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Abstract

We show that any coboundary Lie bialgebra can be quantized. For this, we
prove that Etingof-Kazhdan quantization functors are compatible with Lie bialge-
bra twists, and if such a quantization functor corresponds to an even associator,
then it is also compatible with the operation of taking coopposites. We also use
the relation between the Etingof-Kazhdan construction of quantization functors
and the alternative approach to this problem, which was established in a previous
work.

Let k be a field of characteristic 0. Unless specified otherwise, “algebra”,
“vector space”, etc., means “algebra over k™, etc.

Introduction

In this paper, we solve the problem of quantization of coboundary Lie bialge-
bras. This is one of the quantization problems of Drinfeld’s list in [Dri92]. This
result can be viewed as a completion of the result from [Hal06] of twist quantization
of Lie bialgebras; this result in turn solved a problem posed in [KPS08].

We show that our result, together with a proposition of [Dri89], implies that
quasi-Poisson manifolds over a pair (g, Z), where g is a Lie algebra and Z €
A3(g)9, can be quantized in the case when the underlying space is the group itself.
This problem was posed in [EEO3].

To solve the problem of quantization of coboundary Lie bialgebras, we show
that quantization functors of Lie bialgebras are compatible with Lie bialgebra
twists. The quantization of all the affine Poisson groups of Dazord and Sondaz
[DS91] (i.e., Poisson homogeneous spaces under a Poisson-Lie group, which are
principal as homogeneous spaces; see [Dri93]) follows immediately from this re-
sult. It is also a basic case of the quantization problem of quasi-Lie bialgebras
(together with their twists) into quasi-Hopf algebras (also a problem of Drinfeld’s
list), which is still open.

We now describe the problem of quantization of coboundary Lie bialgebras.
A coboundary Lie bialgebra is a pair (a, rq), where a is a Lie algebra (with Lie
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bracket denoted by j14) and rq € A%(a) is such that

Zo:=[r 1+ P21+ 1P P e AP (o)

To (a,rg) is associated a Lie bialgebra with cobracket 84 : a — A?(a) given by
o) =[re, x @14+ 1R x].

A coboundary QUE algebra is a pair (U, Ry), where (U, my, Ay, ey, nu)
is a quantized universal enveloping (QUE) algebra, that is, a deformation of an en-
veloping algebra in the category of topological k[[#]]-modules, and Ry € (U ®?)*
is such that

Ay (x)*' = RyAy(x)Ry',
21 _ 1®2
R{7(Ay ®idy)(Ry) = R (idy ®Ay)(Ry),
() Ry = 1%2 mod 7,
(ev ®idy)(Ry) = (idy ®ey)(Ry) = ly.

We say (U, Ry ) is a quantization of (a, rq) if the classical limit of U is (a, (g, 84),
and if

(3) (h~Y (R} — Ry) mod h) = 2r,,.

D

(Here 1y = ny (1) is the unit of U.) The problem of quantization of coboundary
Lie bialgebras is that of constructing a quantization (U, Ry ) for each coboundary
Lie bialgebra (a, rq) [Dri92], [Dri87]. Our solution is formulated in the language of
props [Mac65]. Recall that to a prop P and a symmetric tensor category &, one as-
sociates the category Repy (P) of P-modules in &. A prop morphism P — Q then
gives rise to a functor Repy(Q) — Repy(P). A quantization problem may often be
formulated as the problem of constructing a functor Repy ( Pelass) — Repy ( Pquant)s
where & = Vect (the category of vector spaces) and Pejass and Pquane are suitable
“classical” and “quantum” props. The propic version of the quantization problem
is then to construct a suitable prop morphism Pquant = Pelass-

We can construct props COB and Cob of coboundary bialgebras and of co-
boundary Lie bialgebras. By using an even associator defined over k (see [Dri90],
[BN98]), we can construct a prop morphism COB — S(Cob) with suitable prop-
erties. Here Cob is a completion of Cob, and S is the symmetric algebra Schur
functor. This allows us to also solve the problem of quantization of coboundary
Lie bialgebras in symmetric tensor categories (when & = Vect, this is the original
problem).

Our construction is based on the theory of twists of Lie bialgebras [Dri89].
Recall that if (a, /14, 84) is a Lie bialgebra, then f, € A%(a) is called a twist of a
if (84 ®ida)(fa) + [£L3, £23] + cyclic permutations = 0. If we set ad( fo)(x) =
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[ far x1 + x?], then (a, itq, 8« + ad( f3,)) is again a Lie bialgebra, the twisted Lie
bialgebra.

A quantization of (a, fq) is a pair (U, Fy ), where (U,my, Ay, ey, nu) is a
QUE algebra quantizing (a, 14, 84), and Fy € (U®?)* satisfies the conditions (2)
and (3) but with (—2rq, Ry ) replaced by ( f4, Fyy). This makes (U, my, Ad(Fy) o
Ay, ey, nu) into another QUE algebra (the twisted QUE algebra, denoted Fup,
which is a quantization of (a, tq, 84 4+ ad( f,)) (here the map Ad(Fy) € Aut(U ®?)
is x > FyxFyh).

We note that if (a, r,) is a coboundary Lie bialgebra, then —2r4 is a twist of
(a, (g, 84 = ad(ry)), and the resulting twisted Lie bialgebra is (a, (g, —84), which
is the coopposite of (a, itq, 84). Also, a quantization of (a, ry) is the same as a
quantization (U, my, Ay, ey, nu) of (a, g, 84), together with a twist Ry of this
QUE algebra, additionally satisfying (1); the second part of (1) means in particular
that the twisted QUE algebra is (U, my, A%Jl , €U, MU ), that is, the coopposite of
the initial QUE algebra.

On the other hand, Etingof and Kazhdan [EK96], [EK98] constructed a quan-
tization functor Q : Bialg — S(LBA) for each Drinfeld associator defined over k;
here Bialg is the prop of bialgebras, and LBA is a suitable completion of the prop
LBA of Lie bialgebras. We also denote by Q : {Lie bialgebras over Vect} — {QUE
algebras over Vect} the functor induced by this prop morphism. Our construction
involves three steps:

(a) We show that any Etingof-Kazhdan quantization functor Q is compatible with
twists. This is a propic version of the statement that for any (a, f;), where
a is a Lie bialgebra and f is a twist of a, there exists an element F(a, f) €
O(a, jta, 84)®? that satisfies the twist conditions and is such that the twisted
QUE algebra F(®/2) O (a, 114, 8,) is isomorphic to Q(a, fta, 8o + ad( fa)).

(b) We show that if Q corresponds to an even associator, then Q is compatible
with the operation of taking coopposite Lie bialgebras and QUE algebras. This
is a propic version of the statement that for any Lie bialgebra (a, i4, 84), the
QUE algebras Q(a, pq, —384) and Q(a, fLq, 84)°P are isomorphic. Here U “°P
is the coopposite QUE algebra of a QUE algebra U'.

(c) We are then in this situation (at the propic level): If (a, ry) is a coboundary
Lie bialgebra, we have QUE algebra isomorphisms

O(a, b, —0q) = Q(a, i, Sa)mp
and
O(at, fa. —8a) = F &2 O (a, pq. 8a).

and therefore we have Q(a, jtq, 85)°P =~ F(@=27) O(q, [14,84). One then
proves (at the propic level) that this implies there is a twist R(a, rq) with
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R(a.ro)R(a, o) = 137 and Q(a. pa. 8)° = R Q(a, juq, 84). This
solves the quantization problem of coboundary Lie bialgebras.

Let us now describe the contents of the paper. In Section 1, we recall the
formalism of props. We introduce the related notions of quasi-props and quasi-bi-
multiprops. Recall that a prop (for instance, LBA) consists of the universal versions
LBA(F, G) of the spaces of linear maps F(a) — G(a) (where a is a Lie bialgebra
and F and G are Schur functors), constructed from 4 and §, and avoiding cycles.
The corresponding quasi-biprop consists of universal versions of the spaces of maps
F(a) ® F'(a*) - G(a) ® G'(a*); by partial transposition, this identifies with
LBA(F ® (G")*, F' ® G*), but due to the possible introduction of cycles, the
composition is only partially defined: it is defined if and only if the “trace” of some
element is. One then constructs a (partially defined) trace map LBA(F ® G, F ®
G') - LBA(G, G'), which is made by closing the graph by connecting F with
itself. One can also encounter the situation that F = @"_; F; and x € LBA(F ®
G, F ® G’) is such that the element obtained by connecting each F; with itself has
no cycle. This defines a trace map LBA(F ® G, F ® G') — LBA(G, G’), which
depends on the data of (F;);=1,... » such that F = ®;1:1 Fj; it actually depends
on the multi-Schur functor X?_, F;. In the corresponding notion of a prop (quasi-
bi-multiprops), the basic objects are bi-multi-Schur functors (the “bi” analogue
of a multi-Schur functor). We introduce at the end of Section 1 the main quasi-bi-
multiprops we will be working with, IT and I1y and their variants. In Section 2, we
introduce the universal algebras U, and U, ¢ (we have morphisms U, — U(a) ®n
if a is any Lie bialgebra, and U, r — U (a)®" if a is any Lie bialgebra equipped
with a Lie bialgebra twist). In Section 3, we prove the injectivity of a map; this
will be crucial for proving the compatibility of quantization functors with twists
(step (a) above). In Section 4, we present the construction of quantization functors
of [Enr05] (in the framework of quasi-bi-multiprops), which can be viewed as
an alternative to the construction of [EK96; EK98]. Its basic ingredients are a
twist J killing an associator ®, and a factorization result for the corresponding R-
matrix. In Section 5, we prove the compatibility of quantization with twists (step
(a) above). As in [Enr05], the proof involves two steps: an “easy” co-Hochschild
cohomology argument, and a more involved injectivity result (which was proved
in Section 3). In Section 6, we perform steps (b) and (c); that is, we study the
behavior of quantization functors with the operation of taking coopposites, and
“correct” the twist F(a, —2r,) into a quantization of coboundary Lie bialgebras.
Finally, in Section 6.4, we show how quantization of coboundary Lie bialgebra
implies that of certain quasi-Poisson homogeneous spaces.

Notation. 1f A = €P,,5¢ An is a graded vector space, A= @nzo Ap is its
completion with respect to the grading. If A is an algebra, we denote by A* the
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group of its invertible elements. If the algebra A4 is equipped with a character y,
then we denote by A7 the kernel of y : A — k. If A is a graded and connected
algebra, then a graded character y is unique; we will use it for defining AT and A7.

1. Props and (quasi)(multi)(bi)props

In this section, we define various “Schur categories”, which are all symmetric
monoidal categories. We then define monoidal quasi-categories and show how they
can be constructed using partial traces on monoidal categories. We then define
(quasi)(multi)(bi)props and show that variants of the prop of Lie bialgebras yield
examples of these structures.

1.1. Schur categories. 1f O is a category, we denote by Ob(0) its set of objects
and by Irr(0O) the set of isomorphism classes of irreducible objects of 0. We denote
by Vect the category of finite-dimensional k-vector spaces.

Forn > 0, let @n denote the set of isomorphism classes of irreducible rep-
resentations of &, (by convention, Sg = {1}). We view |_|,~ @n as the set of
pairs (n, ), where n > 0 and 7 € @n. For p = (n,7), we set |p| := n and
mp:=m,s0 p=(|p|,mp). If o and 7 are finite-dimensional representations of &,
and &,,, respectively, then o * 7 is defined as Indg,, X&,;, Sntm (o K 7). We have
then an identification (o * 0’) x 6" ~ o * (¢ * ¢’"). The dual representation of p
is denoted p*.

1.1.1. The category Sch. Define the Schur category Sch as follows.

Ob(Sch) := Ob(Vect) =0 &)

= {finitely supported families /' = (F),) of finite-dimensional vec-
tor spaces, indexed by p € |_|nZO @n }.

For F = (F,) and G = (G,) in Ob(Sch), we set Sch(F, G) := EBp Vect(F),, Gp),

(F ® G)p = ®P/vp”€|_|/120/6\n Fp/ ® Gp/’ ® MZ/p//,

where for p, ', p" € | |50 &,. we set “Z’p” = Homg, (71 * 7pr, p) if |p| =
|o’| + |p”| and O otherwise. The direct sum and the involution p > p* followed
by the transposition induce canonical maps Sch(F, G) @ Sch(F’, G’) — Sch(F &
F’,G @ G’) and Sch(F, G) — Sch(G*, F*), and for f = (f,,) € Sch(F, F') and
g = (gp) € Sch(G, G'), we define

(f®g)p:= @p’,p”eunzogn S ® gy ® idMZ/p .

4
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Then Sch is a symmetric additive strict monoidal category with an antiauto-
morphism?; it is also Karoubian (that is, every projector has a kernel and a coker-
nel). We have a canonical bijection Irr(Sch) >~ | |, @n, with inverse given by
p+ Z,, where (Z,)y =kif o =pand 0 otherwise. We denote by 1, id, ",
and A" the elements of Irr(Sch) corresponding to the elements of @0, @1, the
trivial, and the signature characters of G,; 1 is the unit object of Sch. Sch has
the universal property that if € is a Karoubian additive symmetric strict monoidal
category with a distinguished object M, then there exists a unique tensor functor
Fe,m) : Sch — 6 such that F(id) = M. In particular, for G € Ob(Sch), we get
an endofunctor F(sch ) : Sch — Sch, which we denote by F + F o G (or F(G))
at the level of objects and f +— f o G (or f(G)) at the level of morphisms. We
say that F = (F,) € Ob(Sch) is homogeneous of degree n if and only if F, =0
for |p| # n. If F is a homogeneous Schur functor, we denote its degree by |F|.

Let End(Vect) be the symmetric additive strict monoidal category, where
objects are endofunctors F : Vect — Vect, and morphisms F' — G are natural
transformations, that is, assignments Vect > V > fy € Vect(F(V), G(V)), such
that fi o F(¢p) = G(¢p) o fy for ¢ € Vect(V, W). We define a direct sum and a
tensor product in End(Vect) by

(FeF)V)=FW)®F'(V), (Ve eV fi)=Vr frof),
(FRF)V):=FW)QF'(V), (Ve f)®V - fy):=V 1 fi ® fy).

We also define an antiautomorphism of End(Vect) by F*(V) := F(V*)* and
(V= fi)* := (V= fy«), where (-)* is the transposed endomorphism. Each
G < End(Vect) gives rise to an endomorphism F +— F o G of End(Sch), where
FoG(V):=F(G((V)).

We then have a tensor functor Sch — End(Vect), which is compatible with
the antiautomorphisms and with the endomorphisms F' — F o G. It is defined at
the level of objects by

F=(F)) >V @pGUnZOgn Fyo®Z,(V),
where Z, (V') := Homg, (7rp, V®lel) and at the level of morphisms by

f=) =V fr). where fy= P  fo®idz,m).

PeUnzo 6}1

1An antiautomorphism of a category 6 is the data of a permutation X +— X* of Ob(6), and of
maps €(X,Y) — €(Y*, X*), x = x* such that (y o x)* = x* o y*; if 6 is additive, we require
compatibility with direct sums and the linear structure of the €(X, Y); if 6 is monoidal, we require
XRY)*=X*QY*, 1*=1and x® y)* =x*Q y*.
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For later use, we define? the set
Ob(Schy) := Ob(Vect) (=0 8,

= {finitely supported families F' = (Fj, ... p,) of finite-dimensional
vector spaces, indexed by (o1, ..., 0k) € (L,>o @n)k}.

The direct sums and duality are defined componentwise as before. Note that
Ob(Schg) = Ob(Vect). If3 ¢ : [m] — [n] is a partially defined map (often identified
with the collection of preimages ¢~ 1(1),...,¢~1(n)), we define an additive map
A? : Ob(Sch,) — Ob(Schy,) that takes (Fp,....p,) to (A?(F)x, ... x,,), Where

AV (F)atpiin = B W icsmr 1) ® @ W0 i)™ ® Foropu:
P1s--5Pm

We set A := A{L2}: Ob(Sch) — Ob(Schy). Let Fun(Vect”, Vect) be the set of
functors Vect” — Vect; the direct sum and duality are defined by

(FeG)V,...,.Vy)=FWV,....Vy)@dG(V,...,Vy),
F*(Vi,....Vp) = F(V{, ...,V )",
We also define A? : Fun(Vect”, Vect) — Fun(Vect™, Vect) by
(A¢F)(V1, ey Vm) = F(®i€¢_](l) Vi, ey ®i€¢_l(n) Vl)
Then the map Sch, — Fun(Vect”, Vect) taking (Fp,...p,) to
F (Vlv ] Vl’l) = @pl Pn Fpl,...,pn ® Zp1 (Vl) ® e ® an(Vn)

is compatible with the direct sums, the duality, and the maps A?.

.....

1.1.2. The category Sch(1+1). We now define the symmetric additive strict
monoidal category of Schur bifunctors Schj;. First Ob(Schy41) := Ob(Schy).
For F,G € Ob(Schi+1), we set Schi11(F, G) := @D,, ,, Vect(Fp, 2. Gp;,p0)-
We also define

e 4 P
(F ® G)pl,pz = @ Fp/l’p/2 ® Gp/l/’p/z/ ®,up/ip/1/ ®,va

P;sP;

el

2

105
Direct sums and tensor products of morphisms are defined componentwise. An anti-
automorphism of Schy 41 is defined by (F, 5)* = (F:*’p*) and ((p,0) = fp6)* =
(p,0)—~ U**’ p*). At the level of objects, we define a tensor morphism X : Sch? —
Schi41 by (FRG)p,o := Fy ® Gg; it is defined componentwise at the level of
morphisms. For F,..., G’ € Ob(Sch), we have Schy 1 (F X G*, F' K G'*) ~
Sch(F, F') ® Sch(G’,G) and (F K G)* = G* K F*. As Schy4; is Karoubian,

2For I a  finite set, we define Ob(Schy) similarly, where (p1, ..., pK) is replaced by a map

I =506,
3We set [n] :={1,..., nj.
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any G € Schj4; gives rise to a unique tensor functor Sch — Schy 4 taking id to
G, which we denote by F — F o G.

Suppose Fun(Vect?, Vect) is the symmetric additive strict monoidal category
where objects are functors Vect? — Vect and morphisms are natural transforma-
tions; the direct sum, the tensor product, and the duality are defined by

(FeG)V,W):=FV,W)® GV, W),
(FQG)V,W):=FWV, W) G(V,W), F*(V,W):=FW*,V**.
We have a tensor functor Schy4; — Fun(Vect?, Vect) that takes F to ((V, W)

Dy, Foioo ® Zp (V) ® Zp,(W)) and is compatible with the dualities. It is
also compatible with the tensor functor

End(Sch) — Fun(Vect?, Vect), G +— F oG,
where F o G(V, W) = F(G(V, W)). We define a tensor functor
X : End(Vect)? — Fun(Vect?, Vect)

at the level of objects by (F X G)(V, W) := F(V) ® G(W). Then the morphisms
Sch — End(Vect) and Schy4; — Fun(Vect?, Vect) intertwine the functors X :
Sch? — Sch; 4 and X : End(Vect)? — Fun(Vect?, Vect).

1.1.3. The category Sch(yy. We define the additive symmetric strict monoidal
category Sch(y) as follows. We set

Ob(Schy) := Ob(Vect) LezoUnzo S [Tje=0 Ob(Schy)

= {finitely supported collections (Fi)x>o.
where Fy € Ob(Schy) is a family Fi = (Fp,,....p.)}-

The direct sum of objects is defined by component-wise addition. The tensor prod-
uct of objects is defined by (F) X (Gg) := ((F X G)y), where

(F X G)k = @k/,k”|k/+k”=k Fk/ X Gk’/v
and if Fj, = (Fpl ..... Pk’) € Ob(Schy) and G = (Gp1 ’’’’’ Pk”) € Ob(Schg), then
Fp X Gpr = ((F X G)Pla---apl</+k”) S Ob(SChk/+k//), where
(F & G),D],...,pk/+k// = Fpl,...,pk/ ® ka/-‘rl""’pk/-l—k”'
In order to define the morphisms, we first define a “contraction” map

¢ : Ob(Schy) — Ob(Sch), Fi = (Fp,,...01) = ¢(Fi)

0
o o1k @ Moy .oooppc

.....

.....

For F = (Fy), we then set c(F) := @y c(Fy), and for F,G € Ob(Sch(y)), we
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set Sch()(F, G) := Sch(c(F), c(G)). We define the direct sum and the tensor
product of morphisms using the identifications c¢(F & G) ~ c¢(F) & ¢(G) and
¢(FRG) ~c(F)®c(G). The symmetry constraint in Sch)(F X G, GX F) =
Sch(c(F ®G), c(G K F)) then uses the identifications c(X KY) >~ ¢(X) ® c(Y)
and the symmetry constraint for Sch. The unit object of Ob(Sch(y)) is 1, whose
only nonzero component is 19 = k € Ob(Schg) = Ob(Vect).

