all points in H are stable for the group action and for a
suitable ample sheaf. At this point one is allowed to replace H by Hred; the set of
stable points will not change. So by abuse of notation we will assume that H (and
hence Mh) is reduced.

In order to apply the stability criterion [Vie95, Th. 4.25] one has to verify
that the invertible sheaf �� on H is ample on H , and that for a certain family
f0 WX0! Y0 in Mh.Y0/ the sheaf f0�!

�

X0=Y0
is weakly positive over Y0.

The second statement follows from Corollary 3(a). For the first one we start
with the Plücker embedding showing that the invertible sheaves �h.�/��� ˝�

�h.���/��
�

are ample, for all � sufficiently large. By Corollary 3(a) the sheaf �� is weakly pos-
itive over H , hence by Lemma 1.3(3) ���� is ample. Using Corollary 3(b) one finds
that the sheaf g�!

�

X=H
is ample on H ; hence its determinant �� is also. �

Let us express what we have shown in terms of stability of Hilbert points. On
H the sheaf �� is G linearized and ample. The stability criterion says that all the
points in H are stable with respect to the polarization �� of H . This in turn shows
the ampleness of the sheaf �.p/0;� for �� 1.

One can consider the sheaf �� on H for all � � 2 with h.�/ > 0. Those
sheaves are G-linearized and for some p > 0 the p-th power of �� descends to an
invertible sheaf �.p/0;� on Mh. Using a slightly different stability criterion, stated in
[Vie95, Addendum 4.26], one obtains:

Addendum 3.1. For all � � 2 with h.�/ > 0 and for some p > 0 there exists
an ample invertible sheaf �.p/0;� on Mh whose pullback to H is �� D det.h�!�X=H /.

In particular the sheaf �.p/0;� will satisfy the condition (¾) stated in Notation 4.

In Section 14 we will even show that �.p/0;� extends to an invertible sheaf �.p/�
on a suitable compactification of Mh and that this sheaf is ample with respect
to Mh.

For points of the Hilbert scheme of �-canonically embedded curves or surfaces
of general type the stability has been verified with respect to the Plücker embedding
(see [Mum65] and [Gie77]). So one obtains on Mh the ampleness of �h.�/0;��� ˝

�
���h.���/
0;� .

Before turning our attention to moduli schemes of polarized minimal models,
let us formulate the generalization of Corollary 3, needed for their construction.
The proof will be given at the end of Section 13. Here we use again the threshold
e.N/ defined in 2.1.

LEMMA 3.2. Let f0 W X0! Y0 be a smooth family of minimal models, and
let L0 be an f0-ample invertible sheaf. Assume that for some � > 0 the direct
image f0�.L�0/ is nonzero, locally free and compatible with arbitrary base change.
Choose some � > e.L�0jF /, for all fibers F of f0. Then:
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(1) For all positive integers � the sheaf

S rk.f0�.L�0//
�
f0�

�
!
���

X0=Y0
˝L

���
0

��
˝ det

�
f0�.L

�
0/
���

is weakly positive over W0 or zero.

(2) If for some �0 > 0 the sheaf

det
�
f0�

�
!
���0

X0=Y0
˝L

���0

0

��rk.f0�.L�0//˝ det
�
f0�.L

�
0/
���0�rk.f0�.!���0X0=Y0

˝L
���0

0 //

is ample, then S rk.f0�.L�0//.f0�.!
���

X0=Y0
˝L

���
0 //˝ det.f0�.L�0//

�� is ample,
if not zero.

The moduli functor Mh of minimal polarized manifolds is given by

Mh.Y0/D
˚
.f0 WX0 �! Y0;L0/I f0 smooth, projective; !X0=Y0 f0-semiample;

L0 f0-ample, with Hilbert polynomial h
	
=�:

Recall that .f0 WX0! Y0;L0/� . zf0 W zX0! Y0;eL0/ if there are a Y0-isomorphism
� WX0! zX0 and an invertible sheaf A on Y0 with ��eL0 D L0˝f

�
0 A.

As we will see, it is easier to study the moduli functor M0
h

with

M0h.Y0/D
˚
.f0 WX0 �! Y0;L0/ 2MhIL0 f0-very ample

with Hilbert polynomial hI Rif0�L
�
0 D 0 for i > 0; and � > 0;

	
=�:

For families of minimal varieties F of Kodaira dimension zero the second condition
will hold automatically. In fact, if !�F D OF and if A is ample, A˝!��1F is ample
and Kodaira’s Vanishing Theorem implies that H i .F;A/DH i .F;A˝��/D 0,
for i > 0. So here we should consider the functors M

.�/

h
with

M
.�/

h
.Y0/D

˚
.f0 WX0 �! Y0;L0/ 2MhI f

�
0 f0�!

�
X0=Y0

D !X0=Y0 I

L0 f0-very ample with Hilbert polynomial h
	
=�:

LEMMA 3.3.

(1) Assume that for all Oh the moduli functor M0
Oh

has a coarse quasi-projective
moduli scheme M 0

Oh
. Then the same holds true for Mh.

(2) To prove Theorem 6 it is sufficient to consider the moduli functors M
.�/

Oh
.

Proof. The boundedness of the moduli functor Mh allows us to find some 0
such that for all .F;A/ 2Mh.C/ and for all  � 0 the sheaf A is very ample
and without higher cohomology. For suitable polynomials h1 and h2 one defines
a map Mh �!M0

h1
�M0

h2
by

.f0 WX0! Y0;L0/ 7!
��
f0 WX0! Y0;L

0
0

�
;
�
f0 WX0! Y0;L

0C1
0

��
:

It is easy to see that the image is locally closed. Hence if one is able to construct the
corresponding moduli schemes M 0

h1
and M 0

h2
as quasi-projective schemes, Mh is a
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locally closed subscheme. And if one finds nice projective compactifications SM 0
h1

and SM 0
h2

of M 0
h1

and M 0
h2

, one chooses SMh as the closure of Mh in SM 0
h1
� SM 0

h2
.

The additional condition !�F D OF considered in Theorem 6 just signals cer-
tain irreducible components of Mh. So by abuse of notation let Mh be one of those.
Then the image of Mh lies in the product M .�/

h1
�M

.�/

h2
. If one has constructed the

compactifications SM .�/

h1
and SM .�/

h2
according to Theorem 6 one can choose SMh as

the closure of Mh and for �.2�p/� the restriction of the exterior tensor product of the
corresponding sheaves on SM 0

h1
and SM 0

h2
for p instead of 2 �p. �

Outline of the construction of coarse quasi-projective moduli scheme M 0
h

for
M0
h

. The construction is parallel to the one in the canonically polarized case. One
constructs the Hilbert scheme H parametrizing the elements .F;A/ of M0

h
.C/

together with an isomorphism P.H 0.F; !�F ˝A//Š PN . Here � is chosen such
that !�F is globally generated and � should be a multiple of �, larger than the
threshold e.A/.

The Plücker embedding provides us with an ample invertible sheaf of the form
$
r.1/
� ˝$

���r.�/
1 , where

$� D det
�
g�
�
!���X=H ˝L�X

��
and r.�/D rk

�
g�
�
!���X=H ˝L�X

��
for the universal family .g W X!H;LX/ 2M0.H/.

By 3.2(1) the sheaf $h.1/
1 ˝det.g�LX/

�r.1/ is weakly positive over H , hence

$h.1/�r.1/
� ˝ det.g�LX/

�r.1/���r.�/
D
�
$h.1/
� ˝ det.g�LX/

���r.�/
�r.1/

is ample. Using 3.2(2) one finds that $h.1/
1 ˝ det.g�LX/

�r.1/ must be ample.
In order to apply the stability criterion [Vie95, Th. 4.25] to obtain the stability

of all points of H with respect to the sheaf $h.1/
1 ˝ det.g�LX/

�r.1/, it remains to
show that for a special family .f0 WX0! Y0;L0/ the rigidified direct image sheaf
is weakly positive over Y0. This is exactly the sheaf

Sh.1/
�
f0�

�
!�X0=Y0 ˝L0

��
˝ det.f0�.L0//�1

considered in Lemma 3.2(1). �
Addendum 3.4. If !�F D OF for all .F;A/ 2Mh.C/, and if � > 0 then for

some p� 1 there exists an ample invertible sheaf �.p/0;� satisfying the property (¾)
in Notation 4 in the introduction.

Proof. The existence of the sheaf �.p/0;� satisfying the property (¾) follows
from the construction of moduli schemes as a quotient of the Hilbert scheme. In
order to verify the ampleness, write (for the universal family G W X! H over
the Hilbert scheme) !�

X=H
D g��� . One has r.1/ D h.1/ and the ample sheaf

$
h.1/
1 ˝ det.g�LX/

�r.1/ is

(3.4.1) det
�
g�
�
!�X=H ˝LX

��r.1/
˝ det.g�LX/

�r.1/
D �

��r.1/2

�
� : �
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Remark 3.5. Trying in the following sections to extend the polarization to
degenerate fibers, we have to keep the equality stated in (3.4.1). As explained in
Remark 8.1 this will force us to choose “saturated extensions” of the polarizations.

Remark 3.6. So for polarized minimal models we verified the stability of the
points of H for the polarization given by det.h�.!�X=H ˝L//

Oh.1/˝det.h�L/�r.1/.
Let us assume for a moment, that !�F is very ample for all F 2M1

Oh
. One can

replace H by the locally closed subscheme given by the condition that L� !
�

X=H
.

Of course this can only happen if for the Hilbert polynomial h of !F one has
Oh.t/D h.� � t /. We assume that � is divisible by � and write �D �

�
C 1. Then

det
�
h�
�
!�X=H ˝L

�� Oh.1/
˝ det.h�L/�r.1/

D det
�
h�!

���

X=H

�h.�/
˝ det

�
h�!

�

X=H

��h.���/
:

Thus, we are still missing a factor � on the right-hand side, compared with the
ample sheaf obtained by Mumford and Gieseker for moduli of curves or surfaces.

4. Weak semistable reduction

Let us recall the Weak Semistable Reduction Theorem in [AK00] and some of
the steps used in its proof. The presentation is influenced by [VZ03] and [VZ02],
but all the concepts and results are due to D. Abramovich and K. Karu.

Definition 4.1. A projective morphism Og W yZ! yY between quasi-projective
varieties is called mild if:

(i) Og is flat, Gorenstein, and all fibers are reduced.

(ii) yY is nonsingular and yZ is normal with at most rational singularities. There
exists an open dense subscheme yYg � yY with Og�1. yYg/! yYg smooth.

(iii) Given a dominant morphism yY1! yY from a normal quasi-projective variety
yY1 with at most rational Gorenstein singularities, yZ � yY

yY1 is normal with at
most rational Gorenstein singularities.

(iv) Given a nonsingular curve yC and a morphism � W yC ! yY whose image meets
yYg , the fibered product yZ� yY

yC is normal, Gorenstein and with at most rational
singularities.

For a curve yY an example of a mild morphism is a semistable one, i.e., a
morphism Og W yZ! yY with yZ a manifold and with all fibers reduced normal crossing
divisors.

Obviously property (iii) implies that for two mild morphisms Ogi W yZi ! yY the
fiber product yZ1 � yY

yZ2! yY is again mild. So one has:

LEMMA 4.2. If Ogi W yZi ! yY are mild morphisms, for i D 1; : : : ; s, then the
fiber product yZr D yZ1 � yY � � � � yY

yZs! yY is mild.
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Definition 4.3. Let yY be a projective manifold, yY0 � yY open and dense, and
let Of0 W yX0 ! yY0 be a dominant morphism. Then Of0 has a mild model if there
exists a mild morphism Og W yZ! yY , with yZ birational to some compactification of
yX over yY .

The Weak Semistable Reduction Theorem implies that after a nonsingular
alteration of the base, every morphism f0 WX0! Y0 has a mild model:

Construction 4.4. Start. Let f0 W X0 ! Y0 be a flat surjective projective
morphism between quasi-projective varieties of pure dimension nCm and m, re-
spectively, and with a geometrically integral generic fiber.

We will consider two cases. Either f0 is smooth, or Y0 is nonsingular and f0
a flat morphism.

Step I. Choose a flat projective model f WX ! Y of f0. If zf W zX ! zY is any
projective model of f0 one may choose Y and X to be modifications of zY and zX ,
respectively.

Start with any compactification zf W zX ! zY and with an embedding zX ! P`.
Then f0 defines a morphism # W Y0! Hilb to the Hilbert scheme of subvarieties
of P`. We choose a modification Y of zY such that the morphism # extends to # W
Y !Hilb. The family f WX! Y is defined as the pullback of the universal family.

Step II. There exist modifications � and � 0 and a diagram

(4.4.1) X 0
� 0 //

f 0

��

X

f

��
Y 0

� // Y

with Y 0 nonsingular, such that for some open dense subschemes UY � Y 0 and
UX �X

0 the morphism f 0 W .UX �X
0/! .UY � Y

0/ is equidimensional, toroidal,
and where X 0 is without horizontal divisors, i.e. where none of the irreducible
components of X 0 nUX is dominant over Y 0.

The construction is done in [AK00] in several steps. Replacing Y by its nor-
malization and X by the pullback family one may assume that Y is integral. Theo-
rem 2.1 (loc. cit.) allows us to find the diagram (4.4.1) with f 0 toroidal for suitable
subsets UX �X 0 and UY � Y 0, and with X 0 and Y 0 nonsingular. Next, Section 3
(loc. cit.) explains how to get rid of horizontal divisors in X 0, without changing f 0.

In Proposition 4.4 (loc. cit.) the authors construct a nonsingular projective
modification of Y 0 and a projective modification of X 0 such that the induced ratio-
nal map is in fact an equidimensional toroidal morphism.

Step III. For each component Di of Y 0 nUY there exists a positive integer mi
with the following property.

For a “Kawamata covering package” .Di ; mi ;Hi;j / (defined on page 261 (loc.
cit.)) consider the diagram
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yZ
� 0 //

Og
��

X 0
� 0 //

f 0

��

X

f

��
yY

� // Y 0
� // Y

where � W yY ! Y 0 is the covering given by .Di ; mi ;Hi;j /, and where yZ is the
normalization of X 0 �Y 0 yY . Then Og W yZ! yY is mild.

The definition of the numbers mi is given in [AK00, p. 264], and the rest is
contained in Propositions 5.1 and 6.4 (loc. cit.). There however the authors define a
mild morphism as one satisfying conditions 4.1(i)–(iii). As pointed out by K. Karu
in [Kar00, proof of 2.12], the arguments used to verify property 4.1 (iii) carry over
“word by word” to show property (iv). So there is no harm in adding this condition.

Summing up what was obtained in Construction 4.4:

PROPOSITION 4.5. Starting with a flat projective morphism f WX ! Y as in
Step I, one finds a commutative diagram

(4.5.1) X

f

��

yZ
O'oo

Og
��

Y yY
'oo

of projective morphisms such that:

(a) yY is nonsingular and ' is an alteration. In particular if f0 W X0 ! Y0 is
smooth, then X0 �Y0 '

�1.Y0/ is nonsingular.

(a0) If Y0 is nonsingular and if f0 WX0! Y0 is a mild morphism, then the variety
X0 �Y0 '

�1.Y0/ is normal with at most rational Gorenstein singularities.

(b) Og W yZ! yY is mild.

(c) The induced morphism yZ!X �Y yY is a modification.

A more natural object to study is a desingularization yX of the pullback family
pr2 WX �Y yY ! yY . Although the resulting morphism not necessarily flat we will
use both constructions joint by a nonsingular modification Z:

Set-up 4.6. Assume that f0 WX0! Y0 is smooth. Starting with the diagram
(4.5.1), one can find projective morphisms

(4.6.1) X

f ��

yZ
O'oo

Og ��

Z
Oıoo ı //

g

��

yX

Of��

� // X

f��
Y yY'

oo
'

// Y;
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(i) such that � W yX !X factors through a desingularization �0 W yX !X �Y yY ,
(ii) Oı and ı are modifications, and Z is nonsingular.

Notation 4.7. We will denote from 4.6, by yY0, yZ0 yX0 (and so on) the preim-
ages of the open subscheme Y0� Y , and by O'0, Og0, Of0 (and so on) the restriction of
the corresponding morphisms. Condition (i) implies in particular that yX contains
yX0DX0�Y0

yY0 as an open dense subscheme. Later we will also consider a “good”
dense open subscheme Yg � Y0 and correspondingly its preimages will be denoted
by yYg , yZg , yXg (and so on).

Obviously the properties in 4.5 are compatible with replacing yY by any non-
singular alteration yY1! yY . We will do so several times, in order to add additional
conditions on the morphism Og. We write yZ1 D yZ � yY

yY1 and Og1 for the second
projection. For yX1 and Z1 choose desingularizations of the main components
of yX � yY

yY1 and Z � yY
yY1, respectively. All the morphisms in the diagram cor-

responding to (4.6.1) will keep their names, decorated by a little 1. Once the
additional property is verified, we usually will change notation back and drop the
lower index 1.

We are also allowed to replace Y by a modification with center in Y n Y0,
provided we modify the other schemes in the diagram (4.5.1) accordingly.

As said in the introduction, we are also interested in the polarized case, starting
with a morphism f0 W X0 ! Y0 and an f0-ample invertible sheaf L0. In order
to have a reference sheaf one starts with the extension of L0 to some projective
compactification.

VARIANT 4.8. Assume in Construction 4.4 that L0 is an f0-ample invertible
sheaf. Then one may choose X such that the sheaf L0 extends to an invertible
sheaf L on X . Moreover, given zf W zX ! zY with Y0 � zY open and dense and with
zf �1.Y0/ isomorphic to X0 over Y0, one may choose Y and X to be modifications

of zY and zX , respectively.

Proof of 4.8. In fact, one just has to modify the first step in the construction 4.4.
Start with any compactification zf W zX ! zY . Blowing up zX one may assume that
L0 extends to an invertible sheaf eL. Choose an invertible sheaf A on zX with A

and A˝eL very ample. Those two sheaves define embeddings � W zX ! P` and
�0 W zX ! P`

0

. The restriction of the diagram

zX
.�;�0; zf / //

zf ��

P` �P`
0

� zY

pr3
yy
zY

to Y0 gives rise to a morphism # WY0!Hilb to the Hilbert scheme of subvarieties of
P`�P`

0

. We choose a projective compactification Y of Y0 such that the morphism
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# extends to # W Y ! Hilb. The family f W X ! Y is defined as the pullback of
the universal family, and L as the pullback of OP`�P`

0 .�1; 1/. �

5. Direct images and base change

We start by recalling some well-known corollaries of “Cohomology and Base
Change” for projective morphisms.

LEMMA 5.1. Let Y be quasiprojective, let f W X ! Y be a projective mor-
phism and let N be a coherent sheaf on X , flat over Y .

(i) There exists a maximal, open, dense subscheme Ym � Y such that the sheaf
f�NjYm is locally free and compatible with base change for morphisms T ! Y ,
factoring through Ym.

(ii) If f�N is locally free and compatible with base change for all modifications
� WY 0!Y , then it is compatible with base change for all morphisms % WT !Y

with %�1.Ym/ dense in T .

(iii) There exists a modification Y 0! Y with center in Y nYm such that for

X 0 DX �Y Y
0 � 0 //

f 0

��

X

f

��
Y 0

�

// Y

the sheaf f 0�.�
0�N/ is locally free and compatible with base change for mor-

phisms % W T ! Y 0 with %�1��1.Ym/ dense in T .

Proof. One can assume that Y is affine. By “Cohomology and Base Change”
there is a complex

(5.1.1) E0
ı0
�!E1

ı1
�! � � �

ım�1
���!Em

of locally free sheaves, whose i-th cohomology calculates Rif�N, as well as its
base change. We choose Ym to be the open dense subscheme, where the image C

of ı0 locally splits in E1. One has an exact sequence on Y ,

(5.1.2) 0 �! KD Ker.ı0/ �!E0 �! C �! 0:

Part (ii) can be extended in the following way:

CLAIM 5.2. The following conditions are equivalent:

(a) C is locally free.

(b) f�N is locally free and compatible with base change for all modifications
% W T ! Y .

(c) f�N is locally free and compatible with base change for all morphisms % W
T ! Y with %�1.Ym/ dense in T .
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Proof. Of course (c) implies (b). If C is locally free KD f�N is locally free,
and for all morphisms % W T ! Y the sequence

0 �! %�K �! %�E0 �! %�C �! 0

remains an exact sequence of locally free sheaves. If %�1.Ym/ is dense in T the
morphism %�C! %�E1 is injective on some open dense subset, hence injective.
Recall that the complex

(5.2.1) %�E0
ı 00
�! %�E1

ı 01
�! � � �

ı 0m�1
���! %�Em

calculates the higher direct images of pr�1N on the pullback family X �Y T ! T .
As we have just seen, %�K is the kernel of ı00, hence equal to pr2�pr�1N.

So (a) implies (c) and it remains to show that (b) implies (a). By assumption
KD f�N is locally free, so that C is the cokernel of a morphism between locally
free sheaves of rank `D rk.K/ and e D rk.E0/, and r D e� `D rk.C/. Thus, C

is not locally free if and only if the r-th Fitting ideal is nontrivial (see for example
[Eis95, Prop. 20.6]). Choose for % W T ! Y a blowing up, such that %�C=torsion is
locally free. The fitting ideal is compatible with pullback (see [Eis95, Cor. 20.5]),
hence %�C itself is not locally free. Then, by the notation from (5.2.1), %�K  
Ker.ı00/D pr2�pr�1N, violating (b). �

The argument used at the end of the proof of 5.2 also implies that the sub-
scheme Ym is maximal with the property asked for in (ii). In fact, if the image
C does not split locally in a neighborhood of a general point of %.T /, the map
%�C! %�E1 cannot be injective and one finds again that %�K  Ker.ı00/.

By the choice of Ym the sequence (5.1.2) locally splits on Ym, and there is a
blowing up � W Y 0 ! Y with center in Y n Ym, such that ��.C/=torsion is locally
free. This sheaf is a subsheaf of ��.E1/, hence it is the image of ��.ı0/. So the
latter is locally free, and by Claim 5.2 we found the modification we are looking
for in (iii). �

For relatively semiample sheaves on the total space of a mild morphism the
modification of the base in 5.1(iii) is not needed. Let us recall the following base
change criterion, essentially due to Kollár:

LEMMA 5.3. Let Og W yZ! yY be a mild morphism, and let OL be a Og-semiample
invertible sheaf on yZ. Then for all i � 0 the sheaves Ri Og�.! yZ= yY ˝

OL/ are locally
free and compatible with arbitrary base change.

Proof. By “Cohomology and Base Change”, i.e., using the complex E� in
(5.1.1) for Og W yZ ! yY instead of f W X ! Y , one finds that it is sufficient to
show that the sheaves Ri Og�.! yZ= yY ˝

OL/ are locally free, or equivalently that the
cohomology sheaves Hi .E�/ are all locally free.

As recalled in [EV92, Cor. 6.12] Kollár’s vanishing theorem (loc.sit. Cor. 5.6)
implies that the sheaves Ri Og�.! yZ= yY ˝

OL/ are torsion-free. In particular, if dim. yY /
D 1 we are done.
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In general consider the largest open subscheme yYg of yY with Og�1. yYg/! yYg
smooth. Let � W C ! yY be a morphism from a projective curve to yY whose image
meets yYg . Then h W S D yZ� yY C !C is again mild, in particular S is again normal
with rational Gorenstein singularities. Hence Rih�.!S=C ˝ pr�1 OL/ is locally free.
This implies that for all points y 2 �.C / the dimensions

hi .y/D dimH i . Og�1.y/; ! Og�1.y/˝
OLj Og�1.y//

are the same. Since yY is covered by such curves hi .y/ is constant on yY . Hence
Hi .E�/ is locally free. �

The proof of 5.3 gives a first indication why we need weak semistable models.
In general even if X has at most rational Gorenstein singularities, and if f WX! Y

is flat, the arguments used in the proof of 5.3 fail. Given � WC!Y and S DX�Y C
we would not know that S again has rational Gorenstein singularities.

Let us return to the notation introduced in the last section. Starting from
a smooth morphism f0 W X0 ! Y0 consider again morphisms ' W yY ! Y and
Og W yZ ! yY satisfying conditions (a)–(c) in 4.5. We choose the diagram (4.6.1)
in 4.6 in such a way that conditions (i) and (ii) hold.

Set-up 5.4. Let L0 be an invertible sheaf on X0, either equal to OX0 or f0-
ample sheaf. In the first case we write L D OX ; in the second one we fix an
invertible extension L of L0 to X , as constructed in Variant 4.8. Assume that MZ ,
M yZ and M yX are invertible sheaves on Z, yZ and yX , respectively, with

Oı�MZ DM yZ ; ı�MZ DM yX ; O'
�L�M yZ ;

M yZ0 DM yZ j yZ0 D O'
�
0L0 and M yX0 DM yX j yX0 D �

�
0L0:

We fix some finite set I of tuples .�; �/ of nonnegative integers and define

F
.�;�/

yY
D Og�

�
!�
yZ= yY
˝M

�

yZ

�
:

We choose for yYg an open dense subscheme of yY0 such that Og�1. yYg/! yYg is
smooth and such that the sheaves Ri Og�.!�yZ= yY ˝M

�

yZ
/ are locally free and com-

patible with base change for morphisms % W T ! yYg , for all .�; �/ 2 I and for
all i .

If L0 D OX0 we choose M� D O�. In this case I D I 0�f0g for some finite set
of natural numbers I 0.

Given an invertible sheaf L on X one could define MZ , M yZ and M yX as the
pullbacks of L. In particular this choice seems to be the most natural one if L is
f -ample. For families of polarized minimal models we will define in Section 8
other extensions of M yZ0 D O'

�
0L0 and M yX0 D �

�
0L0, better suited for a generaliza-

tion of Addendum 3.4.
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If yY1! yY is a nonsingular alteration (see 4.7 for our standard notation), the
sheaves M yZ1 , M yX1 and MZ1 are defined by pullback, and they obviously satisfy

again the properties asked for in 5.4, with yYg replaced by its preimage in yY1.

COROLLARY 5.5. In 5.4 one may choose yY and yZ in Proposition 4.5 such
that in addition to conditions (a)–(c) one has:

(d) For .�; �/ 2 I the sheaves F
.�;�/

yY
are locally free and compatible with base

change for morphisms % W T ! yY with %�1. yYg/ dense in T . Hence writing

yZT
%0 //

OgT

��

yZ

Og

��
T

% // yY

for the fiber product, one has F
.�;�/
T WD %�F

.�;�/

yY
D OgT�.!

�
yZT =T

˝ %0�M
�

yZ
/.

Proof. Properties (a)–(c) in Proposition 4.5 are compatible with base change
by nonsingular alterations yY1! yY . So using Lemma 5.1(iii), we may assume that
for a given tuple .�; �/ and ND !�

yZ= yY
˝M

�

yZ
condition (ii) in 5.1, holds true on yY

itself. Again (d) is compatible with base change for alterations, and repeating the
construction for the other tuples in I one obtains Corollary 5.5. �

One important example are the r-fold fiber products. Recall that by Lemma
4.2 the morphism

Ogr W yZr D yZ � yY � � � � yY
yZ �! yY

is mild. One has ! yZr= yY D pr�1! yZ= yY ˝� � �˝pr�r! yZ= yY . For M yZr D pr�1M yZ˝� � �˝

pr�rM yZ flat base change and the projection formula give:

COROLLARY 5.6. Condition (d) in 5.5 implies that Ogr�.!
�
yZr= yY

˝M
�

yZr
/ DNr F

.�;�/

yY
, for .�; �/ 2 I . In particular those sheaves are again locally free and

compatible with base change for morphisms % W T ! yY with %�1. yYg/ dense in T .

