The Atiyah-Singer index formula for subelliptic operators on contact manifolds. Part I

Abstract

The Atiyah-Singer index theorem gives a topological formula for the index of an elliptic differential operator. The topological index depends on a cohomology class that is constructed from the principal symbol of the operator. On contact manifolds, the important Fredholm operators are not elliptic, but hypoelliptic. Their symbolic calculus is noncommutative, and is closely related to analysis on the Heisenberg group. For a hypoelliptic differential operator in the Heisenberg calculus on a contact manifold we construct a symbol class in the $K$-theory of a noncommutative $C^*$-algebra that is associated to the algebra of symbols. There is a canonical map from this analytic $K$-theory group to the ordinary cohomology of the manifold, which gives a de Rham class to which the Atiyah-Singer formula can be applied. We prove that the index formula holds for these hypoelliptic operators. Our methods derive from Connes’ tangent groupoid proof of the index theorem.

  • [Ar] V. I. Arnold, Mathematical Methods of Classical Mechanics, New York: Springer-Verlag, 1978, vol. 60.
    @book {Ar, MRKEY = {0690288},
      AUTHOR = {Arnold, V. I.},
      TITLE = {Mathematical Methods of Classical Mechanics},
      SERIES = {Grad. Texts Math.},
      VOLUME={60},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1978},
      PAGES = {x+462},
      ISBN = {0-387-90314-3},
      MRCLASS = {58F05 (70.58)},
      MRNUMBER = {57 \#14033b},
      MRREVIEWER = {J. S. Joel},
      ZBLNUMBER = {0386.70001},
      }
  • [BG] R. Beals and P. Greiner, Calculus on Heisenberg Manifolds, Princeton, NJ: Princeton Univ. Press, 1988.
    @book {BG, MRKEY = {953082},
      AUTHOR = {Beals, Richard and Greiner, Peter},
      TITLE = {Calculus on {H}eisenberg Manifolds},
      SERIES = {Annals of Math. Studies},
      NUMBER = {119},
      PUBLISHER = {Princeton Univ. Press},
      ADDRESS = {Princeton, NJ},
      YEAR = {1988},
      PAGES = {x+194},
      ISBN = {0-691-08500-5; 0-691-08501-3},
      MRCLASS = {35S05 (32F20 35-02 47G05 58G15)},
      MRNUMBER = {89m:35223},
      MRREVIEWER = {Kenneth G. Miller},
      ZBLNUMBER = {0654.58033},
      }
  • [Bo] Go to document L. Boutet de Monvel, "On the index of Toeplitz operators of several complex variables," Invent. Math., vol. 50, iss. 3, pp. 249-272, 1978/79.
    @article {Bo, MRKEY = {520928},
      AUTHOR = {Boutet de Monvel, Louis},
      TITLE = {On the index of {T}oeplitz operators of several complex variables},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {50},
      YEAR = {1978/79},
      NUMBER = {3},
      PAGES = {249--272},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {58G10 (32F20 58B15)},
      MRNUMBER = {80j:58063},
      MRREVIEWER = {V. S. Rabinovich},
      DOI = {10.1007/BF01410080},
      ZBLNUMBER = {0398.47018},
      }
  • [CG] L. J. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and their Applications. Part I: Basic Theory and Examples, Cambridge: Cambridge Univ. Press, 1990.
    @book {CG, MRKEY = {1070979},
      AUTHOR = {Corwin, Lawrence J. and Greenleaf, Frederick P.},
      TITLE = {Representations of Nilpotent {L}ie Groups and their Applications. {P}art {\rm I:} Basic Theory and Examples},
      SERIES = {Cambridge Studies in Adv. Math.},
      NUMBER = {18},
      PUBLISHER = {Cambridge Univ. Press},
      ADDRESS = {Cambridge},
      YEAR = {1990},
      PAGES = {viii+269},
      ISBN = {0-521-36034-X},
      MRCLASS = {22E27 (22-01 22E25 22E30)},
      MRNUMBER = {92b:22007},
      MRREVIEWER = {Jeffrey Fox},
      ZBLNUMBER = {0704.22007},
      }
  • [CGGP] Go to document M. Christ, D. Geller, P. Głowacki, and L. Polin, "Pseudodifferential operators on groups with dilations," Duke Math. J., vol. 68, iss. 1, pp. 31-65, 1992.