An additive symmetric strict monoidal category H;c>0 Fun(Vectk, Vect) is
defined as follows. The objects are finitely supported families (Fi)k>0, Where
Fp € Fun(Vectk , Vect). The direct sum and tensor product of objects are defined
componentwise, where for Fy, G € Fun(Vectk , Vect)

F, &Gy € Fun(Vectk, Vect) is given by
(Fr®Gr)Vi,..., Vi) i=F (W, ..., Vi) ® G (Vy, ..., Vi) and
(Fp) X (Gg) ;== (F X G)g), where
(FRG)k = B yir=k Fir Bper v Gier

and Xy g : Fun(Vectk/,Vect) X Fun(Vectk”,Vect) — Fun(Vectk/"'k”,Vect) is
given by

(Fio Xy ik G ) Vi oo Vi) = Fro (Vi Vi) @Grr (Vi - -+ Vie i)

The contraction c : l_[;c>0 Fun(Vectk, Vect) — End(Fun) is defined by (Fy) —
Dp>o ¢ (F), where c(Fk)(_V) = Fi(V,..., V). The space of morphisms F — G
is then defined as Fun(Vect)(c(F), ¢(G)).

There is a unique tensor morphism Sch(;) — ]—[;C>0Fun(Vectk , Vect) tak-
ing F = (Fi)k>0, Where Fi = (Fp,,... o), to the collection (Fk)kzoa where
Fk(Vl? SR Vk) = @pl,...,pk Fpl,...,pk ® Z,O] (Vl) & Zpk (Vk)

1.1.4. The category Sch(1+1). We now define an additive symmetric strict
monoidal category Sch(; 4+1) as follows:

Ob(Schq 4 1)) := Ob(Vect) Uksz0lUnz0 8,

= {finitely supported collections (Fy ),
where Fk,l = (Fpl,...,pk;(fl,...,o‘l) € Ob(SChk+l)}'
The direct sum of objects is defined componentwise, and the tensor product is given
by (F R Fk1 = ey o)+t )=t Frrty Bhei ik ts £y gy 1 F = (Fip)
and F’ = (F; ;), where
By 1 k.17 - Ob(Schyy7) x Ob(Schys4;7) — Ob(Schyyx/474+1/) is given by

/
(F Izk,l,k’,l/F'),m ..... Pk k! 301502307 41/

/
----- PKk;015.--,0] ® Fpk_H,...,pk+k/;(71+1,...,0/+1/'
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An involution is defined by

F*=((k,l,p1,....pk,01,...,00) > F(l,k,of,....0/ . p],....p})") for
F=(k,1,p1,....0t,01,...,00) = F(k,l,p1,...,0k,01,...,07)).

In order to define the morphisms, we define a map ¢ : Ob(Sch+1)) —
Ob(Schi+1), F > c(F), by c(F):= @Dy c(F,) for F = (Fj;) and

— 14 o
C(Fk,l)P,U - @pl,...,pk;ol,...,ok Fpl,...,pk;ol,...,ol ® Hopy...ox ® /’Lal...al

if Fi1 = (Fpy,....01:01,....0;)- We then set Schaq 1) (F, G) := Schi41(c(F), ¢(G)).
The direct sum, tensor product, and duality of morphisms are then induced by those
of Schy41 and the identifications

cC(FOG)~c(F)®c(G), c¢(FRG)~c(F)Xc(G), c(F*)=c(F)*.

We define a tensor morphism X : (Sch(1))? — Schq 4 1); at the level of objects,
it is defined by (Fy) X (G;) := (Fx K ; Gy); at the level of morphisms, it is
induced by the tensor morphism Sch? — Schy 1. The unit object of Sch(j 4 1) is
1 X 1. Then Schgq+1h(F X G*, F’ X G/*) = Sch)(F, F/) ® SCh(l)(Gl, G) for
F,...,G' € 0b(Schp)) and (FRG)* =G*X F*.

As before, we define ]_[;c ! Fun(Vectk + Vect), an additive symmetric strict
monoidal category: objects are finitely supported families (Fi ;) 1505 (Fk,; @
Gk,l)(Vl, oLV Wy, o W) = Fk,l(Vls LW @ Gk’](Vl, ..., W); and

Ry 17 k17 Fun(Vectk/"'l/, Vect) X Fun(Vectk”"'l”, Vect)
— Fun(Vectk’H/Jrk”HN, Vect)

is (F Ry e 17 GY Vs oo s W) := F(V1 oo o W) @ G(Vier s o W),
We define ¢ : ]_[;c ! Fun(Vectk + Vect) — Fun(Vect?, Vect) by

c(F) =@ c(Fry) and c(Fe)(V,W)i= F (Voo ViW, . W)

and the space of morphisms F — G as Fun(Vect?, Vect)(c(F), c(G)). We also
define a tensor morphism

X (H;czo Fun(Vect®, Vect))? — H;c,lzo Fun(Vect* !, Vect)

at the level of objects by (Fx) X (Gg) := (Fi Mg ; Gy).
Then we have a tensor morphism Sch(4+1) — ]_[;C >0 Fun(Vectk+l , Vect),
taking (Fg ;) to (ﬁk,l), where for Fy ; = (Fp,,....0;)-

.....
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This morphism is compatible with the morphisms
Schq) — H;czo Fun(Vect®, Vect),
(Schy)* = Schq 41),
(k=0 Fun(Vect®, Vect))? — [Tk.i=0 Fun(Vect**/, Vect).

1.1.5. Completions. If in the definition of Sch, we forget the condition that
(Fp) is finitely supported, we get a symmetric additive strict monoidal category
with duality Sch. Infinite sums of objects of increasing degrees are defined in
Sch. For each G = ;. G; € Sch (where |G;| = i), we have an endofunctor
Fr> FoG, f+ foG (also written F(G), f(G)) of Sch. We also define
Ob(Schy) by dropping the finite support condition. The maps A? extend to these
sets. We define Sch;4 1, Schy), and Sch(; 1) similarly to Schy+j, Sch(), and
Sch(1 +1), namely,

Ob (SCh1 + 1) = Ob(Schz) ,

Ob(Sch(y)) = {finitely supported families (Fk)x>0,
where Fj, € Ob(Schy)},

Ob(Sch(; +1)) = {finitely supported families (Fx ;)k.;>0-
where Fk,l S Ob(SChk_H)}.

Then Schiy1, Schq) and Schq 1) have structures of additive symmetric strict
monoidal categories. The map ¢ and the bifunctor X extend to these categories;
the duality extends to Sch;4+; and Sch(; 4 1).

Examples. Let T, € Ob(Sch) be such that (7,),y = 7, if [p'| = n and 0
otherwise. The corresponding endofunctor of Vect is V +— T,(V) = V®" =
&b Pegn 7y, ® Zp(V). Using the obvious module category structure of Sch over
Vect, we write
“ h= P 7z®Z,

Z €lrr(Sch)
|Z|=n

where Z > (|Z|, mz) is the inverse to |_|,,~.o &, — Irr(Sch), p > Z,.

The endofunctors of Vect correspondinTg to S” and A" are the n-th symmetric
and exterior power functors. The symmetric and exterior algebra functors S :=
PD,,-0S" and A :=P,,., A" are objects in Sch. We then have A(S) =S K S,
A(A) = AR A. Note that while the map Ob(Sch) — Ob(End(Vect)) is injective, it
is not surjective since, for example, the exterior algebra functor is not in the image
of this map.

Remark 1.1. For any F, G € Ob(Sch), we have

(5) Sch(F.G)= (P Sch(F.Z)®Sch(Z.G);
Z €lrr(Sch)
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for any B, B’ € Ob(Schy 1), we have
Schy+1(B, B) = @ Sch;4+1(B,ZX Z')®Sch;+1(ZX Z', B').
Z,Z’€lrr(Sch)

Remark 1.2. We have
Irr(Sch) ={Z 1 K--- R Zy |k >0,Zy,...,Z; € Irr(Sch)},
Irr(Schp) ={(Z1 K-+ - RZ) R (W K- -KWy) | k,£>0,2Z4,...,Zy,

Wi, ..., Wy € Irr(Sch)}.
Then
c(Z1®---RZp)=Z1Q--Q Zy,
c(Z1 W RZP) W K---B’W)) =(Z1Q- - ®Z) R (W1 ®--- Q@ W)).

1.2. Quasicategories. We define a quasicategory € to be the data of (a) a set
of objects Ob(6); (b) for any X, Y € Ob(%), a set of morphisms ¢(X, Y), and for
any X € Ob(6), an element idy € 6(X, X); (c) for X; e Ob(6) (i =1, 2, 3), a subset

G(X1, X2, X3) C6(X1, X2)x6(X2, X3) and a map (X1, X, X3)>6(X1, X3),
(x1, x2) — x2 0 x1 satisfying two axioms:

(identity axiom) If X, Y € Ob(%) and x € €(X,Y), then
idy ox e 6(X,Y,Y), xoidy €€(X,X,Y), idyox =xoidy = x.

(associativity axiom) If X; € Ob(%¢) fori = 1,...,4 and x; € €(X;, X;+1) for
i =1,2,3, then if

(x1,x2) € 6(X1, X2, X3), (x20x1,x3) € 6(X1, X3, X4),
(x2,x3) € 6(X2, X3, X4), (x1,x30x2) € 6(X1, X2, X4),
then x3 o (x2 0x1) = (x30x3)0x7.

We then define inductively a diagram €(X;, X2) X -+ X €(X,—1, X») D
G(X1,...,Xn)>@(X1,X,) as follows: (x1,...,xp—1) €6(X1,...,X,) if and
only if forany k =2,...,n—1,

(xl,...,xk_l) €(€(X1,...,Xk), (xk,...,xn_l) G(ﬁ(Xk,...,Xn),

(Xg—10---0X1,Xp—1 0 0X) € 6(X1, Xy, Xn).

If (x1,...,xp—1) satisfies these conditions, then the (x;,_10---0xg)o(Xxg_10:--0x1)
all coincide; this defines the map €(X1, ..., X;) — 6(X1, Xn).
Ifl<n <---<ng<nandx = (x1,...,X5—1) € €(X1,X2) X -+ X

€(Xp—1,Xn), then x € €(Xq,..., Xp) if and only if (a)
(xl,...,xnl_l) e‘@(Xl,...,an), (xnl,...,xnz_l) G%(an,...,X,Q),...,
and (Xp;_ ... Xn—1) €C(Xnp_y,..., Xn);
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and (b) (xp,—10--0X1,...,Xp—10--0Xp,_,) €EC(X1, X\, Xpy,..., Xp). If
these conditions are satisfied, then x,_j0:--0x; = (Xp—1 00Xy, _,+1)0 -0
(-xl’ll—l o...oxl).

The quasicategory 6 is called strict monoidal if it is equipped with (a) a map
® :0b(€)? -6, (X,Y) — X ®Y and an object 1 € Ob(%) such that

XQY)®Z=X®(Y ®Z) and 18X =X®1=X;
(b)yamap ® : €(X,Y) x6(X',Y') > 6(X ® X', Y ® Y’) such that

(fRMARFf"=fR(f/'®f") and fRid=id1Qf = f;

(c)amap ® :<€(X1,X2,X3)x<€>(X/,X£,X§)—><€(X1®X{,X2®X/,X3®X§),
such that

€(X1, X2, X3) x€(X{, X35, X3)

\

C(X1® X[, X2® X}, X530 X))
(X1, X2) x6(X2, X3) x6(X{, X}) X €(X}, X})

\

C(X1® X[, X2 ® X;5) x6(X2® X5, X3® X3)
commutes. Then we have maps
G(X1,..., Xn)Q6G(X],.... X;) > 6(X1®X],...,X,®X,)
such that the analogous diagram (with 3 replaced by n) commutes.

Example. % is the category where objects are pairs (/, J) of finite sets and
G((1,J),(I',J")) is the set of oriented acyclic graphs with vertices i, , j. , i}, and
JowWithiel, jeJ,i’el’ and j' e J', where each edge has its origin in {7, , j |
iel,j’eJ }anditsendin {i/ ., jin|i’ €1’, j € J}, and there is at most one edge
through two given vertices. Equivalently, a graph is a subset of (I U J") x (I' U J).
If Xo = Iy, Jo) and xoy € 6( Xy, Xog+1) fora =1, ..., k—1, we obtain a composed
graph with edges Xiy, Yout, X € I1 U J1, and y € I, U J,, by declaring that two edges
are connected if there exists an oriented path in the juxtaposition of x1,..., Xx_1
relating them. Then G(X1, ..., Xz) C9(X1, X2) x--- xG(X_1, Xi) is the set of
tuples of graphs whose composed graph is acyclic, which is then their composition.
The tensor product is given by (I, J)® (I',J'):= (I U J, I’ U J’) at the level of
objects, and by the disjoint union of graphs at the level of morphisms. Note that %4
contains subcategories 9'°' and 92", where

gt D), 1", ) ={S €SI, J), I, J)|SN' xI') =2},
@ight (1, J), (I, ) ={S| SN xJ)= o}
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A k-additive quasicategory 6 is the data of (a) a set of objects Ob(%); (b) for
any X, Y € Ob(%6), a vector space 6(X, Y), and for any Xq,..., X, € Ob(%6), a
vector subspace 6€(X1,...,X,) C €(X1,X2) ®---Q6(Xn—1, Xn), and a linear
map 6(X1,...,X,) > (X1, Xy), satisfying the axioms of a quasicategory (with
products replaced by tensor products); and (c) an associative direct sum map & :
Ob(€)? — Ob(%), (X,Y) — X @ Y, an object 0 € Ob(¢), and isomorphisms
C(Z,XBY)>~C(Z,X)PC(Z,Y)and (X DY, Z)>6(X,Z)D€(Y, Z) such
that

hd %(Xl@X{,Xz,Xy,)2(6(X1,X2,X3)@(6(X1,X2,X3),

G(X1, X2, X3 X5) >~ 6(X1, X2, X3) ®6(X1, X2, X3),
(X1, X2® X5, X3) ~6(X1, X2, X3) ®C(X1, X5, X3) D 6(X1. X2)
R 6(X2, X3) ®6(X1, X3) ® 6(X2, X3),

and the composition map on left sides coincides with the sum of compositions
on the right sides and of the zero maps on the two last summands in the last

case (this statement then generalizes to €(Xq,..., X; @ Xl./, ..., Xy)); and
e XP0=X =06 X and 6(X, 0) =€(0, X) =0 for any X, and the composed
isomorphisms

CX,Y)=6X0,Y)~6(X,Y), X, Y)=€0X,Y)>%6(X,Y),
X, Y)=6X, Y P0) ~6(X,Y), B(X,Y)=€¢X,00Y)=%6(X,Y)
are the identity.

Such a €6 is called strict monoidal if it satisfies the above axioms of a strict
monoidal quasicategory, where ® is bilinear and biadditive.

A functor F : € — 9 between quasicategories is defined as the data of a map
F : Ob(€) — Ob(®) and a collection of maps

F(X,Y):6(X.Y) > D(F(X), F(Y))
such that x?;llF(X,-, Xi41) restricts to a map
C(X1,...,Xn) > D(F(X1),..., F(Xn))

and the natural diagrams commute; natural additional axioms are imposed if the
categories are strict monoidal and/or additive.

Example. k% is the category with Ob(k%) = Ob(%9) and
&9, J), (I, J") =k&4((1, ). (1", ])):;

then k% is an additive strict monoidal quasicategory.
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1.3. Partial traces and quasicategories. If €¢ is a symmetric strict monoidal
category with symmetry constraint By y € €o(X ® Y, Y ® X), a partial trace on
%@ is the data of diagrams

(X R®Z,Y®Z)D%(X,Y|Z) 1z, 6o(X,Y) for X,Y,Z € Ob(%),

such that 6o(X,Y|Z ® Z') C6y(X R Z,Y ® Z|Z') ﬂtr}}(%o(X, Y|Z)), and
trzgz = trzotrz/; the map x +— x' = (idy ®ﬂZ’,Z) o x o (idy ®,BZ,Z’) in-
duces an isomorphism 6o(X,Y|Z ® Z') —> 6o(X,Y|Z' ® Z), and trz/ gz (x) =
trzgz/(x); the composition takes 6o(X, Y |T) x 6o(Y, Z) to 6o(X, Z|T), and
trr ((y ® id7) o x) = y otrr(x), and similarly it takes €o(X,Y) x 6o(Y, Z|T) to
Go(X, Z|T), and trr(y o (x ®id7)) = tr7(y) o x; the map

x?_o(X;i @T;.Yi @ T;)

—>6(X18X20T1 Q12,1020 T1 ®T2),
(x1,x2) = x := (idy, ® 1.y, ®id1,) 0 (X1 ® X2) 0 (idx, ®Bx,, 7y ®idT,)

takes (60(X1, Y1|T1) X 6o(X>2, Y2|T2) to €o(X1 ® X2,YV1 ® Y2|T1 ® T»), and
trr, @7, (x) = tr; (x1) @ trr, (x2); €o(X, Y1) =%o(X,Y) and try(x) = x.
Set Ob(€) := Ob(%g)?,

XX Y)=X®X.,Y®Y),

CUX,Y), (X, Y)):=%((X®Y',X'®Y), and
C((X1,Y1),(X2,Y2), (X3,Y3)):={(x1,x2) [ x2%xx1 €€o(X1QY3, X30Y1|Y2)},
where x2 % x1 = (idX3 ®,BY2Y1) o(x2® idY]) © (idXz ®IBY1 Y3)

© (X] ® 1dY3) o (idX1 ®:8Y3Y2);
then x, o x1 := try, (x2 * x1). The tensor product of morphisms is defined as
X2 Go(X; @Y/, X ®Y;)
> (x1,x2) > (idy; ®By, x; ®idy,) o (x1 ® x2) o (idx, ®Bx, y; ®idy;)
EGr(X1®X20Y/R®Y,, X]® X, QY1 ®Y2);
the unit of 6 is (1, 1).
PROPOSITION 1.3. € is a strict monoidal quasicategory.

Proof. Let U; = (X;,Y;); let x; € €(U;,Uj4+q) for i = 1,2,3; assume that
(x1,x2) €6(Uy, Uz, Us) and (xp0x1, x3) € 6(Uq, Us, Uy); define x3 % x5 % x1 by
formula (6) below. Let us show that x3 * x5 * x; € 6(X1 ® Y4, X4 R Y1|Y2 ® Y3)
and that x3 0 (x2 0 X1) = try,@y; (X3 * X2 * X1).

X3 0 (X2 0x1) = try;(x3 * try, (x2 * x1)). Using the fact that x» * x1 may as
well be expressed as x2 * x; = (idy, ®By,y,) o (x2 ® idy,) o (By;x, ®idy,) o
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(idY3 ®x1) © (ﬂX1Y3 X ide)’ we write x3 * trYz(XZ * X1) = (idX4 ®:3Y3,Y1) ©
(X3 02 ile) © (IBY4,X3 2y idY]) o (idY4 ®trY2(x2 * X])) o (ﬂX],Y4 ® idY3)' Now
idY4 R(x2*%x1) €Bo(YaR®X1®Y3,Y4® X3 Y1|Y>2), and idY4 X tl‘Yz(X2 *X1) =
try, (idy, ®(x2 * x1)). We have then
[{(dx, ®Bys,¥,) o (x3 ®idy,) o (By,,x; ®idy,)} ®idy,]
o [idy, ®(x2 *x1)] o [Bx,,v, ®idy, ®idy,]
€EGo(X1®Y4®Y3, X4®Y ®Y3|)3),

and
X3 *1(ry, (x2 *xl) = trYz{[{(idX4 ®ﬂY3,Y1) o (X3 ®ldY1) o (IBY4,X3 ®ldY1)} ®1dY2]

© [idY4 ®()C2 * X])] © [ﬂXl,Y4 & 1dY3 ® lde]}

As the right side is in the domain of try,, the argument of try, in the right side is
in the domain of try,gy,, and

x30(x20x1) = try;@¥,{[{(idx, ®By;,v,) ° (x3 ®idy,) o (By,,x; ®idy, )} ®idy,]
ofidy, ®(x2 * x1)] o [Bx, v, ® idy; ®idy,]}.
On the other hand, this argument is expressed as
(idx, ® idy, ®Br,,r3) o (x3 * x2 * x1) 0 (idx, ® idy, ®By;,v,);
therefore x3 * x * x1 is in the domain of try,gy;, and
X30(X20X1) = try,@y; (X3 * X2 * X1).

One proves in the same way that (x3 0 x3) 0 X1 = try,g@y; (X3 * x2 * x1), which
proves the associativity identity. O

More generally, one shows that for any
(X1, xp—1) €B((X1, Y1), ..., (Xn, Yn)). we have
Xp—1 % %xX1 €60(X1 Q@ Yy, Xy @Y1|Y2®---® Y1), where
Xp—1*% %X €6 X1 Y, @V2® Y1, X, ®Y1®Y2®---®Y,—1)

is defined inductively by

(6) xp*---%xXx1:= (id}(}H_1 ®13Yn»Y1®"'®Yn—l) o(xp ® idY1®-~-®Yn_1)
o(idy, ®By,®@Y¥,_1,Yns1) O [(Xn—1 %% x1) ®idy, ]
o(iXm OﬂYn+l:Y2®"'®Yn—len)’

where By y,z €€ (X QY ®Z,ZQ®Y ®X) is Bxgy,z o (Bx,y ®idz). One also
shows that x, 1 0---0Xx1 (= ty,®..QY,_; (Xn—1 * -+ * X1).
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If X — X* is an involution of ¢, another symmetric strict monoidal qua-
sicategory ¢’ may be defined by Ob(%¢’) = Ob(%g)? and €¢’((X,Y), (X', Y)) :=
Go(X QY™ X' ®Y™).

Now a functor between categories with partial traces is a tensor functor F :
Yo — Do such that F(€o(X,Y|Z)) C Do(F(X), F(Y)|F(Z)) and such that
trp(zyoF = F otrz (equality of maps 6o(X,Y|Z) — Do(F(X), F(Y))). Such a
functor induces a functor € — % between the corresponding quasicategories.

