Quantization of coboundary Lie bialgebras

Abstract

We show that any coboundary Lie bialgebra can be quantized. For this, we prove that Etingof-Kazhdan quantization functors are compatible with Lie bialgebra twists, and if such a quantization functor corresponds to an even associator, then it is also compatible with the operation of taking coopposites. We also use the relation between the Etingof-Kazhdan construction of quantization functors and the alternative approach to this problem, which was established in a previous work.

  • [BN] Go to document D. Bar-Natan, "On associators and the Grothendieck–Teichmüller group, I," Selecta Math. $($N.S.$)$, vol. 4, iss. 2, pp. 183-212, 1998.
    @article{BN, MRKEY = {1669949},
      AUTHOR = {Bar-Natan, Dror},
      TITLE = {On associators and the {G}rothendieck--{T}eichmüller group, {I}},
      JOURNAL = {Selecta Math. $($N.S.$)$},
      FJOURNAL = {Selecta Mathematica. New Series},
      VOLUME = {4},
      YEAR = {1998},
      NUMBER = {2},
      PAGES = {183--212},
      ISSN = {1022-1824},
      CODEN = {SMATF6},
      MRCLASS = {16W30 (20F36)},
      MRNUMBER = {2000b:16067},
      DOI = {10.1007/s000290050029},
      ZBLNUMBER = {0974.16028},
      MRREVIEWER = {Alexander Balinsky},
      }
  • [Bou] N. Bourbaki, Éléments de Mathématique, Fasc. XXXVII. Groupes et algèbres de Lie, Chapitre II: Algèbres de Lie libres, Chapitre III: Groupes de Lie, Paris: Hermann, 1972.
    @book{Bou, MRKEY = {0573068},
      AUTHOR = {Bourbaki, N.},
      TITLE = {\'{E}léments de {M}athématique, {F}asc. {XXXVII}. {G}roupes et algèbres de {L}ie, {C}hapitre {II}: {A}lgèbres de {L}ie libres, {C}hapitre {III}: {G}roupes de {L}ie},
      SERIES = {Actualités Scientifiques et Industrielles},
      NUMBER = {1349},
      PUBLISHER = {Hermann},
      ADDRESS = {Paris},
      YEAR = {1972},
      PAGES = {320},
      MRCLASS = {17-01 (22-01)},
      MRNUMBER = {58 \#28083a},
      MRREVIEWER = {H. Reitberger},
      ZBLNUMBER = {0244.22007},
      }
  • [DS] P. Dazord and D. Sondaz, "Groupes de Poisson affines," in Symplectic Geometry, Groupoids, and Integrable Systems, Dazord, P. and Weinstein, A., Eds., New York: Springer-Verlag, 1991, pp. 99-128.
    @incollection{DS, MRKEY = {1104921},
      AUTHOR = {Dazord, Pierre and Sondaz, D.},
      EDITOR = {Dazord, P. and Weinstein, A.},
      TITLE = {Groupes de {P}oisson affines},
      BOOKTITLE = {Symplectic Geometry, Groupoids, and Integrable Systems},
      VENUE = {Berkeley, 1989},
      SERIES = {Math. Sci. Res. Inst. Publ.},
      NUMBER = {20},
      PAGES = {99--128},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1991},
      MRCLASS = {58H05 (58F05)},
      MRNUMBER = {92k:58282},
      ZBLNUMBER = {0732.58015},
      MRREVIEWER = {Alberto Medina},
      }
  • [Dr:QG] V. G. Drinfeld, "Quantum groups," in Proceedings of the International Congress of Mathematicians, I, Providence, RI, 1987, pp. 798-820.
    @inproceedings{Dr:QG, MRKEY = {934283},
      AUTHOR = {Drinfeld, V. G.},
      EDITOR = {Gleason, Andrew M.},
      TITLE = {Quantum groups},
      BOOKTITLE = {Proceedings of the International Congress of Mathematicians, {\rm I}},
      VENUE = {Berkeley, 1986},
      PAGES = {798--820},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {1987},
      MRCLASS = {17B50 (16A24 17B65 57T05 58F07 82A05 82A15)},
      MRNUMBER = {89f:17017},
      ZBLNUMBER = {0921.58073},
      }
  • [Dr:QH] V. G. Drinfeld, "Quasi-Hopf algebras," Algebra i Analiz, vol. 1, iss. 6, pp. 114-148, 1989.
    @article{Dr:QH, MRKEY = {1047964},
      AUTHOR = {Drinfeld, V. G.},