    @article {CGGP, MRKEY = {1185817},
      AUTHOR = {Christ, Michael and Geller, Daryl and G{\l}owacki, Pawe{\l} and Polin, Larry},
      TITLE = {Pseudodifferential operators on groups with dilations},
      JOURNAL = {Duke Math. J.},
      FJOURNAL = {Duke Mathematical Journal},
      VOLUME = {68},
      YEAR = {1992},
      NUMBER = {1},
      PAGES = {31--65},
      ISSN = {0012-7094},
      CODEN = {DUMJAO},
      MRCLASS = {35S05 (22E30 47G30 58G15)},
      MRNUMBER = {94b:35316},
      MRREVIEWER = {Xue Bo Luo},
      DOI = {10.1215/S0012-7094-92-06802-5},
      ZBLNUMBER = {0764.35120},
      }
  • [Co1] Go to document A. Connes, "An analogue of the Thom isomorphism for crossed products of a $C^{\ast} $-algebra by an action of ${\bf R}$," Adv. in Math., vol. 39, iss. 1, pp. 31-55, 1981.
    @article {Co1, MRKEY = {605351},
      AUTHOR = {Connes, Alain},
      TITLE = {An analogue of the {T}hom isomorphism for crossed products of a {$C\sp{\ast} $}-algebra by an action of {${\bf R}$}},
      JOURNAL = {Adv. in Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {39},
      YEAR = {1981},
      NUMBER = {1},
      PAGES = {31--55},
      ISSN = {0001-8708},
      CODEN = {ADMTA4},
      MRCLASS = {46L55 (46M20 55N15 58G12)},
      MRNUMBER = {82j:46084},
      MRREVIEWER = {L{á}szl{ó} Zsid{ó}},
      DOI = {10.1016/0001-8708(81)90056-6},
      ZBLNUMBER = {0461.46043},
      }
  • [Co] A. Connes, Noncommutative Geometry, San Diego, CA: Academic Press, 1994.
    @book {Co, MRKEY = {1303779},
      AUTHOR = {Connes, Alain},
      TITLE = {Noncommutative Geometry},
      PUBLISHER = {Academic Press},
      ADDRESS = {San Diego, CA},
      YEAR = {1994},
      PAGES = {xiv+661},
      ISBN = {0-12-185860-X},
      MRCLASS = {46Lxx (19K56 22D25 58B30 58G12 81T13 81V22 81V70)},
      MRNUMBER = {95j:46063},
      MRREVIEWER = {John Roe},
      }
  • [EM] C. Epstein and R. Melrose, "Contact degree and the index of Fourier integral operators," Math. Res. Lett., vol. 5, iss. 3, pp. 363-381, 1998.
    @article {EM, MRKEY = {1637844},
      AUTHOR = {Epstein, Charles and Melrose, Richard},
      TITLE = {Contact degree and the index of {F}ourier integral operators},
      JOURNAL = {Math. Res. Lett.},
      FJOURNAL = {Mathematical Research Letters},
      VOLUME = {5},
      YEAR = {1998},
      NUMBER = {3},
      PAGES = {363--381},
      ISSN = {1073-2780},
      MRCLASS = {58J20 (35S30 58J40)},
      MRNUMBER = {2000a:58062},
      MRREVIEWER = {Rafe Mazzeo},
      ZBLNUMBER = {0929.58012},
      }
  • [EM2] C. Epstein and R. Melrose, "The Heisenberg algebra, index theory and homology," , preprint , 2003.
    @techreport {EM2,
      author = {Epstein, Charles and Melrose, Richard},
      TITLE={The Heisenberg algebra, index theory and homology},
      TYPE={preprint},
      YEAR={2003},
      }
  • [Ep] C. Epstein, "Lectures on indices and relative indices on contact and CR-manifolds," in Woods Hole Mathematics, Hackensack, NJ: World Sci. Publ., 2004, pp. 27-93.
    @incollection {Ep, MRKEY = {2123367},
      AUTHOR = {Epstein, Charles},
      TITLE = {Lectures on indices and relative indices on contact and {CR}-manifolds},
      BOOKTITLE = {Woods {H}ole Mathematics},
      SERIES = {Ser. Knots Everything},
      NUMBER = {34},
      PAGES = {27--93},
      PUBLISHER = {World Sci. Publ.},
      ADDRESS={Hackensack, NJ},
      YEAR = {2004},
      MRCLASS = {58J20 (32V20 47B35 47G30)},
      MRNUMBER = {2006a:58028},
      MRREVIEWER = {Evgeni{\u\i} V. Troitski{\u\i}},
      }
  • [Er] E. van Erp, "The Atiyah-Singer formula for subelliptic operators on a contact manifold," PhD Thesis , The Pennsylvania State University, 2005.
    @phdthesis{Er,
      author={van Erp, E.},
      TITLE={The Atiyah-Singer formula for subelliptic operators on a contact manifold},
      TYPE={Ph.D. thesis},
      SCHOOL={The Pennsylvania State University},
      YEAR={2005},
      }
  • [Er2] E. van Erp, "The Atiyah-Singer formula for subelliptic operators on a contact manifold. Part II," Ann. of Math., vol. 171, pp. 1647-1706, 2010.