If now 6y is additive and is a free module category over Vect, this construc-
tion can be extended as follows. In the definition of a trace, the maps are now
linear and products are replaced by tensor products. Let Ob'(6g) C Ob(%€g) be
a set of generators, that is, each F' € Ob(‘6) has the form Py cop(¢,) Fx ® X,
where X +— FY is a finitely supported map Ob’ (o) — Ob(Vect). Then Ob(%6) :=
{finitely supported maps Ob’(6¢)? — Vect, F = [(X,Y) — Fx y|}. We then set
6(F,G):=Dx.y).x.y) Vect(Fx,y,Gx,y)) ®6o(X ®Y', X' ®Y') and extend
the above composition and tensor product operations by linearity. In the case of €/,
we replace €o(X @Y, X' ®Y) by €o(X Q Y*, X' Q@ Y™).

Example. Let % be the category where objects are finite sets, 4o(/, J) =
{subsets of I x J}, and composition is given by S’ o S := the image in I x [” of
Sxp S forScIxI'"and S’ CcI’x1”. Thento S C I x J, we associate the
oriented graph with vertices / U J and edges i — j if (i, j) € S. Composition then
corresponds to the composition of graphs. The tensor productis I @ I’ :=T U 1I’
and for S € Go(I, ") and T € Go(J, J'),

ST:=SuTcIxINu(UxJHYcUul)xJulJ).

Then %y is a strict monoidal category. It has a partial trace defined as follows. For
finite sets 7, J and K, let Go(/, J|K) C%p(I LUK, J UK) be the set of graphs such
that the introduction of the edges kot — kin for kK € K does not introduce cycles
(alternatively, the set of S C (I U K) x (J U K) such that the relation in K defined by
“u < v iff (u, v) € $” has no cycle), and if x is such a graph, then trg (x) € Go(/, J)
corresponds to {(i, j) € I x J | there exists s > 0 and a sequence (kq,...,ks) of
elements of K such thati < ky <--- < kg < j}, where the relation < is extended to
ITUKUJ by u<vifand only if (4, v) € §. Then the strict monoidal quasicategory
constructed from %g, equipped with its partial trace, coincides with 4.

Here is another description of trg (x). As the relation < on K is acyclic, we
may extend it to a total order relation < on K. Extenditto /UK U J byi <k <
forany i, j,k € I, J, K. The relation < induces a numbering K = {k1,... . k|g}
for K, where k1 <--- <k k. Fora € [|K|], let Ko := {kq jU{(u,v) € ( LUKLJ)?|
U =<v, u<ky <v}€Ob(Gp). Then trg(x) = Xk 4,7 ©"**° XK K, ©XIK,, Where
XK gJ> XKy Koy1> a0d X7k, are defined as follows.
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® XKyKqi1 € %o(Ky, Ky+1): We have identifications
Ko > {ka} UKy o1 UKot and  Koii 2 {kat1}U Ky o1 U Koot
where
(lx,a—i—l ={selUK|s<kq,s <kg+1}
Kyoi1:={te KUJ |[1>kqy1.t>kq},
Kooat1:={(s.t) e(IUK)x(KUJ)|s <kq.kgt1 <t,s <t}
Let ¢o,o+1 be a one-element set if ky < kg41 and & otherwise. Then we define
Ka,at1 = {ka} X (Oq,at+1 U K(;/.H) € Go({ka}, oa,a+1 U K(;/,a—i-l)’
Aaat1 = (Oaa+1 UKy o y1) X {kat1} € Go(0q,at+1 U Ky gp1- that1}).

Then we define xg, k., as

[(Aa,a—}—l ® ing.aJrl) o (idoa,a-l—l ®ﬂK&/ )o (Koz,oH-l ® idK(/)t,Ot+1 )]

® id[(a.a+1 .

4
o+l ’Kot.ot+l

o X7k, €% (I, Ky): First, Ky >~ {k1} U (| |;e; K}'), where
K':'={teKUJ|t#kit>i}.

Seto:={iel|i<ki}ando;:=0oN{i}soo=]| |;cs ©i. Letk; :={i}x(0;UK) e
Go({i}, 0 UK]). Let br € Go(|_|;(0; UK]"), oU (| l;c; K/')) be the canonical
braiding morphism. Let Ao := ¢ X {k1} € Go(¢, {k1}). Then we define

X1k, = (A01 ® (®[€1 idKlf/)) obro (®ie] Ki).
® XKk J Gcgo(K|K|, J)I First, K|K| = {k|K|}|—| (I_lje.l K]/)’ where
Ki:={selUK|s#kk s=<Jj}

Set 6 :={j € J | j > kg}. Let oj := 3N {j}; then & = | |;c; ;. Let
KIK|,|K|+1 = tKk|k|} X © € Go({k|k |}, ©). Let A = KJ’. x{j}e (go(KJ/., {j}). Let
breGo(oU(Ljey KJ’.), Lljes (oL Kj’-)) be the canonical braiding map. Then
we define

XK1 0 = (Qjes Aj) o bro (kx| k|+1 ® (K 1dk)))-

1.4. Props and (quasi)(bi)(multi)props. A prop P is a symmetric additive
strict monoidal category, equipped with a tensor functor ip : Sch — P, inducing a
bijection on the sets of objects; so Ob(P) = Ob(Sch) (see for example [Tam02]).
It is easy to check that this definition is equivalent to the original one [Mac65].
For ¢ € Sch(F, G) — P(F,G), we sometimes write ¢ instead of ip (¢). A prop
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morphism f : P — Q is a tensor functor, inducing a bijection on the sets of objects,
such that foip =ig.

A biprop (respectively, multiprop, bi-multiprop) is a symmetric additive mono-
idal category 7 (respectively, I1°, IT), equipped with a tensor functor Schy 41 — 7
(respectively, Sch(;) — o, Sch(1 +1) — IT), that induces a bijection on the sets of
objects. Morphisms between these structures are defined as above.

A quasiprop is a symmetric additive strict monoidal quasicategory P that is
equipped with a morphism ip : Sch — P and that induces a bijection on the sets of
objects. Quasi(bi)(multi)props are defined in the same way, as well as morphisms
between these structures.

A topological (quasi)(bi)(multi)prop is defined in the same way as its nontopo-
logical analogue, replacing Schy by Sch.. For example, a topological prop P is a
symmetric tensor category, equipped with a morphism Sch — P, that is the identity
on objects.

1.5. Operations on props. If H € Ob(Sch) (respectively, Ob(Schj+1)) and
P is a (bi)prop, then we define a prop H(P) by

H(P)(F,G):= P(FoH,GoH).

A (bi)prop morphism P — Q gives rise to a prop morphism H(P) — H(Q).
Similarly, if P is a topological (bi)prop, then for any H € Ob(Sch) (respectively,
Ob(Schi41)), we get a prop H(P) such that

H(P)(F,G):=P(FoH,GoH).

A morphism of topological (bi)props P — Q then gives rise to a prop morphism
HP) —» H(Q).

To each (quasi)(bi)multiprop I1, one associates a (quasi)(bi)prop 7 by letting
n(F, F') := II(F, F’), that is, by using the injections Ob(Sch) = Ob(Schy) C
Ob(Sch(y)) in the “non-bi” case, and Ob(Schy+1) C Ob(Schq+1), F + (Fk 1),
where Fy; =0if (k,I) # (1,1) and Fy; = F, in the “bi” case.

If P is a prop, we define a multiprop HOP by H‘}, (F,G):= P(c(F),c(G)).
Here the tensor product is induced by the tensor product of P and the identity
c(FRF)=c(F)®c(F').

1.6. Presentation of a prop. If P is a prop, then a prop ideal Ip of P is a set
of vector subspaces Ip(F,G) C P(F,G) such that (F,G)+— P(F,G)/Ip(F,G)
is a prop, which we denote by P/Ip. Then P — P /Ip is a prop morphism.

If P is a prop, (F;, Gj)ies is a collection of pairs of Schur functors and
Vi C P(F;, G;) are vector subspaces, then (V;,i €l) is the smallest of all prop
ideals Ip of P such that V; C Ip(F;,G;) C P(F;,G;) foranyi € 1.
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Let (F;, Gj);e1 be a collection of Schur functors, and let (V;);e7 be a col-
lection of vector spaces. Then there exists a unique (up to isomorphism) prop
% = Free(V;, F;, Gi,i €l), which is initial in the category of all props P equipped
with linear maps V; — P (F;, G;). We call it the free prop generated by (V;, F;i, G;).

If (F}, G}) is a collection of Schur functors and Ry C F(F,, G,,) is a col-
lection of vector spaces, then the prop with generators (V;, F;, G;) and relations
(Ry, F,, G),) is the quotient of F by the prop ideal generated by Ry.

1.7. Topological props. Let P be a prop equipped with a filtration
P(F,G)= P°%F,G)> PY(F,G)>--- forany F,G € Ob(Sch)
that is compatible with direct sums and that satisfies

(a) o induces amap o: P{(F,G)® P/(G,H) — P'*/(F, H), and ® induces
amap®: PI(F,G)® PI'(F',G')— P (F® F',G ® G’); and

(b) if F, G € Ob(Sch) are homogeneous, then P(F, G) = PIIFI-IGII(F G).

For F, G € Ob(Sch), we then define ﬁ(F, G)=Ilime P(F,G)/P"(F,G) as
the completed separated of P(F, G) with respect to the filtration P"(F, G). Then
Pisa prop.

If F,G € Ob(Sch), define P(F, G) as follows. If F = @»0 F; and G =
@l >0 Gi are the decomposmons of F and G into sums of homogeneous compo-
nents, we set P(F, G) = @l >0 P(F,, G;) (where @ is the direct product).

PROPOSITION 1.4. P is a symmetric additive strict monoidal category; it is
equipped with a morphism Sch — P, which is the identity on objects.

Recall that P is called a topological prop.

Proof. Let F =@, Fi, G =@, G;, and H = @, H; be in Sch. We
define amap o : P(F,G) ® P(G H) — P(F, H) as follows. We first define a map
P(Fl ,G) ® P(G, Hk) — P(F,, Hy). The left vector space injects in the space
@J P(F,,G,)@P(Gj, Hy). The j-th summand is taken to P17 =11V =kI(F; )
by the composition. Because |j —i| 4+ |j —k| = oo as j — oo, we have a well-
defined map P(F;, G) @P(G, H) — ﬁ(F,', Hy). The direct product of these maps
then induces amap o : P(F,G)  P(G, H) — P(F, H).

Now let F' = @; F/, G’ = @, G/ be in Sch. We then define a map ® :

i°

P(F,G)®P(F',G') > P(F ® F/,G ® G') as the direct product of the maps
P(FZ,GJ)® P( Fl,.G}) — P(F® Fl,.G; ® G},).

This is well defined since (F ® F'); = EB].=O Fi ® Fl._j is the sum of a finite
number of tensor products, and the same holds for (G ® G');. O
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A grading of P by an abelian semigroup I is a decomposition P(F,G) =
@y er Py (F, G) such that the prop operations are compatible with the semigroup
structure of I". Then if P is graded by N and if we set P"(F, G) =D, Pi(F.G),
the descending filtration P = P 0 5 ... satisfies condition (a) above.

If P — Q is a surjective prop morphism (that is, the maps P(F,G) —
Q(F, G) are all surjective) and if P is equipped with a filtration as above, then so
is O (we define Q" (F, G) as the image of P"(F, G)). Then we get a morphism
P — Q of topological props, that is, a morphism of tensor categories such that the
morphisms Sch — P — Q and Sch — Q coincide.

If P and R are props equipped with a filtration as above, and P — R is a prop
morphism compatible with the filtration (that is, P"(F, G) maps to R"(F, G)),
then we get a morphism of topological props P — R.

1.8. Modules over props. If & is an additive symmetric strict monoidal cate-
gory, and V € Ob(¥), then we have a prop Prop(V') such that Prop(V)(F, G) =
Homg(F(V), G(V)). Then a P-module (in the category &) is a pair (V, p), where
V € Ob(¥) and p : P — Prop(V) is a tensor functor. Then P-modules in the
category & form a category. The tautological P-module is ¥ = P, V =id.

1.9. Examples of props. We define several props by generators and relations.
1.9.1. The prop Bialg. This is the prop with generators
m € Bialg(T>, id), A e Bialg(id, 7»), n € Bialg(1, id), ¢ € Bialg(id, 1),
and relations
mo (m Qidig) = mo (idig ®m), mo (nQidia) = m o (idig ®7n) = idia,
(A ®idig) o A = (idig ®A) o A, (e ®idjg) o A = (idiq ®e) 0 A = idjq,
Aom=m@m)o(1324)0 (AR A).
When &¥ = Vect, the category of Bialg-modules is that of bialgebras.
1.9.2. The prop COB. This is the prop with generators
m € COB(T»,id), A €COB(id,72), R e COB(1,73),
n € COB(1,id), ¢ € COB(id, 1)
and relations among m, A, n, € that satisfy the relations of Bialg:
(m®@m)o(1324)o(R®((21)oR)) = (m@m)o(1324)0((21)cR)® R) =nQ®n,
2l)o(m®m)o(1324) 0o (A® R) = (m®m)o(1324)o (R® A),
m®3 0 (142536) 0 (R® 1) ® (A ®idig) o R)) =
m®3 0 (142536) o ((n ® R) X (idig ®A) o R)).
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The category of COB-modules over ¥ = Vect is that of coboundary bialgebras, that
of, pairs (A, Ry), where A is a bialgebra and R4 € A®? satisfies

R4R3' = RF'Ry =152, AT (X)RF' = RyA4(x),
(Rg ® 14)((A4 ®idg)(R4)) = (14 ® Ry)((idg ®A4)(Ry)).

1.9.3. The prop LA. This is the prop whose generator is the bracket u €
LA(AZ?,id) and whose relation is the Jacobi identity

@) no (u®idig) o ((123) + (231) 4+ (312)) = 0.
When & = Vect, the category of LA-modules is that of Lie algebras.

1.9.4. The prop LCA. This is the prop whose generator is the cobracket § €
LCA(id, A?) and whose relation is the co-Jacobi identity

((123) + (231) + (312)) 0 (§ ® idjq) 0 § = 0.
When ¥ = Vect, the category of LCA-modules is that of Lie coalgebras.

1.9.5. The prop LBA. This is the prop with generators yu € LBA(AZ,id),
8 € LBA(id, A?); relations are the Jacobi and co-Jacobi identities and the cocycle
relation

§op=((12) = (21)) o (1 ®idia) © (idia ®3) o ((12) — (21)).
When & = Vect, the category of LBA-modules is that of Lie bialgebras.

1.9.6. The prop LBAy. This is the prop with generators u € LBAy (AZ,id),
§ € LBAf(id, A?), f €LBAf(1,A?) and relations in which x and § satisfy the
relations of LBA and

((123) 4 (231) 4 (312)) o (6 ®idia) o f + (1 ®idy@2) 0 (1324) o (f ® f)) = 0.

The category of LBA¢-modules is the category of pairs (a, f,), where a is a Lie
bialgebra and f is a twist of a.

1.9.7. The prop Cob. This is the prop with generators u € Cob(A?2,id) and
p € Cob(1, A?) and relations in which p satisfies the Jacobi identity (7) and the
element Z € Cob(1, A3) defined by

Z = ((123) 4+ (231) + (312)) o (idia ®u ® idia) © (0 ® p)
is invariant, that is, it satisfies
(1 ®id,y@2) 0 (1423) + (idia @/ ®idia) © (1243) + (id,ye2 ®11)) o (Z ®idia) = 0.

The category of Cob-modules over ¥ = Vect is that of coboundary Lie bial-
gebras, that is, pairs (a, p,), Where a is a Lie algebra and p, € A?(a) is such that
Zo:= [, pa°] + (g%, p21 4 [pg>. 03] is a-invariant.
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1.10. Some prop morphisms. We have unique prop morphisms Cob — Sch,
LBA — Sch and LBA ¢ — Sch, which are respectively defined by (i, p) = (0,0),
(u,8) — (0,0) and (u,r) — (0,0).

If LA — P is a prop morphism and o € P(1, T3), define

ad(a) := (((,u o Alt) ® idiq) © (132) + idig ® (i 0 Alt)) o (@ ® idjq);
(here Alt: T» — AZ is the alternation map). This is a propic version of the map
x > [org, x! 4+ x2], where a € Rep(P). If « € P(1, A?), then ad(e) € P(1, A?).
The presentations of LBA and LBAy yield a proposition:

PROPOSITION 1.5. We have unique prop morphisms k1, k2 : LBA — LBAf
such that

ki(p) =) =p, k1) =68, k2(8) =5 +ad(f),
and a unique prop morphism ko : LBAy — LBA such that
ko(u) =p.  ko(8) =36,  ko(f)=0.
We also have a prop morphism « : LBA ¢ — Cob, such that

pe ., Sead(p),  fe-2p
and 7 5, : LBA — LBA defined by (i, 6) = (i, —6).

1.10.1. The prop Sch. Sch is itself a prop (with no generator and relation).
The corresponding category of modules over & is ¥ itself.

1.11. Examples of topological props.

1.11.1. The prop Sch. We set
Sch®(F,G) = Sch(F,G) and Sch!(F,G)=---=0.
This filtration satisfies conditions (a) and (b) of Section 1.7, since for F and G

homogeneous, Sch(F, G) = 0 unless F and G have the same degree. The corre-
sponding completion of Sch coincides with Sch.

1.11.2. The props LA and LCA. Since the relation in LA is homogeneous
in u, the prop LA has a grading deg,. If F,G € Ob(Sch) and x € LA(F, G)
are homogeneous, then |G| —[F| = —deg,, (x), which implies that the filtration
induced by degM satisfies conditions (a) and (b) above. We denote by LA the
corresponding topological prop.

In the same way, LCA has a grading degg for which |G| — | F| = degg(x), so
the filtration induced by degg satisfies conditions (a) and (b) above. We denote by
LCA the corresponding topological prop.

1.11.3. The prop LBA. Since the relations in LBA are homogeneous in both
w and &, the prop LBA is equipped with a grading (deg,,, degs) by NZ. Moreover,
if F, G € Ob(Sch) and x € LBA(F, G) are homogeneous, then

®) |G| = |F| = deggs(x) —deg), (x).
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Then deg,, + degs is a grading of LBA by N. The corresponding filtration
therefore satisfies condition (a) above. (8) also implies that it satisfies condition (b),
since deg,, and degs are > 0. We denote by LBA the resulting topological prop.

Let $%B4 be the category of Lie bialgebras over k. Let 1 be the category of
topological K[[#]]-modules (that is, quotients of modules of the form V [[#]], where
V' € Vect and the topology is given by the images of 2" V' [[#]]), and let ¥, be the
category of modules of the same form, where V' is a complete separated k-vector
space.

Then we have a functor $Bs — {S(LBA)-modules over ¥1} which takes a
to S(a)[[#]]; the representation of S(LBA) is given by u — (g and § — #6,.

We also have a functor B — {S(LBA)-modules over ¥»} which takes a
to §(a) [[%2]]; the representation of S(LBA) is given by u > Ajq and § > 4.

1.11.4. The prop LBAy. Define I:E?Xf as the prop whose generators are [,
f and 6 and whose only relations are that i and ¢ satisfy the relations of LBA.
Then’E]?/Af has a grading (deg,,, degs, degr) by N3. For F,G € Ob(Sch) and
x € LBA¢(F, G) homogeneous, we have

©)) |G| —|F| = degs(x) —deg,, (x) + 2 degy (x).

Then deg,, + degs +2degs is a grading of LBAs by N. The corresponding fil-
tration therefore satisfies condition (a). Since degu, degs and Sifgg are > 0, (9)
implies that it also satisfies conditions (b). Since the morphism LBAf to LBAf is
surjective, the filtration of LBA ¢ induces a filtration of LBA ¢ satisfying (a) and (b).
We denote by LBA ¢ the corresponding completion of LBAf.

As before, if $Bsly is the category of pairs (a, f;) of Lie bialgebras with
twists, we have two functors: First, we have £Bs s — {S(LBAs)-modules over
1}, which takes (a, fu) to S(a)[[%]]. The representation of S(LBA) is given by
WU fha, 8> hdqand f + h f,. Second, we have £Bsd s — {S(LBAs)-modules
over $»}, which takes (a, f,) to §(a) [[%:]]. The representation of S(LBAy) is given
by > hilg, 664 and f > f.

1.11.5. The prop Cob. Cob has a grading (deg,,, deg,) by N2, If F.G €
Ob(Sch) and x € Cob(F, G) are homogeneous, then |G| — |F| = 2deg, (x) —
deg,, (x). Then the N-grading of Cob by deg,, +2deg, induces a filtration satisfy-
ing (a) and (b). We denote the resulting topological prop by Cob.

If %ob is the category of coboundary Lie bialgebras (a, r), we have two
functors: First, we have €ob — {S(Cob)-modules over ¥1} which takes (a, r4) to
S(a)[[%]]. The representation of S(Cob) is given by u + i and r — Ary. Second,
we have €ob — {S(Cob)-modules over ¥, } which takes (a, rq) to §(a) [[#]]. The
representation of S(Cob) is given by u — hpq and r — ry.
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1.11.6. Morphisms between completed props. The morphisms Cob — Sch,
LBA — Sch and LBAy — Sch above are compatible with the filtrations, so they
induce topological prop morphisms Cob — Sch, LBA — Sch and LBA ¢ — Sch.