      TITLE = {Quasi-{H}opf algebras},
      JOURNAL = {Algebra i Analiz},
      FJOURNAL = {Algebra i Analiz},
      VOLUME = {1},
      YEAR = {1989},
      NUMBER = {6},
      PAGES = {114--148},
      ISSN = {0234-0852},
      MRCLASS = {17B37 (16W30 57M25 81T40)},
      MRNUMBER = {91b:17016},
      MRREVIEWER = {Ya. S. So{\u\i}bel{\cprime}man},
      ZBLNUMBER = {0718.16033},
      NOTE = {in Russian; translated in \emph{Leningr. Math. J.} \textbf{1} (1990), 1419--1457},
      }
  • [Dr:Gal] V. G. Drinfeld, "On quasitriangular quasi-Hopf algebras and on a group that is closely connected with ${ Gal}(\overline{\bf Q}/{\bf Q})$," Algebra i Analiz, vol. 2, iss. 4, pp. 149-181, 1990.
    @article{Dr:Gal, MRKEY = {1080203},
      AUTHOR = {Drinfeld, V. G.},
      TITLE = {On quasitriangular quasi-{H}opf algebras and on a group that is closely connected with {${\rm Gal}(\overline{\bf Q}/{\bf Q})$}},
      JOURNAL = {Algebra i Analiz},
      FJOURNAL = {Algebra i Analiz},
      VOLUME = {2},
      YEAR = {1990},
      NUMBER = {4},
      PAGES = {149--181},
      ISSN = {0234-0852},
      MRCLASS = {16W30 (17B37)},
      MRNUMBER = {92f:16047},
      MRREVIEWER = {Ivan Penkov},
      ZBLNUMBER = {0718.16034},
      NOTE = {in Russian; translated in \emph{Leningr. Math. J.} \textbf{2} (1991), 829--860},
      }
  • [Dr:uns] V. G. Drinfeld, "On some unsolved problems in quantum group theory," in Quantum Groups, Kulish, P. P., Ed., New York: Springer-Verlag, 1992, pp. 1-8.
    @incollection{Dr:uns, MRKEY = {1183474},
      AUTHOR = {Drinfeld, V. G.},
      EDITOR = {Kulish, P. P.},
      TITLE = {On some unsolved problems in quantum group theory},
      BOOKTITLE = {Quantum Groups},
      VENUE = {Leningrad, 1990},
      SERIES = {Lecture Notes in Math.},
      NUMBER = {1510},
      PAGES = {1--8},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1992},
      MRCLASS = {17B37 (16W30 81R50)},
      MRNUMBER = {94a:17006},
      MRREVIEWER = {Yvette Kosmann-Schwarzbach},
      ZBLNUMBER = {0765.17014},
      }
  • [Dr:hom] Go to document V. G. Drinfeld, "On Poisson homogeneous spaces of Poisson–Lie groups," Teoret. Mat. Fiz., vol. 95, iss. 2, pp. 226-227, 1993.
    @article{Dr:hom, MRKEY = {1243249},
      AUTHOR = {Drinfeld, V. G.},
      TITLE = {On {P}oisson homogeneous spaces of {P}oisson--{L}ie groups},
      JOURNAL = {Teoret. Mat. Fiz.},
      FJOURNAL = {Rossiĭskaya Akademiya Nauk. Teoreticheskaya i Matematicheskaya Fizika},
      VOLUME = {95},
      YEAR = {1993},
      NUMBER = {2},
      PAGES = {226--227},
      ISSN = {0564-6162},
      MRCLASS = {58F05 (16W30)},
      MRNUMBER = {94k:58045},
      DOI = {10.1007/BF01017137},
      MRREVIEWER = {K. C. H. Mackenzie},
      NOTE = {in Russian; translated in \emph{Theoret. and Math. Phys.} \textbf{95} (1993), 524--525},
      ZBLNUMBER = {0852.22018},
      }
  • [Enr:shuffles] Go to document B. Enriquez, "Quantization of Lie bialgebras and shuffle algebras of Lie algebras," Selecta Math. $($N.S.$)$, vol. 7, iss. 3, pp. 321-407, 2001.
    @article{Enr:shuffles, MRKEY = {1868300},
      AUTHOR = {Enriquez, Benjamin},
      TITLE = {Quantization of {L}ie bialgebras and shuffle algebras of {L}ie algebras},
      JOURNAL = {Selecta Math. $($N.S.$)$},
      FJOURNAL = {Selecta Mathematica. New Series},
      VOLUME = {7},
      YEAR = {2001},
      NUMBER = {3},
      PAGES = {321--407},
      ISSN = {1022-1824},
      CODEN = {SMATF6},
      MRCLASS = {17B37 (17B62 81R50)},
      MRNUMBER = {2002j:17011},
      DOI = {10.1007/PL00001404},
      ZBLNUMBER = {1009.17010},
      MRREVIEWER = {Fabio Gavarini},
      }
