Abstract
We show that any coboundary Lie bialgebra can be quantized. For this, we prove that Etingof-Kazhdan quantization functors are compatible with Lie bialgebra twists, and if such a quantization functor corresponds to an even associator, then it is also compatible with the operation of taking coopposites. We also use the relation between the Etingof-Kazhdan construction of quantization functors and the alternative approach to this problem, which was established in a previous work.
-
[BN]
D. Bar-Natan, "On associators and the Grothendieck–Teichmüller group, I," Selecta Math. $($N.S.$)$, vol. 4, iss. 2, pp. 183-212, 1998.
@article{BN, MRKEY = {1669949},
AUTHOR = {Bar-Natan, Dror},
TITLE = {On associators and the {G}rothendieck--{T}eichmüller group, {I}},
JOURNAL = {Selecta Math. $($N.S.$)$},
FJOURNAL = {Selecta Mathematica. New Series},
VOLUME = {4},
YEAR = {1998},
NUMBER = {2},
PAGES = {183--212},
ISSN = {1022-1824},
CODEN = {SMATF6},
MRCLASS = {16W30 (20F36)},
MRNUMBER = {2000b:16067},
DOI = {10.1007/s000290050029},
ZBLNUMBER = {0974.16028},
MRREVIEWER = {Alexander Balinsky},
} -
[Bou] N. Bourbaki, Éléments de Mathématique, Fasc. XXXVII. Groupes et algèbres de Lie, Chapitre II: Algèbres de Lie libres, Chapitre III: Groupes de Lie, Paris: Hermann, 1972.
@book{Bou, MRKEY = {0573068},
AUTHOR = {Bourbaki, N.},
TITLE = {\'{E}léments de {M}athématique, {F}asc. {XXXVII}. {G}roupes et algèbres de {L}ie, {C}hapitre {II}: {A}lgèbres de {L}ie libres, {C}hapitre {III}: {G}roupes de {L}ie},
SERIES = {Actualités Scientifiques et Industrielles},
NUMBER = {1349},
PUBLISHER = {Hermann},
ADDRESS = {Paris},
YEAR = {1972},
PAGES = {320},
MRCLASS = {17-01 (22-01)},
MRNUMBER = {58 \#28083a},
MRREVIEWER = {H. Reitberger},
ZBLNUMBER = {0244.22007},
} -
[DS] P. Dazord and D. Sondaz, "Groupes de Poisson affines," in Symplectic Geometry, Groupoids, and Integrable Systems, Dazord, P. and Weinstein, A., Eds., New York: Springer-Verlag, 1991, pp. 99-128.
@incollection{DS, MRKEY = {1104921},
AUTHOR = {Dazord, Pierre and Sondaz, D.},
EDITOR = {Dazord, P. and Weinstein, A.},
TITLE = {Groupes de {P}oisson affines},
BOOKTITLE = {Symplectic Geometry, Groupoids, and Integrable Systems},
VENUE = {Berkeley, 1989},
SERIES = {Math. Sci. Res. Inst. Publ.},
NUMBER = {20},
PAGES = {99--128},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1991},
MRCLASS = {58H05 (58F05)},
MRNUMBER = {92k:58282},
ZBLNUMBER = {0732.58015},
MRREVIEWER = {Alberto Medina},
} -
[Dr:QG] V. G. Drinfeld, "Quantum groups," in Proceedings of the International Congress of Mathematicians, I, Providence, RI, 1987, pp. 798-820.
@inproceedings{Dr:QG, MRKEY = {934283},
AUTHOR = {Drinfeld, V. G.},
EDITOR = {Gleason, Andrew M.},
TITLE = {Quantum groups},
BOOKTITLE = {Proceedings of the International Congress of Mathematicians, {\rm I}},
VENUE = {Berkeley, 1986},
PAGES = {798--820},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {1987},
MRCLASS = {17B50 (16A24 17B65 57T05 58F07 82A05 82A15)},
MRNUMBER = {89f:17017},
ZBLNUMBER = {0921.58073},
} -
[Dr:QH] V. G. Drinfeld, "Quasi-Hopf algebras," Algebra i Analiz, vol. 1, iss. 6, pp. 114-148, 1989.