Since k7 preserves the N-grading, it extends to a morphism LBA — LBA
of completed props.

ko takes a monomial in (i, 8) of bidegree (a, b) to a sum of monomials in
(1,8, f) of degrees (a +b",b’,b"), where b’ + b"” = b. The N-degree of such a
monomial is a + b" + 3b"” > a + b. So k, preserves the descending filtrations of
both props and extends to a morphism LBA — LBA.

ko takes a monomial in (u, 8, f) either to O if the f-degree is > 0, or to the
same monomial (which has the same N-degree) otherwise. So kg preserves the
descending filtration and extends to a morphism LBA s — LBA.

Finally, « takes a monomial in (u, 8, /) of degree (a, b, ¢) (and of N-degree
a + b + 2c¢) to a monomial in (u, p) of degree (a + b, b + ¢) and of N-degree
a + 3b + 2c. Since the N-degree increases, k preserves the descending filtration
and extends to a morphism LBA » — Cob.

1.12. The props P,. Let C be a coalgebra in Sch. This means that C =
@, C; € Sch (where |C;| = i), and we have prop morphisms C — C®? and
C — 1 in Sch such that the two morphisms C — C®3 coincide and the composed
morphisms C - C®2 - C®1~C and C - C®2 - 1® C ~ C are the identity.

Let P be a prop. For F = @); F; and G = @); G; in Sch, we set P(F,G) =
@i’j P(F;,Gj). Then the operations o : P(F,G) ® P(G,H) — P(F,H) and
®:P(F,.G)® P(F',G') > P(F® F',G ® G’) are well defined, and so are
o:P(F,G)®Sch(G,H) —~ P(F,H)and o:Sch(F,G)® P(G,H)— P(F, H).

We define a prop Pc by Pc(F,G) := P(C ® F,G) for F,G € Sch. The
composition of Pc is then defined as the map

Pc(F,G)® Pc(G,H)~ P(C® F,G)® P(C ® G, H)
PUI®IB_ pc@2 0 F, C ©G)® P(C®G. H)
— P(C®?@ F,H)— P(C® F,H)~ Pc(F,H),
and the tensor product is defined by
Pc(F,G)® Pc(F',.G'")~P(C®F,G)® P(C® F',G’)
B PC®?QFQF.,G®G)— PCRIFQF,G®G)).

We then have an isomorphism P ~ Py and a prop morphism P — P¢ induced
by C — 1.

Let us define a P-coideal D of C to be the data of D = @, D; € Sch and
morphisms o € @; P(C;, D), Be@®; P(D;,C®D)andy €e@; P(D;,DRC)
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such that the diagrams

Alc; Alc;
C; i) C®2 C; l) C®2
ol l la@idc and alc; l lidc ®a
Dy——DQ®C D—ﬂ>C®D

commute for each i. A P-coideal D of C may be constructed as follows. Let
D’ eSchand o’ € P(C,D’). Set D := D’ ® C, and define & € @, P(C;, D) as
the composed morphism

C e Y@ prgc=np.
We also define the morphism y € @i P(D;, D ® C) as the composition

D=D'&®C- %2 pec®=DgC

and 8 € @i LBA(D, C ® D) as the composed morphism D - D® C - C ® D.
If D is a P-coideal of C, set Pp(F,G) := P(D ® F,G). Then for each
(F, G), we have a morphism Pp(F,G) — Pc(F, G) such that the collection of
all Im(Pp (F,G) — Pc(F,G)) is an ideal of Pc.
We denote by P, the corresponding quotient prop. Then we have Py (F, G) =
Coker(Pp (F,G) — Pc(F, G)) for any (F, G).

A

1.13. Automorphisms of props. For & € P(id,id),
E®" ¢ P(Ty, Tp) = Dp.prcs, Hom(mp, 7p) @ P(Zp, Zpy).

As E®" i Ggiag—invariant (659,ialg being the diagonal subgroup of &, x G,), we
have £®” = @pegn id;, ®&, for some &, € P(Z,, Z). For F = (F,,)peunzogn,
we set

EF = @pel_lnzogn idp, ®€, € P(F. F).

One can prove that G = §F ® G, §Fec =§F ®ég and (§on)r =EFonF.
So if & is invertible, so are the £F, and there is a unique prop automorphism 6(§)
of P taking x € P(F,G) to £g o x o §z'. The map P(id,id)* — Aut(P) is a
group morphism with normal image Inn(P). We call the elements of this image
the inner automorphisms of P.

1.14. Structure of the prop LBA.

LEMMA 1.6. If F, G € Ob(Sch), then we have an isomorphism
LBA(F,G) ~ P (LCA(F.Ty) ® LA(Ty . G)) e -
N>0

with inverse given by f ® g — g o f (the prop morphisms LCA — LBA and
LA — LBA are understood).
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Proof. This has been proved in the case when F' = T, and G = T}, in [EnrOla],
[Pos95]. We then pass to the case of F = Z, and G = Z, forpe &, ando €5,
by identifying the isotypic components of this identity under the action of G, X G,.
The general case follows by linearity. O

According to (4), this result may be expressed as the isomorphism
(10) LBA(F.G)~ (P LCA(F.Z)®LA(Z.G).
Z €lrr(Sch)
LEMMA 1.7. If A and B are finite sets, then
LA(Ty, Tg) = &y Qpes LATr-1 ). Tiy)
f:A— B surjective
where the inverse map is given by the tensor product.

LEMMA 1.8. Let Fy, ..., Fy,G1,...,Gp € Ob(Sch). Then we have a decom-
position

LBA(@?:I Fi, f:l Gj) = EB(ZU)M €Irr(Sch)n1x[P] LBA((F;)i, (Gj)j)(Zij)i.j ’

where LBA((F})i, (G})j)(z;;);.; is equal to

n p
(QLCAF:, ®5_,Zip)) ® (R LA®4=1Za) G))),

i=1 j=1
with inverse given by (Q; i) ® (®;g;) — (®;gj) o 0n,p o (®; fi). Here o, p is
the braiding isomorphism ®;(®; Zij) — ®;(®i Zij).
Proof. The left side is equal to
D D (®LCAF. Ty ® @ LATY, 1, G, s, -

N=0  (n;))
i jnij=N

Equation (4) then implies the result. O

1.15. Structure of the prop LBA¢. In the setup of Section 1.12, we set C :=
SoA?and D' = A3. An o’ € LBA(C, D) = @ LBA(S* o A%, A3) has
only nonzero components for k = 1 and k = 2. These components respectively
specialize to

A*(a) > A*(a), [ @Rid)(f)+ @ ®id)(f)*! + (®id)(f)*'? and
SAA2@) > A@, £ 112 S+ 12 2T 1 2,

Then « : C — D is an LBA-coideal. We denote by LBA,, the corresponding
quotient prop Py.
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PROPOSITION 1.9. There exists a prop isomorphism LBAy = LBA,.

Proof. Using the presentation of LBA ¢, one checks that there is a unique prop
morphism LBA s — LBA, respectively taking u, 8, f to the classes of

i € LBA(A? id) ¢ @D LBA((S¥oA%)®A% id) = LBA((SoA?)®AZ. id),

k>0
§ € LBA(id. A%) C @D LBA((S*0A?)®id, A?) = LBA((SoA?)®id, A?),
k>0
idy2 € LBA(A%, A%) C @D LBA(S¥0A?, A%) = LBA((SoA?)®1. A?).
k>0

We now construct a prop morphism LBAy — LBA,.

We construct a linear map LBA((Sk oA?)®F,G)— LBA¢(F, G) as follows.
Using the prop morphism LBA — LBAf given by 1,8 — u,8, we get a linear
map LBA((SK 0o A2)® F,G) — LBAy ((S* 0o A2) ® F, G). We have an element
sk(f) e LBAf(Sk 01, 5% 0 A2), so the operation x — x o (S¥(f) ®idF) is a
linear map

LBAf((S¥0A?)® F,G) = LBA;((S¥ 01) ® F, G) ~ LBA,(F, G).

The composition of these maps is a linear map from LBA((S ko A?)® F,G) to
LBAf(F, G), and the sum is a linear map LBA((S o A)®F,G)— LBA¢(F,G),
and it factors through a linear map LBA (F, G) — LBA¢(F, G), as one can check.
One also checks that this map is compatible with the prop operations, so it is a prop
morphism.

We now show that the composed morphisms LBAy — LBAy — LBAf and
LBAy — LBAy — LBA are both the identity.

In the case of LBAy — LBAy — LBAf, one shows that the composed map
takes each generator of LBAf to itself, hence is the identity.

Let us show that LBAq — LBAy — LBA, is the identity. We already defined
the prop LBAy. Then we have a canonical prop morphism LBAy — LBAf¢. We
also have prop morphisms LBAg,z2 — LBAs and LBAy — LBA g, 2, defined
similarly to LBAyg — LBAf and LBAs — LBA,. We then have commuting squares

LBAg,p2 — LBA LBA ; —— LBAg, >
l | |
LBA, LBA ¢ LBA / LBA, .

One checks that the composed morphism LBAg, 72 — L,]§7%f — LBAg, A2 is the
identity, which implies that LBA, — LBA ¢ — LBA, is the identity. O



QUANTIZATION OF COBOUNDARY LIE BIALGEBRAS 1295

In what follows, we will use the above isomorphism to identify LBA, with
LBAy. The main output of this identification is the construction of a grading of
LBA#(Q); Fi, @ ; Gj) by families (Z;;) in Irr(Sch), since as we now show, props
of the form LBA,, all give rise to such a grading.

Let C, D € Ob(Sch), and let « € @; LBA(C;, D).

PROPOSITION 1.10. Let Fy,..., Fy,Gy,...,Gp € Ob(Sch). Define F :=
Qi F;and G .= ®;G;j. For Z = (Zij)icn],je[p] @ map [n] X [p] — Irr(Sch), set

LBAC ((Fi)i. (G))j)z = P LBA([C. (F;)i].(G})) 3.
ZGII‘I‘(SCh)({O}U[n])X[p] |Z|[n]><[p]=z

where [C, (F;)i] € Ob(Sch){O}U[n] is the extension of (F;); defined by 0 — C.
Then LBAC (F, G) = @Zelrr(Sch)["]X[p] LBAC ((Fz)l s (Gj)j)z.
Moreover, the map LBAp (F, G) — LBAc (F, G) preserves the grading by
Irr(Sch) I[P The cokernel of this map therefore inherits a grading

LBAL(F.G)= @  LBAL((F)i.(G))))z.
Z elrr(Sch) V>
Proof. The first statement follows from Lemma 1.8 (with Fy = C). Let us

prove the second statement. Consider the sequence of maps

a® -
LCA(D, Q)erp) Zoj) —> LBA(C, D) ® LBA(D, Q) <] Z0/)

< LBA(D, Qje[p) Zoj)
~ D LCAC Qe Z6) © (@i LAZG; Zop)),

(2} ), €lrr(Sch)t]
' ke D k@)
(Z};); €m(Sch)tP &

where the first map uses the prop morphism LCA — LBA.
For Z € Irr(Sch)CO@VIDXIP] s restriction to [n] x [p] is Z|[n]x[p]- The map
LBA(D ® F,G) ~LBAp(F, G) — LBAc (F, G) restricts to

LBA([D, (Fi)il, (Gj)j) 7z — LBAc ((Fi)i, (Gj);
(®j€[p] A]‘) ©0n+1,p © (k® (®i€[n] Ki))
> & Y (®jerpAjo (Vg ®idg), . 7)) °On+1.p 0K

(Z},;); €lx(sen)t?! &

)Zl[n]x[p]’

Summing up over (Zy;); € Irr(Sch)[p 1 we get the result. O
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1.16. Partial traces on HLB A and HLB Ay . Recall for F, G € Ob(Sch(y)) that

HEBA(F G) =LBA(c(F),c(G)). For F, G € Ob(Sch,, 4), we introduce a grading
of TIY;, (F, G) by % ([p]. [q]) as follows. Assume first that F and G are simple,

so F =R, Z, and G = &7 1 Zo, X Z = (Zij)i,; € Tr(Sch)M*1P] we define

the support of Z as supp(Z) ={(i,j) | Z;j #1}. Then

HLBA(Ile—IZPz’& —1ZGJ)S = @ LBA((Zy;).(Zq;))z-

ZeIrr(Sch)["]X[p]
supp(Z)=S

If F = (Fpl’”.,pn) al’ld G = (Gola"'aap)’ then

HgBA(RG)S = @ VeCt(F(p,)’G(GJ))®HLBA(®1—1ZPNIZ|]1')=IZU/)S'
(0i), ((7/)

PROPOSITION 1.11. This grading is compatible with the monoidal category
structure of 4o, namely,

HEBA(G’ H)g o HEBA(F’ G)s C @ HgBA(F’ H)gr
S”C8’08 for F,G, H € Ob(Schyp 4.r),

MPA(F1. G1)s, B PpA(F2, G2)s, C HPpa(F1 B F2,G1 R G2)s, 05,
for F;, G; € Ob(Schy, 4;)

and Pr G € HEBA(F XG,GX F)g,, - (Here ® denotes the tensor product
operation of HEBA.)

Proof. The only nontrivial statement is the first one. Let Z and Z’ be such
that supp(Z) = S and supp(Z’) = S’. For F, G and H simple, the composition
factorizes as

MPpA(F. G)z @ TIPA(G. H) 2/
— (®; LCA(Z,;, ®; Zij)) ® (Q); LAQ); Zij. Zo;))
® (®j LCA(ZU_; ’ ®k Zjl'k)) ® (®k LA(®' Z,' s Z‘L’k ))
- P ®LCAZ,. ®; Zip) ® (®;,; LCA(Zij, @ Z[x))
(Z]};1)€lrr(Sch) ® (@ x LA®;: Z]4 Zi) ® (Qr LA, Ziy. Z))
— P, LCA(Zp,. Rk Z[/4) © (®,; LA®; ; Ziy» Zay))
i,j
~ (P(R; LCA(Z,,. Qi Z/}) ® (R LA, Zl}. Z,)) — Mg (F. H),
i,
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where the first map is the decomposition map, the second map is the tensor product
over j of the j-th exchange map (composition followed by decomposition)

LAQ); Zij Zo;) ® LCA(Zo;, Qi Zy) = LBA(R); Zij, Qi Zy)
— ED(®; LCAZi;. @ Z[)3) ® (R LAR); Z]jy- Z)3)-

ik
the third map is composition in LA and LCA, the fourth map is obtained by Z l”]é =
K, Z l/; &> and the fifth map is a composition.

If now (i,k) ¢ S’ o S, then for any j € J, either Z,; or ZJ/.k = 1. Then the
component of the target of the j-th exchange map corresponding to any (i, k) —
z l’; . different from (i, k) > 1 is zero; so for each (i, k), Z} in the penultimate
vector space is a sum of copies of 1.

It follows that D g/ g/05 1A (F. G)s~ contains the image of the overall
map. O

Let F, G, H € Ob(Schy 4,-), and let us define the diagram

1y 24

MY (FRH,GRH)D %, (F,G|H) — 1%, (F,G)

(the general case is then derived by linearity). Let us first assume that F, G, H are
simple, so

F=Zyp)=WierZp, G=Z)=WNjesjZs;, H=Z)=NWrexZy.

(Here I, J, K are ordered sets of cardinality p,q,r, and (p;), (0}), (tx) are maps
1.J,K = | 1,508, Recall that

N\ (FRH GRH) = o M0, (FRH,GX H)s.
S€%(I®K,JRK)
We then set
MYA(F.GIH):= @ N (FRH GRH)s.
Sebo(I,J|K)
We then define the linear map
g Mo (F.G|H)s:= P Mg (FRH.GRH)z
Z|supp(Z)=S$
- @ MPpA(F.G)s
S’'Cug (S)

as follows. Recall from Section 1.3 the order relation < on K, the total order
relation < on K, its extension to a relation on / U K U J, the numbering K =
tk1.....kk|}, and the sets K.
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Let Z = (Zuv) (u,v)e(JuK)x(KuJ) be such that supp(Z) = S. For a € [| K]],
set Hy := Nyek, Z(x), where Z(k) := Z, fork € K. Set
Z(u,v):=Zp,0, for(u,v)e(UK)x(KUJ).
(We extend pto I LUK by pg ;=11 and o to KU J by 0 :=1.) Fora € [| K| —1],

set Hl)t,()t-i—l = [Z’(u,v)eoa,a_;_luK&’ad‘_lqu’a_i_luKa,a_,_l Z(u’ U).

Also set
Ho:=F. Hor := B v)el ;e (K7 utiyxo) £ (1. V).
Higie1 =G Hig k41 = Bagwyell;o, K uE,)xim 2 W, ).

Then trg is the sum over Z with supp(Z) = S of the composite maps
(1) N%,(FRH GXH)z
= (Querux LCA(Zp,. Quekuy Zuv)) ® (Quexus LAQueruk Zuv: Zo,))
K|
- ® HgCA(Ha, Hoe,ot—i—l) 02 HEA(Hot,oe-l—l, Hoe-i—l) = HEBA(Fa G)-

a=0
(One checks that this map is independent of the ordering of K.)
The sum of these maps takes

K
MPpa(FRH,GR H)s to ®¢|x=|0 Mg (Ha, Hot1)Sky kg

where Ko := I, K|g|4+1 := J (with the notation of Section 1.3). Therefore the
image of the above map is contained in P g/ (s) P, (F,G)s'.
If now F, G and H are arbitrary elements of Ob(Sch, 4,»), namely

F= (Fpl,...,pp), G = (Gal,...,oq)a H = (Hrl,...,rr),
then M5, (F X H,G K H) is equal to
o, Vect(Fp) ® Hzy). Goy) ® H)))
(Pi),(ffj),(tk),(tk) (04 HI?BA(Z(M) X Z(rk)’ Z(Uj) X Z(TIQ))'
Here Z(,y = Rier Zy,, etc. Then HEBA(F, G|H) is homogeneous with respect

to this decomposition; its components for (tz) # (t,/c) coincide with those of
MPp,(F X H,G X H) and the component for (t}) = (i) is

Vect(Fp,) @ Hz)s G(Gj) ® H(z)) ® HEBA(Z(pi)’ Z(U.i)lz(f;@))'

The restriction of trg to a component of the first kind is 0, and its restriction to
the last component is the tensor product the partial trace with tr Z2)- Then one
checks that the diagrams

MY (FRH GRH)D Y (F,GIH) — I, (F, G)

define a partial trace on 19}, .
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Let us define now a partial trace on IT05 , (and more generally on the o, Ag)-
Let C be a coalgebra in Sch. Then for F, G € Ob(Schy, 4), we have

Mipac (F.G) = Mipa(C R F.G).
A partial trace is then defined on 175, o as follows:

Mg (FRH GRH) D NP, . (F.G|H) :=Ts,(C R F,G|H),
and Mg, .(F.G|H) SN P54 (F. G) coincides with

M, (C X F,G|H) -5 1%, (C R F.G).
One checks that this defines a partial trace on 195, o
If Z € Irr(Sch)X1P) | we set
Mg (F.G)z =Pz NP5, (CRF.G) 5,
where the sum is over the Z : ({0} Ui [n]) x [p] — Irr(Sch) with Z|[n]x[p] = Z. For
S C [n] x [p], we also set
Z|supp(Z2)=S
LEMMA 1.12. The properties of HRBA extend to HEBAC, namely

0 0 0
MPpac (G, H)sr o MYps (F.G)s C @ Miga.(F, H)sr,
S7C8'0S

MPpac (F. G)s B s (F',G))sr C Mipp (FRF,GRG)sgs,
BF.G € Mpp. (FRG,GRF)p, ..
i (Mipac (F.GIH)s) C @ MPpa (F.G)s/
S'Ctrg (S) for S €%y(1,J|K).

0 _ _ - 0 ~
PI’OOf: HLBAC (F, G)S = EBSE({O’}I_I[n])x[p]|Sﬂ([n]x[p])=S HLBA(C &F, G)S
In the same way,

MPpa (G H)s = an M2, (C RG, H)g'.
Se({o3ulp))x[qllS' N([plx[gD)=S"
Then for § C ({0'} U [1n]) x [p] and §” C ({0”} L [p]) x [q], let

S'%S:={(i,k)e 0,0 un]) x p| (. k)e (0}un]) x [¢] and there exists
k € [p] with (i,j) € S, (j,k) € S’ or
i =0"and (i,k) € S'}.
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Then the composition [P, (C X F,G) ® I, (CRG, H) - 1Y, (CK F, H)
maps HEBA(C XF,G)s® HEBA(C X G, H)g to

Z HgBA(C & F’ H)Eo@ + H](?,BA(C & F’ H)ZOAO,O’O”’
2cS/*§

where &, Ag 007 € 9o ({0} U [n],{0',0”} U [n]) are & and Ao = {(0,0), (0,0”)}.
Now both (§” % §) o @ and (S’ 0 §) 0 Ag g~ are elements of Go({0} L [1], [q]).
with their intersection with [r] x [p] equal to S’ o S. This proves the first statement.
The other statements are proved in the same way. O

If D € Ob(Sch), we similarly set 1% (F, G) := TI{5, (D X F, G). We define
the diagram
N (FRH,GRH)> Y (F.G|H)~5 1% (F, G)
as above. HOD (F,G)z and H% (F, G)g are also defined as above. The properties
Brc e N{(FRG,.GRF)g, .

ey (MY (F.GlH)s)c P MNH(F.G)s: for S € Go(I.J|K)
S’'Ctrg (S)

generalize to this more general setup.