In order to define the sheaves F
.�;�/

yY
and to study their behavior under base

change and products, we used the mild model Og W yZ! yY . However since we might
have blown up the smooth fibers of X0! Y0 in order to find the mild model, this
is not really the right object to study. As a next step we will use the right-hand
side of the diagram (4.6.1) in 4.6 to derive properties of the geometrically more
meaningful morphism Of W yX ! yY . Jumping from one side of (4.6.1) to the other
is possible by:
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LEMMA 5.7. For all �; �� 0 the natural maps

g�
�
!�
Z= yY
˝M

�
Z

�
�! Of�

�
!�
yX= yY
˝M

�

yX

�
and

g�
�
!�
Z= yY
˝M

�
Z

�
�! Og�

�
!�
yZ= yY
˝M

�

yZ

�
D F

.�;�/

yY

are both isomorphisms.

Proof. The morphisms ı and Oı are both birational. Since yX is smooth and
yZ is Gorenstein with rational singularities one can find effective divisors E yZ and
E yX , contained in the exceptional loci of Oı and ı, with

!
Z= yY
D Oı�! yZ= yY ˝OZ.E yZ/D ı

�! yX= yY ˝OZ.E yX /:

On the other hand, M yX D ı�MZ and M yZ D
Oı�MZ ; hence for some effective

divisors F yZ and F yX , contained again in the exceptional loci of Oı and ı, one has

MZ D
Oı�M yZ ˝OZ.F yZ/D ı

�M yX ˝OZ.F yX /:

The projection formula implies that

Oı�
�
!�Z=Y ˝M

�
Z

�
D !�

yZ= yY
˝M

�

yZ
˝ Oı�OZ.� �E yZ C� �F yZ/D !

�
yZ= yY
˝M yZ

and ı�
�
!�Z=Y ˝M

�
Z

�
D !�

yX= yY
˝M

�

yX
˝ ı�OZ.� �E yX C� �F yX /D !

�
yX= yY
˝M yX ;

hence 5.7. �

As we just have seen, the isomorphisms of sheaves in 5.7 are given over some
open dense subscheme by the birational maps Oı and ı. We will write in a sloppy
way D instead of Š for all such isomorphisms and for those induced by base
change.

Since f W yX ! yY is not necessarily flat, we cannot apply “Cohomology and
Base Change” to the right-hand side of the diagram (4.6.1), except if the (unnatural)
assumptions of the next lemma hold true, for example for embedded semistable
reductions over curves considered in Section 7.

LEMMA 5.8. Assume in 5.5 that for .0; �/2 I the sheaves f0�M
�
X0

are locally

free and compatible with arbitrary base change. Let U � yY be an open subscheme,
such that V D Of �1.U /!U is flat. Let T �U be a curve, meeting yY0, and assume
that for all coverings T 0! T the variety V �U T 0 is normal with at most rational
Gorenstein singularities. Then for .�; �/ 2 I the direct image Of�.!�yX= yY ˝M

�

yX
/ is

compatible with base change for all T 0! T � U .

Proof. By Lemma 5.3 the sheaves f0�.!�X0=Y0 ˝M
�
X0
/ are locally free and

compatible with arbitrary base change for all .�; �/ 2 I with � > 0, and by assump-
tion the same holds for � D 0.
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Let � W yY1! yY be a modification. By the choice of I in Corollary 5.5 one
knows that ��F

.�;�/

yY
D F

.�;�/

yY1
, and by Lemma 5.7

F
.�;�/

yY
D Of�

�
!�
yX= yY
˝M

�

yX

�
; and F

.�;�/

yY1
D Of1�

�
!�
yX1= yY1

˝M
�

yX1

�
:

Cutting yY1 with hyperplanes one finds, through any point p 2 ��1.T /, a curve
T 0 mapping surjectively to T . Then, as we will see in Lemma 7.3, yX � yY

yY1
will be normal with at most rational Gorenstein singularities in a neighborhood of
��1.T /. Replacing yY by U , we may assume that this is the case for yX � yY

yY1 itself.
So Of�.!�yX= yY ˝M

�

yX
/ is locally free and compatible with base change for modifi-

cations. On the other hand by assumption the sheaves Of0�.!�yX0= yY0
˝M

�

yX0
/ are

locally free and compatible with arbitrary base change; hence the open subscheme
yYm in Lemma 5.1(ii) contains yY0, and 5.8 follows from Lemma 5.1(ii). �

Note that Lemma 5.8 does not imply that Og�.!�yZ= yY ˝M
�

yZ
/ is compatible with

base change for morphisms % WT ! yY with %�1. yY0/ dense. If %�1. yYg/ is not dense,
we do not know that yZ � yY T ! T is mild; hence we cannot use Lemma 5.7.

Comments 5.9. The proof of Theorem 1 could be finished at this stage. Let
us sketch the line of arguments, hoping that it will serve as an introduction to the
remaining part of the article.

The Extension Theorem of Gabber starts with a projective scheme Y , an open
dense subscheme Y0, a nonsingular alteration ' W yY ! Y . Write yY0D '�1.Y0/ and
'0 D 'j yY0

. Next, one considers locally free sheaves FY0 and F yY with '�0 .FY0/D
F yY j yY0 . In addition one has a finite covering � WW ! Y with a splitting trace map,
whose normalization is the Stein factorization of '.

In addition one needs a sheaf FC for each curve � W C !W whose image
meetsW0D��1.Y0/. If � factors through � WC! yY one requires that ��F yY DFC ,
and FC must be compatible with replacing C by a covering. The conclusion is the
existence of the sheaf FW , perhaps after one replaces W by a modification with
center in W nW0.

Let us try to verify those conditions for F
.�/
Y0

. The alteration yY and the sheaf

F
.�/

yY
have been constructed in Sections 4 and 5. For F

.�/
C there is little choice.

It has to be the direct image h�!�S=C for a desingularization h W S ! C of the
pullback family. The compatibility with finite coverings enforces the assumption
that h W S ! C has a semistable or a mild model. So we have to verify two
conditions:

(1) If �0 W C0!W0 is a morphism from a nonsingular curve, then the pullback
family h0 W S0! C0 allows a mild model f W S ! C over the smooth com-
pactification C of C0.
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(2) If the morphism �0 factors through the restriction of � W C ! yY to C0, then
��F

.�/

yY
D h�!

�
S=C

.

For (2), Lemma 5.8 will be of help. Its application is made possible by the embed-
ded weak semistable reduction over curves, discussed in the first part of Section
7 and stated in Proposition 7.8. There we first make flat the morphism in a neigh-
borhood of a given curve. Replacing this neighborhood by an alteration we may
assume that the pull-back family is semistable over C . Using this construction we
will verify (2) in Proposition 10.5.

Note that (1) holds for curves �0 W C0 ! W0 whose image meets the open
dense subscheme Wg where yY !W is an isomorphism, and whose lifting to yY
meets the open set yYg , defined in 4.1. This allows us to verify (1) in Section 12
on coverings of certain locally closed subschemes of W . The necessary gluing is
made possible by studying embeddings of W into projective spaces, which at the
same time will take care of the splitting trace map.

So both sides of the diagram 4.3 play their role. The left-hand side is needed
for the definition of F

.�/

yY
, for its compatibility with alterations and for the veri-

fication of (1). The right-hand side is needed to control the compatibility of the
sheaves to curves, as stated in (2).

As indicated in the comments in 2.5, the properties of W and F
.�/
W stated in

Theorem 1 are not sufficient to get condition (iv) in Theorem 2. This forces us to
allow multiplier ideals, which will also help to extend Corollary 3 to sheaves of
the form F

.�;�/
� with � > 0. Since we do not want to repeat the same construction

in two slightly different set-ups, we will first try to understand multiplier ideals in
families in Section 6, or to be more precise, base change properties of “multiplier
sheaves”, i.e., of the tensor product of a multiplier ideal with an invertible sheaf. As
we will see in 6.3 one does not even have a reasonable “base change morphism” to
start with. And in general such multiplier sheaves will not be flat over the base. If
they occur as in Definition 2.1 as a direct factor of the direct image of an alteration
Z0!Z, and if Z is the total space of a family Z! Y we will perform the weakly
stable reduction for Z0! Y , in order to find a nice model.

The corresponding application of the embedded weak semistable reduction is
given in the second half of Section 7. In Section 9 we define certain multiplier
sheaves on fiber products, depending on certain tautological maps, similar to the
determinant „ in the proof of Variant 2.4. Here we have to give the definitions for
both sides of the diagram 4.3 and to verify certain compatibilities. In Section 11
we verify similar compatibilities for the restriction to curves, and we extends the
proof of (2) to multiplier sheaves.

We invite the reader to jump directly to Section 12, stopping shortly at Sec-
tions 7 and 10, and to fill in the details needed for the ampleness property later. As
we said before in (3.4.1), Section 8 is mainly needed for the identification of the
natural ample sheaf on the compactification of the moduli scheme in Theorem 6.
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6. Flattening and pullbacks of multiplier ideals

If multiplier ideals occur as in Definition 2.1 as a direct factor of the direct
image of an alteration Z0 ! Z, and if Z is the total space of a family Z ! Y ,
the weakly stable reduction for Z0! Y will allow us to verify certain functorial
properties. This will later be applied to the mild morphism Og W yZ ! yY . The
constructions will force us to replace the base by a new alteration, an excuse to
drop the O and to start with:

Assumptions and Notation 6.1. Let g WZ! Y be a flat, projective, surjective,
Gorenstein morphism over a nonsingular variety Y . Assume that the r-fold fiber
product Zr DZ �Y � � � �Y Z is normal with at most rational singularities.

Let N be an invertible sheaf on Z, let � be an effective Cartier divisor on
Z and let N > 1 be a natural number. Assume that there is a locally free sheaf E

together with a morphism E! g�NN on Y with g�E!NN ˝OZ.��/ surjective.
Let C be a set of morphisms from normal varieties T with at most rational

Gorenstein singularities to Y , such that for all .� W T ! Y /2 C and for all r > 0 the
variety ZrT DZ

r �Y T is again normal with at most rational Gorenstein singulari-
ties. We will need in addition that g�1.�.T // is not contained in the support of �.

For .% W T ! Y / 2 C we will write %T W ZT ! Z and gT W ZT ! T for
the induced morphisms. On the products the corresponding morphisms will be
denoted by

%rT WZ
r
T !Zr and grT WZ

r
T ! T:

We consider �r D pr�1�C� � �Cpr�r� on Zr and �T or �rT denotes the pullbacks
of those divisors to ZT or ZrT . We write

NZr D pr�1N˝ � � �˝ pr�rN and AZr D pr�1A˝ � � �˝ pr�rA

for an invertible auxiliary sheaf A on yZ, usually ample or semiample.

If g WZ! Y is a mild morphism, smooth over a dense open subscheme Yg ,
and if � does not contain g�1.y/ for y 2 Yg , then C can be chosen as the set of
morphisms % W T ! Y with T a normal variety with at most rational Gorenstein
singularities, where either % is dominant, or dim.T / D 1 and %�1.Yg/ is dense
in T .

Conditions 6.2. In 6.1 write " D 1
N

and consider for % 2 C the following
statements:

(a) J.�" ��/ is compatible with r-th products, i.e.

J.�" ��r/Š
�
pr�1J.�" ��/˝ � � �˝ pr�rJ.�" ��/

�
=torsion:

(b) For all r � 1 there is a natural isomorphism

%r�T J.�" ��r/=torsion
Š
�! J

�
� " ��rT

�
:
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(c) For all g-semiample invertible sheaves A on Z the direct image

gr�.!Zr=Y ˝AZr ˝NZr ˝J.�" ��r//

is locally free and the composite

%�gr�.!Zr=Y ˝AZr ˝NZr ˝J.�" ��r//


�! grT�.!ZrT =T ˝ %

r�
T .AZr ˝NZr ˝J.�" ��r///

�
�! grT�.!ZrT =T ˝ %

r�
T .AZr ˝NZr ˝J.�" ��r//=torsion/

Š
�! grT�.!ZrT =T ˝ %

r�
T .AZr ˝NZr /˝J.�" ��rT //

of the base change morphism and the quotient map in (b) is an isomorphism.

(d) One then has an isomorphism
rO
g�.!Z=Y ˝A˝N˝J.�" ��//Š gr�

�
!Zr=Y ˝AZr˝NZr˝J.�" ��r/

�
:

Example 6.3. In general, multiplier ideals behave badly under base change.
Even if T � Y is a smooth divisor on a surface, J.�" ��/jZT might be larger than
J.�" ��T /. So in general one cannot even expect the existence of a map

%�TJ.�" ��/ �! J.�" ��T /

in 6.2(b).

LEMMA AND DEFINITION 6.4. Under the assumptions made in 6.1 we say
that J.�" ��/ is compatible with pullback, base change and products for % 2 C if
conditions (a)–(d) in 6.2 hold true, or if equivalently:

(i) For all r > 0 the sheaves

pr�1J.�" ��/˝ � � �˝ pr�rJ.�" ��/ and %r�T J.�" ��r/

are torsion-free and isomorphic to J.�" ��r/ and J.�" ��rT /, respectively.

(ii) For all g-semiample invertible sheaves A on Z the direct image

gr�.!Zr=Y ˝AZr ˝NZr ˝J.�" ��r//

is locally free and compatible with base change for % 2 C.

Moreover conditions (i) and (ii) imply:

(iii) The multiplier ideal J.�" ��r/ is flat over Y .

Proof. Let us remark first, that by Grothendieck’s cohomological criterion for
flatness [GD61, Prop. 7.9.14] the local freeness of the sheaves

gr�.!Zr=Y ˝AZr ˝NZr ˝J.�" ��r//

for all powers of a given ample sheaf implies that J.�" ��r// is flat over Y . Hence
either one of condition (ii) and condition (c) of 6.2 implies condition (iii).
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Let us assume that (i) and (ii) hold true. Then (a) and (b) follow from (i), and
condition (iii) allows us to get (d) in 6.2 by flat base change. By (i) the morphism
� in (c) is the identity, and  is the usual base change map, hence an isomorphism
by (ii).

For the other direction we have already seen that 6.4(iii) holds. So for A

sufficiently ample, the base change morphism  in 6.2(c) is an isomorphism. Since
its composite with � is assumed to be an isomorphism as well, � must be an iso-
morphism. This being true for all ample sheaves A one finds that %r�T J.�" ��r/

is torsion-free, and (b) implies

%r�T J.�" ��r/
Š
�! %r�T J.�" ��r/=torsion

Š
�! J

�
� " ��rT

�
:

Using (iii) for r D 1, one finds by flat base change and by the projection formula
that

(6.4.1) gr�.!Zr=Y ˝AZr ˝NZr ˝ pr�1J.�" ��/˝ � � �˝ pr�rJ.�" ��//

Š

rO
g�.!Z=Y ˝A˝N˝J.�" ��//:

In particular both sheaves are locally free, and the cohomological criterion for
flatness implies that pr�1J.�" ��/˝ � � � ˝ pr�rJ.�" ��/ is flat over Y . Condition
(d) tells us that the direct images in (6.4.1) are isomorphic to

gr�.!Zr=Y ˝AZr ˝NZr ˝J.�" ��r//;

hence that pr�1J.�" ��/˝ � � � ˝ pr�rJ.�" ��/ is isomorphic to J.�" ��r/ and
torsion-free. Condition (ii) now follows from (i) and (c). �

The main result of this section is a complement to the Weak Semistable Re-
duction Theorem.

THEOREM 6.5. Assume in 6.1 that g W Z! Y is mild, that Yg � Y is open
with g�1.Yg/! Yg smooth, and that � does not contain any fibers g�1.y/ for
y 2 Yg . Then there exists a fiber product diagram of morphisms

Z1
� 0 //

g1
��

Z

g

��
Y1

� // Y;

with � a nonsingular alteration, and an open dense subscheme Y1g of ��1.Yg/,
such that for

C1 D
˚
% W T ! Y1 with either % dominant and T normal with at most rational

Gorenstein singularities, or T a nonsingular curve and %�1T .Y1g/ dense in T
	

and for �1 D � 0��, the sheaf J.�" ��1/ is compatible with pullback, base change
and products for all .% W T ! Y1/ 2 C1.
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Proof. We will verify conditions (a)–(d) stated in 6.2.

Step I. As a first step, under the additional assumption

(6.5.1) NN ˝OZ.��/D OZ

we will construct a nonsingular alteration Y1! Y such that the pullback family
g1 WZ1! Y1 satisfies condition 6.2(b), for r D 1.

Consider the cyclic covering W !Z obtained by taking the N -th root out of
� and a log-resolution ı0 W zZ!Z for �. One has a diagram

(6.5.2) �We�
��

�

��

// W

��
zZ

ı 0
// Z

where �W is a desingularization of the fiber product. Since " D 1
N

, Lemma 2.2
implies that N˝ı0�.! zZ=Y ˝O zZ.�

�
" �ı0��

�
//DN˝!Z=Y ˝J.�" ��/ is a direct

factor of ��! �W =Y . As we have seen there, the assumption that �W ! Z factors

through zZ is not needed. Similarly it is sufficient to require �W to have rational
Gorenstein singularities.

Nevertheless let us start with �W as in (6.5.2). We choose Y1 ! Y to be a
nonsingular alteration, such that pr2 W �W �Y Y1!Y1 has a mild model h1 WW1!Y1.
By construction, one has a morphism W1! �W and hence �1 WW1! Z1. Note
that the divisor ��1 �

0�� is divisible by N .

Let us formulate what we know up to now and what will be used in the next
step:

Set-up 6.6. Y1! Y is a nonsingular alteration, h1 WW1! Y1 is a flat Goren-
stein morphism factoring through an alteration �1 WW1!Z1. The morphism h1
has reduced fibers and it is smooth over an open dense subscheme Y1g of Y1.

Moreover g1 W Z1! Y1 is mild and for all g1-semiample sheaves A on Z1
by Lemma 5.3 the sheaf h1�.��1A˝!W1=Y1/ is locally free and compatible with
arbitrary base change.

Given % W T ! Y1, as in Theorem 6.5, one has

WT
%0 //

�T
��

W1

�1
��

ZT
%T //

gT

��

Z1

g1

��
T

% // Y1:

So g1 and h1 D g1 ı�1, as well as gT and hT D gT ı�T are flat.
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Let us write �T D %�T�1, let A be an invertible sheaf on Z1 and AT D %
�
TA.

One has compatible base change morphisms

%�T�1�.�
�
1A˝!W1=Y1/DAT ˝ %

�
T�1�!W1=Y1

˛
�!AT ˝�T�!WT =T ;

%�h1�.�
�
1A˝!W1=Y1/D%

�g1�.A˝�1�!W1=Y1/

�! gT�.AT˝%

�
T�1�!W1=Y1/;

and

%�h1�.�
�
1A˝!W1=Y1/

ˇD.gT�.˛//ı
�����������! hT�.�

�
TAT ˝!WT =T /:

CLAIM 6.7. In 6.6 for all invertible sheaves A on Z1 the morphism ˛ is sur-
jective and induces an isomorphism

ŒAT ˝ %
�
T�1�!W1=Y1 �=torsion �!AT ˝�T�!WT =T :

Proof. Note that hT W WT ! T is flat, Gorenstein, with reduced fibers and
with a nonsingular general fiber. So the singular locus of WT lies in codimension
at least two, and WT has to be normal; hence it is a disjoint union of irreducible
schemes, each one flat over an irreducible components of T . So �T�!WT =T will
be a torsion-free OT module.

It is sufficient to prove Claim 6.7 for one invertible sheaf A. So we may as-
sume that A is ample, hence ��1A semiample. By assumption ˇ is an isomorphism,
and

gT�.˛/ W gT�.AT ˝ %
�
T�1�!W1=Y1/ �! gT�.AT ˝�T�!WT =YT /

has to be surjective. For A sufficiently ample, the evaluation map induces a surjec-
tion

g�T gT�
�
AT ˝ %

�
T�1�!W1=Y1

�
g�T .gT�.˛//
��������! g�T gT�.AT ˝�T�!WT =YT / �!AT ˝�T�!WT =YT :

Since it factors through ˛ WAT ˝ %
�
T�1�!W1=Y1 !AT ˝�T�!WT =YT , the latter

must be surjective as well. By flat base change ˛ is an isomorphism over some
open dense subscheme of ZT ; hence its kernel is exactly the torsion subsheaf. �

Let us return to the notation used in the beginning, where �W is a desingular-
ization of the cyclic covering obtained by taking the N -th root out of � and Y1 is
chosen, such that �W ! Y has a mild reduction h1 WW1! Y1. Thus, the conditions
in 6.6 hold true by the definition of a mild morphism and by Lemma 5.3.

Since WT has at most rational Gorenstein singularities one obtains J.�" ��T /

as a direct factor of

%�T �
0�N�1˝�T�!WT =ZT D %

�
T �
0�N�1˝!�1ZT =T ˝�T�!WT =YT :

By flat base change this factor coincides with %�TJ.�" ��1/ on some open dense
subscheme of Z1. Applying 6.7 for A D � 0�N�1 ˝ !�1

Z1=Y1
, the morphism ˛

induces an isomorphism %�TJ.�" ��/=torsion
Š
�! J.�" � %�T�/.
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Step II. Next we will verify (b) for r D 1 without the additional assumption
(6.5.1), by gluing local models constructed in the first step.

To construct a nonsingular alteration Y1 such that property (b) in 6.2 holds true
for the family g1 WZ1! Y1, one may replace N by N˝g�H and correspondingly
E by E˝HN .

Now, choosing H sufficiently ample, one may assume that E is generated by
global sections, as well as NN ˝ OZ.��/. Next choose H1; : : : ;H` to be zero
divisors of general global sections of NN ˝OZ.��/ and Ui DZ nHi , with

(6.7.1)
\̀
iD1

Hi D∅ or
[̀
iD1

Ui DZ:

By Step I, for Hi C� instead of � and for each i , one has a nonsingular alteration
Y
Œi�
1 ! Y and a fiber product

Z
Œi�
1

� Œi� //

g
Œi�
1

��

Z

g

��
Y
Œi�
1

// Y

such that J.�" �� Œi�
�
.HiC�// is compatible with pullback up to torsion. Fix a non-

singular alteration � W Y1! Y dominating all the Y Œi�1 . For Y1;g choose the intersec-
tion of the preimages of the different good loci Y Œi�1;g and for Z1 the pullback family.

By construction J.�" � .�CHi //jUi D J.�" ��/jUi and

J.�" � .�1C �
0�Hi //j��1.Ui / D J.�" ��1/j��1.Ui /:

Since J.�" � .�1C �
0�Hi // is compatible with pullback up to torsion, the sheaf

of ideals J.�" ��1/ has the same property over Ui . Since fUi I i D 1; : : : ; `g is an
open covering of Z, condition 6.2(b) follows for �1 and for r D 1.

Step III. For the model Z1! Y1 constructed in Step II we will verify property
(b) for r > 1 and the compatibility with products, stated in 6.2(a). Let us formulate
again the set-up we will refer to at this point.

Set-up 6.8. � Œi�1 WW
Œi�
1 !Z1 are alterations such that the induced morphisms

h
Œi�
1 WW

Œi�
1 ! Y1 satisfy the assumptions stated in 6.6.

Choose a tuple i consisting of r elements i1; : : : ; ir 2 f1; : : : ; `g and the in-
duced morphisms hr1 WW

r DW
Œi1�
1 �Y1 � � ��Y1W

Œir �
1 !Y1 and �r1 WW

r!Zr . Let
(6.8.1)

AZr˝

rO
�D1

pr�i��
Œi��
� !W Œi��=Y1

˛r

�!AZr˝�
r
�!W r=Y1 DAZr˝�

r
�

rO
pr�i�!W Œi��=Y1

be induced by the tensor products of the base change maps

pr�i��
Œi��
� !W Œi��=Y1

�! �r�pr�i�!W Œi��=Y1
:



848 ECKART VIEHWEG

By assumption, for A ample, the sheaves hŒi�1��
Œi�
1

�

A˝!W Œi�=Y1
are locally free.

By flat base change and the projection formula, one has an isomorphism
rO
�D1

h
Œi��
1�

�
� Œi��

�
A˝!W Œi��=Y1

� ˇr
�! hr1�

�
�r1
�AZr ˝!W r=Y1

�
:

CLAIM 6.9. There is a natural morphism

rO
�D1

h
Œi��
1�

�
� Œi��

�
A˝!W Œi��=Y1

�
D

rO
�D1

g1�
�
A˝� Œi���!W Œi��=Y1

�
r

�! gr1�

�
AZr ˝

rO
�D1

pr�i��
Œi��
� !W Œi��=Y1

�
:

Proof. Let p1 W Zr1 ! Z1 and p2 W Zr1 ! Zr�11 denote the projection to the
first and the last r � 1 factors of the fiber product. Assume one has constructed
r�1, hence the morphism
rO
�D1

g1�
�
A˝� Œi���!W Œi��=Y1

�
r�1˝id
�����! g1�

�
A˝� Œir ��!W Œir �=Y1

�
˝gr�11�

�
AZ.r�1/ ˝

r�1O
�D1

pr�i��
Œi��
� !W Œi��=Y1

�
:

The right-hand side maps to

gr�11� g
r�1
1

�
g1�

�
A˝� Œir ��!W Œir �=Y1

�
˝g1�g

�
1g

r�1
1�

�
AZ.r�1/ ˝

r�1O
�D1

pr�i��
Œi��
� !W Œi��=Y1

�
:

The tensor product of the two base change maps and the multiplication of sections
map this sheaf to

gr1�p
�
2

�
AZ.r�1/ ˝

r�1O
�D1

pr�i��
Œi��
� !W Œi��=Y1

�
˝gr1�p

�
1

�
A˝� Œir ��!W Œir �=Y1

�
mult
��! gr1�

�
AZr ˝

rO
�D1

pr�i��
Œi��
� !W Œi��=Y1

�
: �

Again the isomorphism ˇr is equal to gr1�.˛
r/ ı r ; hence gr1�.˛

r/ has to be
surjective. As in the proof of 6.7, for A sufficiently ample, one finds that ˛r is
surjective. We obtained

CLAIM 6.10. In 6.8 the base change map ˇr in (6.8.1) is an isomorphism for
all g1-semiample sheaves A. The morphism ˛r is surjective and its kernel is a
torsion sheaf.



COMPACTIFICATION OF MODULI SCHEMES 849

Let us return to the situation considered in Step II. We have chosen alterations
�
Œi�
1 WW

Œi�
1 !Z1, dominating the cyclic covering obtained by taking the N -th root

out of �1C � 0�Hi , such that the induced morphisms hŒi�1 W W
Œi�
1 ! Y1 are mild.

By Lemma 4.2 the morphism hr1 is again mild and W r has rational Gorenstein
singularities. W r dominates the cyclic covering obtained by taking the N -th root
out of �1C� 0�Hi . So �r1 WW

r !Zr is again an alteration, dominating the cyclic
covering obtained by taking the N -th root out of

� D pr�i1.�1C �
0�Hi1/C � � �C pr�ir .�1C �

0�Hir /:

By Step I, up to the tensor product with an invertible sheaf, J.�" ��/ is a direct
factor of

�r1�!W r=Y1 D pr�i1�
Œi1�
� !W Œi1�=Y1

˝ � � �˝ pr�ir�
Œir �
� !W Œir �=Y1

:

On some open dense subscheme this factor is isomorphic to

pr�i1J.�" � .�1C �
0�Hi1//˝ � � �˝ pr�irJ.�" � .�1C �

0�Hir //:

So the first part of Claim 6.10 implies that ˛r induces an isomorphism

Œpr�i1J.�" � .�1C�
0�Hi1//˝� � �˝pr�irJ.�" � .�1C�

0�Hir //�=torsion
Š
�! J.�" ��/:

For Ui DZ nHi and Ui D Ui1 � � � � �Uir one has

J.�" � .�1C �
0�Hi�//jUi� D J.�" ��1/jUi�

and J.�" ��/jUi D J.�" ��r/jUi . Since by (6.7.1) each point of Zr lies in Ui for
some choice of the tuple i , one obtains property 6.2(a).