@article{Dr:QH, MRKEY = {1047964},
AUTHOR = {Drinfeld, V. G.},
TITLE = {Quasi-{H}opf algebras},
JOURNAL = {Algebra i Analiz},
FJOURNAL = {Algebra i Analiz},
VOLUME = {1},
YEAR = {1989},
NUMBER = {6},
PAGES = {114--148},
ISSN = {0234-0852},
MRCLASS = {17B37 (16W30 57M25 81T40)},
MRNUMBER = {91b:17016},
MRREVIEWER = {Ya. S. So{\u\i}bel{\cprime}man},
ZBLNUMBER = {0718.16033},
NOTE = {in Russian; translated in \emph{Leningr. Math. J.} \textbf{1} (1990), 1419--1457},
} -
[Dr:Gal] V. G. Drinfeld, "On quasitriangular quasi-Hopf algebras and on a group that is closely connected with ${ Gal}(\overline{\bf Q}/{\bf Q})$," Algebra i Analiz, vol. 2, iss. 4, pp. 149-181, 1990.
@article{Dr:Gal, MRKEY = {1080203},
AUTHOR = {Drinfeld, V. G.},
TITLE = {On quasitriangular quasi-{H}opf algebras and on a group that is closely connected with {${\rm Gal}(\overline{\bf Q}/{\bf Q})$}},
JOURNAL = {Algebra i Analiz},
FJOURNAL = {Algebra i Analiz},
VOLUME = {2},
YEAR = {1990},
NUMBER = {4},
PAGES = {149--181},
ISSN = {0234-0852},
MRCLASS = {16W30 (17B37)},
MRNUMBER = {92f:16047},
MRREVIEWER = {Ivan Penkov},
ZBLNUMBER = {0718.16034},
NOTE = {in Russian; translated in \emph{Leningr. Math. J.} \textbf{2} (1991), 829--860},
} -
[Dr:uns] V. G. Drinfeld, "On some unsolved problems in quantum group theory," in Quantum Groups, Kulish, P. P., Ed., New York: Springer-Verlag, 1992, pp. 1-8.
@incollection{Dr:uns, MRKEY = {1183474},
AUTHOR = {Drinfeld, V. G.},
EDITOR = {Kulish, P. P.},
TITLE = {On some unsolved problems in quantum group theory},
BOOKTITLE = {Quantum Groups},
VENUE = {Leningrad, 1990},
SERIES = {Lecture Notes in Math.},
NUMBER = {1510},
PAGES = {1--8},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1992},
MRCLASS = {17B37 (16W30 81R50)},
MRNUMBER = {94a:17006},
MRREVIEWER = {Yvette Kosmann-Schwarzbach},
ZBLNUMBER = {0765.17014},
} -
[Dr:hom]
V. G. Drinfeld, "On Poisson homogeneous spaces of Poisson–Lie groups," Teoret. Mat. Fiz., vol. 95, iss. 2, pp. 226-227, 1993.
@article{Dr:hom, MRKEY = {1243249},
AUTHOR = {Drinfeld, V. G.},
TITLE = {On {P}oisson homogeneous spaces of {P}oisson--{L}ie groups},
JOURNAL = {Teoret. Mat. Fiz.},
FJOURNAL = {Rossiĭskaya Akademiya Nauk. Teoreticheskaya i Matematicheskaya Fizika},
VOLUME = {95},
YEAR = {1993},
NUMBER = {2},
PAGES = {226--227},
ISSN = {0564-6162},
MRCLASS = {58F05 (16W30)},
MRNUMBER = {94k:58045},
DOI = {10.1007/BF01017137},
MRREVIEWER = {K. C. H. Mackenzie},
NOTE = {in Russian; translated in \emph{Theoret. and Math. Phys.} \textbf{95} (1993), 524--525},
ZBLNUMBER = {0852.22018},
} -
[Enr:shuffles]
B. Enriquez, "Quantization of Lie bialgebras and shuffle algebras of Lie algebras," Selecta Math. $($N.S.$)$, vol. 7, iss. 3, pp. 321-407, 2001.
@article{Enr:shuffles, MRKEY = {1868300},
AUTHOR = {Enriquez, Benjamin},
TITLE = {Quantization of {L}ie bialgebras and shuffle algebras of {L}ie algebras},
JOURNAL = {Selecta Math. $($N.S.$)$},
FJOURNAL = {Selecta Mathematica. New Series},
VOLUME = {7},
YEAR = {2001},
NUMBER = {3},
PAGES = {321--407},
ISSN = {1022-1824},
CODEN = {SMATF6},
MRCLASS = {17B37 (17B62 81R50)},
MRNUMBER = {2002j:17011},
DOI = {10.1007/PL00001404},
ZBLNUMBER = {1009.17010},
MRREVIEWER = {Fabio Gavarini},
} -
[Enr:univ]
B. Enriquez, "On some universal algebras associated to the category of Lie bialgebras," Adv. Math., vol. 164, iss. 1, pp. 1-23, 2001.