LEMMA 1.13. o € @i LBA(C;, D) induces a linear map from H%(F, G)
to TI5, o(F.G). This map is compatible with the gradings by Trr(Sch) [#]x[P]
(and thus also by 4o ([n], [p])). Then

M{ga, (F, G) = Coker(IT}, (F, G) — Mg, . (F, G)),
HEBA(, (F.G)= @SE@O(I,J) Hiae (F.G)s.
For each S € 6y(I, J|K), the diagram
N (FRH GRH)s % (F. Gy (5)

l l

trg

o, ac(FRH GRH)s —— o, ac (F Gug(s)

trg

commutes; its vertical cokernel is a linear map trgy : HEB A (FRH,GXH)s —
HEBAa (F, G)ug (s)- We set

Mg, (F.GIH):= @ i (FRHGRH)s.
Se6o(1,J|K)

then we have a diagram

Mg, (FRH,GRH) D%, (F,G|H) % %, (F.G).
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Ifa: C — D is an LBA-coideal, then the multiprop T2 A, 18 graded by %o,
and (try) is a partial trace on HEB Ay > COmpatible with this grading.

Proof. The first statement is a consequence of Proposition 1.10. The com-
mutativity of the diagram follows from the fact that for x € I}y ap(F,GIH),
xo(aNidprpy) € Migs. (F, G|H) and try (xo(aRidprp)) = trg (x)o (@ Hidp).
The remaining properties follow from those of TT25 o a

Remark 1.14. One also checks that the partial trace on 9y, as well as its coun-
terparts on HEB A, » have the following cyclicity properties. If

SebUeIV' ®J) and S €%V eJ U I)
then S'o(Byy ®idy)oSecb(VRU. V' QU'|I)
if and only if S o (By.y ®id;)oS €% UV, U @ V'|J),

and we then have

tr7 (S" o (By,yr ®idy) 0 S) = Byryrotry(So(Byuy ®idr)oS)ofuyy.
If now S and S’ are as above, Fy = My¢; Z,,, etc., and
x e MPp (Fu R Fy, Fy' R Fy)s and x' € s, (Fy X Fy, Fy' X F)s,
then
x" o (BFy,Fy,, Ridp,) o x € M, (Fy B Fy, Fy' B Fy/| F),
xo(Bry,F, Widp,)ox" € Mipa(Fy ® Fy, Fy ® Fy/|Fy),
and
trp, (X o (BFry,F,, ®idF,) 0 x)
=Br,, F, ottr,(xo(Br,,F, Qidr,)ox") o Br, Fy -
1.17. Morphisms of multiprops with partial traces. The prop morphisms k15 :

LBA —LBAf, xo:LBAy —LBA and 7 : LBA — LBA induce morphisms between
the corresponding multiprops HEB Ar and HEB A (which are still denoted «;, etc.).

PROPOSITION 1.15. These morphisms intertwine the traces.

Proof. Let k : LBAq — LBAg be any for these morphisms. We will prove
i (M{ga, (F, G|H)) C Mgy, (F,G|H) for any simple F,G, H € Ob(Schy, k).
Then we will prove that there is a commutative diagram

MPpa, (F, GIH) —— Py, (F, G|H)

trHl ltrH

Mg, (F.G) —= NPy, (F. G).




1302 BENJAMIN ENRIQUEZ and GILLES HALBOUT

The case of t is clear. In the case of kg, we argue as follows. Let C : S o A2
and D := A3 ® (S o A?). Then C is a coalgebra in Sch, and & : C — D is an
LBA-coideal in C. The coalgebra morphism 1 — C induces a multiprop morphism
HLBAC HLBAl = M2, the composed morphism HEBAD — HEBAC — M05,is
zero, so we get a multiprop morphism TI{ g ;= {5, compatible with the traces.
The maps TT0 A (F.G)— 17 (F, G) are the maps induced by ko, which proves
the statement in the case of kg.

The coalgebra morphism C — 1 induces a multiprop morphism HEB A
HEB A, — HiBac compatible with the traces, which we compose with the projec-
tion I ga- — Iia,. The maps HSBA(F, G) —> HEBA/ (F, G) are the maps
induced by «1, which proves the statement in the case of k.

We now treat the case of k. Take F' = K;e;Z,, and G = NjesZs;, where
(pi)i, (0j)j are maps I, J — | |, @n. Set

Ppa(F, G)z:=(®;e1 LBA(Zy;, Qe g Zij)(Q)es LBAcs Zijs Zs;))
for Z € Irr(Sch)’*’, and for S € 4o(I, J), set

HEBA(Fv G)s = @ HSBA(Fv G)z.
Z|supp(Z)=S

The operations of LBA (tensor products, composition, braidings) give rise to a
natural map HLBA(F G)z — HLBA(F, G); altogether, these add up to a map
—LBA(F’ G)s — HLBA(F, G).

LEMMA 1.16. The image of this map is equal to HgBAa (F,G)s.

Proof. This image contains HEB A(F,G)s, since HEB A(F,G)s is the sub-
space of HEB A(F,G)s in which the successive LBA are replaced by LCA,LA.
Let us prove the opposite inclusion.

For each Z, the map HEBA(F, G)z — HEBA(F, G) factors as

(R7=1 LBA(Z,,. ®; Zij) ® (RT_, LBA(R); Zij. Zs;))
— b (®; LCA(Z,,. ®; Z],) ® (R ; LA(Z];. Zi)))

zrzremsl @ (®);  LCA(Zi. Z]) ® (®; LA®); Z}j. Zo,))
- D (®; LCA(Z,;, Q; Z])) ® (R;,; LCA(Z];, Z]}))
zozrzremsn @ (Q; ; LAZY. Z])) ® (Q; LA®) Zfj. Zo)))

N P  (®LCAZ, ®; ZIN(®, LA, Z[}. Zq,))

Z’”GIIT(Sch)[n]X[p]
0 .
— HLBA(giZPj , X Zo'j).
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The first map is a tensor product of decompositions of LBA(Q); Fi, Q ; Gj). The
second is a tensor product of exchange maps (composition followed by decompo-
sition)
LA(Z};. Zij) ® LCA(Zij. Z[})

— LBA(Z!

lj’

Z///) ® LA(Z// Z// )

Z//) — @Z/// LCA(Z ij?

ij> ij’
The third is a tensor product of compositions in LA and LCA. Now if Z] ;= 1 (re-
spectively, # 1), the components of the exchange map corresponding to any Z l’;/ #1
(respectively, Z l’}’ = 1) are zero. Therefore the components of the composition
of the three first maps in which supp(Z””) # supp(Z) are zero. It follows that if
supp(Z) = S, the image of the overall map is contained in T1?, (K; Z,, , K, Zs;)s>
as wanted. d

We also define HLBAC (F,.G)z := G}Z,|Z L=z 1 9 A(C R F,G)z, and
we define HLBA (F,G)z as the image of HLBAC (F G)z in HLBA (F,G). We
define HLB A (F G)s for S € %o(1,J) s1mllarly Arguing as in the lemma above,
one shows that the image of the natural map I125, ; (F.G)s — Yy Ay (F,G)is
contained in TT105, ,(F.G)s.

LEMMA 1.17. The map k> : HLBA(F G)s —> HLBA/ (F, G) factors through
LBA(F G)s —> HLBA (F,G)s — HLBA/ (F,G)g, so it is compatible with the
gradings by 6o(1, J).

Proof. For each Z € Irr(Sch)I *J the restriction of this map factors as
MPpa(F.G)z = (®icr LCA(Zp; . Qs Zif) ® (R 1 LA®icr Zij» Zoy))
—> (®je1 LBAS (Zy;. Rjer Zij) @ (Qjes LBAF (Rjer Zij. Zo;))
— Mg, (F, G).

The statement follows from the fact that the image of the last map is contained in
MPga, (F.G)z. O

If H=KiexZy and S € 9o(1, J|K), then we define
try @ HLBAf (F,G|H)s — HLBAf(F7 Gk (S)

similarly to trg (see (11), where LCA and LA are replaced by LBA, and HEC A
and HE A are replaced by H]‘ZB A)-
LEMMA 1.18. The diagram
LBA v (F G | H )S

T

LBA/ (F,G|H)s b HEBA/.(F,G)HK(S) commutes.
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Proof. We first prove the commutativity of the similar diagram in which LBA ¢
is replaced by LBA. For any Z = (Zyv)u,v)e(1uK)x(KuJ) Such that supp(Z) = S,
the vertical map restricts to
HgBA(Fv G|H)z = (®ieII_|K LBA(ZPi»@jeJuK Zij))
® (®jeKuJ LBA(@ieIuK Zij, ZUj))
~ P (®icruxilCAZy, Qjeckus Zii)) ® Qjesux LAZiij, Zij)})
Ziij\Zijj
elrjr(sch/)/ ® (®jeKuJ{®ieIuK LCA(Zij. Zijj) @ LA(Qieruk Zijj» foj)})
- P (®icruxilCAZy, Qjekur Zii))®R;eux LCA(Ziij, Z],)})
Ziij\Zijj . Zj;
€lrr(Sch)
(®jekusQicrux LAZ];. Zijj) ® LAQe1uk Zijj+ Zo;)})

— @ (Rierurx LCA(Z),, Q;ekuy Zi)))
Zj; €lrr(Sch) ® (®jekus LARieruk Zij» Zoy))
~ s, (F.G|H)s.
Define (Hy)x and (H k+1)k as above. Define (Hy), and (Hj ), similarly,
replacing (Z;;) by (Zlfj), and define (H} ; , ), and (H;", . ), by replacing (Z;;)
by (Ziij) and (Z;j;).
Then each square of the diagram in Figure 1 commutes, which implies the
commutativity for TI?5 . The proof is the same in the case of T, - O

End of proof of Proposition 1.15. The proposition now follows from the com-
mutativity of the above diagram, together with that of

HEBA(F’ G|H)s HEBA(F’ G)trk(S)

l l

Uy
OPga, (F.G|H)s OPpa , (F, Gy (s)- O

tryg

1.18. The quasi-bi-multiprops Il and I1¢. Let IT and T1 be the quasi-bi-
multiprops associated to the multiprops with traces HEB A and HEB As and let F' —
F* be the involution of Schy). Explicitly, we have

(FRG, F'RG'):= LBA(c(F) ® c(G')*, c(F') ® ¢(G)*),
M (FRG, F'RG') = LBAs(c(F) ® c(G)*, c(F) ® ¢(G)¥).

: . T70 0 . 70 0 . 770 0
Since k1,5 : Ilj g, — HLBAf, ko :IIjgs — g, and 7 : I1{ 5, — I1[, are

morphisms of multiprops with traces, they induce morphisms KEZ, etc., between

the corresponding quasi-bi-multiprops.
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(®ieIuK LBA(ZPi ’ ®j€JL|K Zij))
(X exus LBARjeruk Zijs Zo;))
K T, (Hy, H,
Qy—o Mpa(Hi Hit1)
®HLBA(Hk,k+l’Hk+1)

@ (RieruxLCA(Zy; . Qckus Ziij)
Ziij-Zijj ®Qjesuk LA(Ziij. Zij)})
®(®_ieKuJ{®ieluK LCA(Zij, Zijj)
QLA®;cruk Zijj» Za;)})

~~

K
@ ®| | HLCA(Hk Hlé/k+1)
Ziij:Zijj LA(Hk,k+1’Hkk+1)

®chA(Hk k+1s ]2 k+l)
HEA(HIQNk+1’ Hi 1)

@ (i erux (LCA(Z ;. Qjexur Ziij)
Ziij:Zijj i ® Qjesuk LCA(Ziij. Z}))})
€lIrr(Sch) ,
®(®jeKuJ{®ieluK LA(Zij’ Zijj)
®LAQicruk Zijj+ Zo,)3)
\

K| 0 "
@ Q= 11 CA(Hk’Hk,k—H)
Ziij Zijj 2 ®HLCA(Hkk+l’HIL,k+l)
"
®TI\ (Hf gy Hkr1)
®HI(3A(H]2/:]¢+17 Hk+1)

@ (®iEIL|K LCA(Zpl" ®j€KL|J Zl/]))
Zi; SN (R e ks LA, eruk ZijZs;))
\
@@‘K‘ HOCA(Hk kk"rl)

4
Zij  OMPA(Hygprs Hitr)

NP, (F,G|H)s

\

P, (F, G)

Figure 1
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We now define a degree on IT as follows. For F € Ob(Sch;)) of the form
F = lZie[n]pr we set |F| = Zie[nﬂzm |. For F,...,G’ € Ob(Sch(y)) and
xel(FXG,F'RG') =LBA(c(F)®c(G)*,c(F')®c(G)*)
homogeneous, we set degpy(x) := degg(x) + |G'| —|G]. If
xeM(FRG, F'RG)z = Mp\(FR (G, F'RG*)z,
then
degr(X) = D (5. 0y e(inupm D x(nuim)| Zst| — 1 F 1= |G,
so degrp(x) > —|F| —|G|. One checks that degpy is a degree on IT; that is, it is
additive under composition and tensor product.

We now define a degree on ITy. We first define a degree on LBA¢ as follows:
f and § have degree 1, and p has degree 0. If now x e I (F X G, F' K G’'), we
set degry . (x) 1= degga , (x) + |G’| — |G|. Then degyy, (x) = —|G|, and degyy,
defines a degree on Il.

We define completions of IT and ITf as follows. For B, B’ € Ob(Sch(i+1)),
II(B, B') (respectively, I (B, B')) is the degree completion of IT1(B, B’) (respec-
tively, IT¢ (B, B’)). The morphisms KEz of quasi-bi-multiprops are of degree 0 and
therefore induce morphisms between their completions.

It follows from the cyclicity of the trace on %y that we have an involution of
4, defined as follows. It acts on objects by (I, J) + (J, I) and on morphisms by
YL, J), (I,, J/)) Z(Q()(II_IJ/, ]’I_IJ) 3xl—>,3[”]/0x0,3]’1/ GCQ()(J/I_II, JI_II,) €
G 1), (. 1))

The cyclicity of the trace on HEB A implies that the bi-multiprop IT is equipped

with a compatible involution, described as follows. It acts on objects as FF X G
G* X F* and on morphisms by

I(FRG, F'RG') = LBA(C(F) ® c(G)*,c(F') ® c(G)*)

3 X > Be(Fr),e(G*) © X © Be(Gr+),e(F)
€ LBA(c(G*) Q@ c(F"),c(G™)®c(F)) =TI(G*R F*, (G)* B (F')*).

This involution has degree zero, hence extends to IT.
If B € Ob(Sch(i+1)), we define cang € T1(1 X 1, B X B*) as follows. If
B=2Z,. 008 Zo,,..0, Where Zy, . o, = (K/_,Zy), then

.....

BRB*=(Z,, o)) B(Zor i BZye e )=Zp  oxBZ

*
.......... =407 ,.p 0p =401,000n°

SO

.....
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and canpg corresponds to ,BZp1 o Zok. ok If now B = (By,.....0n:01,..., gp), we

set
canp = ) idBpl ..... op ® CanZ/Dl >>>> pngzol """ op
€ @End(Bpl,...,(Tp)
QT(1K1, (Zpl """ on XZs ..., ap)|Z|(Zp1 ..... Pn X Zg,.., op)*)

CN(1X1, BXK BY).

We define similarly cany € TI(B X B*,1X 1) as follows. If B = Z,, .. ,, X
Zg,...op then TI(BX B* 1K 1) = {5, (Z), Z;, .z, and cany corre-

sssss U; T 0] ey
sponds to Sz o Z x «- We then extend this definition by linearity as above.

..... on > (rl

The involution of IT can then be described as follows. For x € I1(B, C),
x* € TI(C*, B*) can be expressed as x* = (can;, Kidg«) o (x X Bp=« c*) o
(canpg Ridc+).

The quasi-bi-multiprops II, T give rise to quasi-biprops m, 7y by the inclu-
sion Ob(Schy+1) C Ob(Sch(1+1)). Their topological versions IT, IT ¢ give rise to
topological quasi-biprops x, 7 .

We define sub-bimultiprops IT'eftright and Hlj?ft’right as follows. For F =
MierZp, G = &jeJZgj, etc., we set

Hleft,right(F g G, F/ g G/) = @ (F @ G, Fl g G/)S
SE(QleﬁJightH((],J),(I’,J’))
We use a similar definition in the case of IT,. These bimultiprops have topological
. left,right
versions IT, IT 7 .

The sub-bimultiprops give rise to sub-biprops
left,right

i left,right
left,right CIL,11g of

of m and ¢

left,right

7y, as well as to topological sub-biprops x and 7 ¢ of  and 7 ¢.

1.19. Cokernels in LA. Letipa € LA(T ® T, ® T, T') be the prop morphism
m$ o (idr ®((12) — (21) — u) ®idr), where my € Sch(T®2,T) is the propic
version of the product in the tensor algebra and m(TZ) € Sch(T®3, T) is its 2-fold
iterate.

Let pra € LA(T, S) be the direct sum for n > 0 of pra, € LA(d®",S)
given by m{h., o inj'lz”, where mppw € LA(S®2, ) is the propic version of the
PBW star product,4 m{,”B)W = mppw 0 -+ o (mppw Midgen—2) € LA(5®",S) and
inj; :id — § is the canonical morphism.

Then the composed morphism ppa oipa is zero. Moreover, one proves using
the ima%onf sym € Sch(S,T) — LA(S,T), i\L\ghere sym is the symmetrization map,
that T —> S isacokemel for TR 1o, T — T.

4The PBW star product is the map S(a)®2 — S(a) obtained from the product map U(a)®? —
U(a) by the symmetrization map, where a is a Lie algebra.
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The diagram below then commutes in LA.

re2 " T

g®2 MY o

Let Ag € Sch(S, S®2) C LA(S, S®2) be the propic version of the coproduct
of the symmetric algebra S(V'), where V is a vector space. Then

(12) A3 omppw = (mppw ® mppw) o (1324) o (Ag ® Ag);
54
In the same way, T®" —5 §®” is a cokernel for

n—1
Pré¥e(rener)er® '~ - 1"
i=0

Observe that LA is not an abelian category, since some morphisms (for exam-
ple, u € LA(A?,id)) do not admit cokernels.

1.20. The element §g € LBA(S, S®?). There is a unique §7 € LBA(T, T ®?)
such that 87 oinj, = cano§, where inj; : id — T and can : A% — id®? — T7®2
are the canonical injections, and such that

Sromp =m$? o (1324)0 57 ® AL + A} ®87),

where Ag € Sch(T, T®2) is the propic version of the coproduct of 7(V), where
V' is primitive. There exists

79T ELBA(T QL T, TR(TRQT)d(TRT,RT)®T)

such that the diagram

SreT,®T
TRTHL,QT TRMTINLRT)d(TRTLRT)RT
iLAl lidT RiLa +iLa ®idr
§
T a TRT

commutes. Taking cokernels, we get a morphism §g € LBA(S, S®?2) such that
8s omppw = mSa, 0 (1324) 0 (§s ® A5 + A§ ®38s),

and g oinj; = can o8, where can : A2 C id®? C S®2 is the canonical inclusion.
We also have ((12) + (21)) o s = 0.

Thus dg is the propic version of the image under the symmetrization map of
the co-Poisson map (g : U(a) — U (0)®2, where a is a Lie bialgebra.
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1.21. The morphisms mp € (S X $)®2, S K S) and Ag € (S X S,
(S X 5)®2). We will next introduce the propic version myy of the product map
U(g)®? — U(g), where g is the double of a Lie bialgebra a, transported via the
isomorphism U(g) >~ S(a) ® S(a*) induced by the symmetrizations and the product
map U(a) ® U(a*) — U(g).
We construct a prop morphism LA — (id X 1 & 1 X id)(7'"), taking p €
LA(AZ,id) to the sum of
weLBA(AZ,id) ~ (A2 X 1,id X 1),
§ € LBA(id, A?) C LBA(id, T») ~ 7 (id K id,id X 1),
w € LBA(A2,id) C LBA(T», id) ~ n(id R id, 1 K id),
§ e LBA(id, A?) ~ 71 X A%, 1 Kid).
This image is a morphism

piA2(dR1G1RKId) ~ (A’K1) @ ([dXRid) (1K A?) - (([dXK1) @ (1 Kid)

of 7'°f. It has IT-degree 0.
Let us denote by
my € (([dR1e1RKid)(x"")(S®2, 5)
~ g($®2(([dX1e1XKid), So (idX1¢1XKid))
~ (SR $)®%, S K S)
the image of mpgw € LA(S%2, S).
We denote by my € (S X $)M2 SR S) Cc M((SKS)®2, S K S) the

image of my. Then m has I1-degree 0.
Then mj is associative, and therefore

(13) mno(mn &idsgs):mno(idsgs &mn).

We denote by m2 e II((SKS)®3, SR S) =M (S¥3RSH3, SR S) the common

value of both sides, and more generally by m(H”) the n-fold iterate of mpy.

Let us define mp, € 7"°(1XR S) ® (SX1),S K S) as my o ((inj, Rids) ®
(ids Xinjg)), where inj, : 1 — S is the canonical morphism.

Since my ocangrs = idsxs, where canggg € Sch(SX S, (SX1)® (1K S))
is the canonical map, and since we have commutative diagrams

(SH1)®2 — = (SXS)®2 (1R $)® — (SR S)®?