The same construction gives the proof of property (b) for r > 1. One just has
to note that �r1 WW

r
1 !Zr1 and Ohr1 WW

r
1 ! Y satisfy again the assumption made in

6.6. We replace the ample sheaf A by a sufficiently high power of AZr and obtain
an isomorphism

%r�T J.�" ��/=torsion
Š
�! J.�" � %r�T �/;

for the divisor � introduced above. So 6.2(b) holds for �r on Ui , hence every-
where.

Step IV. It remains to verify properties 6.2(c) and (d). To simplify notation,
let us drop the lower index 1 and assume that properties (a) and (b) in 6.2 hold true
for g WZ! Y itself.

Let us first remark that we know (c) and (d) if NN ˝OZ.��/ is the pullback
of an invertible sheaf on Y . In fact, the base change morphisms in 6.2(c) and (d)
are just direct factors of the base change morphisms ˇ in step I or ˇr in Claim 6.10
in Step III. So we will reduce everything to this case.

As we have seen this can be done by adding the zero divisor H of a general
section of NN ˝OZ.��/ to �. There is a problem with the term “general”. We
can choose H to be general for a fiber of g1 WZ1! Y1; hence (2.1.1) holds for F
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and for F replaced by a small neighborhood. However we cannot choose H such
that this remains true for neighborhoods of fibers of all gT WZT ! T and for the
pullback of H . So we will argue in a different way.

Let us assume that the construction in Step II was possible over Y . In partic-
ular E and hence NN ˝OZ.��/ are generated by global sections, and for some
section of NN ˝ OZ.��/ with zero divisor H1 the cyclic covering obtained by
taking the N -th root out of �CH1 has a mild model hŒ1� WW Œ1�! Y factoring
through � Œ1� WW Œ1�!Z.

As before ı0 W zZ ! Z denotes a log-resolution for �. Fix a point y 2 Y .
For the zero set H of a general section of NN ˝ OZ.��/ the divisor ı0�H will
be smooth meeting ı0�� transversely. Thus, J.�a ��/ D J.�a � .�CH// for
0� a < 1. Moreover, � Œ1�

�
H will not contain any component of hŒ1�

�1
.y/.

On W Œ1� the divisor � Œ1�
�
� is divisible by N . Hence the sheaf

� Œ1�
�
.NN ˝OZ.��//D .�

Œ1��NN /˝OZ.��
Œ1���//D OW Œ1�.� Œ1�

�
H/

is the N -th power of an invertible sheaf L. We choose � W W ! W Œ1� to be the
cyclic covering obtained by taking the N -th root out of � Œ1�

�
H and � D � Œ1� ı�.

CLAIM 6.11. For H sufficiently general, replacing Y by a neighborhood of y,
one has:

(i) ��!W=Y D
LN�1
�D0 !W Œ1�=Y ˝L�.

(ii) The induced morphism h WW ! Y is flat and Gorenstein.

(iii) The fibers of h are reduced and the general fiber is nonsingular.

(iv) If A is g-semiample the direct image sheaves h�.��A˝!W=Y / are locally
free and compatible with arbitrary base change.

(v) The sheaf J.�" ��/˝N˝!Z=Y is a direct factor of ��!W=Y .

Proof. The first part follows from [EV92, �3]. However, there cyclic coverings
over a nonsingular base were considered and we have to explain, how to reduce
the statement to this case.

Let � W V !W Œ1� be a desingularization. For H sufficiently general, ��H is
nonsingular. The normalization V 0 of V in the function field of W is nonsingular
and isomorphic to

Spec.F/ for FD

N�1M
�D0

��L��:

The canonical sheaf !V 0 is the invertible sheaf corresponding to

F˝LN�1 D

N�1M
�D0

!V ˝ �
�L�:

Since W Œ1� is Gorenstein with rational singularities, ��OW D ��FD
LN�1
�D0 L��.
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So ��!W contains ��F˝LN�1 and both are isomorphic outside of a codi-
mension two subset. The second sheaf is a locally free ��F module of rank 1,
hence equal to ��!W . In particular � WW !W Œ1� is flat, and !W is invertible.

For (iii), note that gŒ1� is smooth over some open dense subset Yg of Y . The
restriction of a general divisor H to one fiber will be nonsingular, and thereby g
has at least one nonsingular fiber. Choosing Y small enough, we may assume that
H does not contain components of any fiber of gŒ1�. Since the fibers of gŒ1� are
reduced, the fibers of h have the same property.

Part (iv) follows from 5.3, applied to the sheaves gŒ1�� .!W Œ1�=Y ˝L�˝A/,
and by the direct sum decomposition in (i). So it remains to verify (v).

Let � 0 WW 0!Z be the cyclic covering obtained by taking the N -th root out
of �CH . Then W is just the normalization of the fiber product W 0 �Z W Œ1�. In
fact, the latter is the cyclic covering of W Œ1�, obtained by taking the N -th root out
of � Œ1�

�
�C� Œ1�

�
H . However, � Œ1�

�
� is divisible by N ; hence it is the same to

take the N -th root out of � Œ1�
�
H .

So � 0�!W 0=Y is a direct factor of ��!W=Y , and

J.�" � .�CH//˝N˝!Z=Y D J.�" ��/˝N˝!Z=Y

is a direct factor of both of them. �

Parts (ii), (iii) and (iv) of 6.11 imply that the assumptions stated in 6.6 hold.
Hence by Claim 6.7 for all % W T ! Y considered in 6.5 the morphism

˛ W %�T��!W=Y ! �T�!WT =T

is a surjection with torsion kernel. Moreover the composite

ˇ W %�g�.A˝��!W=Y /

�! gT�.AT ˝%

�
T��!W=Y /

g�˛
��! gT�.AT ˝�T�!WT =T /

is an isomorphism for all g-semiample sheaves A on Z. By 6.11(v) the sheaf

%�g�.A˝J.�" ��/˝N˝!Z=Y /

is a direct factor of the left-hand side, and by property (b), which we verified in
Steps I and II, the corresponding direct factor of the right-hand side is

gT�.!ZT =T ˝ %
�
T .A˝N/˝J.�" ��T //:

So we obtained property (c) for r D 1. For r > 1 the argument is the same. Using
the notation from Step II for i D .1; : : : ; 1/ we just have to replace Z by Zr and
the divisor H1 by pr�1H1C � � �C pr�rH1.

For (d) we choose for the morphisms hŒi� W W Œi� ! Z in Step III the same
morphism h WW ! Y . By 6.11(ii), (iii), and (iv) the assumptions made in 6.8 hold
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true, and by Claim 6.10 the composite
rO
�D1

g�.A˝��!W=Y /D

rO
�D1

h�.�
�A˝!W=Y /

ˇr

�! hr�.�
�AZr ˝!W r=Y /

D gr�.AZr ˝�
r
�!W r=Y /

Š
 �
˛r
gr�

�
AZr ˝

h rO
�D1

pr�� ��!W=Y
i
=torsion

�

is an isomorphism. The left-hand side contains
rO
�D1

g�.!Z=Y ˝A˝N˝J.�" ��//

as a direct factor, and the corresponding direct factor of the right-hand side is

gr�

�
!Zr=Y ˝AZr ˝NZr ˝

h rO
�D1

pr�� J.�" ��/
i
=torsion

�
:

By part (a) of 6.2 this is gr�.!Zr=Y˝AZr˝NZr˝J.�"��r// and we obtain (d). �

Remark 6.12. Even if one adds to 6.1 the additional condition N > e.�/ one
cannot expect in Theorem 6.5 that J.�" ��1/ is isomorphic to OZ1 . At least we
were not able to compare e.�1/ and e.�/. So for the equality J.�"1 ��1/D OZ1
with "1 D 1

N1
we have to choose N1 larger than N and we lose the compatibility

with base change and products.

7. Embedded weak semistable reduction over curves

For a morphism to a curve with smooth general fiber, a semistable model
is mild. The existence of such a model over some covering of the base has been
shown by Kempf, Knudsen, Mumford, and Saint-Donat in [KKMSD73]. Applying
it to a family over a discrete valuation ring one obtains the semistable reduction
theorem in codimension one:

THEOREM 7.1. Let U and V be quasi-projective manifolds and let E � U
be a submanifold of codimension one. Let f W V ! U be a surjective projective
morphism with connected general fiber. Then there exists a finite covering � W
U 0 ! U , a desingularization V 0 of the main component of V �U U 0, and an
open neighborhood zU of the general points of ��1.E/ such that for the induced
morphism f 0 WV 0!U 0 the restriction f 0�1. zU/! zU is flat and f 0�1. zU\��1.E//
is a reduced, relative, normal crossing divisor over zU \ ��1.E/.

As indicated in 5.9 we will need some “embedded version” of the semistable
reduction in a neighborhood of a given curve. This will allow us to apply the base
change criterion in Lemma 5.8.

Since as in Section 6 we have to allow multiplier ideals the notation again
gets a bit complicated in the second half of the section. The multiplier ideal of the
restriction of a divisor is contained in the restriction of the multiplier ideal. As we
will see, for total spaces of families of varieties one can enforce an isomorphism
after an alteration of the base.
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LEMMA 7.2. Let f W X ! Y be a projective surjective morphism between
quasi-projective manifolds with smooth part f0 D f jX0 WX0! Y0. Let � W C ! Y

be a morphism from a nonsingular curve C with C0 D ��1.Y0/ dense in C . Then
there exist a nonsingular alteration � W Y1! Y and a desingularization � 0 WX1!
X �Y Y1 of the main component such that for the induced morphism f1 WX1! Y1
the following holds:

(a) C ! Y lifts to an embedding C � Y1.

(b) There exists a neighborhood U1 of C in Y1 with f �11 .U /! U flat.

(c) S D f �11 .C / is nonsingular and f �11 .C nC0/ a normal crossing divisor in S .

Proof. Replacing Y by a hyperplane in C � Y , containing the graph of � W
C ! Y , one may assume that C ! Y is an embedding. Next, replace X by an em-
bedded log-resolution of the closure S of f �1.C /\X0 for the divisor f �1.C nC0/.
Now, we may assume that the closure S of f �1.C0/ is nonsingular and that the
singular fibers of S ! C are normal crossing divisors. Consider for a very ample
invertible sheaf A on X , the induced embedding � WX ! PM , and the diagram

X
.�;f / //

f ��

PM �Y

pr2{{
Y:

Since X0! Y0 is flat, it gives rise to a morphism #0 W Y0! Hilb to the Hilbert
scheme of subvarieties of PM . Since S ! C is also flat the restriction of #0 to
C \ Y0 extends to a morphism % W C ! Hilb, and the pullback of the universal
family over Hilb to C coincides with S .

We choose a modification � W Y1! Y with center outside of Y0 such that #0
extends to a morphism # W Y1!Hilb. For f1 WX1! Y1 we choose the pullback of
the universal family. Note that f1 satisfies conditions (a), (b) and (c); however X1
might be singular. Since we are allowed to modify X1 outside of a neighborhood
of S it remains to verify that X1 is nonsingular in such a neighborhood. This will
be done in the next lemma. �

LEMMA 7.3. Let f W V ! U be a flat morphism, with U nonsingular. Let
C � U be a nonsingular curve and S D f �1.C /. Then there is an open neighbor-
hood U0 of C in U with:

(i) If S is nonsingular, f �1.U0/ is nonsingular.

(ii) If S is reduced, normal, Gorenstein with at most rational singularities then
f �1.U0/ is normal, Gorenstein with at most rational singularities.

(iii) If S is reduced, and Gorenstein, and if for some open subscheme Ug of U ,
meeting C , the preimage f �1.Ug/ is nonsingular, then V is normal and
Gorenstein.
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Proof. C is a smooth curve in U . For a point p 2 C choose local pa-
rameter t1; : : : ; t` such that C is the zero-set of .t1; : : : ; t`�1/. The parameters
.t1; : : : ; t`�1/ define a smooth morphism SpecOp;U ! SpecO0;A`�1 . The com-
posite flat morphism ˆ W V �U SpecOp;U �! SpecOp;U �! SpecO0;A`�1 has
S0 D S �C SpecOp;C as closed fiber. If the latter is smooth, ˆ is smooth and one
obtains (i).

Assume that S is Gorenstein. Then S0 is Gorenstein, and ˆ is a Gorenstein
morphism.

If in addition S is reduced and normal, it is smooth outside of a codimension
one subset, hence V �U SpecOp;U will be normal. And if S has at most rational
singularities, the same holds true for V �U SpecOp;U .

In (iii) the assumptions imply that the singular locus ‡ of V �U SpecOp;U
does not meet the general fiber of ˆ. On the other hand, since the special fiber S0
is reduced, ‡ contains no component of S0. So again ‡ is of codimension two
and since V �U SpecOp;U is Gorenstein it is normal. �

VARIANT 7.4. Under the assumptions made in 7.2 one can find a finite cov-
ering yC ! C , a nonsingular alteration � W Y1 ! Y and a desingularization
� 0 WX1!X �Y Y1 such that for the induced morphism f1 WX1! Y1 in addition
to the properties (a), (b) and (c) (for yC instead of C ) in 7.2 one has:

(d) f �11 . yC n yC0/ is a reduced normal crossing divisor in yS D f �11 . yC/.

Proof. We use the notation from the proof of 7.2, except that we assume that
conditions (a)–(c) hold true for Y itself. So C � Y and the morphism f is flat in a
neighborhood of S D f �1.C /. The latter is nonsingular and the fibers of S ! C

are normal crossing divisors.
Choose yC!C to be a covering, such that S�C yC! yC has a semistable model

yS ! S . In particular there is a morphism yS ! S inducing � W yS ! S �C yC . As
in the proof of 7.2 we can choose Y1 such that yC ! C ! Y lifts to an embedding
yC ! Y1. Consider the fiber product X �Y Y1. It contains S �C yC . Since � is
birational and projective, it is given by the blowing up of a sheaf of ideals I on
S �C yC . Let J be a sheaf of ideals on X �Y Y1, whose restriction to yS! S �C yC

is I, and let ı WX1!X �Y Y1 be the blowing up of J. Then one obtains a closed
immersion yS !X1, whose image is contained in f �11 . yC/.

Repeating the argument in the proof of 7.2 we replace X1 by some modifi-
cation and X1! Y1 by the pullback of a universal family over a Hilbert scheme,
with f �11 . yC/D yS . �

Definition 7.5. Let U be a quasi-projective manifold, let C be a smooth curve
and � W C ! U a morphism. We call � W U1 ! U a local alteration for C if �
is the restriction of a nonsingular alteration to some open subscheme, and if there
is a smooth curve C1 � ��1.C / with C1! C finite. We call such a curve C1 a
lifting of C .
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LEMMA 7.6. Assume that C � Y is a smooth curve, that S D f �1.C / is a
nonsingular variety, semistable over C , that f is flat over a neighborhood U of C ,
and that V D f �1.U / is nonsingular. Let � W U1! U be a local alteration for C ,
let C1 2 U1 be a lifting of C and f1 W V1 D X �U U1! U1 the pullback family.
Write f r1 W V

r
1 D V1 �U1 � � � �U1 V1! U1 for the r-fold fiber product. Then

(˘) For each r > 0 there exists a neighborhood zU of C1 in U1 such that zV r D
.f r1 /

�1. zU/ is normal, Gorenstein, with at most rational singularities and the
induced morphism zf r W zV r ! zU is flat and projective. Moreover Sr1 D
. zf r/�1.C1/ is normal with at most rational Gorenstein singularities, and
Sr1 ! C1 has reduced fibers.

Proof. The pullback of a semistable family S1 D F�11 .C1/ D S �C C1 is
normal, Gorenstein with rational singularities. The same holds true for the r-fold
product Sr1 D S1 �C1 � � � �C1 S1. So one can apply Lemma 7.3. �

Definition 7.7. Let f WX ! Y be a projective surjective morphism between
quasi-projective manifolds with smooth part f0D f jX0 WX0! Y0. Let � WC ! Y

be a morphism from a nonsingular curve C with C0 D ��1.Y0/ dense in C ; let
� W U1! Y be a morphism, and let V1!X �Y U1 be a modification of the main
component with center outside of the preimage of Y0. We call the induced family
f1 W V1 ! U1 an embedded, weak, semistable reduction (of X ! Y ) over C if
� WU1! Y is a local alteration for C and if for some lifting C1 2U1 the condition
(˘) 7.6 holds true.

We call f1 W V1! U1 an embedded semistable reduction over C if in addition
S1 D f

�1
1 .C1/ is nonsingular and semistable over C1.

Usually we will replace U1 by some neighborhood zU and assume that the
condition in (˘) holds for zU . Let us restate what we obtained:

PROPOSITION 7.8. Let f W X ! Y be a projective surjective morphism be-
tween quasi-projective manifolds with smooth part f0 D f jX0 W X0! Y0 and let
� W C ! Y be a morphism from a nonsingular curve C with C0 D ��1.Y0/ dense
in C .

(a) There exists an embedded, semistable reduction V1! U1 over C .

(b) Let Y1! Y be a nonsingular alteration. Then there exist a scheme U2 and a
morphism U2! Y1 such that the image of the composed morphism U2! Y

is in U1 and such that V2 D V1 �U1 U2! U2 is a weak semistable reduction
over C .

Proposition 7.8 will allow us to apply the base change criterion in Lemma
5.8. As in Section 6 we will need a similar criterion for multiplier sheaves. We
start with a variant of Theorem 6.5 replacing the mild morphism by an embedded,
weak, semistable reduction over a curve.
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Assumptions 7.9. f W V ! U is an embedded, weak, semistable reduction for
C � U , with smooth part f0 W V0! U0 for U0 dense in U . There exists a mild
morphism g W Z! U factoring through a modification � W Z! V . Let N be an
invertible sheaf on V , and let � be an effective Cartier divisor on V not containing
fibers of f0 and let N > 1 be a natural number. There is a morphism E! f�NN

on U with E locally free and with f �E! NN ˝ OV .��/ surjective. As in the
last section we write "D 1

N
.

Assume that J.�" � ���/ is compatible with pullback, base change and prod-
ucts, for all alterations of U , as defined in 6.4, and (for simplicity) that on the
general fiber of S ! C the multiplier sheaf J.�" ��jS / is isomorphic to OS .

LEMMA 7.10. In 7.9 let C be the set of local alterations � W U1! U such that
f1 WV1DV �U U1!U1 is an embedded weak semistable reduction for f WV !U

over C . Then J.�" ��/ is flat over U and compatible with pullback, base change
and products for .% W U1! U/ 2 C in a neighborhood of each lifting C1 of C , i.e.,
conditions (i) and (ii) in Lemma and Definition 6.4 hold true over a neighborhood
zU � U1 of C1, possibly depending on r .

Proof. Choose a log-resolutioneı W zZ!Z. For ı D � ıeı W zZ! V ,

J.�" ��/D ı�.! zZ=V ˝O zZ.�Œ" � ı
���//

D ��eı�.! zZ=V ˝O zZ.�Œ" �
eı�����//D ��.!Z=V ˝J.�" � ���//:

Then

g�.�
�A˝!Z=V ˝ �

�N˝J.�" � ���//D f�.A˝!V=U ˝N˝J.�" ��//;

and by 6.4(ii) both are locally free, and the left-hand side is compatible with pull-
backs. The cohomological criterion [GD61, Prop. 7.9.14] implies that J.�" ��/ is
flat over U .

For the compatibility with base change for % W U1! U consider the induced
fiber products

Z1
O% //

�1
��

Z

�

��
V1

%0 //

f1
��

V

f

��
U1

% // U:

One has for A ample on Z the base change map

%0�.!V=U ˝N˝A˝J.�" ��//D %0���.!Z=U ˝ �
�.N˝A/˝J.�" � ���//

˛
�! �1�.!Z1=U1 ˝ �

�
1 %
0�.N˝A/˝J.�" � ��1 %

0��//:
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The base change map for g�.��A˝!Z=V ˝ �
�N˝J.�" � ���// factors through

f1�.˛/, so that the latter must be surjective. This being true for all ample sheaves
A, as in the proof of 6.7 one finds that ˛ is surjective. By flat base change, ˛ is an
isomorphism on some open dense subscheme.

By assumption on the general fiber of S!C the multiplier sheaf J.�" ��jS /

is trivial. By [Vie95, �5.4] or [EV92, Properties 7.5] this implies that J.�" ��/ is
isomorphic to OV in a neighborhood of a general fiber of f . Since the latter is flat
over U , the sheaf %0�J.�" ��/ is torsion-free, hence isomorphic to

�1�!Z1=V1 ˝J.�" � ��1 %
0��/D J.�" � %0��/:

In addition f1�.˛/ is an isomorphism, hence f�.A˝!V=U ˝N˝J.�" ��// is
compatible with base change for % 2 C.

A similar argument allows us to identify the multiplier ideals on the r-fold
fiber products, for r > 1. Let us write �r W Zr ! V r for the modification, pr� W
V r! V and p� WZr!Z for the projections. By flat base change one has a natural
isomorphism

pr�� J.�" ��/ �! �r�.p
�
� !Z=V ˝J.�" � p�� �

��//:

Since the multiplier ideal on Z is compatible with products, as formulated in 6.4(i)
multiplication of sections induces a morphism ˛r from

Nr
�D1 pr�� J.�" ��/ to

�r�.!Zr=V r ˝J.�" � .p�1�
��C � � �C p�r �

��///D J.�" � .pr�1�C � � �C pr�r�//:

By flat base change

f r�

� rO
�D1

pr�� .!V=U ˝A˝N˝J.�" ��//
�
D

rO
�D1

f�.!V=U ˝A˝N˝J.�" ��//

is locally free; hence on V r the sheaf
Nr
�D1 pr�� J.�" ��/ is flat over U and torsion-

free. So
rO
�D1

pr�� J.�" ��/
˛r

�! J.�" � .pr�1�C � � �C pr�r�//

is injective. Finally, writing again AV r for the exterior tensor product and AZr for
the pullback to Zr , the composite

f r�

� rO
�D1

pr�� .!V=U ˝A˝N˝J.�" ��//
�

f r� .˛
r /

�����! f r� .!V r=U ˝AV r ˝NV r ˝J.�" � .pr�1�C � � �C pr�r�///

D f r� �
r
�.!Zr=U ˝AZr ˝NZr ˝J.�" � .p�1�

��C � � �C p�r �
��///

D

O
f���.!Z=U ˝ �

�A˝ ��N˝J.�" � ���//

is an isomorphism. For A sufficiently ample, as in the proof of 6.7, this implies
that ˛r is an isomorphism.
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Since Zr !U is again mild, one may replace, in the first part of the proof, Z
and V by Zr and V r , respectively, and may obtain the compatibility with pullbacks,
required in 6.4(ii), for all r . �

As promised we can now formulate and prove the compatibility of multiplier
ideal sheaves in total spaces of families with the restriction to subfamilies over
curves. This will lead for suitable models to the compatibility of certain direct
image sheaves with restriction to curves.

PROPOSITION 7.11. Under the assumptions made in 7.9 there exists a local
alteration � W U1! U for C such that:

(1) f1 W V1 D V �U U1 ! U1 is an embedded weak semistable reduction of f
over C .

(2) For a lifting C1 � U1 of C , for S1 D f �11 .C1/ denote the induced morphisms
by

S1
�0 //

�

��

V

f

��
C1

� // U:

Then there is an isomorphism J.�" ��0��/Š �0�J.�" ��/.

(3) Let A be an f -semiample sheaf on V . Then

��f�.A˝N˝!V=U ˝J.�" ��//D ��.�
0�.A˝N/˝!S1=C1 ˝J.�" ����//:

Proof. Let us first show that (1) and (2) imply (3). By Lemma 7.10 the
sheaf J.�" ��/ is flat over U and compatible with pullbacks and base change for
� W U1 ! U . So by abuse of notation it is sufficient in (3) to consider the case
U1 D U , and to assume that C � U . On a general fiber of S ! C the multiplier
ideal sheaf is isomorphic to the structure sheaf; hence by [EV92, Properties 7.5]
the same holds over a neighborhood of the general point of C in U . As in the proof
of 5.3, Kollár’s Vanishing Theorem implies that over this neighborhood the direct
image of A˝N˝!V=U ˝J.�" ��/ is locally free and compatible with arbitrary
base change. Hence, if we apply 5.1 to this sheaf the open dense subscheme Um
in part (i) contains a general point of C . Then (3) follows from 5.1(ii).

To construct U1 with the properties (1) and (2), we may assume that E, hence
NN ˝ OV .��/ is globally generated. Since the question is local on V , as in the
second step in the proof of 6.5 we can cover V by the complements of divisors
of general sections of NN ˝ OV .��/. Hence we may replace � by �CH and
assume that NN D OV .�/.

Choose a desingularization of the cyclic covering, obtained by taking the N -th
root out of �. Over some alteration, this desingularization will have a mild model.
Since this property is compatible with pullbacks, we may choose a local alteration
for C , dominating the alteration, and we find some U1 such that (1) holds and such
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that V1! U1 has a mild model. The compatibility for local alterations, shown in
Lemma 7.10 allows us to assume that U1 D U , hence that the mild model exists
over U itself. Let us call it T ! U , and the induced morphism  W T ! V . So
 �� is the N -th power of a Cartier divisor.

Next we want to construct a desingularization W of T , which is flat over a
general point of the curve C . To this aim, let zU ! U be the blowing up of C , or
a finite covering of such a blowing up. Let zV ! zU be the pullback family. The
preimage of the exceptional divisor E in zU is covered by curves eC , finite over C .
Lemma 7.3 allows us to shrink zU such that the total space zV is still normal with
at most rational Gorenstein singularities.

Let z� W �W ! zT D T �U zU be a desingularization. It dominates the finite
covering obtained by taking the N -th root out of e�D pr�1�. If zh W �W ! zU denotes
the induced map, we also assume that zh�1.E/ is a normal crossing divisor. Over
the complement zUg of a codimension two subset of zU the morphism zh will be flat
and zh�1.E/\ zh�1. zUg/ will be equisingular over E \ zUg .

The divisor zh�1.E\ zUg/might be nonreduced. If so we perform the semistable
reduction in codimension one, described in Theorem 7.1. Replacing zU by some
alteration and choosing zUg sufficiently small, we can assume that zh�1.E \ zUg/ is
a reduced, relative, normal crossing divisor.

For a curve yC � E meeting zUg choose a neighborhood U 0 in zU . By con-
struction zh�1. yC \ zUg/ has nonsingular components, meeting transversely. For W 0

choose an embedded desingularization of the components of zh�1. yC/, and assume
that the closure † of zh�1. yC \ zUg/ is the union of manifolds, meeting transversely.
Note that the induced morphism h0 WW 0!U 0 is still flat over some open subscheme
U 0g , meeting yC , and that there are morphisms

 0 W T 0 D T �U U
0
! V 0 D V �U U

0 and � WW 0! T 0:

For yC sufficiently general, �0 is birational and  0 an alteration.
As in the proof of 7.2 one obtains a morphism #0 W U

0
g ! Hilb to the Hilbert

scheme of subvarieties of some PM , parametrizing the fibers of h0.
Since †! yC is flat the restriction of #0 to yC \U 0g extends to a morphism

yC ! Hilb, and the pullback of the universal family over Hilb to yC coincides
with †.