@article{Enr:univ, MRKEY = {1870510},
AUTHOR = {Enriquez, Benjamin},
TITLE = {On some universal algebras associated to the category of {L}ie bialgebras},
JOURNAL = {Adv. Math.},
FJOURNAL = {Advances in Mathematics},
VOLUME = {164},
YEAR = {2001},
NUMBER = {1},
PAGES = {1--23},
ISSN = {0001-8708},
CODEN = {ADMTA4},
MRCLASS = {17B62 (17B37)},
MRNUMBER = {2002k:17039},
DOI = {10.1006/aima.2001.2007},
ZBLNUMBER = {0994.17008},
MRREVIEWER = {Fabio Gavarini},
} -
[Enr:coh]
B. Enriquez, "A cohomological construction of quantization functors of Lie bialgebras," Adv. Math., vol. 197, iss. 2, pp. 430-479, 2005.
@article{Enr:coh, MRKEY = {2173841},
AUTHOR = {Enriquez, Benjamin},
TITLE = {A cohomological construction of quantization functors of {L}ie bialgebras},
JOURNAL = {Adv. Math.},
FJOURNAL = {Advances in Mathematics},
VOLUME = {197},
YEAR = {2005},
NUMBER = {2},
PAGES = {430--479},
ISSN = {0001-8708},
CODEN = {ADMTA4},
MRCLASS = {17B37 (17B62)},
MRNUMBER = {2006h:17018},
DOI = {10.1016/j.aim.2004.10.011},
ZBLNUMBER = {02231207},
MRREVIEWER = {Serge M. Skryabin},
} -
[EE] B. Enriquez and P. Etingof, "Quantization of Alekseev-Meinrenken dynamical $r$-matrices," in Lie Groups and Symmetric Spaces, Gindikin, S. G., Ed., Providence, RI: Amer. Math. Soc., 2003, pp. 81-98.
@incollection{EE, MRKEY = {2018354},
AUTHOR = {Enriquez, Benjamin and Etingof, Pavel},
EDITOR = {Gindikin, S. G.},
TITLE = {Quantization of {A}lekseev-{M}einrenken dynamical {$r$}-matrices},
BOOKTITLE = {Lie Groups and Symmetric Spaces},
SERIES = {Amer. Math. Soc. Transl. Ser. 2},
NUMBER = {210},
PAGES = {81--98},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {2003},
MRCLASS = {17B37 (17B81)},
MRNUMBER = {2004j:17016},
ZBLNUMBER = {1039.17013},
MRREVIEWER = {Erik Koelink},
} -
[EK]
P. Etingof and D. Kazhdan, "Quantization of Lie bialgebras, I," Selecta Math. $($N.S.$)$, vol. 2, iss. 1, pp. 1-41, 1996.
@article{EK, MRKEY = {1403351},
AUTHOR = {Etingof, Pavel and Kazhdan, David},
TITLE = {Quantization of {L}ie bialgebras, {I}},
JOURNAL = {Selecta Math. $($N.S.$)$},
FJOURNAL = {Selecta Mathematica. New Series},
VOLUME = {2},
YEAR = {1996},
NUMBER = {1},
PAGES = {1--41},
ISSN = {1022-1824},
CODEN = {SMATF6},
MRCLASS = {17B37 (16W30 18D20 81R50)},
MRNUMBER = {97f:17014},
DOI = {10.1007/BF01587938},
ZBLNUMBER = {0863.17008},
MRREVIEWER = {Yu. N. Bespalov},
} -
[EKp]
P. Etingof and D. Kazhdan, "Quantization of Lie bialgebras, II," Selecta Math. $($N.S.$)$, vol. 4, iss. 2, pp. 213-231, 1998.