(14) lMPBngdl Lmn and lidl Rmppy Lm”
SX1 SXS 1XS SKXS,
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we have
~ ~ . ~ . X2
mi = (mpBw X m;BW) o (ldsgl Xmp, X ldlgs) o cansgs,

where canggs € (S X S, (SX1)X (1 X S)) is the canonical morphism, 771, €
NOXRS) RS K1), (SX1) X (1K S)) is the morphism derived from myp,,
and rippw € M((S ® 1)¥2, 5 K1) and ritfgy € D((1 B S)¥2,1 K S) are the
morphisms derived from mppw and m;BW. It follows that a graph5 for myy is
described as follows. Set F; = --- = G, = S so that m belongs to II((F; X
F>) X (G1 ¥ G,), F' K G’). Then the edges of the graph are F; — F/, G’ — G;
and F», — G;.

It follows that if we view m(H”_l) as an element of IT((X7_, F;) X (X'_, G;),
F'®G’), where F; =---= G’ = §, then a graph form(nn_l) isF; > F', G'—G;
fori=1,...,n,and F; — G; for1 <i <j <n.

We observe for later use that the morphism 7((d X164 1Xid) - S X S in
n'*f given by the direct sum over n > 0 of all compositions

(n—1)

([dR101RId)® — (SRSH® " . S®S

is the cokernel of the morphism

T([IdR131Rid)Q T»({dX191XKid) Q T(i[dK1$1Kid) — T([dX161XKid)

given by m(%) o (idT ®((12) —(21) —ﬁ) ®id7~), where p is the composed morphism

R (dR191XKid) > A2G(dX 16 1Kid)
~ A2(id) X1 @id Kid ® 1 X A?(id)
LidR191Rid=T([dR161Xid).
Let us define Ag € (S X S, (S X §)¥2). Recall that
A3 € Sch(S, 5®?) C LBA(S,S®?) c (S K1, (S KS) K1),

and let mg €Sch(5%2,5) CLBA(S®2,8)=MN(1XS,1X(SXS)) be the propic
version of the product of the symmetric algebra S(V). Set

Apg:=AsRmy eM(SKRS,(SKS)R(SKS)) ~M(SKS, (S K S)X?).

A graph for this element is as follows. Set F = G = --- = G, = §. Then
Ao e I(F X G, (F{ X F)) X (G; XG))), and a graph is F — F|{, F — FJ,
G} — G,and G, — G.

SForx e II(FRG,F'RG'), F=R¢r F,...,G' = Njres/Glyoand S C (1 UJ')x(I"UJ),
we say that x admits the graph S if x € P g/ g II(F X G, F'®RG)g.
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Then both sides of
(15) Agomp = (mpg Xmp) o (1324) o (Ag X Ag).

are defined, and the equality itself holds. This follows from (12).
We also have commutative diagrams

SK1—— > SKS 1IKS —— > SKS
(16) Agxll le and m(Ag)fl le
(SR1)®? — (SR 5)®? (1RS$®? — (SR S)®2.

1.22. The element §sgs € (S X S, (S X 5)®2). We have
NSRS, (SKSH®) ~a(SKS, SR $9?2).
Define
(17) Ssms i=8s ®Wmf + A5 KK,

and let s s be the image of gxs in II(SX S, (S X S)®2). Then ((12) + (21)) o
SSES =0.

Letr € [T(1 X1, (S X S)®?2) be the image of the composition S — id — S in
Sch(S, S) CLBA(S,S) ~n(1X1,(S®1NKR(1®S)) Cxr(1K1, S®? K $®2) ~
(X1, S¥2 K S%2) Then one checks Ssms = m?}z o(rXAp—ApXr), which
is a propic version of the statement that the co-Poisson structure on U(D(a)) is
quasitriangular, with r-matrix ry. Definition (17) also implies that the diagrams

SK1 SRS 1XS SXS
ssX1 l l‘gsxs and 1X68% l l‘ssxs
(SR1)® — (SR 5)®? (1RS®? — (SR S$)®?

commute.

1.23. The morphism By € Iy (SX S, SXS)*. If ais a Lie bialgebra and
f € A?%(a) is a twist (we denote by ar the Lie bialgebra (a,§ + ad(f))), then
the doubles D(a) >~ a @ a* and D(ay) ~ a @ a* are Lie algebra isomorphic,
the isomorphism D(a) — D(ay) being given by the automorphism of a @ a* in
which (a,0) — (a,0) and (0, @) — ((idq ®x)(f), &). The composed isomorphism
S(a) ® S(a*) - U(D(a)) =~ U(D(ar)) ~ S(a) ® S(a*) has a propic version
Erellf(SXS,SXS)™, which we now construct.

We define

renf AR LidR) @ 7" (1Rid,idR 1) & 7 (1R id, 1 Kid)
CrfdR1e1Rid,idR 16 1Kid)
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as the sum of 77 (idigm1), of the element corresponding to f, and of 7 ¢ (idxia)-
Then ¢ is homogeneous of degree O (in the case of the middle element, the degree of
f is compensated by the fact that the source and the target have different degrees).

Then we get a commutative diagram in n}?ﬁ:

T T T
(T®T,®T)idR1a1Rid) ~22PYTY 1 o1 e T (dR16 1 Rid)
k7 (m(%) o(idr ® K7 (m(yg) o(idr ®
((12)-21)-7) ((12)-21)-70)
®idr)) ®idr))
T
T(dX101Kid) © T(dX 16 1Kid).

Taking cokernels, we get a morphism &r € nlfeft(S XS,SXS). We denote by E ¢
itsimage in [/ (SX S, S X S).

Aliftof E¢ to M(((SoA?)RS)KS, SKS) (written I (((SoA?) R F)RG,
F'® G’)) admits the graph F — F/, G' - G, F' - G', SoA? - G, and
SoA?— F'.

Since ¢ is invertible, so is E.

1.24. Relations between KZ.H, B and mry, Ao. Let us now study the relations

of 7 with mpy. In the case of a Lie bialgebra with twist (a, /), since D(a) —
D(ay) is a Lie algebra isomorphism, the diagram

(S(a) ® S(a*))®? —— S(a) ® S(a*)

| l

(S(a) ® S(a*))®? —— S(a) ® S(a)

commutes, where the upper (respectively, lower) arrow is induced by the product in
U(D(a)) (respectively, U(D(ar))) and the vertical arrows are given by the above
automorphism of S(a) ® S(a*). The propic version of this statement is that both
terms of

(18) k3 (m1) = By oki (mm) o (Ef ")

are defined, and the equality holds. The proof of this statement relies on the prop-
erties of a cokernel and on the commutativity of the diagram

®2(; o TR0 e .
T®23d X161 Kid) T®2([d X1 ®1Kid)
/cf(m(TZ))l lxg(m(TZ))
T(@)

THAR161Rid) — > T(IdX 16 1Rid).

We now study the relation of E7 with Ag. In the case of a Lie bialgebra
with twist (a, f'), the isomorphism U(D(a)) — U(D(ar)) is also compatible with
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the (cocommutative) bialgebra structures, as it is induced by a Lie algebra isomor-
phism. The propic version of this statement is that both sides of

(19) K3 (Ao) = B2 ok{! (Ag) o B!

are defined, and the equality holds, which follows from the commutativity of
T
TER1S1Rid) — 2 T(dR1e1Kid)

n(AT(idﬁleBl&id))l ln(AT(idIZIGal&id))

T%2()
_—

T®2(dX161Kid) T®2([d X1 1Kid).

1.25. Relations between tr;, mr and Ag. Define wg € Sch(S, S)* to be
B pso(—1)"idgn.
LEMMA 1.19. We have
m(mn) = (ids Rog) omy o ((ids Bws)®?) 7",
1 (Ao) = (ids Bws)®? 0 Ag o (ids Bos) ™.
Proof. The first statement follows from the commutativity of the diagram
n

A2([([dXR1¢1Kid) idX161Xid
A?(idigzq D(— idlgid))l lididgl & (—idyx=iq)
A2(d®1617id) " id= 16 1 ”id.
The second statement follows from mg = wg o mg o (a)_?z)_l. O

Remark 1.20. Lemma 1.19 is the propic version of the following statement.
Let a be a Lie bialgebra, and let a’ := a®°P be a with opposite coproduct. Its double
¢’ is a Lie algebra isomorphic to g, using the automorphism idq @ (—idg*) of a® a*.
The bialgebras U(g) and U(g’) are therefore isomorphic, the isomorphism being
given by

S(ida @(_ ida* ))
_—

U(g) ~ S(ada®) S(a®a*) > U(g).

2. The ¥X-algebras U, and U,, ¢

2.1. The category ¥. Let & be the category where objects are finite sets and
morphisms are partially defined functions. An ¥-vector space (respectively, alge-
bra) is a contravariant functor ¥ — Vect (respectively, ¥ — Alg, where Alg is
the category of algebras). An &¥-vector space (respectively, algebra) is the same
as a collection (V)s>0 of vector spaces (respectively, algebras), together with a
collection of morphisms (called insertion-coproduct morphisms) Vs — V;, x > x?
that satisfy the chain rule for each function ¢ : [t] — [s]. Instead of x?, we often



1314 BENJAMIN ENRIQUEZ and GILLES HALBOUT

is Vs = H®®, where H is a cocommutative coalgebra (respectively, bialgebra).
Then x? is obtained from x by applying the (J¢~!(«)| — 1)-st iterated coproduct to
the component « of x and plugging the result in the factors ¢~ (a) fora =1,...,s.

2.2. The %-algebra Uy,. Let us set U, := [1(1 K 1, (S X $)®"). Equip it
with the IT-degree, which, for a homogeneous element of IT(F X G, F' K G'),
is > —|F| — |G|, and therefore U,, is N-graded.

For x, y € U,, the composition m%” o(l,n+1,2,n+2,...)o(xXy)is
well defined. We set

xyi=my"o(ln+1,2,n+2,...)0(xR®y) €U,.

It follows from (13) and from degp(m 1) = O that the map x ® y — xy defines an
associative product of degree 0 on U,,.

Let Coalg,,., be the prop of cocommutative bialgebras, let ¢ : [m] — [n],
and let A? Coalg.,..(Tn, Ti) be the corresponding element. We have a prop
morphism Coalg,.., — (S X S)(I17€") induced by (coproduct) — Ag. We denote
by Ag the image of A? by this morphism, and we set x? := A‘g ox. It then follows
from (15) that the family of all (U,),>0 equipped with these insertion-coproduct
morphisms is a 6¢-algebra.

Remark 2.1. The element r defined in Section 1.22 belongs to U,. One checks
that it satisfies the classical Yang-Baxter equation

[r1,2’ r1,3] + [71’2, r2,3] + [71’3, r2,3] =0 in U3.

LEMMA 2.2. The map U, — Uy, x > (ids Bwg)®” o tr1(x) is an automor-
phism of an N-graded X-algebra.

Proof. This follows from Lemma 1.19 and because ty1 has degree 0. |

Remark 2.3. One checks (ids Rwg)®2 o try(r) = —r, so the above automor-
phism will be denoted x — x(—r). As (x(—r))(—r) = x, it is involutive.

2.3. The X-algebra U, r. WesetU, r:=I;1K1, (SX $)®¥7"). The ITy-
degree induces a grading on U, r.

LEMMA 2.4. U, r is an N-graded vector space.

Proof. Let x be homogeneous in the image of
LBA((S¥0A?)®@ F® G', F'® G) > LBA;(F ® G', F' ® G).
Let us show that deg; gy, (x) = k — |F| —|G’|. Indeed, if x belongs to

LCA(Sk o /\2, Wi ® W2) ®LCA(F, Z1® Zz) ®LCA(G’, Z3Q Z4)
QLAWI®Z1®Z3, F)QLAW2® Z2® Z4, G),
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its degree satisfies
deg g, (x) = k + degs(x)
=k + Wi+ Wa| +|Z1]+ -+ |Zs| = |F| = |G| - 2k
= (Wil + [W2| =2k) +1Z1| + -+ | Za| = |F| = |G| + k.

Now |Wi| + |Wa| = 2k, so degLBA/,(x) > k — |F| — |G’|. Therefore we have
degpy, (x) >k —|F|—|G|. Inourcase, F=G =1, s0 deg; ga, (x) = 0. O

For x, y € U, r, we define xy and x?® as above, replacing m and Ag by
KF(mH) and K{I(Ag). This makes Uy,  into an N-graded ¥-algebra.

LEMMA 2.5. The maps U, — Un’f that are given by x +— KF(X) and x —
(E]I)EI" o k31(x) are morphisms of N-graded 6-algebras.

Proof. This follows from (18), (19) and the fact that kT (m7) and «1(Ao)
have degree O. O

Remark 2.6. Let f be the image of
(inj®? o can) ® prd? € LBA(A? ® S®2, S¥2) C LBA((S 0 A%) ® §®2, 5%2)
—LBA/(S®2, 5% ~T;,(1 K1, (SR S)®*) =U, /,

where can : A2 — id®? is the canonical morphism. We then have

(EFHM20i (1) =11 (r) + f.

The morphisms U, — U, s given by x — «1I(x) and x > (Ejjl)‘22 ok dt(x) will
be denoted x — x(r) and x — x(r + f).

2.4. The algebras U;"}'C”. For cy,...,c, € {a, b}, we set
U;'f" =R F, K- K F,),

where F, = S X1 and F,, = 1K S. Then U;l'j;'c" C U, s is a graded subspace.
The diagrams (14) imply that it is also a subalgebra.

Diagrams (16) also imply that for ¢ : [m] — [n] partially defined, A? takes
Ufl"'j;'c” to Uil"f';dm, where di,....dp are such that dx = cyk) for any k in the
domain of ¢.

In particular, (UZ'}a)nZO is an N-graded ¥-algebra.

2.5. Hochschild cohomology of U, s and UZ'}“. The co-Hochschild com-

plex of an &-vector space (Vy)x>0 is given by the differentials

12 1 2

dL:Vi—>V,, x> x2—x1—x2, dz:V2—>V3,x|—>x12’3—

x1,23 _x2,3 +x1,2’

and so on. We denote the corresponding cohomology groups by H" (V).
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If B = (Bp,0) € Ob(Schy) and C € Sch, we set
Bc =@, Boo ®LBA(C ® Zg, Z,).
If « : C — D is a morphism in LBA, then we set
By := Coker(Bp — Bc) =@, » Bo.o @ LBAL(Zo, Z)).

In the case of the above morphism o : A3 ® (S 0 A%) — S o A2, we define in this

way spaces By.
In particular, for F, G € Ob(Schy)), we have isomorphisms

MNaX1, FRG) > (c(F)Xc(G))1 and IMMy(aX1, FRG) >~ (c(F)Xc(G))r.
LEMMA 2.7. Set C}} := Ker(d :UZ;']}“ — Uii‘f,f)-

(a) H”(Ui;'f‘) ~ (A"K1)f, and Alt = (n!)~! > ses, £(0)0 : UZ;'};" — Uz"'f‘

restricts to a map C;} — (A" X 1), which factors through the above isomor-
phism.

() H"(Us,r) = (AA")r =D, 41 p+g=n N BAD g, and Alt: U, ¢ — Uy ¢
restricts to a map C" — (A(A™))y, which factors through the above isomor-
phism.

Proof. (a) We have a co-Hochschild complex S — S®2 — §®3 — ... in
Sch. It is defined as above, where (x + x!2:3) is replaced by the morphism
A5 Wids € Seh(S®2, S®3), and so on. We express it as the sum of an acyclic
complex £; — ¥ — --- and a complex with zero differential Al — A% — ...

The inclusion A” — S®” is given by the composition A” C id®" c $®”.

The inclusion £, C S®” is defined as

Zn 1= Bkt (Rt S & pn,

where p, C (S1)®" = id®" is the sum of all the images of the pairwise sym-
metrization maps id +(ji) : id®" — id®", where i < j € [n]. Then we have a
direct sum decomposition S ®n — 3. @ A”". One checks that this is a decomposition
of complexes, where A" has zero differential.

In particular, when V is a vector space, the co-Hochschild complex V —
S2(V) — --- decomposes as the sum of the complexes A”(V') and £, (V). Since
the cohomology is reduced to A”(V), the complex X, (V) is acyclic. It therefore
has a homotopy and its propic version given by

Kn(V) Ky
Zp(V) —= 251 (V) and X, — ;1.

.....

Recall that UZ"J;“ ~ (S®" K1) 7. The co-Hochschild complex for the latter
space decomposes as the sum of (A" X 1) with zero differential and (X, X 1)z,

a..ay __

which admits a homotopy and is therefore acyclic. It follows that H" (U{ 7)) =
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(A"X1)r. Then C} = (A" X1)r @ d((X,—1 X1)r). The restriction of Altto C}!
is then the projection on the first summand of this decomposition, which implies
the second result. This proves (a).

Let us prove (b). We have U, 5 =~ (S®" K S®”)f ~ (A(S®”))f, where
A : Ob(Sch) — Ob(Schy) has been defined in Section 1.1.1.

We then have a decomposition U, ¢ >~ (A(A"))r @ (A(XZy))r, in which
the first complex has zero differential and the second complex admits a homotopy
and is therefore acyclic. We therefore have H" (U r) = (A(A"))r. As before,
C" = (A(A"))r ®@d(A(Zn-1)r), and the restriction of Alt to C” is the projection
on the first summand. This proves (b). O

Remark 2.8. One can prove that for B € Ob(Sch;), we have

B = @ (B(Lie(ar.....an) ®Lie(bs. .. ., DNDSN (wrip) on
N>0
where Lie(xy, ..., xy) is the free Lie algebra with generators x1, ..., xy and the
generators a;, b; have degrees «;, ;i € @1N=1 (Na; @ NB;). Here the index means
the multilinear part in the a;, b; (i.e., the part of degree ZIN=1 (i + Bi)), and the
index Gy means the space of coinvariants with respect to the diagonal action of
Gy on generators a;, b; fori =1,...,N.
Using the symmetrization map, we then get

Ul’l =~ @ (((k(alv . .. aaN>k<b17 R 7bN>)®n)Z?=l(al+ﬁ’))6N7
N>0

where k(x1,...,xy) is the free algebra with generators x1, ..., xy, and the jux-
taposition k{ay, ...,an)Kk(b1,...,by) is the image of the product map

k(al,...,aN)®k(b1,...,bN)—>k(a1,...,bN).

So U,, identifies with (U(g)®")univ; see [EnrO1b].

Then U, C @Dy -ok{ar,...,bn)®")sy. an inclusion compatible with the
%-structure on the right side induced by the coalgebra structure of k{ay, ..., bx).
We have the identification

seesn ~ N N
U;l ‘n ~ ®((FCI ®"'®FCH)Z,{V=1(ai+ﬂi))6N’
N=>0
where Fj’ =k(ay,...,an) and FbN =Kk(b1,...,byn), and if (c;, d;) # (b, a) for
any i, then the product US'“" @ UZ1*%" — U, is induced by the maps
FN® FY —>Xk(a1,....bn+m),

x(c1,...,en)®x'(dy,....dy) > x(c1,....eN)X (ANs1s .. dNLM).
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3. Injectivity of a map

Let n and m be nonnegative integers. Define u;, € LA(T,, ®id, Ty,) as the
propic version of the map X1 ® -+ @ Xp @ X > Y 11 X1 ® - ® [Xj, X| ® @ Xp.
Define linear maps

inm:LA(T, ® Ty, id) - LA(T, ® T, ®id,id), A — Ao (id1, ®m).
cn'nm: LA(Tw, T) @ LA(T,, ® T, id) — LA(Ty ® Tiy, id),
Ao ® A Ao (Ao KRidr,,).
Then iy, is 6, x Gp-equivariant, with commutative diagram

id®iy.m ey s
LA(Tyy, Ty) @ LA(Ty ® T, id) ——"% LA(Tyy, Ty) @ LA(Ty ® Ty ®id, id)

Cn’,n,,mj lcn’,n,m-i-l
i

LA(Ty ® Ty, id) - LA(Ty ® Ty, ®id, id).

LEMMA 3.1. There exists an &, X Sy,-equivariant map
Pnm : LA(T, @ Ty, ®id, id) — LA(T,, ® Tj,. id)
such that py m 0 in m = 1d, with commutative diagram

id®pn.m .
LA(Tyy, Ty) @ LA(Ty ® T ®id, id) ——2" LA(Tyy, Ty) ® LA(Ty ® Tin, id)

Cn’,n,m-i—ll jcn’,n,m
LA(Ty ® Ty ®id, id) Dntm LA(Ty ® Tpp, id).

Proof. First recall some results on free Lie algebras. Let L(xy,...,xs)
be the multilinear part of the the free Lie algebra generated by x1,...,xs. Let
A(x1, ..., xs) be the multilinear part of the free associative algebra they generate.
Then L(xy,...,xs) C A(x1,...,Xxs). Forany i = 1,...,s, we have an isomor-
phism L(x1,...,x5) = A(Xx1,...,Xi—1,Xi+1,...,Xs) given by L(x1,...,Xx5) 3
P(x1,...,x5) = Py, (X1,...,Xi—1,Xi+1,...,Xs), where Py, is the element such
that P decomposes as Py, x; plus the sum of terms not ending with x;. The inverse
isomorphism is given by A(xy,...,Xi—1, Xi+1,--.,Xs) > Q@ > ad(Q)(xy), where
ad (i, . xig ) (X)) =[xy [Xigs oo Xy X))

Now, the lemma: We have an isomorphism LA(Ty,,id) >~ L(x1, ..., x,). The
map i m is given by
in,m . L(xl, ey xn—l—m) — L(xl, ey xn+m+1),

P(X1,.o o Xngm) > Drey P(X1, ooy [Xntis Xnbmeils ooy Xnpi)-
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Define
Pnm L(X1, ..., Xn4m+1) > L(X1, ..., Xngm),
1 m
QX1 Xnpm41) = — D 8Dy ) i),
i=1
with Qx, \x,4my the element of A(X1, ..., Xnti—1,Xntit1s---»Xn+m) such

that Q = Ox, i xyimy1Xn+iXn+m+1 + terms not ending with x4 Xp4m+1-
Let us show that py ;0 iy m =1d. If

Qi = P('x17 R [xn—‘ri,xn—i-m—i-l],- . ,xn—i-m),

then (Qi)x, 4 xpymy1 = 0if i # j, and equals Py, ; if i = j. So

ad((in,m(P))Xn+ijn+m+l )(xn+j) = ad(Pxn+j)(xn+j) =P.