Blowing up U 0 with centers in U 0 nU 0g we obtain a new family, again denoted
by h0 WW 0! U 0, which is flat and such that h0�1. yC/D †. By 7.3(ii), choosing
the neighborhood U 0 of yC small enough, W 0 will be normal and Gorenstein.

Let us drop again all the 0 and assume that the morphisms just constructed

exist over V itself. Now, assume the alterations W
�
�! T

 
�! V , � D  ı �, and

 W†D ��.S/! S such that:

(i) T ! U is mild and  �� is divisible by N .
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(ii) W is normal and Gorenstein, flat over U and � is birational.

(iii) † is reduced, and the union of manifolds, meeting transversely.

The multiplier ideal J.�" ��/ is a direct factor of  �!T=V ˝N�1. Let ı W �W !W

be a desingularization. Then one has

ı�! �W �
�! !W and ��ı�! �W �

�! ��!W
�
�! !T :

Since T has rational singularities, ��ı�! �W D !T and N˝J.�" ��/ is a direct
factor of ��!W=V .

The base change map induces a morphism

� W N˝J.�" ��/jS �! ��!W=V jS �! �!†=S :

Recall that the sheaf J.�" ��/jS is flat over C . By [EV92, Properties 7.5], it
contains J.�" ��jS /, and by assumption both coincide on the general fiber of
S ! C . Hence J.�" ��/jS is torsion-free and � is injective.

Choose O† as the union of all components of † which dominate the irreducible
variety S , and R the union of the other irreducible components R1; : : : ; R`. By
construction, the components of † are nonsingular, and meet transversely. So one
has the exact sequences

0 �! ! O† �! !† �! !R˝OR.R\ O†/ �! 0 and

0 �! �! O† �! �!† �! �.!R˝OR.R\ O†//:

The nonsingular alteration O†! S dominates the covering obtained by taking the
N -th root out of �jS . By Lemma 2.2 the multiplier ideal J.�" ��jS / is a direct
factor of N�1jS ˝ �! O†. On the other hand, the sheaf �.!R ˝ OR.R\ O†// is
contained in M̀

�D1

�.!R� ˝OR�.��//

where �� is the intersection of R� with the other components. Each of the sheaves
�.!R� ˝OR�.��// is torsion-free over its support �.R�/. By construction �.R�/
is dominant over C . By assumption the composite

� W !V ˝N˝J.�" ��/jS
�
�! �!† �!

M̀
�D1

�.!R� ˝OR�.��//

is zero along the general fiber of S ! C ; hence it is zero. So J.�" ��/jS maps to
J.�" ��jS /, and both must be equal. �

8. Saturated extensions of polarizations

As in Section 4, f WX ! Y will denote a projective morphism with smooth
part f0 WX0! Y0 for Y0 � Y dense and with !X0=Y0 relative semiample over Y0.
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If L0 is f0-ample, we choose X and L as in Variant 4.8. Recall the diagram (4.6.1)

(8.0.1) X

f ��

yZ
O'oo

Og ��

Z
Oıoo ı //

g

��

yX

Of��

� // X

f��
Y yY'

oo
'

// Y;

with Og mild, yX nonsingular, and such that the left- and right-hand diagrams are
birational to fiber products. Z is a modification of both yZ and yX . Recall moreover,
that starting from an invertible sheaf L on X with L0 DLjX0 we considered in 5.4
invertible sheaves M� on �, where � stands for Z, yZ and yX . They should satisfy the
compatibilities Oı�MZ DM yZ , ı�MZ DM yX , O'�L�M yZ , M yZ0 DM yZ j yZ0 D O'

�
0L0

and M yX0 DM yX j yX0 D �
�
0L0.

In this section we will impose more conditions on those sheaves. First of
all, if the evaluation map for !�

X0=Y0
˝L

�
0 is surjective, we may replace yX by a

modification with center in yX n yX0 and assume that the image of the evaluation
map

Of � Of�
�
!�
yX= yY
˝M

�

yX

�
�! !�

yX= yY
˝M

�

yX

is invertible. As a first step we have to show that the same is possible with yX
replaced by yZ without losing the mildness of Og. This will simplify some of the
constructions in the next sections, but mainly it will be needed to define saturated
extensions:

Remark 8.1. Assume for a moment that dimY D 1, hence that we can choose
yZ DZ D yX ! yY to be the semistable model; assume moreover that the smooth
fibers of f0 are of Kodaira dimension zero. Then !�

yX= yY
D O yX .…/˝

Of � Of�!
�
yX= yY

;

for some � and for some effective divisor contained in the singular fibers of f .
For MDM yX the sheaf corresponding to the left-hand side in (3.4.1) is the r.1/-th
power of

det
�
Of�
�
!�
yX= yY
˝M

��
˝ det. Of�M/�1

D det
�
Of�

�
O yX

�
�

�
…
�
˝M

��
˝ det. Of�M/�1˝�

�
�
� :

Roughly speaking M will be a saturated extension of the polarization Mj yX0 if

Of�

�
O yX

�
�

�
�…
�
˝M

�
D Of�.O yX .� �…/˝M/D Of�M:

Lemma and Notation 8.2. Consider in Corollary 5.5 for a given tuple .�; �/ 2
I a locally free sheaf E yY and a morphism E yY !

Of�.!
�
yX= yY
˝M

�

yX
/ such that the

evaluation map Of �E yY ! !�
yX= yY
˝M

�

yX
is surjective over yX0. Then, replacing yY by

some nonsingular alteration, yZ by a modification of the pullback family and E yY
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by its pullback, one can assume that beside conditions (a)–(c) in 4.5 and beside
condition (d) in 5.5 one has:

(e) The images of the evaluation maps

Og�E yY ! !�
yZ= yY
˝M

�

yZ
and Of �E yY ! !�

yX= yY
˝M

�

yX

are invertible sheaves. So for some divisors † yZ and † yX those images are of
the form

B yZ D !
�
yZ= yY
˝M

�

yZ
˝O yZ.�† yZ/ and B yX D !

�
yX= yY
˝M

�

yX
˝O yX .�† yX /:

On the common modification Z one has Oı�B yZ D ı
�B yX . We denote this sheaf

by BZ .

Proof. Consider a blowing up � WZ0! yZ such that the image BZ0 of

�� Og�E yY �! !�
Z0= yY

˝ ��M
�

yZ

is invertible.
We perform the weak semistable reduction 4.4 a second time, starting from a

flattening of the morphism Z0! yY as explained in 4.4, Step I. By 4.5 we obtain
a mild morphism zg W zZ1! yY1 and a diagram

yZ

Og ��

Z0
�oo

g 0

��

zZ1
z'1oo

zg1
��

yY yY1:
'1oo

So over yY1 we have two different mild models, zg1 W zZ1! yY1 and g1 W yZ1! yY1,
and a morphism � 0 W zZ1! yZ1. We define M zZ1 as the pullback of M yZ1 .

The sheaf F
.�;�/

yY1
is independent of the mild model, and Corollary 5.5 implies

that '�1F
.�;�/

yY
D F

.�;�/

yY1
. So for E yY1 D '

�E yY the pullback zg�1E yY1 D z'
�
1 �
� Og�E yY

maps surjectively to the invertible sheaf B zZ D z'
�
1BZ0 .

Since the evaluation map Of �0 E yY0 ! !�
yX0= yY0

˝M
�

yX0
is surjective, the same

holds true for the pullback family, and the image sheaf B yX1 is locally free over the

preimage of yY0. So replacing yX1 by a suitable nonsingular modification, we may
assume that it is invertible.

Replacing zZ1 by yZ and dropping the index 1 we found the invertible sheaf B yZ
and B yX . Both, Oı�B yZ and ı�B yX are the images of the evaluation map g�E yY !

!�
Z= yY
˝M

�
Z ; hence they coincide. �

Note that the divisor † yX is supported in the boundary, whereas in general the
divisor † yZ can meet yZ0.
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For dominant morphisms � W yY1! yY or for morphisms from curves, whose
images meet yYg , the sheaves B yZ and B yX are compatible with base change in the
following sense.

Consider yZ1D yZ� yY
yY1 and a desingularization � W yX1! yX� yY

yY1 of the main
component. Writing E yY1 D �

�E yY , the evaluation maps factor through surjections

(8.2.1) Og�1E yY1 �! pr�1B yZ and Of �1 E yY1 �! ��pr�1B yX :

On the other hand, M yZ1D pr�1M yZ and ! yZ1= yY1D pr�1! yZ= yY . So pr�1B yZ is a subsheaf

of !�
yZ1= yY1

˝ M
�

yZ1
, and we write B yZ1 D pr�1B yZ . By Corollary 5.5, F

.�;�/

yY1
D

��F
.�;�/

yY
and Lemma 5.7 implies that the images of the second evaluation maps

in (8.2.1) lie in !�
yX1= yY1

˝M
�

yX1
. Then B yZ1 and B yX1 D �

�pr�1B yX satisfy again the
conditions stated in 8.2.

However in 8.2 we also changed the mild model. Using the notation from
the proof of 8.2 we replaced yZ1 ! yY1 by a new mild model zZ1 ! yY1. One is
allowed to do so, if there is a birational morphism � 0 W zZ1 ! yZ1, as is the case
in 8.2. One chooses M zZ as the pullback of M yZ1 . Then B zZ D �

0�B yZ1 satisfies
again the conditions stated in 8.2.

Addendum 8.3. Assume that yY and yZ are chosen such that the conclusion
of 8.2 holds true. Then we may replace yY by a nonsingular alteration yY1 and
the pullback of the given mild model yZ1! yY1 by any mild morphism zZ1! yY1
provided there is a morphism � 0 W zZ1! yZ1, birational over yY1.

In particular, given a finite number of .�; �/2 I , and a finite number of sheaves
E yY , one can apply 8.2 successively. Since we assumed that F

.�;�/

yY
is locally free,

one possible choice for E yY is the sheaf F
.�;�/

yY
itself.

Notation 8.4. Consider in 5.5 a subset zI � I and assume that for .�; �/ 2 zI
the evaluation map f �0 f0�

�
!�
X0=Y0

˝L
�
0

�
�! !�

X0=Y0
˝L

�
0 is surjective. If one

chooses, in 8.2, E yY DF
.�;�/

yY
, we will write †.�;�/� and B

.�;�/
� instead of †� and

B�, where � stands for yZ, yX or Z. In particular

B
.�;�/
� D !�

�= yY
˝M

�
� ˝O�.�†

.�;�/
� /:

If �D 0 we will write $ .�/
� and ….�/� instead of B

.�;0/
� and †.�;0/� .

Let us collect the properties we require for a well chosen nonsingular alter-
ation yY ! Y and for the morphisms in the diagram (8.0.1).

Conclusion and Notation 8.5. We start with a finite set I of tuples .�; �/ of
natural numbers, and with a subset zI of I . We assume that for some �0 > 0 with
.�0; 0/ 2 zI the evaluation map f �0 f0�!

�0
X0=Y0

! !
�0
X0=Y0

is surjective, and that for

all other .�; 0/ 2 zI the natural number � is divisible by �0.
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Then we can find yY and the diagram (4.6.1) (recalled in (8.0.1)) such that:

(i) Conditions (a), (b) and (c) in Proposition 4.5 hold true, as well as the condi-
tions i) and (ii) in 4.6.

(ii) For .�; 0/ 2 zI there are invertible sheaves $ .�/

yZ
, $ .�/

Z , and $ .�/

yX
on yZ, Z and

on yX , respectively, with surjective evaluation maps,

$
.�/
Z D

Oı�$
.�/

yZ
D ı�$

.�/

yX
and with

F
.�/

yY
WD F

.�;0/

yY
D Og�!

�

yZ= yY
D Og�$

.�/

yZ
D Of�$

.�/

yX
:

(iii) For all .�; 0/ 2 I the sheaves F
.�/

yY
WD F

.�;0/

yY
D Og�!

�
yZ= yY

are locally free.

(iv) There is an open dense subscheme yYg with Og�1. yYg/! yYg smooth such that
for all .�; 0/ 2 I the sheaves F

.�/

yY
D Og�!

�
yZ= yY

are compatible with base change

for morphisms % W T ! yY with %�1. yYg/ dense in T .

(v) In (ii) ….�/Z , ….�/
yZ

and ….�/
yX

denote the divisors with

!
�

Z= yY
D$

.�/
Z ˝OZ

�
…
.�/
Z

�
; !

�

yZ= yY
D$

.�/

yZ
˝O yZ

�
…
.�/

yZ

�
and !

�

yX= yY
D$

.�/

yX
˝O yX

�
…
.�/

yX

�
:

Conclusion and Notation 8.6 (canonical polarizations). All we need in this
case is collected in 8.5. We will of course choose zI and I as subsets of N� f0g.

If L0 ¤ OX0 , i.e., if we consider polarized manifolds, we will need more:

Conclusion and Notation 8.7 (polarizations). We consider in 8.5 an invertible
sheaf L on X with L0 D LjX0 f0-ample, and we choose 0 > 0 such that the eval-
uation map f �0 f0�L

0
0 !L

0
0 is surjective. We fix some subset zI of I consisting

of tuples .ˇ; ˛/ of natural numbers with ˛ divisible by 0 and with ˇ divisible
by �0. By Lemma 5.3 the direct images f0�.!�X0=Y0 ˝L

�
0 / are locally free and

compatible with arbitrary base change, whenever � > 0 and �� 0. For .0; �/ 2 I
we have to add the corresponding statement to the list of assumptions.

Then we can find yY and the diagram (4.6.1) such that conditions (i)–(v) in 8.5
hold true and in addition:

(vi) M yZ , MZ , and M yX are the pullback of L.

(vii) For .ˇ; ˛/ 2 zI there are invertible sheaves B
.ˇ;˛/

yZ
, B

.ˇ;˛/
Z , and B

.ˇ;˛/

yX
on yZ,

Z and on yX , respectively, with surjective evaluation maps, with

B
.ˇ;˛/
Z D Oı�B

.ˇ;˛/

yZ
D ı�B

.ˇ;˛/

yX
and with

F
.ˇ;˛/

yY
D Og�

�
!
ˇ

yZ= yY
˝M˛

yZ

�
D Og�B

.ˇ;˛/

yZ
D Of�B

.ˇ;˛/

yX
:

(viii) For all .�; �/ 2 I the sheaves F
.�;�/

yY
D Og�.!

�
yZ= yY
˝M

�

yZ
/ are locally free.
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(ix) There is an open dense subscheme yYg with Og�1. yYg/! yYg smooth such that
for all .�; �/ 2 I the sheaves F

.�;�/

yY
D Og�.!

�
yZ= yY
˝M

�

yZ
/ are compatible with

base change for morphisms % W T ! yY with %�1. yYg/ dense in T .

(x) †.ˇ;˛/Z , †.ˇ;˛/
yZ

and †.ˇ;˛/
yX

denote the divisors with

!
ˇ

Z= yY
˝M˛

Z DB
.ˇ;˛/
Z ˝OZ

�
†
.ˇ;˛/
Z

�
; !

ˇ

yZ= yY
˝M˛

yZ
DB

.ˇ;˛/

yZ
˝O yZ

�
†
.ˇ;˛/

yZ

�
and !

ˇ

yX= yY
˝M˛

yX
DB

.ˇ;˛/

yX
˝O yX

�
†
.ˇ;˛/

yX

�
:

Allowed Constructions 8.8. The conditions stated in 8.5 and 8.7 and the sheaves
F
.�;�/
� for .�; �/ 2 I are compatible with the following constructions:

I. Replace yY by a nonsingular alteration, yZ by its pullback, and yX by a desin-
gularization of the main component of its pullback.

II. Replace yZ by a mild morphism zZ ! yY , for which there is a birational yY -
morphism � W zZ! yZ.

In particular assume that for some open set U � yY containing yY0 the morphism
f �1.U /! yY is flat. Then one can choose a mild morphism zZ1! yY1 factoring
through �1 W zZ1! yX1, and still assume that 8.5 and 8.7 hold true.

Proof. This has been shown in Addendum 8.3. For the last part, one performs
the weak semistable reduction, starting with yX ! yY instead of zX ! zY in Step I
of 4.4. �

Next we will start to construct the saturated extensions of the polarizations.
Although this will only be applied for families of Kodaira dimension zero, we will
allow !X0=Y0 to be f0-semiample.

LEMMA 8.9. Let M yZ , M yX and MZ be invertible sheaves on yZ, yX and Z,
respectively, satisfying the compatibility conditions in 5.4. Assume that � is a
positive integer with .0; �/ 2 I . Using the notation and conditions in 8.5 one has:

(1) For all "� 0 and for all alterations yY1 of yY

Oı�

�
M�
Z1
˝OZ1

�
" �…

.�0/
Z1

��
DM�

yZ1
˝O yZ1

�
" �…

.�0/

yZ1

�
and

ı�

�
M�
Z1
˝OZ1

�
" �…

.�0/
Z1

��
DM�

yX1
˝O yX1

�
" �…

.�0/

yX1

�
:

(2) For each � > 0 there exists some "0 � 0 such that

� W Og1�M�
yZ1
˝O yZ1

�
"0 �…

.�0/

yZ1

�
�! Og1�M�

yZ1
˝O yZ1

�
" �…

.�0/

yZ1

�
are isomorphisms for all "� "0, and for all alterations yY1 of yY .

Note that (1) and (2) imply that for all "� "0 one also has

Of1�M�
yX1
˝O yX1

�
"0 �…

.�0/

yX1

� Š
�! Of1�M�

yX1
˝O yX1

�
" �…

.�0/

yX1

�
:
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Proof of 8.9. We replace M�
� by M� and assume that � D 1. For (1) consider

the common modification Z. By 8.5(ii)

$
.�0/
Z D Oı�$

.�0/

yZ
D ı�$

.�0/

yX
; and

…
.�0/
Z D Oı�…

.�0/

yZ
C �0 �E yZ D ı

�…
.�0/

yX
C �0 �E yX ;

where E� are effective relative canonical divisors for Z=�. The assumptions ı�MZ

DM yX and ı�MZ DM yX imply that

MZ D
Oı�M yZ ˝OZ.F yZ/D ı

�M yX ˝OZ.F yX /

for effective exceptional divisors F yZ and F yX , and (1) for yY1 D yY follows from the
projection formula. The same argument works over any alteration.

For (2), note that one may replace yY1 by a modification � W yY2 and yZ1 by the
pullback family yZ2 D yZ1 � yY1

yY2 ! yY2. In fact, the divisor … yZ1 is compatible
with pullback, and for all "� 0 one has

pr1�
�

M yZ2 ˝O yZ2

�
� �… yZ2

��
DM yZ1 ˝O yZ1

�
" �… yZ1

�
:

Hence

�� Og2�M�
yZ2
˝O yZ2

�
" �…

.�0/

yZ2

�
D Of1�M�

yX1
˝O yX1

�
" �…

.�0/

yX1

�
and if the first sheaf is independent of ", for " sufficiently large, the same holds for
the second one.

The fibers of yZ ! yY are reduced. Then the compatibility of F
.�0/

yY
with

pullback under alterations and the surjectivity of the evaluation map for !�0
yZ= yY
˝

O yZ.�…
.�0/

yZ
/ imply that ….�0/

yZ
cannot contain a whole fiber. Otherwise, for some

sheaf of ideals J on yY one would have $ .�0/

yZ
� Og�J˝!

�0
yZ= yY

. Blowing up yY one

gets the same, with JD O yY .��/, for an effective divisor � . Then the projection

formula implies that Og�$
.�0/

yZ
� J˝ Og�!

�0
yZ= yY

, contradicting 8.5(ii).
By flat base change, the question whether � is an isomorphism is local for the

étale topology. So by abuse of notation we may replace yY by any étale neighbor-
hood. Hence given y 2 yY we may assume that Og has a section � W yY ! yZ whose
image does not meet ….�0/

yZ
, but meets the open set V0 where O'0 W yZ0! yX0 is an

isomorphism. Let I be the ideal sheaf of �. yY /. For a general fiber F of Of and for
� sufficiently large H 0.F; .'�I�/˝M yX jF /D 0. Then

Og0�

��
I� ˝M yZ ˝O yZ

�
" �…

.�0/

yZ

��ˇ̌̌
yZ0

�
D Of0�

�
O'0�

�
I� ˝O yZ

�
" �…

.�0/

yZ

��ˇ̌̌
yZ0
˝M yX0

�
D 0;
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and Og�M yZ ˝O yZ." �…
.�0/

yZ
/ is a subsheaf of

Og�M yZ=I� D Og�

�
O yZ
�
" �…

.�0/

yZ

�
˝M yZ=I�

�
:

So C D Og�M yZ ˝ O yZ.� �…
.�0/

yZ
/ as a subsheaf of a fixed, locally free sheaf is

isomorphic to Og�M yZ ˝O yZ."1 �…
.�0/

yZ
/ for some "1.

Let � W yY2! yY be a modification, such that C2 D �
�C=torsion is locally free,

and contained in a locally free, locally splitting subsheaf C0 of �� Og1�.M yZ1=I�1 /

with rk.C0/D C2. Writing I2 for the pullback of the sheaf of ideals I, the latter
is of the form Og2�.M yZ2=I�2 /. For some effective divisor D one has an inclusion
C0 � C2˝O yY2.D/. The base change morphism

�� Og�M yZ ˝O yZ
�
" �…

.�0/

yZ

�
�! Og2�M yZ2 ˝O yZ2

�
" �…

.�0/

yZ2

�
implies that for all "� "1

C2 � Og2�M yZ2 ˝O yZ2

�
" �…

.�0/

yZ2

�
� C0 � C2˝O yY2.D/

� Og2�M yZ2 ˝O yZ2

�
"1 �…

.�0/

yZ2
C Og�2D

�
:

Let us choose "0 � "1 so that for an irreducible Weil divisors … the multiplicity in
."0� "1/ �…

.�0/

yZ2
is either zero, or larger that its multiplicity in g�2D. Note that this

choice of "0 is compatible with further pullback.
For "� "0 the image of the evaluation map

Og�2 Og2�M yZ2 ˝O yZ2

�
" �…

.�0/

yZ2

�
�!M yZ2 ˝O yZ2

�
� �…

.�0/

yZ2

�
is contained in the image of Og�2C0!M yZ2 ˝O yZ2.� �…

.�0/

yZ2
/ hence in

M yZ2˝O yZ2

�
"1 �…

.�0/

yZ2
C Og�2D

�
\M yZ2˝O yZ2

�
� �…

.�0/

yZ2

�
�M yZ2˝O yZ2

�
"0 �…

.�0/

yZ2

�
:

We found "0 after replacing yY by some nonsingular modification yY2; hence as
remarked above the same "0 works for yY itself. Moreover, the same "0 works
for all alterations dominating yY2. Since for any alteration yY1 of yY one can find a
nonsingular modification, dominating yY2, one obtains the same for yY1. �

Definition 8.10. Assume that L is an invertible sheaf on X , and let � be a
positive integer. Assume that f0�L�0 is locally free and compatible with arbitrary
base change.

(1) An invertible sheaf M yZ on yZ is a �-saturated extension of L if

O'�L�M yZ � O'
�L˝

�
O yZ
�
� �…

.�0/

yZ

�
\O yZ

�
� � Og�1

�
yY n yY0

��
;(8.10.1)

and if Og1�M�
yZ1
D Og1�

�
M�
yZ1
˝O yZ1

�
" �…

.�0/

yZ1

��
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for all " � 0 and for all alterations yY1! yY . Moreover we require 5.5(d) to
hold for .�; �/D .0; �/, i.e., that there exists an open dense subscheme yYg of
yY such that Og�M�

yZ
is locally free and compatible with pullback for morphisms

� W T ! yY with ��1. yYg/ dense in T .

(2) We call a tuple of invertible sheaves M yZ , M yX and MZ on yZ, yX and Z a
�-saturated extension of the polarization L, if M yZ is � saturated and if (as
in 5.4) Oı�MZ DM yZ , ı�MZ DM yX , M yZ0 D O'

�
0L0 and M yX0 D �

�
0L0.

LEMMA 8.11. Assume that the conditions in 8.5 hold true.

(a) If M yZ is a �-saturated extension of L, one can always find M yX and MZ such
that .M yZ ;M yX ;MZ/ is �-saturated.

(b) The condition (8.10.1) in (1) is equivalent to the existence of an effective
Cartier divisor O…, supported in Og�1. yY n yY0/\ .…

.�0/

yZ
/red, and with

M yZ D O'
�L˝O yZ.

O…/:

(c) If .M yZ ;M yX ;MZ/ is �-saturated

Of1�M�
yX1
D Of1�

�
M�
yX1
˝O yX1

�
" �…

.�0/

yX1

��
D Of�

�
��L� ˝O yX1

�
� �…

.�0/

yX

��
for all "� 0 and for all alterations yY1! yY .

(d) Let zg W zZ ! yY be a second mild morphism and � 0 W zZ1 ! yZ1 a birational
morphism over yY . If M yZ is �-saturated the same holds for M zZ D �

0�M yZ .

(e) If M yZ (or .M yZ ;M yX ;MZ/) is �-saturated, and if �0 divides � then M yZ (or
.M yZ ;M yX ;MZ/) is also �0-saturated, provided that Og�M�0

yZ
is locally free and

compatible with base change for morphisms � W T ! yY with ��1. yYg/ dense
in T .

Proof. (b) is just a translation and the first equality in (c) follows directly
from 8.9. For the second one, apply 8.9 first to the pullback of L and then to M�.
One finds that Of1�M�

yX1
is given by

Of1�

�
��1L� ˝O yX1

�
� �…

.�0/

yX1

��
D Og1� O'

�
1L� ˝O yZ1

�
� �…

.�0/

yZ1

�
D Og1�M�

yZ1
˝O yZ1

�
� �…

.�0/

yZ1

�
:

For (a) consider … D Oı� O… and the divisor ı�… on yX . Define M yX D ��L˝

O yX .ı�…/.
Since ı is a modification of a manifold, …�ı�ı�… is supported in exceptional

divisors for ı, and

ı�M yX � ı
���L˝OZ.…/D Oı

�'�L˝OZ. Oı
� y…/D Oı�M yZ ;

and M yX D ı�
Oı�M yZ . So we can choose MZ D

Oı�M yZ .
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In (d) note that $ .�0/

yZ
is invertible and its pullback is $ .�0/

zZ
. So ….�0/

zZ
�

� 0�…
.�0/

yZ
is an effective divisor, supported in the exceptional locus of � . By the

projection formula, for all "� 0,

� 0�M�
zZ
˝O zZ

�
" �…

.�0/

zZ

�
DM�

yZ
˝O yZ

�
" �…

.�0/

yZ

�
I

hence zg�.M�
zZ
˝O zZ." �…

.�0/

zZ
//D Og�.M

�
yZ
˝O yZ." �…

.�0/

yZ
//. Since the right-hand

side is independent of " the polarization M zZ is again �-saturated.
For (e) note first that condition (2) in Definition 8.10 is independent of �, as

well as (8.10.1) in (1). If for some yY1! yY and some " > 0 the sheaf

Og1�M�0

yZ1
¤ Og1�

�
M�0

yZ1
˝O yZ1

�
" �…

.�0/

yZ1

��
;

then the multiplication map shows that the same holds for all multiples of �0, in
particular for �. �

LEMMA 8.12. Given a natural number � one may choose yY and yZ in 5.4 and
the sheaf M yZ such that M yZ is a �-saturated extension of L.