  • [Enr:univ] Go to document B. Enriquez, "On some universal algebras associated to the category of Lie bialgebras," Adv. Math., vol. 164, iss. 1, pp. 1-23, 2001.
    @article{Enr:univ, MRKEY = {1870510},
      AUTHOR = {Enriquez, Benjamin},
      TITLE = {On some universal algebras associated to the category of {L}ie bialgebras},
      JOURNAL = {Adv. Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {164},
      YEAR = {2001},
      NUMBER = {1},
      PAGES = {1--23},
      ISSN = {0001-8708},
      CODEN = {ADMTA4},
      MRCLASS = {17B62 (17B37)},
      MRNUMBER = {2002k:17039},
      DOI = {10.1006/aima.2001.2007},
      ZBLNUMBER = {0994.17008},
      MRREVIEWER = {Fabio Gavarini},
      }
  • [Enr:coh] Go to document B. Enriquez, "A cohomological construction of quantization functors of Lie bialgebras," Adv. Math., vol. 197, iss. 2, pp. 430-479, 2005.
    @article{Enr:coh, MRKEY = {2173841},
      AUTHOR = {Enriquez, Benjamin},
      TITLE = {A cohomological construction of quantization functors of {L}ie bialgebras},
      JOURNAL = {Adv. Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {197},
      YEAR = {2005},
      NUMBER = {2},
      PAGES = {430--479},
      ISSN = {0001-8708},
      CODEN = {ADMTA4},
      MRCLASS = {17B37 (17B62)},
      MRNUMBER = {2006h:17018},
      DOI = {10.1016/j.aim.2004.10.011},
      ZBLNUMBER = {02231207},
      MRREVIEWER = {Serge M. Skryabin},
      }
  • [EE] B. Enriquez and P. Etingof, "Quantization of Alekseev-Meinrenken dynamical $r$-matrices," in Lie Groups and Symmetric Spaces, Gindikin, S. G., Ed., Providence, RI: Amer. Math. Soc., 2003, pp. 81-98.
    @incollection{EE, MRKEY = {2018354},
      AUTHOR = {Enriquez, Benjamin and Etingof, Pavel},
      EDITOR = {Gindikin, S. G.},
      TITLE = {Quantization of {A}lekseev-{M}einrenken dynamical {$r$}-matrices},
      BOOKTITLE = {Lie Groups and Symmetric Spaces},
      SERIES = {Amer. Math. Soc. Transl. Ser. 2},
      NUMBER = {210},
      PAGES = {81--98},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {2003},
      MRCLASS = {17B37 (17B81)},
      MRNUMBER = {2004j:17016},
      ZBLNUMBER = {1039.17013},
      MRREVIEWER = {Erik Koelink},
      }
  • [EK] Go to document P. Etingof and D. Kazhdan, "Quantization of Lie bialgebras, I," Selecta Math. $($N.S.$)$, vol. 2, iss. 1, pp. 1-41, 1996.
    @article{EK, MRKEY = {1403351},
      AUTHOR = {Etingof, Pavel and Kazhdan, David},
      TITLE = {Quantization of {L}ie bialgebras, {I}},
      JOURNAL = {Selecta Math. $($N.S.$)$},
      FJOURNAL = {Selecta Mathematica. New Series},
      VOLUME = {2},
      YEAR = {1996},
      NUMBER = {1},
      PAGES = {1--41},
      ISSN = {1022-1824},
      CODEN = {SMATF6},
      MRCLASS = {17B37 (16W30 18D20 81R50)},
      MRNUMBER = {97f:17014},
      DOI = {10.1007/BF01587938},
      ZBLNUMBER = {0863.17008},
      MRREVIEWER = {Yu. N. Bespalov},
      }
  • [EKp] Go to document P. Etingof and D. Kazhdan, "Quantization of Lie bialgebras, II," Selecta Math. $($N.S.$)$, vol. 4, iss. 2, pp. 213-231, 1998.
    @article{EKp, MRKEY = {1669953},
      AUTHOR = {Etingof, Pavel and Kazhdan, David},
      TITLE = {Quantization of {L}ie bialgebras, {II}},
      JOURNAL = {Selecta Math. $($N.S.$)$},
      FJOURNAL = {Selecta Mathematica. New Series},
      VOLUME = {4},
      YEAR = {1998},
      NUMBER = {2},
      PAGES = {213--231},
      ISSN = {1022-1824},
      CODEN = {SMATF6},
      MRCLASS = {17B62 (16W35 17B37 18D20)},
      MRNUMBER = {2000i:17033},
      DOI = {10.1007/s000290050030},
      ZBLNUMBER = {0915.17009},
      MRREVIEWER = {Benjamin David Enriquez},