Averaging over i € [m], we get pp m(inm(P)) = P.
Let us show that pj, ,, is &, x Gy-equivariant. The &,-equivariance is clear.
Let us show the G,,-equivariance. Let 7 € G,,. We have

Qt(xl’ cee ’xn—l—m—i—l) = Q(xls e Xns Xp4r(1)s - - - ’xn+1:(m)axn+m+l)’

SO (Qt)xn+t(i)xn+m+l = (an+,‘xn+m+1)t- Then

Pn,m(Qr) = nl’t Z ad((Qt)Xn+an+m+l)(xn+i)

i=1

m
1
= E Z ad((Qt)xn+r(i)xn+m+l )(xn-i-r(i))

i=1

m
= %l;ad((Qx,,HmeH)’)(xn+,<,-)> = (Pam(Q)),
which proves the S,,-equivariance.

Let us prove that the announced diagram commutes. Let A9 € LA(T,, T,)
and P € LA(T, ® T), ® id,id). We must show that the images of A9 ® P in
LA(T,y ® Ty, id) by two maps coincide. By linearity, we may assume that Ao has
the form x1 ®....® xp > Pi(x;,i € f71(1)®---® Py(x;,i € f~1(n)), where
f :[n'] = [n] is amap and P; € F(x;s,i’ € f~1(i)). The commutativity of the
diagram then follows from the equality

Pxn+[xn+m+](P1(')""’ Pn(‘),xn/—l—l’---’xn/-l-m-l-l)

= (P(P](-), ey Pn(-)’xn/+1, e ’Xn/+m+1))xn/+ixn/+m+1’

where Pj(-)sz(xi,iEf_l(j))- =
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If Z € Irr(Sch), we now define uz € LA(Z ®id, Z) as follows. Let n be
a nonnegative integer. The decomposition T, = €D zepr(sen),|z|=n £ @ Tz gives
rise to an isomorphism

LA(T, ®id.T,)~ P LA(Z®id. W)® Vect(nz. 7w).

Z ,W €lrr(Sch)
|Z|=|W|=n

On the other hand, w, has the &,-equivariance property i, o (0 ® idig) =0 o up
for any o € &p. It follows that u, decomposes as €D zep(seh),|z|=n 42 @ idr -
This defines pz for any Z € Irr(Sch) with | Z| = n.
For Z, W, W’ € Irr(Sch),
iw,z :LAW ® Z,id) - LA(W ® Z ®id,id), A — Ao (idw Quz).
cwrw.z: LAW , W)QLA(W ® Z,id) > LA(W' ® Z,id),
AM®A—= Ao (lo®idy).

Then we have a commutative diagram

e
LAW', W) QLAW & Z,id) — X2 LAW', W) @ LAW ® Z ®id, id)
CW/.W,ZL lCW’.W,Z@d
LAW' ® Z,id) .z LAW' @ Z ®id, id).

For W, Z € Irr(Sch), define a linear map
pw.z - LAW ® Z ®id,id) - LA(W ® Z,id)
as follows. For n, m integers > 0, the decompositions

T, = @ Wnry  and T, = @ 7@y

W elrr(Sch) Z €lrr(Sch)
|Wl=n |Z|=m

give rise to a decomposition

Vect(LA(Ty, ® Ty, id), LA(T, ® Tn ®id, id))
~ P Vect(LAW ® Z.id). LA(W' ® Z' ®id. id))

4 7
|vWV/|V=V|w%|£n ® Vect(nw Q wz, tw @mz)
|Z|=|Z'|=m

which is G, x &,,-equivariant. Then

Prm € Vect(LA(T, ® Ty, id), LA(T,, ® Ty, ® id, id))
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is &, x G,,-invariant, which implies that it decomposes as

Z pw,z Qidyy, @, -

W,Z €lrr(Sch)
\Wl=n, |Z|=m

This defines pw,z for W, Z € Irr(Sch).

PROPOSITION 3.2. We have pw,z oiw,z = id and a commutative diagram

id®
LAW', W) @ LAW ® Z ®id. id) 2%

LA(W', W)@ LA(W ® Z, id)

CW/,W,Z®idl lCW/.W,Z

LAW' ® Z,id).

Pw'’,z

20) LA(W'®Z®id.id)

Proof. This is obtained by taking the isotypic components of the statements
of Lemma 3.1, and using that

inm = @ iw,z Qidry @ny - .
W,Z €lrr(Sch)
|Wl=n, |Z|=m
PROPOSITION 3.3. The map LBAf(id, id) — LBAf(A?,id), x > x o i, is
injective.

Proof. Let  : C — D be a morphism in LBA. We will prove that i, :
LBA(id, id) — LBA4 (A2, id) C LBA,(id®?,id), x — x o is injective. For this,
we will construct a map pg : LBA (id®2, id) — LBA (id, id) such that py 0ig = id.

The first map is the vertical cokernel of the commutative diagram

LBA(D ®id, id) —2> LBA(D ®id®2,id)
—0(a®idid)l l_o(‘X@idid)
LBA(C ®id, id) —<> LBA(C ®id®2,id),

where iy (x) = x o (idy ®u) for X = C, D.
We will construct a commutative diagram

LBA(D ®id®2,id) 22~ LBA(D ®id, id)
(21) _o(a®idid®2)j L—o(a@idid(gz)
LBA(C ®id®?,id) 2~ LBA(C ®id, id)

such that pc oic =id and pp oip = id. Then we will define py as the vertical
cokernel of this diagram.
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Set A¢ := LBA(C ® id.id), A} := LBA(C ®id®2,id). Let us study the
map ic : Ac — A. We have

Ac= P AcW.Z) and Ap = a W, z',Z",
W,Z €lrr(Sch) W,Z’,Z" €lrr(Sch)

where
Ac(W,Z) :=LCA(C,W)®LCA(d, Z2)  LA(W ® Z,id),

cW,Z',Z") :=LCA(C, W) ® LCA(id, Z') ® LCA(id, Z")
QLAW®Z' ® Z",id).

Set A¢- := Dw, zem(sen) Ac (W, Z,id). We have a natural projection map A —
AL .

Then the composition A¢ BN A/C — Ag is the direct sum over W, Z of the
maps Ac(W,Z) — A (W, Z,id) given by

LCA(C, W) ® LCA(id, Z) ® LA(W ® Z.id)
— LCA(C, W) ® LCA(id, Z) ® LCA(id, id)  LA(W ® Z ® id, id),
KC ®Kkia®A > ke Qkia® 1 ®iw,z(A).

Define the map pc : A — Ac as the composition A, — A — Ac, where
the first map is the natural projection and the second map is the direct sum over
W, Z of the maps Ac(W, Z) — A, (W, Z,id) given by

LCA(C, W) ® LCA(id, Z) ® LCA(id, id) @ LA(W ® Z ®id, id)
— LCA(C, W) ® LCA(id, Z) @ LA(W ® Z,id),
ke ®kia® 1 QA ke ®kia @ pw,z(A).

Then pw,z oiw,z = id implies that pc cic =id.
Let us prove that (21) commutes. For this, we will prove that

LBA(C, D) ® LBA(D ®id®2,id) 222> L BA(C, D) ® LBA(D ®id, id)

l l

LBA(C ®id®2,id) i LBA(C ®id, id)

commutes, where the vertical maps are @ ® x — x o (¢ ® id,3®2) on the right and
o ® x> xo (o ®idijq) on the left.
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This diagram is the same as

P LcA(C.U)®LA(U.D) b LCA(C,U)

uw,z',z" QLCA(D, W) . UWw.,Z QLA(U, D)
€lIrr(Sch) . ’ 1) €Irr(Sch)

®LCA(d, Z') ——— ®LCA(D, W)

® LCA(d, Z") ® LCA(d, Z)

QLAW®Z'® Z",id) QLA(W ® Z,id)

(iii)l j (@iv)

P LCA(C.V)®LCA(d. Z') - &b LCA(C,V)

v.z'.z" ®LCA@d, Z") ——— v,z ®LCA(d, Z)

€lrr(Sch) ® LA(V ® 7! ® Z”, ld) GIrr(Sch)® LA(V ® Z, id),

where (i) vanishes on the components with Z” # id. It takes the component
(U, W, Z,id) to the component (U, W, Z) by the map id® id ® id®1 ® pw,z.

The map (ii) is zero on the components with Z” # 1. It takes the component
(U, Z,id) to the component (U, Z) by the map id ®1 ® py,z.

The map (iii) is the composition of the natural map
LA(U, D)  LCA(D, W) - LBA(U, W) ~ @ LCA(U,V)®LA(V, W),

V €lrr(Sch)
of the composition LCA(C,U)  LCA(U, V) — LCA(C, V) and of the map
LAV, W)QLAW R Z' ® Z",id) - LA(V,®Z' ® Z”,id)
a® B> Pola®idzez).

The map (iv) is the composition of same maps, where in the last step Z' ® Z”

is replaced by Z.

The commutativity of the diagram formed by these maps then follows from
that of (20). O

4. Quantization functors

4.1. Definition. A quantization functor is a prop morphism Q : Bialg —
S(LBA) such that

(a) the composed morphism Bialg g S(LBA) — S(Sch) (where the second mor-
phism is given by the specialization u = § = 0) is the propic version of the
bialgebra structure of the symmetric algebras S(V'), where the elements of V
are primitive, and

(b) (classical limits) pry cQ(m)o (inj(ig’2 ocan) € LBA(A?,id) equals y plus terms
of positive §-degree, and (Alto pr‘lg’z) o Q(A)oinj; € LBA(id, A?) is equal
to § plus terms of positive u-degree.

Here inj; :id — § and pr; : S — id are the canonical injection and projection
maps, and inc : A2 — T, and Alt: T, — A? are the inclusion and alternation maps.
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Note that (a) implies that Q(n) = inj, € LBA(1, S) and that Q(¢) = pr, €
LBA(S,1), where inj, : 1 — § and pry : S — 1 are the natural injection and
projection.

Quantization functors Q and Q' are called equivalent if and only if there exists
an inner automorphism 6(&g) of S(LBA) such that Q' = 6(&y) 0 Q.

4.2. Construction of quantization functors. In [EK96; EK98], Etingof and
Kazhdan constructed a quantization functor corresponding to each associator .
This construction can be described as follows [Enr05].

Let t, be the Lie algebra with generators #;; for 1 <i # j < n and relations

tijy = tii, ltij tik +tjx] =0, [tij.tx1] =0

(for i, j, k, I distinct). It is graded by deg(#;;) = 1. We have a graded algebra
morphism U(t,) — Uy, taking #;; to tiJ where t € Uy is r + r21.

The family (t,),>0 is a ‘6-Lie algebra, and U(t,) — Uy, is a morphism of
%-algebras.

An associator ® is an element of 17(§)¥ satisfying certain relations (see
[Dri90], where it is proved that associators exist over k). We fix an associator ¢
and denote by P its image in (63)?

One constructs J € (ﬁzﬁ suchthatJ=1—r/2+--- and

(22) J1,2 J12,3 — J2,3 J1,23 d.

Then one sets R := J>1 e?/2]71 ¢ (IAJz)i(.
Using J and R, we will define elements of the quasi-bi-multiprop II. We
define

A el(SKRS, (SKS¥?) and Ad(J) € I((S R S)®? (S K S)X?),.
One checks that the elements

mP RmP e M((SK SN, (SR S)X?),

(142536) € II((S ® $)X°, (S ® §)X6),

TR id gpgym2 BT e (S ®S)™?, (S HS)™)

are composable, and we set
Ad(J) := (mfy Rmp) 0 (142536) 0 (I R id g gyz2 BT )
e M((SES)™?, (SES)™?).

A graph for this element is as follows. Set F; =--- = G, = S. Then this is an
element of II((F1 X F») X (G1 X G2), (F{ X F}) X (G| XG))), and the edges are
F; —>FJf, G! — G; and GJ’. — F/fori,j=1,2.



QUANTIZATION OF COBOUNDARY LIE BIALGEBRAS 1325

Now Ad(J) and A can be composed, and we set
An:=AdJ)oAg e I(SK S, (S K S)X?).

A graph for this element is as follows. If we set F = --- = G/, = §, then this is
an element of II(F X G, (F|{ K F;) X (G| X G})). The vertices are then F — F/,
G/ —G,G — Fj/ and fori,j =1,2.

The elements my, Arr then satisfy (13). Moreover, the following elements

make sense, and the identities hold:
23) A omy = (my Xmpy) o (1324) o (A X Apy),
(A @idggs) oA = (idsgs XAm)oAq.

In particular,
= Af o) e M((SK ST, SR S),
Aq:=mi ell(SRS, (SR S)X?)

satisfy relations (13) and (23).
Moreover, R € (1 K 1, (S X §)X?) satisfies the quasitriangular identities

(AnpXidsgs)oR = (id(S@S)gz Kmir) 0 (1324) o (RX R),
(idsgs &AH) oR= (132) o (mn X id(S@S)x2) o (1324) o (R|Z R).
Define £ := (idsxs IZIcanEES) o (R&idsgs) celI(SXS,SKS).

The following proposition is a consequence of the quasitriangular identities
above.

PROPOSITION 4.1. The following elements are defined, and the equations
hold:

mrol®? =fomy and Amol={2?0A.
The flatness statement of [EnrO5] can be restated as follows.

PROPOSITION 4.2. There exist elements Ry € II(S X 1,S X S) and R_ €
NaXS,SXS) such that

(24) R=(Ry XIR_)ocangg, .
Moreover, R_ and Ry are right-invertible, that is, there exist
RFVen(SKS,SK1) and REVeNM(SKS,1KS)

with graphs F — F' and G’ — G, where R:D is viewed as an element of I1(F K
G,F'®1) and RTY as an element of I(F R G,1 R G'), such that R(_i__l) oR4 =
idgx, and REVoR_ = id,xs (Where the compositions are well defined).
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Notice that (R, R_) is uniquely defined only up to a transformation
(R4+.R-) > (R4 oR”,R_o((R")*)7H),

where R” € II(S X 1, S X 1)*. This transformation will not change the equivalence
class of Q.
Equation (24) implies that { = R4 oR* .

PROPOSITION 4.3. The following elements are defined, and the equations
hold:

5) R:l)omn 0R§2 =R* OWHO(R(__D*)&Z,

(R(_i__l))|Zz oAmoRy = R*)®20 Ao RV,
Letmg e (S X1, (S X S) X 1) be the value of both sides of the first identity of
25),and let Ay e M((SX S)X 1, S X 1) be the common value of both sides of the
second identity. Then mg and A, satisfy (13) and (23).

Then there is a unique morphism Q : Bialg — S(LBA) such that Q(m)
is the element of LBA(S®2,S) corresponding to mg, Q(A) is the element of
LBA(S, S®?) corresponding to Ay, Q(s) is the element of LBA(S, 1) correspond-
ing to 1 €K, and Q(n) is the element of LBA(1, S) corresponding to 1 € k.

Proof. The proof follows that of the following statement: Let ¥ be a sym-
metric tensor category; let A, X, B € Ob(¥). Assume that my € F$(A%?, A),
Ayq € (A, A®?), ... is a bialgebra structure on A in the category €. Similarly
let (mx,Ayx,...)and (mp, Ap,...) be $-bialgebra structures on X and B. Let
Lax € F(A,X) and Lxp € (X, B) be morphisms of F-bialgebras such that
L4x is right invertible and £y p is left invertible, that is, let £x4 € ¥(X, A) and
Ipx € $(X, B) be such that Lax o¥€xq = idy and £y o Lxp = idy. Then
Lax omy OK?Z ={gx omp OK?; and Kf)zf oAgolxy = E?}Z{ o Apgolxp, etc.
If we call my € (X2, X) (respectively, Ay € $(X, X®?), etc.) the common
value of both sides of the first (respectively, second) identity, then (my, Ay, ...)
is an ¥-bialgebra structure on X . O

According to [Enr05], J is uniquely determined by (22) only up to a gauge
transformation J — *J = u'u? J(u'?)~!, where u € (U)7.

LEMMA 4.4. Quantization functors corresponding to J and to ] are equiva-
lent.

Proof. We have u,u~! € U ~ MNOX1,SKS). Let us set
Ad(u) :=m o (uNRidsgs Ru') e M(SK S, SKS)™.

(One checks that the right side makes sense.)
Let us view Ad(u) as an element of II(F X G, F' X G’). Then a graph for
Ad(u) and Ad(u)~! (= Adw™ ') is F - F', G' > G and G' — F’'.
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In the same way, Ad(x)*, (Ad(u) " H)* e (S X S, S X S)*, and a graph for
these elementsis F — F’, G’ — G and F — G.

Let us denote by ¥R, %Z,...,*Q the analogues of R, Z,..., Q, with J re-
placed by “J. These analogues can be expressed as follows: ¥my = my, YA =
Ad(u)®2 o Ay o Ad(u)™! (one checks that the right side is well defined), and
R =u'u? R(u'u?)~1. Therefore ¥¢ = Ad(u) o £ o Ad(u)* (one checks that the
right side is well defined). We then choose YRy = Ad(u) o R4 (one checks that
both right sides are well defined).

We then have “R(i_l) = R(i_l) o Ad(u)~!. Then

uma — (uR(_f_—l))IZZ Oumn ouR+
= (REFD)X'2 o (Adw) ™ H™¥2 om0 Ad(u) oR4
— (R(+—1))|Z|2 omry OR_|_ = Mg,
and
uAa — (uR(_:l))®2 ° uAH ° uR+
= (R(_l__l))Izz o (Adu) " H®2 0% Ao Ad(u) o R4
= RE")™ 0 AnoRy = A,
so¥Q(m) = Q(m) and *Q(A) = Q(A). Thus*Q = Q. O
Here are pictures of the main graphs of the above construction. The object S

is represented by black vertices, and the object 1 € Sch(y) is represented by white
vertices.

+o/.+ ;+ /?
No = /:: J 2: AdD) ‘/\/ \i
—T D N
e e P T
mn+I‘X.+ mi :‘X.+
e i



1328 BENJAMIN ENRIQUEZ and GILLES HALBOUT

mHOAn +./'0+0\‘.+
a priori e QE ~ e o
\. — /

undefined

>0 @ ——
Apqomp *?\ b /:
is defined ——e T« .
+./ \i+
=D =D
Ry R R_ RC
>0 >—0 > > >—0 > ——0 o -0 o ——
—<0 i+ —~—0 O —< +.+i+ <@ <@ ——
o —— o ——0 >
O —< o @ —«—
Cang1 R
- O —— (@] [
%
@ —+— @ —<«—@ <«
a a*
- ® —— ——@ ® ——
operation \ T (
——0 o —— ——Q @ —<
a—a* —
——0 o —— @A @ —<—
—~—e <o+ —~—e P
¢ R* Ry
>0 >—0 > >0 >—0 > > >—0 >
v b=y t
—~—0 ® —— —~0 O —< —<0 ® ——

5. Compatibility of quantization functors with twists

5.1. The category ®. We define ¥ as the category where objects are integer
numbers > 0, and Y(n, m) is the set of pairs (¢, 0), where ¢ : [m] — [n] is a
partially defined function and 0 = (01, ..., 0,), where o; is a total order on ¢ 1 (i).
If (¢,0) € Y(n,m) and (¢’,0") € Y(m, p), then their composition is (¢”,0") €
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Y(n, p), where ¢ = ¢ o¢’ and 0o” = (0], ..., 0},), where o/ is the lexicographic
order on (¢") ™' (1) = ||jep—10y (@)1 ().

A %-vector space is a functor Y — Vect, and a Y-algebra is a functor Y — Alg.
The forgetful functor Y — & gives rise to functors

{%-vector spaces} — {Y-vector spaces} and {¥-algebras} — {¥-algebras}.

A %-vector space is therefore a collection of vector spaces (V},)n>0 and of maps
Vi = Vi, x > x®9 for (¢, 0) € ¥(n, m).

If H is a (not necessarily cocommutative) coalgebra (respectively, bialgebra),
then (H®"),>0 is a Y-vector space (respectively, Y-algebra).

5.2. Y-algebra structures on U, and ﬁn # associated with J. A solution J of
(22) gives rise to Y-algebra structures on (ﬁn)nzo and (ﬁn, f)n=0, which we now
define. We will call them the J-twisted structures.