Proof. Start with any yY as in 8.5 and with M yZ the pullback of the invertible
sheaf L in 4.8. Apply 8.9 to the polarization M�

yZ
, and replace "0 by some larger

natural number, divisible by �.
Define O… to be the sum over all components of ….�0/

yZ
whose image in yY does

not meet '�11 .Y0/, and choose

zM yZ DM yZ ˝O yZ

�
"0
�
� O…
�
:

Note that y… might be just a Weil divisor; hence zM yZ is reflexive, but not necessarily
invertible. So choose a modification � WW ! yZ, such that MW D �

� zM yZ=torsion

is invertible. By Proposition 4.5 there exists a nonsingular alteration � W yY1! yY
such that W ˝ yY

yY1 has a mild model W 0! yY1. Again we may assume that the
conditions in 8.5 hold for W 0! yY1. One has a factorization W 0!W ! yZ of � ,
inducing a birational morphism � 0 WW 0! yZ1 D yZ� yY

yY1. By 8.9(2) we know that
the evaluation map

Og�1 Og1�M�
yZ1

�
� �…

.�0/

yZ1

�
�!M�

yZ1

�
� �…

.�0/

yZ1

�
has image C in M�

yZ1
."0 �…

.�0/

yZ1
/. On the other hand, on Og�1.��1. yY0// the sheaf C

is equal to M�
yZ1

and C lies in the reflexive hull zM.�/

yZ1
of pr�1 zM

�
yZ

. By construction

MW 0 D �
� zM yZ1=torsion is invertible and �� zM.�/

yZ1
=torsion DM�

W 0 .

Writing again ….�0/W 0 for the relatively fixed locus of !�0
W 0= yY1

one has

$
.�0/
W 0 D !

�0

W 0= yY1
˝OW 0

�
�…

.�0/
W 0

�
D � 0�$

.�0/

yZ1
:
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For all "� 0 one obtains

��

�
M�
W 0 ˝OW 0

�
" �…

.�0/
W 0

��
D zM

.�/

yZ1
˝O yZ1

�
" �…

.�0/

yZ1

�
;

and

Og1���M�
W 0 D Og1�

zM
.�/

yZ1
D Og1�

�
zM
.�/

yZ1
˝O yZ1

�
" �…

.�0/

yZ1

��
(8.12.1)

D Og1���

�
M�
W 0 ˝OW 0

�
" �…

.�0/
W 0

��
:

So on W 0 we found the sheaf we are looking for. Finally, Corollary 5.5 allows us
to replace yY1 by some modification, and to assume that condition (d) in 8.7 holds
for .0; �/. �

By 8.11(a) one can construct zM yZ , zMZ and zM yX such that this tuple forms a

�-saturated extension of L0. Perhaps some of the sheaves B
.�;�/
� or the sheaves

B�, depending on E yY in 8.2 are no longer invertible. If so, for zM� and for the given
set I we have to perform again the alterations needed to get the invertible sheaves
in 8.4. Lemma 8.11(d) allows us to do so, without losing the �-saturatedness. So
one is allowed to modify condition (vi) in 8.7, keeping all the other ones:

Conclusion and Notation 8.13 (saturated polarizations). We consider an in-
vertible sheaf L on X , with L0 D LjX0 relatively ample over Y0, and we start
again with a finite set I of tuples .�; �/ of natural numbers. We choose �0 > 0 and
0 > 0 such that the evaluation maps

f �0 f0�!
�0
X0=Y0

! !
�0
X0=Y0

and f �0 f0�L
0
0 ! L

0
0

are surjective.
We fix some subset zI of I consisting of tuples .ˇ; ˛/ with ˛ divisible by 0

and with ˇ divisible by �0. We also fix a positive number � with .0; �/ 2 zI .
Then we can find yY and the diagram (4.6.1) (or in (8.0.1)) such that conditions

(i)–(v) in 8.5 hold true and conditions (vii)–(x) in 8.7 with M� given by:

(vi) There exists a tuple of �-saturated extensions .M yZ ;MZ ;M yX / of L.

Note that by Lemma 8.11(d) the “Allowed Constructions” in 8.8 remain al-
lowed, i.e. they respect condition (vi) in 8.13.

COROLLARY 8.14. The conditions in 8.13 imply that for all "� 0 the direct
images

Og�B
.0;�/

yZ
; Og�M�

yZ
and Og�

�
M�
yZ
˝O yZ

�
" �…

.�0/

yZ

��
coincide, and that they are locally free and compatible with base change for mor-
phisms % W T ! yY with %�1. yYg/ dense in T .

Proof. By definition of “saturated” and by the choice of B
.0;�/

yZ
,

Og�B
.0;�/

yZ
D Og�M�

yZ
D Og�

�
M�
yZ
˝O yZ

�
" �…

.�0/

yZ

��
:
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Since we assumed that .0; �/ 2 I the direct image Og�M�
yZ

is compatible with base

change for alterations. By Addendum 8.3 the same holds true for Og�B
.0;�/

yZ
and

by 8.9 for Og�.M�
yZ
˝O yZ." �…

.�0/

yZ
//. So 8.14 follows from Lemma 5.1(ii). �

Thus, for � D 1 we could choose M yZ to be equal to B
.0;1/

yZ
, but we will

allow other choices. Anyway, it is easy to see that the direct image sheaves are
independent of the choices.

9. The definition of certain multiplier ideals

The alterations, sheaves and divisors as described in the Conclusions and No-
tation 8.6, 8.7 or 8.13 depend on the choice of certain numbers and data. Each
time we add some numbers, we have to reemploy the constructions of Section 8.
In order not to run into an infinite circle of constructions we have to give a complete
list of data at some point, and this is done in the first part of this section.

However, we still have to extend the base change property stated in 8.7(ix) to
certain multiplier ideals

Og�
�
!�
yZ= yY
˝M

�

yZ
˝J.�e �D

�
/;

using Theorem 6.5. As in the proof of Variant 2.4 the multiplier ideals we want
to consider depend on the tautological map „ and on a large number of integers.
So in this section we will include those maps in our bookkeeping. In order to get
the local freeness and the compatibility with base change for certain morphisms,
we will use again the left-hand side of the diagram (4.6.1). Then the compatibility
conditions for the sheaves M� will allow us, as in Lemma 5.7, to pass to the right-
hand side.

Conventions 9.1. Consider for a smooth fiber F a finite tuple „ of determi-
nants and their natural inclusion in the tensor products, i.e., „ D .„1; : : : ; „s/
and

„i W

rî

H 0
�
F;!

�i
F ˝L

i
0

ˇ̌
F

�
�!

riO
H 0

�
F;!

�i
F ˝L

i
0

ˇ̌
F

�
;

where ri D dim.H 0.F; !
�i
F ˝L

i
0 jF //. Then for any r , divisible by r1; : : : ; rs and

for each i one obtains a map� rî

H 0
�
F;!

�i
F ˝L

i
0

ˇ̌
F

��˝ r
ri
�!

rO
H 0

�
F;!

�i
F ˝L

i
0

ˇ̌
F

�
and finally, for  D 1C � � �C s and for �D �1C � � �C �s one has the product

sO
iD1

� rî

H 0
�
F;!

�i
F ˝L

i
0

ˇ̌
F

��˝ r
ri

„.r/

���!

rO
H 0

�
F;!

�
F ˝L


0

ˇ̌
F

�
:
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We will later require certain divisibilities. For example, we will need that the
integers �0 and 0 in 8.5 or 8.7 divide � and  . This can be achieved by replacing
„ by s0 copies .„; : : : ;„/ for a suitable s0.

Note that those conventions carry over to the smooth part of our families,
provided the direct image sheaves f0�.!

�i
X0=Y0

˝L
i
0 / are all locally free and com-

patible with base change. This holds by 5.3 for �i > 0. For �i D 0 we listed this
in 8.7 as an additional condition.

Next we have to explain how to choose the finite sets zI and I in 8.5 or 8.7.

Set-up 9.2. The canonically polarized case. Here we start by choosing an
integer �0 > 0 such that the evaluation map f �0 f0�!

�0
X0=Y0

! !
�0
X0=Y0

is surjective
and we choose ` > 0, divisible by �0. We will assume in 9:1 that i D 0 for all
i , and that � is divisible by `, hence by �0. We choose zI D f.�0; 0/; .�; 0/g. The
set I � N� f0g should contain zI , the tuples .�i ; 0/ for i D 1; : : : ; s and for some
ˇ � 1 the tuple .ˇC �

`
; 0/. For compatibility of the notation we write ˛ D � D 0

and b will denote any positive integer. We choose yY and the different sheaves and
divisors according to 8.5.

The polarized case. If L0 is f0-ample we start with integers �0 >0 and 0 >0
such that the evaluation maps

f �0 f0�!
�0
X0=Y0

! !
�0
X0=Y0

and f �0 f0�L
0
0 ! L

0
0

are both surjective. In addition we will require that for N � 0 and for all fibers F
of f0 the sheaves LN0 jF have no higher cohomology. We choose ` > 0, divisible
by �0 and 0. In 9.1, replacing „ by .„; : : : ;„/, and correspondingly s by some
multiple, one may assume that ` divides  and �. Fix in addition some tuple .ˇ; ˛/
of natural numbers with ˇ � 1 (or a finite set of such tuples), and some positive
integer b, with b � .ˇ � 1; ˛/ 2 �0 �N � 0 �N. The finite set of tuples zI should
contain f.�0; 0/; .0; 0/; .�; /g; and I should contain zI ,�

ˇC
�

`
; ˛C



`

�
and .�i ; i / for i D 1; : : : ; s:

For compatibility reasons we choose � D 0 in this case, and we choose yY and the
different sheaves and divisors according to 8.7.

The saturated polarized case. Everything is as in the polarized case, except
that we also choose some positive multiple � of 0 and assume that .0; �/ 2 I 0, and
apply 8.13 instead of 8.7. In all three cases we fix a natural number e with

(9.2.1) e �
e.!

�
F ˝L


0 jF /

`

for all fibers F of f0, where e denotes the threshold introduced in 2.1. The sheaves
F
.�i ;i /

yY
are locally free. Replacing yY by a nonsingular alteration one finds an
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invertible sheaf V on yY with
sO
iD1

det
�
F
.�i ;i /

yY

� r
ri D

sO
iD1

det
�
Og�
�
!
�i
yZ= yY
˝M

i
yZ

�� rri
D Vr �e�`:

Note that all assumptions remains true when we replace r by some multiple or yY
by an alteration.

We are not yet done. We will need another auxiliary sheaf.

Assumptions and Notation 9.3. Consider for a locally free sheaf E yY a mor-

phism E yY ! F
.ˇ0;˛0/

yY
, where

ˇ0 D b � .ˇ� 1/ � e � `C � � b � .e� 1/ and ˛0 D b �˛ � e � `C  � b � .e� 1/:

For b sufficiently large, the evaluation map

(9.3.1) Of �E yY �! !
ˇ0
yX= yY
˝M˛0

yX

is surjective over yX0. We will choose

(9.3.2) .ˇ0; ˛0/D .b � .ˇ�1/ � e �`C� �b � .e�1/; b �˛ � e �`C �b � .e�1// 2 zI ;

where of course ˛0 D 0 in the canonically polarized case.
Lemma 8.2 allows us to assume (replacing yY by an alteration) that the image

of the evaluation map (9.3.1) is an invertible sheaf B yX , and that the image of

Og�E yY �! !
ˇ0
yZ= yY
˝M˛0

yZ
is an invertible sheaf B yZ . We again write † yZ for the

effective divisor with B yZ D !
ˇ0
yZ= yY
˝M˛0

yZ
˝O yZ.�† yZ/:

Variant 9.4. In the application we have in mind E yY will be a subsheaf of

F
.ˇ1;˛1/

yY
˝ � � �˝F

.ˇs ;˛s/

yY
;

with cokernel supported in yY n yY0. Here we have to assume that for all �2 f1; : : : ; sg
the evaluation map for !ˇ�

yX= yY
˝M˛�

yX
is surjective over yX0.

The morphism E yY ! F
.ˇ0;˛0/

yY
will be induced by the multiplication map

F
.ˇ1;˛1/

yY
˝ � � �˝F

.ˇs ;˛s/

yY

m
�! F

.ˇ0;˛0/

yY
:

Of course one needs that ˇ1C � � �Cˇs D ˇ0 and ˛1C � � �C˛s D ˛0. In this case
one can replace the condition (9.3.2) by

(9.4.1) .ˇ1; ˛1/; : : : ; .ˇs; ˛s/ 2 zI :

Finally remark that here B yZ is contained in the tensor product of the sheaves

B
.ˇ�;˛�/

yZ
and this inclusion is an isomorphism on yZ0.

We need a long list of different sheaves and divisors on certain products.
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Notation 9.5. (saturated) polarized case. Let Og W yZ! yY be the mild morphism
constructed in 8.5, 8.7 and 8.13 using the data given in 9.1–9.4 (or by abuse of
notation, its pullback under a morphism from a curve to yY , if it is mild). Consider
the r-fold product

Ogr W yZr D yZ � yY � � � � yY
yZ! yY ; and M yZr D pr�1M yZ ˝ � � �˝ pr�rM yZ :

For .�; �/ 2 I , one obtains by flat base change

(9.5.1) Ogr�
�
!�
yZr= yY

˝M
�

yZr

�
D

rO
Og�
�
!�
yZ= yY
˝M

�

yZ

�
D

rO
F
.�;�/

yY
:

For .�; �/ D .�; / the equality (9.5.1) implies that the image of the evaluation
map

Ogr� Ogr�!
�

yZr= yY
˝M



yZr
�! !

�

yZr= yY
˝M



yZr

is the invertible sheaf B
.�;/

yZr
WD pr�1B

.�;/

yZ
˝ � � �˝ pr�rB

.�;/

yZ
. So the definition of

B
.�;/

yZr
is compatible with the one in 8.7, and B

.�;/

yZr
can be written as

!
�

yZr= yY
˝M



yZr
˝O yZr

�
�†

.�;/

yZr

�
for †

.�;/

yZr
D

rX
iD1

pr�i †
.�;/

yZ
:

Since Ogr�.!
�

yZr= yY
˝M



yZr
/D Ogr�B

.�;/

yZr
, one has an inclusion

Vr �e�` D

sO
iD1

det
�
Og�M

i
yZ
˝$

�i
yZ

�˝ r
ri

„.r/

���!

rO
Og�
�
!
�

yZ= yY
˝M



yZ

�
D Ogr�B

.�;/

yZr

which splits locally, hence a section of B
.�;/

yZr
˝ Ogr�V�r �e�` whose zero divisor

� yZr does not contain any fiber (but perhaps components of fibers).
In 9.3 one can apply (9.5.1) to see that the invertible sheaf

B yZr D pr�1B yZ ˝ � � �˝ pr�rB yZ

is again the image of the evaluation map Ogr�E˝r
yY
! !

ˇ0
yZr= yY

˝M˛0
yZr

.

In Variant 9.4 the same holds true for the sheaves B
.ˇ�;˛�/

yZr
, hence for their

tensor product and for the image B yZr of Ogr�E˝r
yY

. In both cases one finds

B yZr D !
ˇ0
yZr= yY

˝M˛0
yZr
˝O yZr .�† yZr /; for † yZr D

rX
iD1

pr�i † yZ :

To shorten the expressions, we put

� yZr D b �
�
� yZr C†

.�;/

yZr

�
C† yZr ; N D b � e � `

and G
.„.r/;EIˇC�

`
;˛C

`
/

yY
D Ogr�

�
!
ˇC�

`

yZr= yY
˝M

˛C
`

yZr
˝J

�
�
1

N
�� yZr

��
:
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We will usually write G
.ˇC�

`
;˛C

`
/

yY
instead of G

.„.r/;EIˇC�
`
;˛C

`
/

yY
, keeping however

in mind that this sheaf depends on the choice of r , of the tautological maps „i and
on E.

Canonically polarized case. We will use the same notation. This is a bit queer,
but it allows us to handle both cases in the same way. So in this case ˛ D  D 0
and M� D O�.

LEMMA 9.6. Under the assumptions made in 9.1–9.4 one may choose yY and
yZ in 8.5, 8.7 or 8.13 and an open dense subscheme yYg � yY0 such that in addition
to conditions (i)–(v) in 8.5 or to (i)–(x) in 8.7 or 8.13 on has:

(xi) The multiplier ideal sheaves J
�
�

1
b�e�`
�� yZr

�
are compatible with pullback,

base change and products with respect to yYg , as defined in 6.4. In particular

they are flat over yY and the direct image sheaves G
.ˇC�

`
;˛C

`
/

yY
are compatible

with pullback for morphisms % W T ! yY where % is either dominant and T a
normal variety with at most rational Gorenstein singularities, or where T is a
nonsingular curve and %�1. yYg/ dense in T . Moreover for r 0 > 0

G
.„.r/;EIˇC�

`
;˛C

`
/

yY

˝r 0

D G
.„.r �r

0/;EIˇC�
`
;˛C

`
/

yY
:

Proof. Choose ND !
ˇ�1C�

`

yZr= yY
˝M

˛C
`

yZr
. Then NN ˝O yZr .�� yZr / is equal toh

!
ˇ0
yZr= yY
˝M˛0

yZr
˝O yZr

�
�† yZr

�i
˝

h
!
��b

yZr= yY
˝M

 �b

yZr
˝O yZr

�
�b
�
†
.�;/

yZr
C� yZr

��i
;

where the first factor is the image of Ogr�E˝r
yY

whereas the second one is the b-th

power of B
.�;/

yZr
˝O yZr .�� yZr /D Og

r�Vr �e�`. So we obtain:

CLAIM 9.7. For N, for�D� yZr , and for EDE˝r
yY
˝Vb�r �e�` the assumptions

made in 6.1 hold true (for Z replaced by yZr ).

Thus, we are allowed to apply Theorem 6.5. Dropping the index 1, assume
that yY D yY1, hence that J

�
�
1
N
�� yZr

�
is compatible with pullback, base change

and products with respect to yYg .
For AD O yZr in Definition 6.4 the properties (i) and (ii) give the compatibility

with pullback under %, and by flat base change also the compatibility with products.
�

Before proving an analog of Lemma 5.7 for the sheaves G
.ˇC�

`
;˛C

`
/

yY
we have

to extend the definition of the sheaves and divisors to desingularizations of com-
pactifications of yXr0 ! yY0 (or again of the pullback of this morphism to a curve,
meeting yY0).

Notation 9.8. Consider the r-fold product Of r W yXr D yX � yY � � � � yY
yX ! yY .

The morphism �0 WX .r/! yXr is obtained by desingularizing the main component
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of yXr . By 4.2 the morphism Ogr W yZr ! yY in 9.5 and 9.6 is again mild, hence it is
a mild model of the induced morphism f .r/ WX .r/! yY . Let us write

MX.r/ D �
0�
�
pr�1M yX ˝ � � �˝ pr�rM yX

�
:

Recall that for � divisible by �0 and for � divisible by 0 the evaluation map

Of r0
� Of r0�

�
!�
yXr0=
yY0
˝M

�

yXr0

�
�! !�

yXr0=
yY0
˝M

�

yXr0

is surjective, where again the index 0 refers to the preimages of Y0 or for sheaves
to their restriction. Consider a nonsingular modification Oır W Z.r/ ! yZr which
allows a morphism ı.r/ WZ.r/!X .r/, and which dominates the main component
of Z � yY � � � � yY Z. Defining MZ.r/ as the pullback of pr�1MZ ˝ � � �˝ pr�rMZ , one

has Oır
�

M yZr �MZ.r/ and ı.r/
�

MX.r/ �MZ.r/ .

LEMMA 9.9. The sheaves MZ.r/ , M yZr and MX.r/ satisfy again the assump-
tions asked for in 5.4.

Proof. Since yZr is normal the assumption Oı�MZ DM yZ in 5.4 implies that

Oır�MZ.r/ DM yZr :

For MX.r/ note first, that ı�M yX ˝OZ.F /DMZ , for some ı-exceptional effective
divisor F . Consider the diagram

Zr � yXr X
.r/ � //

p1

��

X .r/

�

��
Zr

ır // Xr :

Then ır�.pr�1M yX ˝� � �˝pr�rM yX / is a subsheaf of pr�1MZ˝� � �˝pr�rMZ and both
coincide outside of a divisor F 0 with codim. Oır.F 0//� 2. So the same holds true
for the subsheaf

p�1ı
r�.pr�1M yX ˝ � � �˝ pr�rM yX /D �

�MX.r/

of p�1 .pr�1MZ ˝ � � �˝ pr�rMZ/: The statement is independent of the desingulariza-
tion. Hence we may assume that Z.r/ dominates the main component of Zr � yXr
X .r/. Now, ı.r/

�
MX.r/ ˝OZ.r/.F

00/DMZ.r/ for some effective ı.r/ exceptional
divisor F 00. �

Lemma 9.9 allows us to apply Lemma 5.7 and

(9.9.1) f
.r/
�

�
!�
X.r/= yY

˝M
�

X.r/

�
D Ogr�

�
!�
yZr= yY

˝M
�

yZr

�
:

For .�; �/ 2 I one can use flat base change and the projection formula to identify
the right-hand side as

rO
Og�
�
!�
yZ= yY
˝M

�

yZ

�
:
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Using 5.7 again, one finds

f
.r/
�

�
!�
X.r/= yY

˝M
�

X.r/

�
D

rO
Of�
�
!�
yX= yY
˝M

�

yX

�
:

In particular those sheaves are locally free and compatible with base change for
morphisms % W T ! yY with %�1. yYg/ dense in T .

Next we move to the right-hand side of the diagram (4.6.1) and redefine all
the sheaves and divisors from 9.5 with yZr replaced by yX .r/ or Z.r/. As in 9.5 we
will give the definitions in the polarized case. For the canonically polarized case
the last lines of 9.5 apply.

Notation 9.10. As at the end of the proof of Lemma 8.2, blowing up X .r/

with centers outside yXr0 , one may assume that the image of

f .r/
�
f
.r/
�

�
!
�

X.r/= yY
˝M



X.r/

�
�! !

�

X.r/= yY
˝M



X.r/

is invertible and we denote it by B
.�;/

X.r/
. The effective divisor †.�;/

X.r/
is chosen

such that
B
.�;/

X.r/
˝OX.r/

�
†
.�;/

X.r/

�
D !

�

X.r/= yY
˝M



X.r/
;

hence is supported outside of X .r/0 . If the condition (9.3.2) holds, we can apply
9.8 for the tuple

.ˇ0; ˛0/D .b � .ˇ� 1/ � e � `C � � b � .e� 1/; b �˛ � e � `C  � b � .e� 1//

and obtain an inclusion Er
yY
! f

.r/
� .!

ˇ0

X.r/= yY
˝M˛0

X.r/
/. The image of f .r/

�
Er
yY

under the evaluation map will be denoted by BX.r/ .
In Variant 9.4, i.e., if (9.4.1) holds, one applies (9.9.1) for the tuples .ˇ�; ˛�/.

So one has morphisms
rO�
Og�B

.ˇ�;˛�/

yZ

�
�! f

.r/
�

�
!
ˇ�

X.r/= yY
˝M˛�

X.r/

�
:

The image of f .r/
�
. Og�B

.ˇ�;˛�/

yZ
/˝r is an invertible sheaf B

.ˇ�;˛�/

X.r/
, and the image of

f .r/
�Ns

�D1. Og�B
.ˇ�;˛�/

yZ
/˝r under the product map is

sO
�D1

B
.ˇ�;˛�/

X.r/
� !

ˇ0

X.r/= yY
˝M˛0

X.r/
:

So the image of f .r/
�

E yY is a subsheaf BX.r/ .

In both cases BX.r/ is isomorphic to !ˇ0
X.r/= yY

˝M˛0
X.r/

on yXr0 D f
.r/�1. yY0/.

Blowing up X .r/ we find a divisor †X.r/ with

!
ˇ0

X.r/= yY
˝M˛0

X.r/
DBX.r/ ˝OX.r/.†X.r//:
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Finally equation (9.9.1) implies that

f
.r/
� B

.�;/

X.r/
D f

.r/
�

�
!
�

X.r/= yY
˝M



X.r/

�
D Ogr�

�
!
�

yZr= yY
˝M



yZr

�
:

Hence„.r/ WVr �e�`! Ogr�.!
�

yZr= yY
˝M



yZr
/ induces a section of B

.�;/

X.r/
˝f .r/

�
V�r �e�`

whose zero divisor will be denoted by �X.r/ . Again, we write

�X.r/ D b � .�X.r/ C†
.�;/

X.r/
/C†X.r/ ;

and recall that X .r/0 D yX
r
0 , †.ˇ0;˛0/

X
.r/
0

D†
.�;/

X
.r/
0

D 0 and Oır
�
� yZr D ı

.r/��X.r/ .

LEMMA 9.11. The sheaf G
.ˇC�

`
;˛C

`
/

yY
in 9.6 is equal to

f
.r/
�

�
!
ˇC�

`

X.r/= yY
˝M

˛C
`

X.r/
˝J

�
�
1

N
��X.r/

��
:

On yXr0 D f
.r/�1. yY0/ one has

J
�
�
1

N
��X.r/

�
j yXr0
D J

�
�
1

e �`
�� yXr0

�
D O yXr0

;

and the inclusion G
.ˇC�

`
;˛C

`
/

yY
!
Nr F

.ˇC�
`
;˛C

`
/

yY
is an isomorphism on yY0.

Proof. We keep the notation from 9.8 and assume in addition that the pullbacks
of � yZr and of �X.r/ to Z.r/ are normal crossing divisors.

Since Oır�!Z.r/= yY D ! yZr= yY and ı.r/� !
Z.r/= yY

D !
X.r/= yY

, and since by Lemma

9.9 the same holds for the sheaves M� one can find, for all .�; �/, effective Oır -excep-
tional divisors E

Z.r/= yZr
and F

Z.r/= yZr
and ı.r/-exceptional divisors EZ.r/=X.r/ and

FZ.r/=X.r/ with

!�
Z.r/= yY

˝M
�

Z.r/
D Oır

��
!�
yZr= yY

˝M
�

yZr

�
˝OZ.r/.� �EZ.r/= yZr C� �FZ.r/= yZr /

D ı.r/
��
!�
X.r/= yY

˝M
�

X.r/

�
˝OZ.r/.� �EZ.r/=X.r/ C� �FZ.r/=X.r//:

By Lemma 8.2 one has Oır
�

B
.�;/

yZr
D ı.r/

�
B
.�;/

X.r/
and Oır

�
B yZr D ı

.r/�BX.r/ . This
implies that

Oır
�
†
.�;/

yZr
C��E

Z.r/= yZr
C �F

Z.r/= yZr
Dı.r/

�
†
.�;/

X.r/
C��EZ.r/=X.r/C �FZ.r/=X.r/ ;

and that

Oır
�
† yZr Cˇ0 �EZ.r/= yZr C˛0 �FZ.r/= yZr

D ı.r/
�
†X.r/ Cˇ0 �EZ.r/=X.r/ C˛0 �FZ.r/=X.r/ :
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Moreover Oır
�
� yZr D ı

.r/��X.r/ , and putting everything together one finds

Oır
�
� yZr C .b � .ˇ�1/ �e �`C� �b �e/ �EZ.r/= yZr C .b �˛ �e �`C �b �e/ �FZ.r/= yZr D

ı.r/
�
�X.r/C.b �.ˇ�1/ �e �`C� �b �e/ �EZ.r/=X.r/C.b �˛ �e �`C �b �e/ �FZ.r/=X.r/

and

Oır
�
.!
ˇC�

`
�1

yZr= yY
˝M

˛C
`

yZr
/˝OZ.r/

�
�

h
1

N
� Oır
�
� yZr

i�
D ı.r/

�
�
!
ˇC�

`
�1

X.r/= yY
˝M

˛C
`

X.r/

�
˝OZ.r/

�
�

h
1

N
� ı.r/

�
�X.r/

i�
:

By the definition of multiplier ideals this implies

G
.ˇC�

`
;˛C

`
/

yY
D Ogr�

Oır�

�
!
Z.r/= yY

˝Oır
�
�
!
ˇC�

`
�1

yZr= yY
˝M

˛C
`

yZr

�
˝OZ.r/

�
�

h 1
N
� Oır
�
� yZr

i��
Df

.r/
� ı

.r/
�

�
!
Z.r/= yY

˝ı.r/
�
�
!
ˇC�

`
�1

X.r/= yY
˝M

˛C
`

X.r/

�
˝OZ.r/

�
�

h
1

N
�ı.r/

�
�X.r/

i��
D f

.r/
�

�
!
ˇC�

`

X.r/= yY
˝M

˛C
`

X.r/
˝J

�
�
1

N
��X.r/

��
as claimed in 9.11. In particular one has a natural inclusion

G
.ˇC�

`
;˛C

`
/

yY
! f

.r/
�

�
!
ˇC�

`

X.r/= yY
˝M

˛C
`

X.r/

�
D

rO
F
.ˇC�

`
;˛C

`
/

yY
;

induced by J
�
�
1
N
��X.r/

�
� OX.r/ . It remains to show that the latter is an isomor-

phism over X .r/0 D yX
r
0 .