      }
  • [H] Go to document G. Halbout, "Formality theorem for Lie bialgebras and quantization of twists and coboundary $r$-matrices," Adv. Math., vol. 207, iss. 2, pp. 617-633, 2006.
    @article{H, MRKEY = {2271019},
      AUTHOR = {Halbout, Gilles},
      TITLE = {Formality theorem for {L}ie bialgebras and quantization of twists and coboundary {$r$}-matrices},
      JOURNAL = {Adv. Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {207},
      YEAR = {2006},
      NUMBER = {2},
      PAGES = {617--633},
      ISSN = {0001-8708},
      CODEN = {ADMTA4},
      MRCLASS = {17B62},
      MRNUMBER = {2008b:17036},
      MRREVIEWER = {Dominique Manchon},
      DOI = {10.1016/j.aim.2005.12.006},
      ZBLNUMBER = {1163.17303},
      }
  • [McL] Go to document S. MacLane, "Categorical algebra," Bull. Amer. Math. Soc., vol. 71, pp. 40-106, 1965.
    @article{McL, MRKEY = {0171826},
      AUTHOR = {MacLane, Saunders},
      TITLE = {Categorical algebra},
      JOURNAL = {Bull. Amer. Math. Soc.},
      FJOURNAL = {Bulletin of the American Mathematical Society},
      VOLUME = {71},
      YEAR = {1965},
      PAGES = {40--106},
      ISSN = {0002-9904},
      MRCLASS = {18.20 (18.10)},
      MRNUMBER = {30 \#2053},
      DOI = {10.1090/S0002-9904-1965-11234-4},
      MRREVIEWER = {A. Dold},
      ZBLNUMBER = {0161.01601},
      }
  • [Pos] L. Positselski, , Letter to M. Finkelberg and R. Bezrukavnikov , 1995.
    @techreport{Pos,
      author = {L. Positselski},
      TYPE = {Letter to {M}. {F}inkelberg and {R}. {B}ezrukavnikov},
      YEAR = {1995},
      NOTE = {in Russian},
      }
  • [Stolin] Go to document S. M. Khoroshkin, I. I. Pop, M. E. Samsonov, A. A. Stolin, and V. N. Tolstoy, "On some Lie bialgebra structures on polynomial algebras and their quantization," Comm. Math. Phys., vol. 282, iss. 3, pp. 625-662, 2008.
    @article{Stolin, MRKEY = {2426139},
      AUTHOR = {Khoroshkin, S. M. and Pop, I. I. and Samsonov, M. E. and Stolin, A. A. and Tolstoy, V. N.},
      TITLE = {On some {L}ie bialgebra structures on polynomial algebras and their quantization},
      JOURNAL = {Comm. Math. Phys.},
      FJOURNAL = {Communications in Mathematical Physics},
      VOLUME = {282},
      YEAR = {2008},
      NUMBER = {3},
      PAGES = {625--662},
      ISSN = {0010-3616},
      CODEN = {CMPHAY},
      MRCLASS = {17B62 (17B37 17B81 81R50)},
      MRNUMBER = {2009e:17038},
      MRREVIEWER = {E. A. Karolinski{\u\i}},
      DOI = {10.1007/s00220-008-0554-x},
      ZBLNUMBER = {1149.17015},
      }
  • [Tam] D. Tamarkin, "Quantization of Lie bialgebras via the formality of the operad of little disks," in Deformation Quantization, Halbout, G., Ed., Berlin: de Gruyter, 2002, pp. 203-236.
    @incollection{Tam, MRKEY = {1914789},
      AUTHOR = {Tamarkin, Dimitri},
      TITLE = {Quantization of {L}ie bialgebras via the formality of the operad of little disks},
      EDITOR = {Halbout, Gilles},
      BOOKTITLE = {Deformation Quantization},
      VENUE = {Strasbourg, 2001},
      SERIES = {IRMA Lect. Math. Theor. Phys.},
      NUMBER = {1},
      PAGES = {203--236},
      PUBLISHER = {de Gruyter},
      ADDRESS = {Berlin},
      YEAR = {2002},
      MRCLASS = {53D55 (17B62 18D10 18D50)},
      MRNUMBER = {2003d:53168},
      ZBLNUMBER = {1009.17012},
      MRREVIEWER = {Michel Van den Bergh},
      }

Authors

Benjamin Enriquez

IRMA (CNRS) - Département de Mathématiques
Université de Strasbourg
7, rue R. Descartes
F-67 084 Strasbourg
France

Gilles Halbout

Département de Mathématiques
Université de Montpellier 2
CC 5149, Place Eugène Bataillon F-34095 Montpellier
France