    @article{Er2,
      author={van Erp, E.},
      TITLE={The Atiyah-Singer formula for subelliptic operators on a contact manifold. Part II},
      JOURNAL={Ann. of Math.},
      VOLUME={171},
      YEAR={2010},
      PAGES={1647--1706},
      }
  • [FS1] Go to document G. B. Folland and E. M. Stein, "Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group," Comm. Pure Appl. Math., vol. 27, pp. 429-522, 1974.
    @article {FS1, MRKEY = {0367477},
      AUTHOR = {Folland, G. B. and Stein, Elias M.},
      TITLE = {Estimates for the {$\bar \partial \sb{b}$} complex and analysis on the {H}eisenberg group},
      JOURNAL = {Comm. Pure Appl. Math.},
      FJOURNAL = {Communications on Pure and Applied Mathematics},
      VOLUME = {27},
      YEAR = {1974},
      PAGES = {429--522},
      ISSN = {0010-3640},
      MRCLASS = {35N15 (22E30 32K15 47G05)},
      MRNUMBER = {51 \#3719},
      MRREVIEWER = {S. G. Gindikin},
      DOI = {10.1002/cpa.3160270403},
      ZBLNUMBER = {0293.35012},
      }
  • [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton, NJ: Princeton Univ. Press, 1982.
    @book {FS, MRKEY = {657581},
      AUTHOR = {Folland, G. B. and Stein, Elias M.},
      TITLE = {Hardy Spaces on Homogeneous Groups},
      SERIES = {Math. Notes},
      NUMBER = {28},
      PUBLISHER = {Princeton Univ. Press},
      ADDRESS = {Princeton, NJ},
      YEAR = {1982},
      PAGES = {xii+285},
      ISBN = {0-691-08310-X},
      MRCLASS = {43A85 (22E45 42B30)},
      MRNUMBER = {84h:43027},
      MRREVIEWER = {Daryl Geller},
      ZBLNUMBER = {0508.42025},
      }
  • [Hi] N. Higson, "On the $K$-theory proof of the index theorem," in Index Theory and Operator Algebras (Boulder, CO, 1991), Providence, RI: Amer. Math. Soc., 1993, pp. 67-86.
    @incollection {Hi, MRKEY = {1228500},
      AUTHOR = {Higson, Nigel},
      TITLE = {On the {$K$}-theory proof of the index theorem},
      BOOKTITLE = {Index Theory and Operator Algebras ({B}oulder, {\rm CO},
      1991)},
      SERIES = {Contemp. Math.},
      NUMBER = {148},
      PAGES = {67--86},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {1993},
      MRCLASS = {19K56 (58G10)},
      MRNUMBER = {95a:19009},
      MRREVIEWER = {R. J. Plymen},
      ZBLNUMBER = {0798.19004},
      }
  • [HN] Go to document B. Helffer and J. Nourrigat, "Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué," Comm. Partial Differential Equations, vol. 4, iss. 8, pp. 899-958, 1979.
    @article {HN, MRKEY = {537467},
      AUTHOR = {Helffer, B. and Nourrigat, J.},
      TITLE = {Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de {L}ie nilpotent gradué},
      JOURNAL = {Comm. Partial Differential Equations},
      FJOURNAL = {Communications in Partial Differential Equations},
      VOLUME = {4},
      YEAR = {1979},
      NUMBER = {8},
      PAGES = {899--958},
      ISSN = {0360-5302},
      CODEN = {CPDIDZ},
      MRCLASS = {35H05 (22E27 58G05)},
      MRNUMBER = {81i:35034},
      MRREVIEWER = {Aroldo Kaplan},
      DOI = {10.1080/03605307908820115},
      ZBLNUMBER = {0423.35040},
      }
  • [Ma] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge: Cambridge Univ. Press, 1987.
    @book {Ma, MRKEY = {896907},
      AUTHOR = {Mackenzie, K.},
      TITLE = {Lie Groupoids and {L}ie Algebroids in Differential Geometry},
      SERIES = {London Math. Soc. Lect. Note Ser.},
      NUMBER = {124},
      PUBLISHER = {Cambridge Univ. Press},
      ADDRESS = {Cambridge},
      YEAR = {1987},
      PAGES = {xvi+327},
      ISBN = {0-521-34882-X},
      MRCLASS = {58H05 (17B56 20L15 22E60 53C05 55R15)},
      MRNUMBER = {89g:58225},
      MRREVIEWER = {Jean Pradines},
      ZBLNUMBER = {0683.53029},
      }
  • [Me] R. Melrose, "Homology and the Heisenberg algebra," in Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, Palaiseau: École Polytech., 1997, p. x.