Since †X.r/ jX.r/0
D†

.�;/

X.r/
j
X
.r/
0

D 0,

G
.ˇC�

`
;˛C

`
/

yY

ˇ̌
yY0
D f

.r/
0�

�
!
ˇC�

`

X
.r/
0 = yY0

˝M
˛C

`

X
.r/
0

˝J
�
�
1

e �`
��
X
.r/
0

��
:

By definition, X .r/0 D yX
r
0 and by [Vie95, Prop. 5.19],

e.� yXr0
/�Max

˚
e.!

�
F r ˝M



X.r/
jF r /I F a fiber of Of0

	
:

By [Vie95, Cor. 5.21] the right-hand side is equal to

Max
˚
e.!

�
F ˝M



yX
jF /I F a fiber of Of0

	
:

So the choice of e in (9.2.1) implies that J
�
�

1
e�`
�� yXr0

�
D O yXr0

. �

Remark 9.12. Replacing e by some larger number one can force the multiplier
ideal J

�
�

1
b�e�`
�� yZr

�
to be equal to O yZr and

G
.ˇC�

`
;˛C

`
/

yY
,!

rO
F
.ˇC�

`
;˛C

`
/

yY
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in 9.11 to be an isomorphism on yY . However, changing e one loses the com-
patibility of the multiplier ideals with pullbacks and, as remarked before in 6.12,
one cannot expect the same e to work over the alterations needed to enforce this
condition.

10. Mild reduction over curves

The sheaves F
.�;�/

yY
and G.ˇC

�
`
;˛C

`
/
D G

.„.r/;EIˇC�
`
;˛C

`
/

yY
are only compat-

ible with base change for dominant morphisms, and for morphisms from curves
whose image meets a certain open subscheme yYg of yY0. We will extend the latter
in Proposition 10.5 to morphisms whose image meets yY0. We need in addition that
the pullback family over C has a semistable or mild model, as will be defined in
this section.

First we consider the sheaves F
.�;�/

yY
. The necessary changes for G

.ˇC�
`
;˛C

`
/

yY
will be discussed in the next section. For the canonically polarized case the last
lines of 9.5 apply. One just has to choose M� D O� and choose ˛ D  D � D 0.

We also need the sheaves M� to be well defined for the restrictions of our fam-
ilies to curves. This is evidently true for the dualizing sheaves, and for the pullback
of the invertible sheaf L on X . For the saturated extensions of the polarization, we
will need some additional arguments. So at some points we will handle the two
cases separately.

We keep in this section the setup and the assumptions from 9.1–9.4, and we
choose the morphisms in the diagram (4.6.1) according to 8.5, 8.7 or 8.13.

Definition 10.1. Consider a nonsingular curve yC , an open dense subscheme
yC0 and a morphism �0 W yC ! Y with �0. yC0/� Y0. We say that � W yC ! yY has a
mild reduction, if there exists a commutative diagram

(10.1.1) yS

Oh
��

� //

��

X �Y yC

pr2
||
yC

of morphisms of normal projective varieties such that

(i) Oh is mild.

(ii) � W yS !X �Y yC is a modification of X �Y yC .

The canonically polarized case. We call Oh W yS ! yC a mild reduction of �0 W yC ! Y .

The polarized case. We call . Oh W yS ! yC ;M yS / a mild reduction of �0 W yC ! Y

( for L), if in addition to (i) and (ii) one has

(iii) M yS D �
�pr�1L.

It is easy to find a mild reduction over yC whenever yC ! �0. yC/ is sufficiently
ramified. As in Section 7 one can desingularize X �Y yC such that all the fibers
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become normal crossing divisors, and then one can replace yC by a larger covering,
to get rid of multiple fiber components.

In the saturated case we have to be more careful. We cannot choose M yS as
the pullback, since we do not want to require the existence of a morphism from yS
to yX .

Definition 10.2. The saturated case. We call . Oh W yS ! yC ;M yS / in 10.1 a mild
reduction of �0 W yC ! Y ( for L or for L and �0), if in addition to (i) and (ii) in 10.1
one has:

(iii0) There exists a Cartier divisor ….�0/
yS

on yS with

Oh� Oh�!
�0
yS= yC
�!$

.�0/

yS
D !

�0
yS= yC
˝O yS .�…

.�0/

yS
/

surjective. Moreover M yS is a �-saturated extension of ��pr�1L, i.e. it satisfies
the condition required for M yZ in 8.10:

��pr�1L�M yS � �
�pr�1L˝ .O yS .� �…

.�0/

yS
/\O yS .�

Oh�1. yC n�0�1.Y0///;

and Oh�M�
yS
D Oh�.M

�
yS
˝O yS ." �…

.�0/

yS
// for all "� 0.

In all cases, if . Oh W yS ! yC ;M yS / is a mild reduction of �0 W yC ! Y for L, we

define F
.�;�/

yC
D Oh�.!

�
yS= yC
˝M

�

yS
/. We will need the compatibility of this sheaf with

pullback:

LEMMA 10.3. Let . Oh W yS ! yC ;M yS / be a mild reduction for �0 W yC ! Y and
for L.

(1) If � W yC1! yC is a finite morphism between nonsingular curves, then

. yS � yC
yC1! yC1; pr�1M yS /

is a mild reduction for �0 ı � .

(2) In (1) base change induces an isomorphism ��F
.�;�/

yC

Š
�! F

.�;�/

yC1
(which we

will write again as an equality of sheaves).

(3) Let � W S ! X �Y yC be a modification of X �Y yC with S nonsingular, and
hD pr2 ı � . In the (canonically) polarized case choose MS D �

�pr�1L. In the
saturated case choose MS according to Lemma 8.11(a). Then

F
.�;�/

yC
D h�

�
!�
S= yC
˝M

�
S

�
:

In particular, the sheaf F
.�;�/

yC
is independent of the mild model.

Proof. Since yS �C C1! C1 is again mild, (1) is obvious and (2) follows by
flat base change. Now, (3) is a special case of Lemma 5.7, where in the saturated
case we use Lemma 8.11(a) for a smooth model dominating both yS and S . �
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LEMMA 10.4. In 8.5 and 8.7, or in 8.13 one may choose an open dense sub-
scheme Yg � Y0 such that for all morphisms

�0 W yC
� 0

�! yY
'
�! Y

with yCg D �0�1.Yg/¤∅ the tuple . yS WD yZ � yY
yC ! yC ;M yS WD pr�1M yZ/ is a mild

reduction for �0 and

(10.4.1) F
.�;�/

yC
D � 0�F

.�;�/

yY
for .�; �/ 2 I:

Proof. Choose Yg , such that '�1.Yg/ is contained in the open set yYg in 8.5(iv)
or 8.7(ix) and such that yZ is smooth over '�1.Yg/. Then the definition of a mild
morphism in 4.1 implies that OhD pr2 W yS D yZ � yY

yC ! yC is mild. In the diagram
(4.6.1) in 4.6 we require the existence of a morphism O' W yZ!X lifting ' W yY ! Y ;
hence there is a modification '0 W yZ!X �Y yY . The fibers of yZ and X �Y yY over
yYg are smooth, and '0 restricts to a modification of those fibers. This implies that
the induced morphism yZ � yY

yC ! yX � yY
yC is birational. The equality in (10.4.1)

follows from 8.7(ix) and from the choice of Yg .
It remains to verify condition (iii0) in the saturated case, as stated in 10.2. By

assumption 8.5(iv) the direct image Og�!
�0
yZ= yY
D Og�$

.�0/

yZ
is locally free and com-

patible with base change for � 0. Then the evaluation map for $ .�0/

yS
WD pr�1$

.�0/

yZ
is surjective, and the first part of condition (iii0) in 10.2 holds true. The second
condition just says that the pullback of L to yS coincides with M over some open
subscheme of yC . This follows, since the same holds for M yZ over yY0. The last
condition follows from Corollary 8.14. �

PROPOSITION 10.5. Let yC be an irreducible curve, and let � 0 W yC ! yY be
a morphism. If yC0 D � 0�1. yY0/ ¤ ∅ and if �0 D ' ı � 0 admits a mild reduction
. Oh W yS ! yC ;M yS /, then F

.�;�/

yC
D � 0�F

.�;�/

yY
for .�; �/ 2 I .

Proof. Note that one may replace yY in 8.5, 8.7 or 8.13 by any modification,
without losing the properties (i)—(x). In particular the sheaves F

.�;�/

yY
are compat-

ible with pullback by dominant morphisms for .�; �/ 2 I . Part (1) of Lemma 10.3
allows us to replace yC by any covering. Hence dropping as usual the lower index 1
one can assume that yY D yY1 in 7.2 and use the three properties stated there. Let
us write h W S ! yC for the induced morphism and MS DM yX jS .

In the (canonically) polarized case MS is the pullback of L to S . By as-
sumption yC ! Y has a mild reduction . Oh W yS ! yC ;M yS /. By 10.3(3), F

.�;�/

yC
D

h�.!
�

S= yC
˝M

�
S / and by Lemma 5.8 this is the pullback of F

.�;�/

yY
.

For the saturated case, we have to argue in a slightly different way. Recall
that we defined in 8.13 the invertible sheaves B

.0;�/

yX
and $ .�0/

yX
as the images of
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the evaluation maps

Of � Of�M�
yX
�!M�

yX
and Of � Of�!

�0
yX= yY
�! !

�0
yX= yY

:

Lemma 5.8 implies that the direct images Of�M�
yX

and Of�!
�0
yX= yY

are compatible with
pullback. The sheaves

B
.0;�/
S DB

.0;�/

yX

ˇ̌
S

and $
.�0/
S D$

.�0/

yX

ˇ̌
S
;

are again invertible and the images of the evaluation maps for M�
S and !�0

S= yC
, re-

spectively. The latter implies that the divisor ….�0/S is the pullback of ….�0/
yX

. By
the definition of �-saturated in 8.10 and by Lemma 8.11(c) one knows that

Of�B
.0;�/

yX
D Of�M�

yX
D Of�

�
M�
yX
˝O yX

�
� �…

.�0/

yX

��
D Of�

�
��L� ˝O yX

�
� �…

.�0/

yX

��
:

Lemma 5.8 implies that the corresponding property holds true for S instead of yX .
By assumption yC ! Y has a mild �-saturated reduction . Oh W yS ! yC ;M yS /.

Let ‰ WW ! S and ‰0 WW ! yS be modifications, with W smooth. By 5.7,

Oh�$
.�0/

yS
D Oh�!

�0
yS= yC
D h�!

�0

S= yC
D h�$

.�0/
S I

hence, ‰0�$ .�0/

yS
D‰�$

.�0/
S . Call this sheaf $ .�0/

W . The divisor ….�0/W with

!
�0

W= yC
D$

.�0/
W ˝OW

�
�…

.�0/
W

�
is of the form ‰0�…

.�0/

yS
C �0 �EW= yS D‰

0�…
.�0/
S C �0 �EW=S , where E

W= yS
and

EW=S are relative canonical divisors. If L� denotes the pullback of L, as in 8.9
one finds that for all "� 0

Oh�

�
L�
yS
˝O yS

�
" �…

.�0/

yS

��
D h�

�
L�S ˝OS

�
" �…

.�0/
S

��
;

and that for some "0 and all "� "0, both sheaves are independent of ". Since for
those " the left-hand side is Oh�B

.0;�/

yS
and the right-hand side h�B

.0;�/
S , the two

sheaves are equal. This implies that ‰0�B
.0;�/

yS
D‰�B

.0;�/
S .

The divisor †.0;�/
yS

and †.0;�/S have the same support as ….�0/
yS
\ Oh�1. yC n yC0/

and ….�0/S , respectively. Define † to be the smallest divisor on W , larger than
‰0�†

.0;�/

yS
\ Oh�1. yC n yC0/ and ‰�†.0;�/S . Adding components of ….�0/W one finds

some †.0;�/W such that

‰0�B
.0;�/

yS
˝OW

�
†
.0;�/
W

�
is the �-th power of an invertible subsheaf MW of LW ˝OW .� �…

.�0/
W /. Obviously

‰0�MW DM yS and ‰�MW DMS , hence we are allowed to apply 5.7 and find

Oh�
�
!�
yS=C
˝M

�

yS

�
D h�

�
!�S=C ˝M

�
S

�
D F

.�;�/

yY

ˇ̌
yC
: �
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11. A variant for multiplier ideals

Let us return to the set-up in 9.1 and to the assumptions introduced in 9.3 or in
Variant 9.4. As in Section 10 we assume that M yZ and M yX are either the structure
sheaves, or the pullback of an invertible sheaf L on X , or �-saturated extensions
of L.

Consider again a nonsingular curve yC and a morphism �0 W yC ! Y whose
image meets Y0, and a mild reduction . Oh W yS ! yC ;M yS / for L, as defined in 10.2.
In particular one has a morphism � W yS !X , and the sheaves

F
.�;�/

yC
D Oh�

�
!�
yS= yC
˝M

�

yS

�
are defined. Lemma 10.3 and Proposition 10.5 imply that �0�F

.�;�/

yY
D ��F

.�;�/

yC
,

whenever one has a lifting

(11.0.1) C 0
�0 //

�

��

yY

'

��
yC

� // Y

with C 0 a nonsingular curve.
We will need that the different invertible sheaves and divisors introduced

in 8.7, 8.9 or 8.13, and in Section 9 are defined for the morphism Oh W yS ! yC .

Assumption 11.1. Assume that the assumptions made in 9.1 and 9.3 hold true,
and that yY , yZ and yX are chosen according to Lemma 9.6.

(1) . Oh W yS ! yC ;M yS / is a mild reduction for �0 W yC ! Y and for L. For �0 the

image $ .�0/

yS
of Oh� Oh�!

�0
yS= yC

in !�0
yS= yC

is locally free, and for .ˇ; ˛/ 2 zI the

images B
.ˇ;˛/

yS
of the evaluation maps of !ˇ

yS= yC
˝M˛

yS
are also.

(2) There exists a subsheaf E yC of F
.ˇ0;˛0/

yC
, with �0�E yY D �

�E yC , for all liftings
O' as in (11.0.1). Moreover the image B yS of the evaluation map

Oh�E yC �! !
ˇ0
yS= yC
˝M˛0

yS

is invertible.

Remark 11.2. If in 9.4 one has E yZ D
Ns
�D1 Og�B

.ˇ�;˛�/

yZ
, condition (2) in 11.1

follows from the assumption .ˇ1; ˛1/; : : : .ˇs; ˛s/ 2 zI for �D 1; : : : ; s.
In fact, the latter implies that the pullbacks of the sheaves F

.ˇ�;˛�/

yS
and F

.ˇ�;˛�/

yY
coincide on C 0, and so does their image under the multiplication map.

If E yZ is smaller, we will need that it is defined on a compactification of Y , in
order to enforce the compatibility condition (2) in 11.1.
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We will write again ….�0/
yS

, †.ˇ;˛/
yS

and † yS for the divisors given by the inclu-

sions $ .�0/

yS
� !

�0
yS= yC

, B
.ˇ;˛/

yS
� !

ˇ

yS= yC
˝M˛

yS
and B yS � !

ˇ0
yS= yC
˝M˛0

yS
.

As in 9.5 one defines the different products, models, sheaves and divisors,
with Og W yZ! yY replaced by Oh W yS ! yC . In particular we have again the divisor

� ySr D b �
�
� ySr C†

.�;/

ySr

�
C† ySr ;

on the r-fold fiber product Ohr W ySr ! yC , and we define

G
.ˇC�

`
;˛C

`
/

yC
D Ohr�

�
!
ˇC�

`

ySr= yC
˝M

˛C
`

ySr
˝J

�
�
1

N
�� ySr

��
D Ohr�

�
!
ˇC�

`

ySr= yC
˝M

˛C
`

ySr
˝J

�
�
1

e �`
�
�
� ySr C†

.�;/

ySr

�
�
1

N
�† ySr

��
;

where N D b � e � ` and � ySr is the zero divisor induced by the natural inclusion

sO
iD1

det
�
Oh�M

i
yS
˝$

�i
yS

�˝ r
ri

„.r/

���!

rO
Oh�
�
!
�

yS= yY
˝M



yZ

�
D Ohr�B

.�;/

ySr
:

Again we should have written G
.„.r/;EIˇC�

`
;˛C

`
/

yC
since the sheaf depends on „.r/

and E, but we hope that the reader will not forget.

LEMMA 11.3. Let � W yC1! yC be a finite, nonsingular covering, and let

ySr1
� 0 //

Ohr1
��

ySr

Ohr

��
yC1

� // yC

be the induced morphism. Then:

(a) If Oh W yS ! yC satisfies Assumption 11.1 then Oh1 W yS1! yC1 satisfies the same
assumption.

(b) J
�
�
1
N
�� ySr1

�
is a subsheaf of � 0�J

�
�
1
N
�� ySr

�
.

(c) There is a natural inclusion

G
.ˇC�

`
;˛C

`
/

yC1
�! ��G

.ˇC�
`
;˛C

`
/

yC
:

Proof. As in the proof of Lemma 8.2, part (a) of 11.3 follows from Lemma
10.3(1) and (2).

For (b), note that pr1 W yS
r
1 !

ySr is flat; hence � 0�J
�
�
1
N
�� ySr

�
has no torsion.

Consider a desingularization � W S ! ySr such that all fibers are normal crossing
divisors, and such that ��� ySr is a relative normal crossing divisor. Then ��.� ySr /
is a normal crossing divisor, as well.
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Let �1 W S1! ySr1 be the normalization of the pullback family,

S1
� //

�1
##

S � ySr
ySr1

pr1 //

pr2
��

S

�

��
ySr1

� 0 // ySr

and � 00 D pr1 ı � the induced morphisms. By flat base change

� 0���!S= yC

�
�

h
1

N
� ��� ySr

i�
D pr2�pr�1

�
!
S= yC1

�
�

h
1

N
� ��� ySr /

i��
:

Dualizing sheaves become smaller under normalizations, and this sheaf contains

�1�!S1= yC1
˝ � 00

�
OS

�
�

h
1

N
� ��� ySr

i�
:

Since S1 has at most rational Gorenstein singularities, this sheaf remains the same
if we replace S1 by a desingularization. Hence by abuse of notation we may assume
that S1 is nonsingular, that the fibers of S1! yC1 are normal crossing divisors, and
that � 00���� ySr is a relative normal crossing divisor.

Obviously one has an inclusion

OS1

�
�

h
1

N
� � 00
�
��� ySr /

i�
� � 00

�
OS

�
�

h
1

N
� ��� ySr

i�
and hence

�1�!S1= yC1

�
�

h
1

N
� ��1� ySr1

i�
� � 0���!S= yC

�
�

h
1

N
� ��� ySr

i�
as claimed in (b). By flat base change (c) follows from (b). �

Let � W S !X �Y yC be any desingularization of the main component, and let
h WS! yC denote the induced morphism. Recall that we assumed �0 W yC!Y to have
a mild reduction. So we may choose MS as the pullback of L in the (canonically)
polarized case or by Lemma 8.11(a) in the saturated case. Blowing up, we may
assume that for .�; �/ 2 zI the images B

.�;�/
S of the evaluation maps are invertible,

in particular the image $ .�0/
S of h�h�!

�0

S= yC
! !

�0

S= yC
. We write h.r/ W S .r/! yC

for the family obtained by desingularizing the r-fold product Sr D S � yC � � � � yC S ,

where again we assume that $ .�0/

S.r/
is invertible.

As above, or in Section 9 one chooses the sheaf MSr as the exterior tensor
product. MS.r/ will denotes its pullback to S .r/. Since �0 W yC ! Y has a mild
reduction, 5.5 implies that one has again the inclusions

h.r/
�

sO
iD1

det
�
Og�M

i
yS
˝$

�i
yS

�˝ r
ri �!B

.�;/

S.r/

with zero locus �S.r/ . Writing S .r/0 D h
.r/�1.�0�1.Y0// for the smooth part of

h.r/ one obtains by 9.11:
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LEMMA 11.4.

G
.ˇC�

`
;˛C

`
/

yC
Dh

.r/
�

�
!
ˇC�

`

S.r/= yC
˝M

˛C
`

S.r/
˝J

�
�
1

e �`
�
�
�S.r/C†

.�;/

S.r/

�
�
1

N
�†S.r/

��
;

and
J
�
�
1

e �`
�
�
�S.r/ C†

.�;/

S.r/

�
�
1

N
�†S.r/

�ˇ̌̌
S
.r/
0

D O
S
.r/
0

:

In particular the inclusion

G
.ˇC�

`
;˛C

`
/

yC
�

rO
F
.ˇC�

`
;˛C

`
/

yC

is an isomorphism over �0�1.Y0/.

Definition 11.5. The mild reduction . Oh W yS ! yC ;M yS / is exhausting (or ex-
hausting for .„.r/;EIˇC �

`
; ˛C 

`
/) if the properties (1) and (2) in 11.1 hold true

and if:

(3) For all finite coverings of nonsingular curves yC1! yC the inclusion

G
.ˇC�

`
;˛C

`
/

yC1
�! ��G

.ˇC�
`
;˛C

`
/

yC

in 11.3(c) is an isomorphism.

Lemmas 8.2 and 9.6 imply that given �0 W yC ! Y one can always find a finite
covering yC1! yC and a mild reduction for the induced morphism yC1! Y which
is exhausting. Repeating the argument used to prove 10.4 one obtains in addition:

LEMMA 11.6. There exists in 9.6 an open dense subscheme Yg � Y0 such that
for all morphisms

�0 W yC
� 0

�! yY
'
�! Y

from a nonsingular curve yC , with �0�1.Yg/ dense, �0 admits a mild exhausting
reduction . Oh W yS ! yC ;M yS /. Moreover

G
.ˇC�

`
;˛C

`
/

yC
D � 0�G

.ˇC�
`
;˛C

`
/

yY
:

PROPOSITION 11.7. Consider in 9.6 a morphism � 0 W yC ! yY from a nonsin-
gular curve yC with � 0�1. yY0/¤∅.

If �0 D ' ı� 0 admits a mild exhausting reduction . Oh W yS ! yC ;M yS /, then

G
.ˇC�

`
;˛C

`
/

yC
D � 0�G

.ˇC�
`
;˛C

`
/

yY
:

Proof. By 10.5

F
.ˇC�

`
;˛C

`
/

yC
D � 0�F

.ˇC�
`
;˛C

`
/

yY
;

and both sheaves remain unchanged if one replaces yC by some finite covering

or yY by some alteration. The same holds for the subsheaves G
.ˇC�

`
;˛C

`
/

yC
and
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� 0�G
.ˇC�

`
;˛C

`
/

yY
. Hence they coincide, if and only if they coincide on some C 0

finite over yC .
By assumption the multiplier ideal J

�
�
1
N
�� yZ

�
is compatible with pullback,

base change, and products for all alterations. In particular, J
�
�

1
N
�� yZ

�
is flat

over yY .
We are allowed to replace yY by an alteration or by an open neighborhood of

the image of C , hence by a local alteration for yC . So by Proposition 7.8 we may
assume that � 0 is an embedding, that Of is flat and that S D Of �1. yC/ is nonsingular
and semistable over yC . By abuse of notation, we will allow yX to be normal with
rational Gorenstein singularities. By Lemma 7.6 this holds for the total space of
pullbacks under local alterations for yC , and for the fiber products. So we will work
with the condition that Of W yX! yY is a weak semistable reduction for yC , a condition
which is compatible with pullbacks and products. In particular Sr is normal with
at most rational Gorenstein singularities and hr W Sr ! yC has reduced fibers.

As stated in 8.8 one is allowed to replace the mild family Ogr W yZr! yY by some
mild model, dominating the flat part of the weak semistable reduction Of r W yXr! yY .
Here we might lose the compatibility of J

�
�
1
N
�� yZ

�
with pullback, base change,

and products for all alterations. Theorem 6.5 allows us to repair this defect, by
replacing yY by some larger local alteration.

The morphism Of is smooth over yY0, and J
�
�
1
N
�� yXr1

�ˇ̌
Sr1

is trivial over yX0.
So we may apply Proposition 7.11. �

12. Uniform mild reduction and the extension theorem

Constructing the locally free sheaves F
.�;�/

yY
and G

.ˇC�
`
;˛C

`
/

yY
we used the

Weak Semistable Reduction Theorem several times and we have no control on the
alteration yY of Y . As already indicated in 5.9 we will show how to use Gabber’s
Extension Theorem, recalled in 12.6, to obtain those sheaves on a finite covering of
a projective compactification of Y0. Again the latter will be denoted by Y and the
covering will be written as � WW ! Y . In Proposition 12.8 the corresponding result
is formulated for the sheaves F

.�;�/
� whereas the extension to the direct images

G
.ˇC�

`
;˛C

`
/

� of multiplier sheaves is given in Variant 12.11. The Variant 12.10
handles the case of the determinants of F

.�;�/
� , starting from a covering of a coarse

moduli scheme. As an application we will state and prove a generalization of
Theorem 1 allowing arbitrary polarizations in Theorem 12.12 and a variant for
saturated polarizations in 12.13.

We will need in all those cases that the trace map of � WW ! Y splits, i.e.,
that OY is a direct factor of ��OW . By [Vie95, Lemma 2.2] each finite surjective
morphism eW ! Y of reduced schemes, with eW normal, factors through a finite
covering � WW ! Y with a splitting trace map and with eW !W birational. We
will give here a different construction, starting with a fixed embedding Y ,! PN ,
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or more generally with any embedding Y ,! P for P irreducible, normal and
projective. The latter will have the advantage of allowing the gluing, needed to
show the uniform mild extension over curves, required by the extension theorem.

LEMMA 12.1. Let ‰ W P0! P be a finite normal covering and let Y � P be
a closed subvariety. Then � WW D‰�1.Y /! Y has a splitting trace map.

Proof. Since P0 is normal, OP is a direct factor of ‰�OP0 ; hence there is a
surjection ‰�OP0 ! OY . Obviously this factors through ��OW ! OY . �

Definition 12.2. Let z� W eW ! Y be a surjective finite map and Y !P a closed
embedding with P irreducible, normal and projective. Then ‰ W P0! P dominates�W , if P0 is normal and irreducible, if ‰ is a finite covering and if the normalization
V !‰�1.Y /! Y factors as V ! �W ! Y .

LEMMA 12.3. Given z� W eW ! Y and P as in Definition 12.2, there exists
a finite normal covering ‰ W P0 ! P dominating �W . Moreover one may choose
‰ W P0! P to be a Galois covering.