@article{EKp, MRKEY = {1669953},
AUTHOR = {Etingof, Pavel and Kazhdan, David},
TITLE = {Quantization of {L}ie bialgebras, {II}},
JOURNAL = {Selecta Math. $($N.S.$)$},
FJOURNAL = {Selecta Mathematica. New Series},
VOLUME = {4},
YEAR = {1998},
NUMBER = {2},
PAGES = {213--231},
ISSN = {1022-1824},
CODEN = {SMATF6},
MRCLASS = {17B62 (16W35 17B37 18D20)},
MRNUMBER = {2000i:17033},
DOI = {10.1007/s000290050030},
ZBLNUMBER = {0915.17009},
MRREVIEWER = {Benjamin David Enriquez},
} -
[H]
G. Halbout, "Formality theorem for Lie bialgebras and quantization of twists and coboundary $r$-matrices," Adv. Math., vol. 207, iss. 2, pp. 617-633, 2006.
@article{H, MRKEY = {2271019},
AUTHOR = {Halbout, Gilles},
TITLE = {Formality theorem for {L}ie bialgebras and quantization of twists and coboundary {$r$}-matrices},
JOURNAL = {Adv. Math.},
FJOURNAL = {Advances in Mathematics},
VOLUME = {207},
YEAR = {2006},
NUMBER = {2},
PAGES = {617--633},
ISSN = {0001-8708},
CODEN = {ADMTA4},
MRCLASS = {17B62},
MRNUMBER = {2008b:17036},
MRREVIEWER = {Dominique Manchon},
DOI = {10.1016/j.aim.2005.12.006},
ZBLNUMBER = {1163.17303},
} -
@article{McL, MRKEY = {0171826},
AUTHOR = {MacLane, Saunders},
TITLE = {Categorical algebra},
JOURNAL = {Bull. Amer. Math. Soc.},
FJOURNAL = {Bulletin of the American Mathematical Society},
VOLUME = {71},
YEAR = {1965},
PAGES = {40--106},
ISSN = {0002-9904},
MRCLASS = {18.20 (18.10)},
MRNUMBER = {30 \#2053},
DOI = {10.1090/S0002-9904-1965-11234-4},
MRREVIEWER = {A. Dold},
ZBLNUMBER = {0161.01601},
} -
[Pos] L. Positselski, , Letter to M. Finkelberg and R. Bezrukavnikov , 1995.
@techreport{Pos,
author = {L. Positselski},
TYPE = {Letter to {M}. {F}inkelberg and {R}. {B}ezrukavnikov},
YEAR = {1995},
NOTE = {in Russian},
} -
[Stolin]
S. M. Khoroshkin, I. I. Pop, M. E. Samsonov, A. A. Stolin, and V. N. Tolstoy, "On some Lie bialgebra structures on polynomial algebras and their quantization," Comm. Math. Phys., vol. 282, iss. 3, pp. 625-662, 2008.
@article{Stolin, MRKEY = {2426139},
AUTHOR = {Khoroshkin, S. M. and Pop, I. I. and Samsonov, M. E. and Stolin, A. A. and Tolstoy, V. N.},
TITLE = {On some {L}ie bialgebra structures on polynomial algebras and their quantization},
JOURNAL = {Comm. Math. Phys.},
FJOURNAL = {Communications in Mathematical Physics},
VOLUME = {282},
YEAR = {2008},
NUMBER = {3},
PAGES = {625--662},
ISSN = {0010-3616},
CODEN = {CMPHAY},
MRCLASS = {17B62 (17B37 17B81 81R50)},
MRNUMBER = {2009e:17038},
MRREVIEWER = {E. A. Karolinski{\u\i}},
DOI = {10.1007/s00220-008-0554-x},
ZBLNUMBER = {1149.17015},
} -
[Tam] D. Tamarkin, "Quantization of Lie bialgebras via the formality of the operad of little disks," in Deformation Quantization, Halbout, G., Ed., Berlin: de Gruyter, 2002, pp. 203-236.
@incollection{Tam, MRKEY = {1914789},
AUTHOR = {Tamarkin, Dimitri},
TITLE = {Quantization of {L}ie bialgebras via the formality of the operad of little disks},
EDITOR = {Halbout, Gilles},
BOOKTITLE = {Deformation Quantization},
VENUE = {Strasbourg, 2001},
SERIES = {IRMA Lect. Math. Theor. Phys.},
NUMBER = {1},
PAGES = {203--236},
PUBLISHER = {de Gruyter},
ADDRESS = {Berlin},
YEAR = {2002},
MRCLASS = {53D55 (17B62 18D10 18D50)},
MRNUMBER = {2003d:53168},
ZBLNUMBER = {1009.17012},
MRREVIEWER = {Michel Van den Bergh},
}