    @incollection {Me, MRKEY = {1482818},
      AUTHOR = {Melrose, Richard},
      TITLE = {Homology and the {H}eisenberg algebra},
      BOOKTITLE = {Séminaire sur les \'{E}quations aux {D}érivées {P}artielles, 1996--1997},
      PAGES = {Exp. No. XII, 11},
      NOTE = {Joint work with C. Epstein and G. Mendoza},
      PUBLISHER = {École Polytech.},
      ADDRESS = {Palaiseau},
      YEAR = {1997},
      MRCLASS = {58G12 (19K56 58G15)},
      MRNUMBER = {98k:58218},
      MRREVIEWER = {G. V. Rozenblyum},
      ZBLNUMBER = {1054.58013},
      }
  • [Ni2] Go to document V. Nistor, "An index theorem for gauge-invariant families: the case of solvable groups," Acta Math. Hungar., vol. 99, iss. 1-2, pp. 155-183, 2003.
    @article {Ni2, MRKEY = {1973092},
      AUTHOR = {Nistor, V.},
      TITLE = {An index theorem for gauge-invariant families: the case of solvable groups},
      JOURNAL = {Acta Math. Hungar.},
      FJOURNAL = {Acta Mathematica Hungarica},
      VOLUME = {99},
      YEAR = {2003},
      NUMBER = {1-2},
      PAGES = {155--183},
      ISSN = {0236-5294},
      MRCLASS = {58J22 (19K56 46L80 58J40)},
      MRNUMBER = {2004e:58038},
      MRREVIEWER = {Evgeni{\u\i} V. Troitski{\u\i}},
      DOI = {10.1023/A:1024517714643},
      ZBLNUMBER = {1026.19007},
      }
  • [NS] Go to document E. Nelson and F. W. Stinespring, "Representation of elliptic operators in an enveloping algebra," Amer. J. Math., vol. 81, pp. 547-560, 1959.
    @article {NS, MRKEY = {0110024},
      AUTHOR = {Nelson, Edward and Stinespring, W. Forrest},
      TITLE = {Representation of elliptic operators in an enveloping algebra},
      JOURNAL = {Amer. J. Math.},
      FJOURNAL = {American Journal of Mathematics},
      VOLUME = {81},
      YEAR = {1959},
      PAGES = {547--560},
      ISSN = {0002-9327},
      MRCLASS = {46.00},
      MRNUMBER = {22 \#907},
      MRREVIEWER = {I. Cuculescu Foias, C.},
      DOI = {10.2307/2372913},
      ZBLNUMBER = {0092.32103},
      }
  • [Pe] G. K. Pedersen, $C^{\ast} $-Algebras and their Automorphism Groups, London: Academic Press, 1979.
    @book {Pe, MRKEY = {548006},
      AUTHOR = {Pedersen, Gert K.},
      TITLE = {{$C\sp{\ast} $}-Algebras and their Automorphism Groups},
      SERIES = {London Math. Soc. Monogr.},
      NUMBER = {14},
      PUBLISHER = {Academic Press},
      ADDRESS = {London},
      YEAR = {1979},
      PAGES = {ix+416},
      ISBN = {0-12-549450-5},
      MRCLASS = {46Lxx},
      MRNUMBER = {81e:46037},
      MRREVIEWER = {J. W. Bunce},
      ZBLNUMBER = {0416.46043},
      }
  • [Ta1] M. E. Taylor, Noncommutative Microlocal Analysis, Part I, Providence, RI: Amer. Math. Soc., 1984, vol. 52.
    @book{Ta1,
      author = {Taylor, Michael E.},
      TITLE = {Noncommutative Microlocal Analysis, Part {\rm I}},
      SERIES={Mem. Amer. Math. Soc.},
      VOLUME={52},
      YEAR={1984},
      PUBLISHER={Amer. Math. Soc.},
      ADDRESS={Providence, RI},
      MRNUMBER={0764508},
      ZBLNUMBER={0554.35025},
      PAGES={182},
      }
  • [Ta] M. E. Taylor, Noncommutative Harmonic Analysis, Providence, RI: Amer. Math. Soc., 1986.
    @book {Ta, MRKEY = {852988},
      AUTHOR = {Taylor, Michael E.},
      TITLE = {Noncommutative Harmonic Analysis},
      SERIES = {Math. Surveys and Monog.},
      NUMBER = {22},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {1986},
      PAGES = {xvi+328},
      ISBN = {0-8218-1523-7},
      MRCLASS = {22E30 (43A65)},
      MRNUMBER = {88a:22021},
      MRREVIEWER = {L. Corwin},
      ZBLNUMBER = {0604.43001},
      }

Authors

Erik van Erp

Dartmouth College
Department of Mathematics
Kemeny Hall, 27 N. Main St.
Hanover, NH 03755-3551
United States