Proof. In order to prove Lemma 12.3 we may assume that �W is normal. Let
us first assume that Y and �W are both irreducible and write K for the function
field of Y . The function field of �W can be written as KŒT �=f for a monic irre-
ducible polynomial f 2KŒT �. For some open subscheme U � P the polynomial
f lies in OY .U \Y /ŒT � and lifts to a monic irreducible polynomial F 2 OP.U /ŒT �.
Choose P0 as the normalization of P in LŒX�=F , where L denotes the function
field of P. The preimage of Y in P0 is birational to �W and since �W ! Y is finite,
the normalization V of ‰�1.Y / dominates �W .

Next assume that Y is irreducible, and that W1; : : : ; Ws are the components
of �W . We already know how to construct ‰� W P0�! P, dominating W�! Y . We
choose ‰ W P0 ! P as the normalization of P1 �P � � � �P Ps . Then ‰�1.Y / is
finite over W1 �Y � � � �Y Ws , and we obtain the factorization of the normalization.
This remains true if we replace P0 by a larger covering, hence we can glue the
construction for different components of Y in the same way.

Finally, if ‰ W P0! P is a finite covering, dominating �W , the normalization
of P0 in the Galois hull of the function field C.P0/ over C.P/ will again dominate�W . So we can add the property “Galois” as well. �

LEMMA 12.4. Let ‰ W P0! P be a finite morphism between normal schemes,
let Y � P be a closed subscheme and Y0 � Y an open set. Let SW be a modification
of W D ‰�1.Y / with centers outside W0 D ‰�1.Y0/. Then there exist normal
modifications yP! P and yP0! P0 with centers in Y nY0 and W nW0, respectively,
such that the induced rational map ‰1 W yP0! yP is a finite morphism and such that
the proper transform of W is SW .

Proof. It is sufficient to consider irreducible varieties P and P0. Assume first
that P0 is Galois over P, say with Galois group � . One can extend the modification
SW !W to a modification P0id!P0 by blowing up an ideal J, with OP0=J supported
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in W nW0. Blowing up the conjugates of J under � 2 � we see that the action of
� 2 � , given by � W P0! P0, extends to a morphism � W P0id! P0� . So � acts on
the fiber product�P P0� ; taken over all � 2 � .

Obviously�P P0� contains an open dense subset of P0, embedded diago-
nally, and we choose yP0 to be the normalization of its closure. The projection to
P0id induces the morphism yP0! P0. The group � acts on yP0, and we can choose
the quotient for yP .

If P0 is not Galois, we replace it by its normalization P00 in the Galois hull
of the function field extension for P0! P. So P0 is the quotient of P00 by some
subgroup � 0 � � . Having constructed yP00, we choose yP0 D yP00=� 0. �

Let us recall Gabber’s Extension Theorem. We start with the following set-up.

Set-up 12.5. Let P be a normal projective scheme, zY � P a closed reduced
subscheme, and let zY0 � zY be open and dense. Let ‰ WP0!P be a finite covering,
with P0 normal, and write W D ‰�1. zY /, W0 D ‰�1. zY0/, z� D ‰jW and z�0 D
‰jW0 . Consider a modification �0 W yY0!W0 with yY0 nonsingular, and a projective
manifold yY containing yY0 as an open dense subscheme.

Let C zY0 and C yY be locally free sheaves on zY0 and yY respectively, such that

for CW0 D z�
�
0C zY0 one has:

(i) ��0CW0 D C yY j yY0 .

(ii) For each morphism � W C ! P0 from a nonsingular projective curve C with
C0 D �

�1.W0/ dense in C , the sheaf .�jC0/
�CW0 extends to a locally free

sheaf CC such that:

(a) If � 0 W yC ! P0 factors through � W yC ! C then C yC D �
�CC .

(b) If � W C ! P0 lifts to a morphism � W C ! yY then CC D �
�C yY .

THEOREM 12.6. In 12.5, blowing up P with centers not meeting zY0 and re-
placing P0 by the normalization of P in its function field, one finds an extension
of CW0 to a locally free sheaf CW on W D‰�1. zY / such that for all commutative
diagrams

yY0
� //

�0
��

yY ƒ
 oo

�
��

W0
� // W

with  either a dominant morphism, or a morphism from a nonsingular curve ƒ
with  �1.W0/¤∅, one has  �CW D �

�C yY .

Proof. This is more or less what is shown in [Vie95, Th. 5.1]. There we
constructed a compactification SW of W0 and the sheaf CSW . Of course, we may
replace SW by a modification of W , and by Lemma 12.4 we can embed SW in a
modification of P0, finite over a modification of P. �
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Applying Theorem 12.6 to prove Theorem 1 we will start with zY0 D Y0 and
with any compactification zY . Theorem 12.6 will force us to choose for Y a mod-
ification of zY in the diagram (4.6.1). This one is a closed subscheme of P. If we
have to reapply Theorem 12.6, as will happen in the proof of Theorem 2(iv), we
may have to replace Y by some modification. Since it is obtained by blowing up P

we can choose W as the preimage in the corresponding normal modification of P0.
The statement of 12.6 is compatible with further blowing ups of yY . So by

abuse of notation, we may assume that there is a morphism yY ! zY , as required in
the diagram (4.6.1) in case zY D Y . We will denote the induced morphisms by

(12.6.1) yY0
�0 //

�0
��

yY

�

��
W0

� //

z�0
��

W
� //

z�
��

P0

‰

��
zY0

� // zY
� // P

and ' D z� ı �. If zY0 D Y0 we will drop all thee.

Addendum 12.7. (1) If we consider a finite set of sheaves C�, we can choose
the same compactification W for all of them. Assume for example that C�
and C0� are two systems of locally free sheaves satisfying conditions (i) and
(ii) in 12.6. Then one may choose W such that both locally free sheaves, CW
and C0W exist, as well as the morphism � in (12.6.1).

(2) Let R be the sheaf of OW algebras RD ��O yY \ ��OW0 . The scheme Spec.R/
is finite and birational over W , the inclusion � lifts to an open embedding of
W0 in Spec.R/. Lemma 12.4 allows us to replace W by this covering, hence
we may assume that ��O yY \ ��OW0 D OW .

(3) If in (1) one has morphisms � WC0
zY0
!C zY0 and �0 WC0

yY
!C yY , compatible with

the pullback in 12.6(i), one has a natural map

C0W �! ���
�C0W D ��C0

yY

�0

�! ��C yY D CW ˝ ��O yY :

So C0W maps to CW ˝R, for the coherent sheaf R considered in (2). Replacing
W by Spec.R/ one obtains �00 W C0W ! CW , and this morphism is compatible
with all further pullbacks.

Let us state three slightly different applications of Theorem 12.6 which will
be proved together after Variant 12.11.

PROPOSITION 12.8. One may choose Y , yY and yZ in 8.5 and 8.7 (or 8.13 in
the saturated case) such that in addition to conditions (i)–(x) one has a diagram
(12.6.1) with zY D Y and z� D � such that:
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I. ‰ is a finite covering, P and P0 are normal and projective, ‰�1.Y /DW , and
� is birational.

II. Let C be a smooth curve and � W C ! Y a morphism. Assume that � factors

through C
�
�!W

�
�! Y , and that C0 D ��1.Y0/ is dense in C . Then � admits

a mild reduction.

III. For .�; �/ 2 I there exists a locally free sheaf F
.�;�/
W on W with ��F

.�;�/
W D

F
.�;�/

yY
, and such that F

.�;�/
W jW0 D �

�
0f�.!

�
X=Y
˝L�/.

IV. For all curves considered in II one has ��F
.�;�/
W D F

.�;�/
C .

Assume for a moment, that a coarse moduli scheme Mh exists for families of
polarized manifolds with Hilbert polynomial h, and that the family f0 WX0! Y0
lies in Mh.Y0/ for the corresponding moduli functor. Assume the induced mor-
phism Y0!Mh is finite. Then we want to factor yY0! zY0 DMh through some
W0, birational to yY0, and finite over Mh with a splitting trace map. In general the
different direct image sheaves do not descend to the moduli schemes, just their de-
terminants. So we only can expect that certain “natural” invertible sheaves descend
to the compactification of the moduli scheme. In the canonically polarized case,
those sheaves will be of the form det.F.�/

yY
/. If one allows arbitrary polarizations,

one has to choose certain rigidifications.

Definition 12.9. Let � and �0 be integers. We call the sheaf

det
�
F
.�;�/
�

��
˝ det

�
F
.�0;�0/
�

��0
a rigidified determinant sheaf, if � �� � rk.F.�;�/� /C �0 ��0 � rk.F.�

0;�0/
� /D 0.

Recall that for the moduli problem of polarized manifolds one does not dis-
tinguish between families

.f0 WX0! Y0;L/ and .f0 WX0! Y0;L˝f
�
0 N/;

where N is an invertible sheaf on yY . Definition 12.9 is made in such a way, that the
rigidified determinant sheaves are invariant under this relation. It follows from the
construction of moduli schemes that some power of a rigidified determinant sheaf
descends to Mh (see [Vie95, Prop. 7.9], for example).

VARIANT 12.10. Assume that Y0 is normal and that the family f0 WX0! Y0
(or .f0 W X0! Y0;L0/) induces a finite morphism Y0!Mh. Then one can find
for a compactification Y of Y0, the schemes yY and yZ in 8.5 and 8.7 (or 8.13 in the
saturated case), such that in addition to conditions (i)–(x) one has for zY0 DMh

the diagram (12.6.1) and:

I. ‰ is a finite covering, P and P0 are normal and projective, ‰�1. SMh/DW ,
and � is birational.
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II. Let C be a smooth curve and � W C !Mh a morphism. Assume that � factors

through C
�
�! W

z�
�! SMh, and that C0 D ��1.Mh/ is dense in C . Then the

induced morphism C ! Y admits a mild reduction.

III. For .�; �/; .�0; �0/ 2 I and �; �0 2 Z let det.F.�;�/� /� ˝ det.F.�
0;�0/
� /�

0

be a
rigidified determinant. Then there exists some p� 1 and an invertible sheaf
C SMh on SMh with

C yY WD
�

det
�
F
.�;�/

yY

��
˝ det

�
F
.�0;�0/

yY

��0�p
D �� z��C SMh :

IV. Under the assumption made in III, for all curves as in II

CC WD
�

det
�
F
.�;�/
C

��
˝ det

�
F
.�0;�0/
C

��0�p
D �� z��C SMh :

VARIANT 12.11. Assume again that zY D Y and that the assumptions made
in 8.5 and 8.7 (or 8.13 in the saturated case) hold true, as well as those made
in 9.1.

Assume there exist for .�; �/ 2 I locally free sheaves F
.�;�/
Y on Y whose

pullback to yY coincides with F
.�;�/

yY
and whose restriction to Y0 is f�.!�X=Y ˝L�/.

Assume moreover, that there are a locally free sheaf EY and a morphism EY !

F
.ˇ0;˛0/
Y satisfying Assumptions 9.3 or 9.4.

Then, replacing Y by a modification with center in Y nY0, one can find yY and
yZ such that 8.5, 8.7 and 9.6 hold, and such that one has a diagram (12.6.1) with:

I. ‰ is a finite covering, P and P0 are normal and projective, ‰�1.Y /DW , and
� is birational.

II. Let C be a smooth curve and � W C ! Y a morphism. Assume that � factors

through C
�
�!W

�
�! Y , and that C0 D ��1.Y0/ is dense in C . Then � admits

a mild exhausting reduction for .„.r/;EIˇC �
`
; ˛C 

`
/.

III. There exists a locally free sheaf G
.ˇC�

`
;˛C

`
/

W on W whose pullback to yY is

the sheaf G
.ˇC�

`
;˛C

`
/

yY
, defined in 9.5. One has an inclusion

G
.ˇC�

`
;˛C

`
/

W

�
�!

rO
F
.ˇC�

`
;˛C

`
/

W ;

and over W0 both sheaves are isomorphic.

Proof of 12.8, 12.10 and 12.11. The verification of the properties I and II in
each of the cases goes along the same line.

In 12.8 and 12.11 one starts with Y D zY , where X0! Y0 extends to a flat
morphism f WX ! Y , as required in Step I of 4.4 or in Variant 4.8. We choose an
embedding Y ! PD PM .

In 12.10 we start with an embedding Mh! PD PM . In order to be able to
use induction on certain strata, we will allow zY0 to be a subscheme of Mh, and
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we choose zY as the closure of zY in P. Correspondingly we will replace Y0 by the
preimage of zY , and Y will be a compactification Y0 such that �0 W Y0! zY0 extends
to a morphism � W Y ! zY , and such that f0 WX0! Y0 extends to a flat projective
morphism f WX ! Y .

In all cases our starting point are morphisms

Y
�
�! zY

�
�! P and f WX �! Y;

and f0 WX0! Y0 is the smooth part of f . So in 12.8 and 12.10 the data zI and I
allow us (by 8.5, 8.7 or 8.13) to choose a diagram as in (4.6.1):

X

f ��

yZ
O'oo

Og ��

Z
Oıoo ı //

g

��

yX

Of��

� // X

f��
P zY

�oo Y
�oo yY'

oo
'

// Y
� // zY

� // P:

In Variant 12.11 we use Lemma 9.6 to get the same diagram, starting with the data
collected in 9.1–9.4. Recall that all those conditions are compatible with pullback
under alterations of yY .

Consider the Stein factorization z� WeV ! zY of ' W yY ! zY . By 12.3 we can find
an irreducible normal covering ‰ W P0! P dominating eV ! zY . So the normaliza-
tion of W WD‰�1. zY / dominates eV . The compatibility of our constructions with
further pullback, allows us to assume that yY is a nonsingular modification of V ,
and we obtain all the morphisms in (12.6.1), except that they are not yet coming by
an application of the extension theorem. In the course of the verification of II we
will have to replace P0 by finite coverings, and by some modification with center
in W nW0. The Lemma 12.4 allows us to replace Y by a modification with center
in Y nY0, and to keep the conditions in I.

By Lemma 10.4 there exists an open dense subscheme Yg � Y0 such that
� W C ! Y admits a mild reduction if ��1.Yg/¤∅ and if � lifts to a morphism
C ! yY . In 12.11 we assumed that the sheaf E yY is the pullback of a sheaf on Y .
So as remarked in 10.2 this allows us to apply 11.6, and the same holds for mild
exhausting reductions.

Replacing Yg by some open dense subscheme, we may assume in addition
that:

(1) In 12.10 one has Yg D ��1. zYg/ for some open dense subscheme zYg of zY .

(2) Wg D z��1. zYg/ is normal and the restriction of � to yYg D ��1.Wg/ is an
isomorphism yYg !Wg .

(2) implies that a morphism � W C ! W from a nonsingular projective curve
C whose image meets Wg lifts to a morphism C ! yY . So the conditions II in
12.8, 12.10 or 12.11 hold for morphisms � W C !W with ��1.Wg/ dense in C .
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The open set Wg will be the large stratum, and next we will construct a similar
open subset of the complement. Let us write zYb for the closure of zY0b D zY0 n zYg in
zY . Correspondingly Yb will be equal to zYb in 12.8 and 12.11, and equal to ��1. zYb/
in 12.10.

The dimension of zYb is strictly smaller than dim. zY /. By induction on the
dimension we assume that we have found a nonsingular alteration yYb ! Yb and
the covering ‰b W P0b! P, satisfying conditions (i)–(v) in 8.5 and (vi)–(x) in 8.7
(or 8.13) and the assumptions made in 9.1 and 9.3 or 9.4, such that the conditions
II hold for zYb instead of zY .

We choose P01 to be one of the irreducible components of the normalization
of P0 �P P0.b/. Writing ‰1 W P01! P for the induced map, we choose yY1 to be a
desingularization of W1D‰�11 . zY /, which maps to yY . So all the conditions needed
in 8.5, 8.7, 8.13 and stated in 9.1, 9.3 and 9.4 remain true.

Let � W C ! zY be a morphism with ��1. zY0/¤∅, and factoring through W1.
If ��1. zYg/¤∅, we are done. Otherwise �.C0/ is contained in zYb . By the choice
of P01, the morphism � factors through P0

b
, hence C ! Y allows again a mild

(exhausting) reduction.
So in each of the three cases considered, we found a nonsingular alteration

satisfying I and II. Dropping as usual the lower index 1 we will use the notation
from the diagram (12.6.1).

Conditions III and IV will follow from the Extension Theorem, so again we
will have to modify all the morphisms in (12.6.1). In order to apply it, we have to
define the sheaves CC in the Set-up 12.5 and to verify properties (i) and (ii) stated
there. This will be done in each case separately.

Let us start with 12.8. Recall that by 8.5 and 8.7 on zY0 D Y0 the sheaves
CY0 D f0�.!

�
X0=Y0

˝L
�
0 / are locally free and compatible with base change for

.�; �/ 2 I . Correspondingly we choose C yY DF
.�;�/

yY
, and CC DF

.�;�/
C , as defined

in 10.2. Then (i) is obviously true, and (ii) follows from II, by Proposition 10.5.

The same argument works for 12.10. However here we have to choose for
CY0 the rigidified determinant

det
�
f0�

�
!�X0=Y0 ˝L

�
0

���
˝ det

�
f0�

�
!�
0

X0=Y0
˝L

�0/
0

��0�p
:

As mentioned already, by [Vie95, Prop. 7.9] for p sufficiently large, this sheaf is
the pullback of an invertible sheaf CMh . Then for C yY and CC , as defined in 12.10
III and IV, property (i) follows from the compatibility of CY0 with pullback, and
(ii) follows again from II, by Proposition 10.5. So the Extension Theorem 12.6
gives the existence of the sheaf CW . It remains to show, that CW , or some tensor
power of CW descends to SMh.

To this aim, we can replace P0 by a finite covering, and assume that C.P0/ is
Galois over C.P/. So the Galois group � acts on W and the quotient is SMh. For
� 2 � one has ��CW D CW . In fact, this holds true on the open dense subscheme
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W0, and on every curve mapping to W and meeting W0. Replacing p by some
multiple, one finds the sheaf C SMh .

In 12.11 we start with

CY0 D

rO
f0�

�
!
ˇC�

`

X0=Y0
˝L

˛C
`

0

�
and with C yY D G

.ˇC�
`
;˛C

`
/

yY
. Again, those sheaves are compatible with pullback,

and (i) follows from Lemma 9.11. Since E yY is the pullback of a sheaf on Y , we
are allowed to use the constructions in Section 11. We choose for CC the sheaf

G
.ˇC�

`
;˛C

`
/

C , defined just before Lemma 11.3. The condition (ii) in the set-up 12.5
follows again from II and from 11.7. So the Extension Theorem gives the existence

of the locally free sheaf G
.ˇC�

`
;˛C

`
/

W and as remarked in 12.7(5) we can assume

that it is a subsheaf of
Nr F

.ˇC�
`
;˛C

`
/

W . By 9.11 the pullback of both to yY0 are
equal, hence their restrictions to W0 as well. �

Let us formulate what we obtained up to now for the sheaves F
.�;�/
� .

THEOREM 12.12. Let f W X ! Y be a flat projective morphism of quasi-
projective reduced schemes, and let L be an invertible sheaf on X . Let Y0 � Y be
a dense open set, with f0 WX0 D f �1.Y0/! Y0 smooth. Assume that !X0=Y0 and
L0 D LjX0 are both f0 semiample.

Let I be a finite set of tuples .�; �/ of natural numbers. Assume that for all
.0; �0/ 2 I the direct image f0�L

�0

0 is locally free and compatible with arbitrary
base change. Then, replacing Y by a modification with centers in Y n Y0, there
exists a finite covering � WW ! Y with a splitting trace map and for .�; �/ 2 I a
locally free sheaf F

.�;�/
W on W with:

(i) ForW0D��1.Y0/ and �0D�jW0 one has ��0f0�.!
�
X0=Y0

˝L
�
0 /DF

.�;�/
W jW0 .

(ii) Let � W T ! W be a morphism from a nonsingular variety T . Assume that
either T !W is dominant or that T is a curve and T0D ��1.W0/ dense in T .
For some r � 1 let X .r/T be a desingularization of

XrT D .X �Y � � � �Y X/�Y T:

Let O'T WX
.r/
T !XrT and f .r/T WX

.r/
T ! T be the induced morphisms and

MD O'�T .pr�1L˝ � � �˝ pr�rL/:

Then f .r/T� .!
�

X
.r/
T =T

˝M�/D
Nr

��F
.�;�/
W .

For �D 0 one obtains, in particular, parts (i) and (ii) of Theorem 1, and we
have seen in Section 2 that those two conditions imply (iii) in Theorem 2, saying
that the sheaf F

.�;0/
W D F

.�/
W is nef. So it remains to prove the “weak stability”

condition (iv). This will be done in Section 13. Let us formulate first a variant of
the last theorem allowing saturated extensions of polarizations.
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VARIANT 12.13. In 12.12 fix some �0 such that the evaluation map for !�0
X0=Y0

is surjective, and some � > 0, with .�0; 0/; .0; �/ 2 I . Then there exists a finite
covering � WW ! Y with a splitting trace map, and for .�; �/ 2 I a locally free
sheaf F

.�;�/
W on W with property (i) and

(ii) Let � W T ! W be a morphism from a nonsingular variety T . Assume that
either T !W is dominant or that T is a curve and T0 D ��1.W0/ is dense
in T . For some r � 1 let X .r/T be a desingularization of .X �Y � � ��Y X/�Y T .

Let O'T WX
.r/
T !Xr and f .r/T WX

.r/
T ! T be the induced morphisms. Assume

that X .r/T is chosen such that the image of the evaluation map for !�0
X
.r/
T =T

is invertible, hence equal to !�0
X
.r/
T =T

˝O
X
.r/
T

.…
X
.r/
T

/ for an effective Cartier

divisor …
X
.r/
T

. Then for MD O'�T .pr�1L˝ � � �˝ pr�rL/ one has

f
.r/
T�

�
!�
X
.r/
T =T

˝M�
˝O

X
.r/
T

�
� �…

X
.r/
T

��
D

rO
��F

.�;�/
W :

Proof of 12.12 and 12.13. Start with yY , yZ and yX according to 8.5 and 8.7
(or 8.13 in 12.13). Choose the compactification Y , and W using Proposition 12.8.

So there are locally free sheaves F
.�/
W (or F

.�;�/
W ), whose pullbacks under �

are the sheaves F
.�/

yY
(or F

.�;�/

yY
). It remains to verify condition (ii) in all cases.

Recall that yX ! yY has a mild model yZ! yY ; hence X .r/T ! yY has yZr ! yY
as a mild model. If T dominates yY property (ii) in 12.12 follows for r D 1 from 8.5
and 8.7, and for r > 1 by flat base change. In 12.13 the same argument works for
a � saturated extension M

X
.r/
T

, and one finds that

f
.r/
T�

�
!�
X
.r/
T =T

˝M
�

X
.r/
T

�
D

rO
��F

.�;�/
W :

In general there is some nonsingular modification � 0 W T 0! T such that (ii) holds
on T 0. The sheaf f .r/T� .!

�

X
.r/
T =T

˝M�/ is independent of the desingularization X .r/T ,

and we may assume that f .r/T factors through h WX .r/T ! T 0. Then

h�

�
!�
X
.r/
T =T

˝M�
�
D

rO
� 0���F

.�;�/
W ˝!�T 0=T ;

and the projection formula implies that

f
.r/
T�

�
!�
X
.r/
T =T

˝M�
�
D

rO
��F

.�;�/
W ˝ � 0�!

�
T 0=T D

rO
��F

.�;�/
W ;

as claimed in 12.12. In the situation considered in 12.13 the same equality holds
with M replaced by the � saturated extension M

X
.r/
T

. However both differ by some
positive multiple of …

X
.r/
T

and
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f
.r/
T�

�
!�
X
.r/
T =T

˝M
�

X
.r/
T

�
D f

.r/
T�

�
!�
X
.r/
T =T

˝M
�

X
.r/
T

˝O
X
.r/
T

�
� �…

X
.r/
T

��
D f

.r/
T�

�
!�
X
.r/
T =T

˝M�
˝O

X
.r/
T

�
� �…

X
.r/
T

��
:

If T is a curve, then by Proposition 12.8 II we know that T !W ! Y admits a
mild reduction and, by part IV, the pullback of F

.�;�/
W is the sheaf F

.�;�/
C defined

in Section 10. So it is equal to h�.!�S=T ˝M
�
S / for a mild model h W S ! T of the

pullback family.
The r-fold fiber product hr W Sr ! T is again mild, and for the exterior tensor

product MSr one has by flat base change hr�.!
�
Sr=T

˝M
�
Sr /D

Nr
��F

.�;�/
W . So

property (ii) in 12.12 or 12.13 for T a curve follows from 5.7. �

13. Positivity of direct images II

Now we are all set to finish the proof of Theorem 2(iv), allowing W0 to be
singular, contrary to Variant 2.4. Lemma 1.9 allows us to replace W by a larger
covering, and we will do so several times. We will also formulate and prove a
generalization to the polarized case, which in particular will imply Lemma 3.2.

As explained in 2.5 we will construct to this aim a locally free subsheaf G

of F
.�;�/
W , isomorphic to F

.�;�/
W over W0, whose pullback to yY remains nef after

tensoring with a “negative” invertible sheaf. The sheaf G will depend on the data
defined in Section 9.

Set-up 13.1. We will specify in each case the tautological maps in 9.1, and
the sheaf E yY according to 9.3 or 9.4. We choose the sets zI and I as in Set-up 9.2
and enlarge them such that 9.3 or 9.4 applies. By abuse of notation we will assume
that the alteration yY and W are chosen according to Theorem 12.12 and Variant
12.13, and moreover we will assume that Variant 12.11 applies, i.e., that the locally

free subsheaf G
.ˇC�

`
;˛C

`
/

W of F
.ˇC�

`
;˛C

`
/

W exists.
In all situations the locally free sheaf E yY in 9.3 or 9.4 will be the pullback of

a locally free sheaf EW , and the invertible sheaf V in 9.1 will be the pullback of
an invertible sheaf VW ; hence the r � e � `-th root out of det.F.�1;1/W /

r
r1 ˝ � � � ˝

det.F.�s ;s/W /
r
rs will exist on W .

Note that all those conditions can be realized, after blowing up Y with centers
in Y nY0 for some finite coveringW !Y with a splitting trace map. The conclusion
stated in the sequel remain true over any model, where the different sheaves are
defined on W , locally free and compatible with pullback.

PROPOSITION 13.2. In 13.1 one has:

(a) If EW is nef , the sheaf G
.ˇC�

`
;˛C

`
/

W ˝V�rW is nef and the sheaf F
.ˇC�

`
;˛C

`
/

W ˝

V�1W is weakly positive over W0.
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(b) If for some invertible sheaf H on W the sheaf EW ˝Hb�e�` is nef , the sheaf

G
.ˇC�

`
;˛C

`
/

W ˝Hr ˝ V�rW is nef and the sheaf F
.ˇC�

`
;˛C

`
/

W ˝H˝ V�1W is
weakly positive over W0.

Proof. Since HD OW in (a) we will handle both cases at once. By 12.11 one
has an inclusion

G
.ˇC�

`
;˛C

`
/

W �

rO
F
.ˇC�

`
;˛C

`
/

W

and both sheaves are isomorphic on W0. Hence using the equivalence of (1) and (2)
in Lemma 1.6, it is sufficient to verify that the first sheaf, tensorized by Hr ˝V�rW
is nef. By Lemma 1.3 this follows if for �HD ��H the sheaf

G
.ˇC�

`
;˛C

`
/

yY
˝�Hr

˝V�r

is nef. We work with the mild model and use the notation from Claim 9.7. There
we verified that the sheaf NN ˝ Ogr�V�N �r˝O yZr .�� yZr / is the image of Ogr�E˝r

yY
,

for N D b � e � `. So Lemma 2.3 implies for N replaced by N˝ Ogr��Hr that for a
very ample sheaf A on yY the sheaf

! yY ˝AmC2
˝G

.ˇC�
`
;˛C

`
/

W ˝Hr
˝V�rW

D ! yY ˝AmC2
˝ Ogr�

�
! yZr= yY ˝N˝J

�
�
1

N
�� yZr

��
˝�Hr

˝V�r

is globally generated. This remains true for r � r 0 instead of r . Since

G
.„.r �r

0/;EIˇC�
`
;˛C

`
/

W D

r 0O
G
.„.r/;EIˇC�

`
;˛C

`
/

W D

r 0O
G
.ˇC�

`
;˛C

`
/

W

Proposition 13.2 follows from the equivalence of (1) and (3) in Lemma 1.6. �

Proof of Theorem 2. Note that we already obtained Theorem 1 in Theorem
12.12, and we keep the choice of � WW !Y made there. The part (iii) of Theorem 2
has been verified in Section 2.

For r� D dim.H 0.F; !
��
F // choose „D .„1; : : : ; „s/ in Proposition 13.4 as

the tuple of tautological maps

„� W

r�̂

H 0
�
F;!

��
F

�
�!

r�O
H 0

�
F;!

��
F

�
:

For some �0 the evaluation map for !�0
X0=Y0

is surjective. Replacing „ by �; : : : ; �
we may assume that �0 divides � D �1 C � � � C �s . We choose ` D �, for r we
choose some positive common multiple of r1; : : : ; rs , for e any integer larger that
1
`
e.!

�
F /, and for b we choose any natural number with b � .� � 2/ divisible by �0.

We choose zI and I such that the numerical conditions in 9.1 hold true.
Thus, ˇ D � � 1, and ˇ0 D b � ˇ � e � `C � � b � .e � 1/. As in 9.3 we assume

that ˇ0 2 zI and for E yY we choose F
.ˇ0/

yY
; hence EW D F

.ˇ0/
W in 13.1.
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Lemma 9.6 and Proposition 12.8 allow us to replace W by some larger cov-
ering with a splitting trace map, and to assume that the conditions in Set-up 13.1
hold. Doing so we are allowed to apply Proposition 13.2(a) and we obtain the weak
positivity of �Ǫ

F
.�/
W

�
˝

sO
�D1

det
�
F
.��/
W

�� r
r�

over W0 for some ˛ > 0. We know by part (iii) of Theorem 2 that the sheaves
det.F.�i /W / are all nef. Hence we can enlarge the a� and assume that a� � r� is
independent of �, hence that

Ns
�D1 det.F.��/W /

r
r� is ample with respect to W0. �

Remark 13.3. If one wants to avoid using s copies of „, one can also argue
in the following way: „.r/ defines an embedding of some linear combination N of
the sheaves det.F.��/W / in the sheaf

N
F
.�/
W , and it is easy to see that this inclusion

locally splits. By part (iii) of Theorem 1 the second sheaf is nef. Then the quotient
is locally free and nef, hence the determinant of

N
F
.�/
W must be ample. So we

can replace, in the assumptions of Theorem 2(iv), s by 1 and �i by some large
number �. In particular, we may assume that the evaluation map for !�0

X0=Y0
is

surjective.

Proof of Corollary 3. As already stated in the introduction, (a) follows from
Theorem 1 and 2. Moreover in order to prove (b), Lemma 1.7(4) allows us to
apply Theorem 1, and to replace F

.�/
Y0

by F
.�/
W0

. In fact, we will choose zI and I as
in the proof of Theorem 2, given above, and we will choose W and EW as we did
there. There is however a subtle point: Even if

N
det.F.�i /W0

/ai is ample and even

if
N

det.F.�i /W /ai is nef, the latter does not have to be ample with respect to W0.
We will not refer to Y anymore so we may blow up the boundaryW nW0. Now

choosing the ai large enough, we may assume that for some divisor B supported
in W nW0 the sheaf

OW .B/˝
O

det
�
F
.�i /
W

�ai
is semiample and ample with respect to W0. Moreover, replacing W by a finite
covering with a splitting trace map, we can assume that the multiplicities of B are
as divisible as needed. So applying 13.2(b) instead of (a) one finds a divisor B 0,
still supported in W nW0 with�Ǫ

F
.�/
W

�
˝OW .�B

0/˝

sO
�D1

det
�
F
.��/
W

�� r
r�

nef and with OW .B
0/˝

Ns
�D1 det.F.��/W /

r
r� ample with respect toW0, which implies

part (b) of Corollary 3. �

Next we will show analogs of Theorem 2 for the sheaves F
.�;�/
W . As in the

proof of Theorem 2 we will rely on Proposition 13.2; however it will be a bit more
complicated to choose the right data to start with.
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PROPOSITION 13.4. Assume in Theorem 12.12 or Variant 12.13 that for some
� > 0 with .0; �/ 2 zI one has det.F.0;�/W /D OW . In 12.13 assume in addition, that
the sheaves M� are �-saturated.

Choose some �0 > 0 such that the evaluation map for !�0
X0=Y0

is surjective,
and let � be a positive multiple of �0, with � � e.L���0 jF / for all fibers F of
f0 WX0! Y0.

(i) Assume that .� ��; � ��/ and .�0; 0/ are in I . Then the sheaf F
.���;���/
W is weakly

positive over W0.

(ii) Assume that for some �0 > 0, divisible by �0 and �

..�C 1/ � �; � � �/; .� � �; � � �/; ..�C 1/ � �0; � � �0/; .�0; 0/ 2 I:

Then for some positive integer c the sheaf

Sc
�
F
..�C1/��;���/
W

�
˝ det

�
F
..�C1/��0;���0/
W

��1
is weakly positive over W0.

Proof. For simplicity we will replace L by L� and assume that � D 1. Choose
an ample invertible sheaf H on W and define

�DMin
˚
� > 0I F

.���;�/
W ˝H������1 is weakly positive over W0

	
:

CLAIM 13.5. The sheaf F
.���;�/
W ˝Ha is weakly positive over W0 for a D

� � � � .�� `
�
/.

Part (i) follows directly from 13.5. In fact, by the choice of �

� � � �
�
��

`

�

�
> � � � � .�� 1/; or � <

� � �

`
:

Then F
.���;�/
W ˝H

�2��2

` is weakly positive over W0. The exponent �
2��2

`
is indepen-

dent of W and H. So the same holds true for any ample invertible sheaf H0 on any
finite covering W 0 of W , and the weak positivity of F

.���;�/
W over W0 follows from

Lemma 1.6.

Proof of Claim 13.5. In the proof we will blow up W with centers in W nW0,
and so we will not use the ampleness of H, just the condition that F

.���;�/
W ˝H�����

is ample with respect to W0.
For r 0 D rk.F.0;1/W / one has the natural locally splitting inclusion

OW D det
�
F
.0;1/
W

�
�!

r 0O
F
.0;1/
W ;

whose pullback to yY is „1 W O yY D det. Og�M yZ/ �!
Nr 0

Og�M yZ :

Choose in 9.1 `D �0 and for „ the tuple consisting of ` copies of „1. Then

1 D � � � D ` D 1;  D ` and �1 D � � � D �` D �D 0:
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By assumption ` �eD �� e.L jF /, as required in 9.1. We choose ˇD � ��D e �` ��
and ˛ D � � 1, and for b0 any positive integer satisfying b0 � .ˇ� 1; ˛/ 2 ` �N�N.
We may assume that � and `D �0 divide b0.

By the choice of � the sheaf

Sb
0���b

0

�
�`
�
F
.���;�/
W

�
˝S

b0

`
���.`�1/

�
F
.�0/
W

�
˝H������.b0���b

0

�
�`/

is ample with respect to W0. We can find some d � 1, a very ample sheaf A on
W and a morphismM

A �! Sd
�
Sb
0���b

0

�
�`
�
F
.���;�/
W

�
˝S

b0

`
���.`�1/

�
F
.�0/
W

�
˝H������.b0���b

0

�
�`/
�

surjective over W0. Blowing up W with centers in W nW0 we can assume that the
image of this map is locally free, hence nef. We write this image as EW ˝H��d �b0�a,
and its pullback to yY as E yY ˝ �

�H��d �b0�a. Let us choose b D d �b0. Multiplication

of sections gives a map to F
.ˇ0;˛0/

yY
˝ ��H��b�a for

ˇ0 D b � �
2
� � � b � ` � �C b � � � .`� 1/ and ˛0 D b � � � � � b � `:

Since � D e � `, ˇ D � � � and ˛ D � � 1 one has

ˇ0 D b � .ˇ� 1/ � e � ` and ˛0 D b �˛ � e � `C ` � b � .e� 1/:

Since �D 0 and  D ` this is just what we required in 9.1, and for a suitable choice
of I the assumptions in 9.1 and 9.4 hold true.

Since the sheaf E yY is the pullback of a locally free sheaf EW on W we can
use 12.11 for W instead of Y , and obtain yY1 ! W1 and a finite covering � W

W1! W with a splitting trace map, such that the sheaf G
.ˇC�

`
;˛C

`
/

W1
D G

.���;�/
W1

exists on W1. The conditions in Set-up 13.1 hold on W1, and for H1 D �
�H the

sheaf EW1 ˝He�`�b�a
1 is globally generated, hence nef. Proposition 13.2(b) implies

that F
.���;�/
W1

˝ Ha
1 is weakly positive over ��1.W0/. By Lemma 1.6 the sheaf

F
.���;�/
W ˝Ha is weakly positive over W0. �

So we finished the proof of part one and we can use in (ii) that the sheaf
F
.���;�/
W is weakly positive over W0. In particular in the first part we can choose

�D 1 and F
.���;�/
W ˝H��� is ample with respect to W0. In the proof of Claim 13.5

we obtain a bit more.

Addendum 13.6. Under the assumptions made in 13.4, there exists a projective
morphism � W W1 ! W such that its restriction ��1.W0/! W0 is finite with a
splitting trace map, and there exists an inclusion

GW1 D G
.���;�/
W1

�

rk.F.0;�/W /O
F
.���;�/
W1

;

surjective over ��1.W0/ with G˝ ��.H/��.��1/�rk.F
.0;�/
W / nef.
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Replacing W by W1 we will assume that the subsheaf GW of
Nr 0 F

.���;�/
W

exists on W , for r 0 D rk.F.0;�/W /. We will use 13.2 a second time, so we have to

choose again data as in Section 9. For r D rk.F..�C1/��
0;�0/

W /, we start with the
tautological morphism

„ W det
�
F
..�C1/��0;�0/
W

�r 0
�!

r �r 0O
F
..�C1/��0;�0/
W :

So �D�1D .�C1/��0 and `DD1D�0. Necessarily one needs ˇD .�C1/�.��1/
and ˛ D � � 1. For e we choose a natural number with ` � e � e.!.�C1/��

0

F ˝L�
0

/,
for all fibers F of f0. For b we choose any positive integer with

b � .ˇ� 1; ˛/ 2 �0 �N�N;

such that r 0 � � � � divides ˛0 D b � .� � 1/ � e � `C  � b � .e � 1/. Comparing the
different constants one finds

ˇ0 D b � ..�C 1/ � .� � 1/� 1/ � e � `C � � b � .e� 1/

D b � � � .� � 1/ � e � `C � � ` � b � .e� 1/C b � ` � ..� � 1/ � e� 1/

D � �˛0C b � ` � ..� � 1/ � e� 1/:

We choose

EW D
� rO

G
˛0
�

W

�
˝

r �r 0O
F
.�0/
W

.b�`�..��1/�e�1/
�0

/

�

� r �r 0O
F
.���;�/
W

˛0
�
�
˝

r �r 0O
F
.�0/
W

.b�`�..��1/�e�1/
�0

/

and E yY will denote its pullback to yY . The r � r 0-tensor product of the multiplication
map gives

E yY �!

r �r 0O
F
.ˇ0;˛0/

yY
:

Since F
.�0/
W is nef, the choice of G in 13.6 implies that EW ˝H˛0�.��1/�r

0

is nef.

Replacing W by a larger covering, we may also assume that det.F..�C1/��
0;�0/

W / is
the r � e � `-th power of an invertible sheaf VW , and that H˛0�.��1/ is the b � e � `-th
power of an invertible sheaf.

So all the conditions made in 13.1 hold, and we can apply Proposition 13.2.
One obtains the weak positivity over W0 of

F
.���;�/
W ˝H

˛0�.��1/

b�e�` ˝V�1W :

The exponent ˛0�.��1/
b�e�`

is independent of W and of the ample invertible sheaf H. So

Lemma 1.6 implies that F
.���;�/
W ˝V�1W is already weakly positive over W0, hence

Sr �e�`
�
F
.���;�/
W

�
˝V�r �e�`W D Sr �e�`

�
F
.���;�/
W

�
˝ det

�
F
..�C1/��0;�0/
W

��1
as well, as claimed in Proposition 13.4(ii). �
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Proof of Lemma 3.2. We start with the models of our morphisms, constructed
in Theorem 12.12 or its Variant 12.13, with �C 1 replaced by �. We may add the
condition det.F.�/W /DOW . In fact, replacingW by a larger covering with a splitting

trace map, [Vie95, Lemma 2.1] allows one to assume that det.F.�/W /DWrk.F.�/W /

for an invertible sheaf W. Then one can replace the polarization on yX ! yY and
on X0 �Y0 W0!W0 by M˝ Of �W�1 and pr�1L0˝ pr�2W�1.

So we may assume that the assumptions in 13.2 and 13.4 hold and Lemma
3.2 follows from Proposition 13.4, by Lemma 1.6. �

14. The Proof of Theorems 5 and 6

In the construction of the compactifications SMh and the sheaf �.p/� we will use
the negativity of the kernels of the multiplication map, stated and proved in [Vie95,
Th. 4.33]. Unfortunately there we did not keep track of what happens along the
boundary, so we have to indicate the necessary modifications of the statements and
proofs.

THEOREM 14.1. Let W be a reduced projective scheme, let W0 � W be
open and dense, let P and Q be locally free sheaves on W . For a morphism
m W S�.P/! Q, surjective over W0, assume that the kernel of m has maximal
variation in all points w 2W0.

If P is weakly positive overW0 then for b�a�0 the sheaf det.Q/a˝det.P/b

is ample with respect to W0.

We will not recall the definition of “maximal variation” given in [Vie95,
Def. 4.32]. Instead we will just explain this notion in the special situation where
the theorem will be applied.

Example 14.2. Assume that over W0 there exists a flat family f0 WX0!W0
and an f0-ample invertible sheaf L0 on X0. Assume that L is fiberwise very ample,
and without higher cohomology. So for all fibers F one has an embedding

F ,! PD P.H 0.F;L0jF /:

Choose ˇ � 1 such that the homogeneous ideal of F is generated in degree ˇ,
for all fibers. Assume that PjW0 D S

ˇ .f0�L0/, that QjW0 D f0�L
ˇ
0 and that m is

the multiplication map. Then the kernel of m has maximal variation in all points
w 2W0 if and only if for each fiber F the set˚
w0 2W0I for F 0D f �10 .w0/ there is an isomorphism .F;L0jF /Š .F

0;L0jF 0/
	

is finite. Moreover this condition is compatible with base change under finite mor-
phisms.

Sketch of the proof of 14.1. We will just recall the main steps of the proof of
[Vie95, Th. 4.33], to convince the reader that one controls the sections along the
boundary, and explain where the condition “maximal variation” enters the scene.
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Writing r D rk.P/ we consider the projective bundle P D P.
Lr P_/ with

� W P!W . On P one has the “universal basis”

s W

rM
OP.�1/ �! ��P;

and s is an isomorphism outside of an effective divisor � on P with

OP.�/D OP.r/˝�
� det.P/:

The universal basis is induced by the tautological map
Lr

��P_! OP.1/. The
latter gives a surjection

rM
��
� r�1̂

P
�
Š

rM
��.P_˝ det.P// �! OP.1/˝�

� det.P/:

Hence OP.1/˝�
� det.P/D OP.r � 1/˝OP.�/ is weakly positive over ��1.W0/.

The sheaf B denotes the image of the composite

S�
� rM

OP.�1/
�
D OP.��/˝S

�
� rM

OP

�
S�.s/
����! S�.P/

��.m/
����! ��Q:

Remark that B! Q is an isomorphism outside �[��1.W nW0/. So there is a
modification � W P0! P with center in this set, such that B0 DB=torsion is locally
free. When OP0.��/ is the pullback of OP.��/, the surjection

S�
� rM

OP0

�
�!B0˝OP0.�/

defines a morphism to a Grassmann variety �0 W P0! Gr .
The condition on the “maximal variation” is used here. One needs the fact that

�0 is quasi-finite on .� ı �/�1.W0/ n ��1�. In the situation considered in Example
14.2 this is obviously true. The kernel of m determines the fiber F as a subscheme
of P.H 0.F;L0jF //. So by assumption there are only finitely many PGl.r � 1;C/
orbits, hence fibers of �jPn�, whose images in Gr can meet. And obviously �0 is
injective on those fibers.

The Plücker embedding gives an ample invertible sheaf on Gr , and its pull-
back to P0 is det.B0/˝ OP0./ with  D � � rk.Q/. So this sheaf is ample with
respect to .� ı �/�1.W0/ n ��1�.

Next, blowing up P0 a bit more, one can also assume that for some � > 0 and
for some divisor E, supported in ��1.�/ the sheaf

det.����Q/� ˝OP0. � �/˝OP0.�E/

is ample with respect to .� ı �/�1.W0/. Also the pullback of a weakly positive
sheaf

���� det.P/r�1˝OP0.�
��/

is weakly positive over .� ı �/�1.W0/.
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Using the equality OP0.r/D �
��� det.P/�1˝ OP0.�

��0/, one finds that for
all � > 0 the sheaf

����.det.Q/�� ˝ det.P/��r��/˝OP0.� � r � /˝OP0.�r �EC � � �
��/

D ����.det.Q/�� ˝ det.P/��r����� /˝OP0.�r �EC .�C � � / � �
��/

is still ample with respect to .� ı �/�1.W0/. For � sufficiently large the correction
divisor �r �E C .�C � � / � ��� will be effective. So we found some effective
divisor �00, supported in ��1.�/ and a; b > 0 such that

����.det.Q/a˝ det.P/b/˝OP0.�
00/

is ample with respect to .� ı �/�1.W0/.
Next, by [Vie95, Lemma 4.29], for all c > 0 one has a natural splitting

(14.2.1) OW �! .� ı �/�OP0.c ��
00/ �! OW ;

compatible with pullbacks. As in [Vie95, Prop. 4.30] this implies that “ampleness
with respect to .� ı �/�1W0 descends from P0 to W :

Let ND det.Q/a˝ det.P/b . Consider two points w and w0 in W0 and T D
w [w0. Let P0T be the proper transform of ��1.T / in P0. The splitting (14.2.1)
gives a commutative diagram

H 0.P0; ����N� ˝OP0.� ��
00// //

�0

��

H 0.W;N�/

�

��
H 0.P0T ; �

���.N� ˝OP0.� ��
00//jP0T

/ // H 0.T;N� jT /

with surjective horizontal maps. For some � � �.w;w0/ the map �0 and hence �
will be surjective. For those � the sheaf N� is generated in a neighborhood of w0 by
global sections t , with t .w/D 0. By Noetherian induction one finds some �0 > 0
such that, for � � �0, the sheaf N� is generated by global sections t1; : : : ; tr , on
W0 n fwg with t1.w/D � � � D tr.w/D 0, and moreover there is a global section t0
with t0.w/¤ 0. For the subspace V� of H 0.W;N�/, generated by t0; : : : ; tr , the
morphism g� WW ! P.V�/ is quasi-finite in a neighborhood of g�1� .g�.w//. In
fact, g�1� .g�.w//\W0 is equal to w.

Again by Noetherian induction one finds some �1 and for � � �1 some sub-
space V� such that the restriction of g� to W0 is quasi-finite. Then g��OP.V�/.1/D

N� is ample with respect to W0. �
We keep the notation introduced in Section 3. We also use the terminology

of [Vie95, 7.4] for the relevant cases, as follows. For Theorem 5 we consider

Case CP: the moduli functor Mh of canonically polarized manifolds.

As shown in Lemma 3.3(2), for Theorem 6 it is sufficient to consider

Case PO: the moduli functor M
.�/

h
of minimal manifolds F with !�F D OF ,

and with a very ample polarization LF without higher cohomology.
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As in the construction of Mh or M .�/

h
in Section 3 we will by abuse of notation

consider Mh and M .�/

h
with their reduced structure.

In general Mh is not a fine moduli space; hence there is no universal family.
However Seshadri’s theorem on the elimination of finite isotropies, recalled in
[Vie95, Th. 3.49], provides us with a finite normal covering �0 W Y0!Mh which
factors over the moduli stack, i.e., which is induced by a family f0 WX0! Y0 (or
by .f0 W X0! Y0;L0/). So we are in the situation considered in Variant 12.10,
and for each rigidified determinant sheaf, as defined in Definition 12.9, we can find
SMh and � W W ! SMh such that C SMh exists. Recall that its pullback is the p-th

tensor power of the given rigidified determinant.
We apply 12.10 to det.F.�/� / and we obtain a morphism � W Y ! SMh. The cor-

responding sheaf C SMh is just the sheaf �.p/� in Theorem 5 (or �.p/� in Theorem 6).
So in order to prove both theorems, it remains to show:

(?) The sheaf �.p/� is nef and ample with respect to Mh.

To do so, Lemma 1.9 allows us to replace SMh by any finite covering, for example
by the normalization of W or by a modification Y of the latter with centers outside
the preimage of Mh.

The preimage of Mh in Y maps to Y0, and we may assume that both are
equal. So we are exactly in the situation considered in Section 4. Replacing Y
by some alteration, finite over Y0, we can assume that the mild morphism yZ! yY
in Proposition 4.5 exists over a desingularization ' W yY ! Y of Y , hence over all
the morphisms in the diagram 4.2. Moreover we can assume that the locally free
sheaf F

.�/

yY
(invertible for M

.�/

h
) in Theorem 1 exists and that it is the pullback of

a locally free sheaf F
.�/
Y on Y . So (?) and hence Theorems 5 and 6 follow from:

CLAIM 14.3. The locally free sheaf F
.�/
Y is nef and ample with respect to Y0.

Proof of 14.3 in Case CP. In addition to fixing � let us fix an �0 such that for
all F 2Mh.Spec.C// the sheaf !�0F is very ample. Choose �1 D ˇ � �0 such that
the multiplication map

m W Sˇ .H 0.F; !
�0
F // �!H 0.F; !

�1
F /

is surjective and such that its kernel generates the homogeneous ideal, defining
F � P.H 0.F; !

�0
F //. By Theorem 1 the sheaves F

.�0/
W , F

.�1/
W and F

.�/
W exist on

some alteration of Y , finite over Y0. So we can replace Y by the normalization
of this alteration, and assume that they exist on Y itself. The multiplication of
sections defines a morphism Sˇ .F

.�0/

yY
/! F

.�1/

yY
; hence as in Addendum 12.7(5)

this is the pullback of m W Sˇ .F.�0/Y /! F
.�1/
Y .

Both sheaves are locally free and by Theorem 5(iii) they are nef. The kernel
of m is of maximal variation, as explained in Example 14.2. By Example 14.2(iii)
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one finds that for some positive integers the sheaf det.F.�1/Y /a ˝ det.F.�0/Y /b is
ample with respect to Y0 and by part (iv) the same holds for F

.�/
Y . �

Proof of 14.3 in Case PO. The proof of Theorem 6 is similar. We choose a
positive integer ˇ, divisible by s D h.1/ such that the multiplication map

m W Sˇ .H 0.F;LjF // �!H 0.F;Lˇ jF /

is surjective for all F 2M
.ˇ/

h
.C/, and such that its kernel defines the homogeneous

ideal of the image of F in P.H 0.F;LjF //. We choose a natural number � divisible
by ˇ with � > e.Lˇ jF /.

Since we are allowed to replace Y by some finite covering, we can apply 8.13,
Proposition 12.8 and [Vie95, Lemma 2.1] and assume:

(1) The sheaves .M yZ ;MZ ;M yX / are ˇ-saturated.

(2) The invertible sheaf �D F
.�/
Y , and the locally free sheaves F

.0;1/
Y and F

.0;ˇ/
Y

exist on Y .

(3) For sD rk.F.0;1/Y / the sheaf det.F.0;1/Y / is the s-th tensor power of an invertible
sheaf N.

Replacing .M yZ ;MZ ;M yX / and F
.ˇ;�/
Y by

.M yZ ˝ Og
�'�N�1; MZ ˝g

�'�N�1; M yX ˝
Of �'�N�1/ and F

.ˇ;�/
Y ˝N��

we can add:

(4) det.F.0;1/Y /D OY and hence det.F.0;1/
yY

/D O yY .

CLAIM 14.4. Assumptions (1)–(4) imply for all �0 divisible by � that:

(5) F
.�0�ˇ;ˇ/
Y D �

�0�ˇ
� ˝F

.0;ˇ/
Y .

(6) det
�
F
.�0�ˇ;ˇ/
Y

�
D �

�0�ˇ�r
� ˝ det

�
F
.0;ˇ/
Y

�
for r D rk

�
F
.0;ˇ/
Y

�
.

(7) F
.�0;1/
Y D �

�0

� ˝F
.0;1/
Y .

(8) det
�
F
.�0;1/
Y

�
D �

s��0

� for s D rk
�
F
.0;1/

yY

�
.

Proof. It is sufficient to verify these four equations on yY . Let ….�/
yX

be the
divisor with

Of �F
.�/

yY
D Of � Of�!

�
yX= yY
D !�

yX= yY
˝O yX

�
�…

.�/

yX

�
:

By Lemma 8.11(c)
(14.4.1)
Of�.!

�0�ˇ

yX= yY
˝M

ˇ

yX
/D �

�0�ˇ
� ˝ Of�

�
M
ˇ

yX
˝O yX

��0 �ˇ
�
�…

.ˇ/

yX

��
D �

�0�ˇ
� ˝ Of�.M

ˇ

yX
/:

So (5) holds true, and (6) as well. For (7) we apply Lemma 8.11(e) saying that the
sheaves .M yZ ;MZ ;M yX / are also 1-saturated. Then the equality (14.4.1) holds for
ˇ replaced by 1. Since det. Of�M yX /D O yY / one obtains (8). �
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Note that Claim 14.4 implies in particular, that the sheaves F
.�0�ˇ;ˇ/
Y , and

F
.�0;1/
Y automatically exist, with all the properties asked for in 12.8.

By Proposition 13.4 we may assume that the sheaves F
.�;1/
Y and F

.��ˇ;ˇ/
Y are

both weakly positive over Y0. Since Y is normal, the multiplication of sections on
yY is the pullback of a morphism m W Sˇ .F

.�;1/
Y /! F

.��ˇ;ˇ/
Y . It is surjective over

Y0 with kernel of maximal variation, as explained in Example 14.2. By Theorem
14.1, for some positive integers a and b the sheaf

(14.4.2) det.F.�;1/Y /a˝ det
�
F
.��ˇ;ˇ/
Y

�b
D �

a�s��Cb���ˇ�r
� ˝ det

�
F
.0;ˇ/
Y

�b
is ample with respect to Y0. Since F

.�;1/
Y is nef, we can replace a by a larger integer,

and assume that a � s is divisible by b � ˇ � r . So for �0 D � � . a�s
b�ˇ �r
C 1/ the sheaf

in (14.4.2) is of the form det.F.�
0�ˇ;ˇ/

Y /b and 13.4(ii) implies that F
.�0;1/
Y is ample

with respect to Y0, hence F
.�/
Y as well. �
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