For (¢,0) € ¥(n,m), define J%° ¢ I/j,’f as follows. For ¢ : [k] — [m] an
injective map, we set

Jy = W@ gy D)=y (k=2),¢ (k—=1) y¥ (1)~ (k—1),9 (k)

and J¢° = Ty, -y, where ¥; : [|¢~1(i)|] — ¢! is the unique order-preserving
bijection.
The Y-vector space structure on (U, ),>0 is then defined by

x> ()= (0 =190 50 1907

the algebra structure is unchanged. In the case of ﬁn 7 the Y-algebra structure is
defined by
x> ()97 = 1110 x P« 1 (390) 7L

Both (ﬁn)nzo and (ﬁn, #)n=0 are Y-algebras equipped with decreasing filtrations
(the N -th step consists of the elements of degree > N).

5.3. M-algebra structure on P(1, S®™). Let P be a topological prop and let
O : Bialg — S(P) be a prop morphism. Recall that if H is a coalgebra, then
(H®"),>0 is a Y-vector space. Let us denote by AZ’O : H®" — H®™ the map
corresponding to (¢, 0) € Y(n, m). The propic versions of the maps A%’O are ele-
ments A?° € Coalg(T},, Tyn), where Coalg is the prop of algebras (with generators
A, n with the same relations as in Bialg). We also denote by A%-° e Bialg(T,, Ty,)
the images of these elements under the prop morphism Coalg — Bialg.

Then (P(1, S®")),>¢ is a Y-vector space whose map to P(1, S®™) that cor-
responds to (¢, 0) € D(n,m) is x — (x)%o := Q(A?°)ox. Each P(1, S®") is
equipped with the algebra structure

x®y|—>x*§y:=Q(m)®”o(1,n+1,2,n—|—2,...)o(x®y).
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The unit for this algebra is Q(n®"). Then this family of algebra structures is
compatible with the Y-structure, so (P(1, S®")),>0 is a Y-algebra.

In particular, the morphism K}_I o Q : Bialg — S(LBAy) induces a %-algebra
structure on LBA£ (1, S ®n) . which, using the identification LBA((1, S ®ny ~
My(1X1, (S X1)®"), is given by

x*Qy:=KF(ma)z|"o(1,n+1,2,n+2,...)o(x|Z|y).

The Y-vector space structure is given by (x)z’o = KF(AZ’O) ox.
5.4. A%-algebra morphism I, : LBA ¢ (1, seny ﬁn,f. Define a linear map

I, :LBA;(1,8%") ~ (S®" R 1), ~ M (1K1, (SR1)®") > U,
O,(1R1L(SED®) 5 x -k (Ry)¥ o,
This is a morphism of %Y-algebras, where LBA £ (1, S ®n) is equipped with the struc-

ture corresponding to S(x1) o Q and fJn £ 1s equipped with its J-twisted structure.
Then I, is a filtered map, and the associated graded map is the inclusion

LBA/(1,S®") ~ (S®" K1)y — (A(S®"), =TI, (1 K1, (SR S)®") ~ U, /.
5.5. Construction of (v, F).

THEOREM 5.1. There exists a pair (v,F) € ((ﬁl,f)f (S®? 1)7)Y) such
that

(26) Ir+ )= v LE)IF) !

(the equality takes place in 62, f» where v12 is defined using the €-algebra struc-

ture on ﬁn,f).
Then

@7) By x0 By = )5 0 (F5>

Proof. First write v = 1 + vy + ---, where v; € Uy s has degree i and
F=14F; 4+F,+---, where F; € (S®” X1)s has degree i.

If we set F; = — f/2 and v; = 0, then (26) holds modulo terms of degree no
less than 2. Assume that we have found vy, ..., v,—1 and Fq, ..., F,;_1 such that
(26) holds modulo terms of degree no less than 7.

Letussetvey, =1+vi+---+vp—1and F, =1+F +---+F,—1. We
then have

(28) WL, 02 ) I+ v I T = L(F) + v,
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where ¥ = ¥, + Y41 + -+ is an element of ﬁz,f of degree > n. Let us denote
by K e (I/jz, £)7 the left side of (28). Then K satisfies

K1,2 J(r)1,2 K12’3(J(7')1’2)_1 — K2,3 J(r)2,3 K1’23(J(7')2’3)_1.
This implies that

(29) I3 ((F<n)Q *Q (F<n)Q *Q ((F<n)Q *Q (F<n)1QZ3) )
— 1423 4yl (g2 4 y123)
modulo degree greater than n. The associated graded of /3 is the composed map

(S®3X1)r — (A(S®3))s ~ U, s, which is injective; hence so is /3. Therefore,
modulo degree > n,

(F<n)g” 0 (F<n) > %0 (F<n)g® %0 (F<n) ™)' =1

Moreover, (S®3 X ) — (A(S®3))f o~ U3 ,f 1s the linear isomorphism
(SO3R 1), = V2, 50 d(Yn) = Y + Y™ — (Y + Y >>) € U9,

Now d(d (wn’)) = 0 and Alt(d (Y¥m)) = 0, so the computation of the co-
Hochschlld cohomology of U¢: f in Section 2.5 implies that d () = d(F,,), where

e U%? f The computatlon of the co-Hochschild cohomology for U, s then
1mphes that ¥, =F}, + (v} —v} —v2) + A/, where v, € Uj s and A’ € (A(A?))s
all have degree n.

Now (A(A?))r = (A?R1), & (idXid), & (1K A?)r. Since (1K A?), =0,
we decompose A’ as A” + A — %!, where 1” € (AKX 1) and A € (id¥id). Set
F,:=F,+1"¢ U‘Z’f‘f

Then ¥ = (012 — v} — v2) 4 Fy + 4 —A21,

Let F, € (S®2 K1)/ be the preimage of F,, under the symmetrization map
(S®?X1); — Ug?f. Let us set v<, = (1 +v,)(1 + v<y) and F<, = F, + F,,.
Then (28) is rewritten as

(30) WL, ) I+ v I T = LF<n) + A -2+ ¢,

where ' =, 4+ € fJLf has degree > n + 1.
As above, we denote by K’ the left side of (30). We have again

(K/)I,Z J(V)I’Z(K/)12’3(J(V)1’2)_1 — (K/)l,Z J(r)2,3(K/)1,23 (J(V)Z’S)_l,
which according to (30) can be rewritten as

I((F<n)g® %0 (F<n) ™ %0 (F<n) 3’ %0 (F<n) ™) ™)

=1+ @)+ @2 — (@) + @)'??)
+ [rll,Z’AIZJ —A3’12]/2— [r12,3’kl,23 —)&23’1]/2
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modulo terms of degree > n + 1. Here r1 = k3 My e U2 f As above, this equation
implies the form

(F<n)Q *0 (F<n)Q *0 ((F<n)Q *0 (F<n)1Qz3)_ =1+gnt1+-

where g,41, ... have degree > n + 1; its degree n 4 1 part yields

Ent1=Wns )™ + W)V = (Wn )+ W) ')

+[r12 A«123 13,12]/2 [r23 A«l 23 123,1]/2’
where gn4+1 € U3?f is the image of gn41 by (SB3X1)f ~ U3¢, Applying Alt
to this equation, we get

Alt([rll ,2 AIZ 3 )&3 12] [7'2 3 A,l 23 A,Z?, 1]) c Uaaa

Now the terms under Alt belong to U;1;2C3 where c¢jcpc3 is respectively aab, bba,
abb, baa. These terms are antisymmetric with respect to the pairs of repeated
indices, and

[}" 3 Al 23] ([71’2 —)&3’12])2’3’1 and [r2,3 A23’1] _ ([}"1’2 A12’3])2’3’1
1 ) , = ) .
Hence [r1 2 A12:3 )3 12] 4 cyclic permutanons = 0. Since the spaces UC'Jcﬁc3
are in direct sum for distinct c1cac3, we get [r JA123] = [r1 3L 23] = 0. We
will show that the second equality implies that A = 0. This will prove the induction
step, because (30) then means that (26) holds at step n + 1.

So it remains to prove this:

LEMMA 5.2. The composition
(31) (idXid)y — Uj f_>U3,f
is injective, where the first map is

(dXid)y My X1,idXid) - M1 X1, SXS) ~ 2f

and the second map is U“bf > A [r] 2,3 Ab23] e Us, 7.

Proof of Lemma 5.2. 1t follows from Section 1.22 that (31) coincides with the
composition (id ®id); — (id X A2); — (id ¥id®?); — U‘;bj’Z < Uz s, where
the first map is

(id®id); ~ LBA/(id, id) —> LBAs (A%, id) ~ (id X A2),
the second and the fourth maps are the natural injections, and the third map is the
injection
([dRid®?), ~T (1K1, ([dX1)® (1 Rid)®?)

>R, (SH) Q0 KS)®?) ~ U5,
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It follows from Proposition 3.3 that the first map is also injective. Therefore the
map (id Xid) s — Us ¢ given by (31) is injective. O

This ends the proof of the first part of Theorem 5.1. Equation (27) is then
obtained by taking the limit n — oo in (29). This proves Theorem 5.1. g

We prove that pairs (v, F) are unique up to gauge, although this fact will not
be used in the sequel.

LEMMA 5.3. The set of pairs (v,F) as in Theorem 5.1 is a torsor under
the action of ((@)f)l' an element g € ((S/&\l)fﬁ transforms (v, F) into
1), (8)p *0 (9)5) " *o Fxo(9) g

Proof. Since 12(g 2y =J(r)11(g)'2I(r)~!, the pair

11(2), (8)p *0 (£)5) ™ *o Fxo(9)g)

is also a solution of the equation of Theorem 5.1. Conversely, let (vq,F;) and
(vz, Fz) be solutions of this equation. Then we have v vzlz(Fl) J(r)(vlz) 1 —

v2 V5 21,(Fy)] (r)(vy 12=1 Let n be the smallest index such that the degree n com-
ponents of (v1, F1) and (v,, F») are different. We denote with an additional index
n these components. Then we have

(v2,n — vl,n)lz — (V2,0 — vl,n)l —(v2,n — vl,n)z = symy(F2,» —F1,1),

where sym, : (S®2? X 1) — (A(S®2))f >~ U,, s is the canonical injection. So
d(van—V1p) € U‘zwf. As above, we obtain the existence of w € U{ 7 of degree
n such that d(v2,, —v1,,) = d(w). Therefore

V2n —V1n—w € (A(id)) r = (dX 1) & (1Xid)y.
Now (1Xid)r = 0,50 v2y — V1, —w € (IdX1)r C U 1f Therefore w’ :=
va,n — V1,0 € UJ NE Replacing (v, F») by
Wali(1=w)). (1= w)hy o (1= w3 xg Faxg(1—w) ),

we obtain a solution equal to (vq, Fy) up to degree n. Proceeding inductively, we
see that (vq, F) and (v, F2) are related by the action of an element of ((S X 1) )7
O

5.6. Compatibility of quantization functors with twists. Let P be a prop and
O : Bialg — S(P) be a prop morphism. Using Q, we equip the collection of all
P(1, S®") with the structure of a Y-algebra (see Section 5.3) with unit Q (n®").

We define a twist of O to be an element F of P(1, § ®2)* such that the relations

(F)g**g (g~ = (5 x5 Mg and (F)g' = F)g” =0
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hold in P(1, S®3). Here we use the M-algebra structure on P(1, S®”) given by Q.
Then get a new prop morphism FQ : Bialg — S(P) defined by
"0 (m) = Q(m), "0(e) = 0(e),
FO(A) = Ad(F) o 0(A), "o = 0.
Here Ad(F) € S(P)(id®?,id®?) is given by
Ad(F) = 0(m'® @ m®) 0 (142536) o (FQidge: @ F 1) € P(§%®2, §%2),

where m'® = m o (m ® idiq) € Bialg(T3, id).

We say that the prop morphisms O, Q' : Bialg — S(P) are equivalent if
0 = 0(§) o O, where £ € S(P)(id,id)* and A(£) is the corresponding inner
automorphism of S(P).

THEOREM 5.4. Let Q : Bialg — S(LBA) be an Etingof-Kazhdan quantization
functor. Then S(k;) o Q : Bialg — S(LBAy) are prop morphisms for i = 1,2.
There exists i € S(LBAf)(id, id)™ such that ko (i) = S(LBA)(idia), and a twist F
of S(k1) o Q such that S(k2) o Q = 0(i) oF(S(k1) 0 Q).

Proof. We will construct i such that
KX (mg) =iokl(mg) o (8271 and  kI1(Ay) = i®2? 0Ad(F) o kT (Ay) 0i™!,
where as before Ad(F) € I ¢ ((S X 1)®2 (5§ X 1)®2)* and
Ad(F) = (mg? ®mg”) 0 (142536) o (FR id g,y RF ).
Let us relate the two K-H(er[). Equation (18) implies that
K (Ad(T)) = "moAd(v)@Zoxl (Ad(R®? 0 F)oAd(J)) o Ad(v'?) ! o(E X2,
and therefore (19) implies that
k3 (Am) = EF? 0 Ad()™? ok (AdRF? 0 F) o Ap) 0 Ad(v) ' 0 EF .
Now
R(r + f) = (m3 ®mP) 0 (142536) o (R¥? o F*!) KR(r) ® (R¥2 0 F7 1)),
where F € My (1 X1, (S ®1)®?). For X € M1 K1, (S X1)®?), set X :=
(cani‘lzs Nidswx,) o (id,xs XX). Then
(3" (R4) B k5" (R-)) ocangg, = k3 (R) = EF 2 oR(r + f)

= ((Ef o Ad(v) ok (R))
R(E ;0 Ad(v) ok [ (mP* o (R4 RR_KR4)) o (F>! Rid,gs KF 1))
occCangx; -
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Then K{[(R+) = EfoAd(v)o KF(R+) oi~! for some i € Op(SX1,SX1)*.
Therefore K{I (Rf:l)) = iOKF(R:I)) oAd(v 1o E}l.
Now
3 (ma) = k3! REV) ok3! (mm) 0 k3" (Ry)™?
=iok[IRE) okl (mm) o k[T RF?) 0 (i71)™2
=iok{ (ma)o (712,
and
' (Aa) = k3 REV)®2 okl (Am) 0 k5 (Ry)
=i%2 ok TRE)H2 0 kI AARF? 0 F) o App) ok T (R4) 0i 7L
We first prove that
(32 (' REV)™ 0 Ad(k{! (R+)¥? 0 F) ok (A oR+) = Ad(F) 07! (Ag).

One checks that Ad(/c{l(RjL)Ez oF)o KF(A]‘[ oRy) = K{I(R_}_)xz o Ad(F). We
have
AmroRy =AmroR;oR* oREV)* = ApoloRTY)*
— Z&Z o ZH o (R(_—l))* — R§2 O(Ri)®2 o ZH o (R(_—l))* — R§2 OAa.

Applying K{I and composing from the left with Ad(KF(RJr)xz o F), we obtain
Ad(kITR1)®2oF) ok (A oRy) = kT(R4+)®2 0 Ad(F) 0 k{1 (A4). Composing
from the left with KF(R:I))gZ, we get (32).

It follows that k11(A,) = i®? 0Ad(F) o k[T (A4) 0i™!, as wanted. O

6. Quantization of coboundary Lie bialgebras

6.1. Compatibility with coopposite. Let ® be an associator. Then @' :=
®(—A,—B) is also an associator. Let Q and Q’ be the Etingof-Kazhdan quan-
tization functors corresponding to ® and @'.

Recall that 7; 5, € Aut(LBA) is defined by p +— u, & — —6, and define
Thialg € Aut(Bialg) by m —m, A+ (21)o A.

PROPOSITION 6.1. There exists a &, € S(LBA)(id, id)™, with &, = idiq +
terms of positive degree in both . and 8, such that

Qo TBialg = 0(§7) o S(t pa) 0 Q.
Proof. This means that
Q'(m) = £82 0 S(1 ) (Q(m)) 0 £,
Q'(A)o (21) = &r 0 S(1pa)(Q(A)) 0 (71X
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We will therefore construct ér e(SX1,SX1)* such that
my=E2%0mn(ma) 0! and A7 o(21) =Eron(Ag) o (G777,
where m,, and A/, are the analogues of m, and A, for ®’.
LEMMA 6.2. 1r1(Ad())) = (ids Rws)®2 0 Ad(J(—r)) o ((ids Kaws)®?)~1,
This follows from Lemma 1.19.

LEMMA 6.3. Let I be the analogue of J for ®'. There exists u € 61 of the
formu = 1+ terms of degree > 1 such that

(33) > =ulu? J(=r)@'*~ L
Proof of Lemma 6.3. We have
I 210122 =122 3 (=) P (=112, —123) = 1) 22 I(=r) 1220

(the equality takes place in 62, where we use the &-algebra structure on ﬁn) Let
us set ug = 1 +class of a;hy/2 and J := “0“0 J(=r)* 1(ulz) 1. Then J satisfies
JL2J12.3 — 2371239/ (since (®')>%! = (&)™) and T = 1 — r/2 + terms of
degree > 1, and J' satisfies the same conditions. According to [Enr05], this implies
the existence of u; € le of the form u; = 1 + terms of degree > 1 such that
J = ululJ(ulz) 1 soif wesetu =ujug € U1, then u has the form u = 1 + class
of ajhy/2 + terms of degree > 1, and satisfies (33). O

LEMMA 6.4. We have tri(An) = (ids Rwg)®2oAdu~1)¥20 ((21) o A/H) o
Ad(u) o (idg Rwg)™ L.

This follows from Lemmas 1.19 and 6.2.
LEMMA 6.5. 1r1(R) = (idg Rwg)®2 o Adu~1)®2 0 (R))~L.
Proof of Lemma 6.5. We have
R=Y o) onG TV RmG ) o (ln+3.2.n+4,...)0 (21 R 017,

n>0
SO
tm(R) = Y (1) (ids Bog) 2o (mff ™ ®m{ V) o (ds Rog)=2+2)~!
"=0 o (m(*H B ()™ Ren(™))
= > ()7 (ids Bos)® o (mfy TV @m )
nz0 o(I=r*'B’(-nH¥"RI(-r)"")

= (ids Bws)™? o (J(=r)>'e ™"/ J(=r)) = (ids Rogs)™@? oR(-r).

Now R = (u'u?)(R")~!(u'u?)~1, whence the result. O
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LEMMA 6.6. There existso € (1 X S, 1 X S)* such that
R™' = (R4 ®(R-00)) o cangg, -

Proof. Set can := cang, and cany := ) ;. cangi,. Set mp := A%. Then

mmoR¥2 =R_ omy. The series

can’ 1= camjg, + Z(mg) X mgi)) o(l,i+1,2,i+2,...)0(— can+)gi
i>0
is convergent and has the form (idgx, Xo') o cangx, for a suitable invertible o.
We then have (m, K mp) o (32) o (caasgl X can’) ;canlgl.
It follows that R™! = (R4 KW R_) ocan’ = (R4 K(R_ 00)) o cangm,. O

This concludes the proof of Proposition 6.1. O
The above lemmas imply
m(R) = ((ids Bos) o Adw™1)*? o (R)y H(R” o0")) o canspr,

where o’ is the analogue of o for @’. Since t11(R) = (rr1(R4+) X1 (R-)) ocang;,
there exists &, € II(S X 1, S X 1)* such that

(R = (ids Bos) o Adw) ™' o Ry of;.
It follows that IH(R(_;D) =&1o R/_i(__l) o Ad(u) o (idg Rwg)~!.
Then
1 (mg) = RV omp o RY?)
— £ oR'TY 0 Ad() o mpy 0 (Ad(u) P2 0 (R, B2 0 22
- X
=&, o miz oby 2
and
m(Aa) = m(RE)¥? 0 AgoRy)
= (" oRT)M o210 Ao (RY)M 0k = (5,2 0 A 0 &
Moreover, the image (§;)|,=s=0 € S(Sch)(id,id) of &; by the morphism
LBA — Sch, .8 0 is equal to idig. Set &' := (§7)|s=0, s0 &’ € LA(S, S). We
have LA(S?, S7) =0 unless p = ¢, and LA(S?,S?) =kidgr. So & =ids. Now
& = &' + terms of positive degree in §, so &, = idg + terms of positive degree in §.
In the same way, &; = idg + terms of positive degree in . So &, = idg + terms

of positive degree in both § and .
This ends the proof of Proposition 6.1. ([l

Remark 6.7. We take this opportunity to correct a mistake in [Enr05, Th. 2.1].
LetJ=1—r/24--- be a solution of (22). Then the set of solutions of (22) of
the form 1 4 terms of degree > 1 consists of the disjoint union of two gauge orbits
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(and not one), that of J and that of J?'1. The degree one term of the solution has
the form ar + Br?!, where @ — B = £1/2; the solution is in the gauge class of J
(respectively, J>'!) if and only if @ — B = —1/2 (respectively, 1/2). This follows
from a more careful analysis in degree one in the proof of [Enr05, Th. 2.1].

6.2. Quantization functors for coboundary Lie bialgebras. A quantization
functor of coboundary Lie bialgebras is a prop morphism Q : COB — S(Cob)
such that

o bl 0 .
(a) the composed morphism Bialg — COB g> S(Cob) Bt s (Sch) is the

propic version of the bialgebra structure on the symmetric algebras, and
(b) O(R) = inja®2 + terms of degree > 1 in p, and Q(R) — (21) o O(R) =
inj?2 op + terms of degree > 2 in p, where

injo € Sch(1,S) and inj; € Sch(id, S)

are the canonical injection maps. (Recall that Cob has a grading in which u
has degree 0 and p has degree 1.)

As in the case of quantization functors of Lie bialgebras, Q necessarily satis-
fies Q(n) = injy and O (e) = pry. As we explained, each such morphism Q yields
a solution of the quantization problem of coboundary Lie bialgebras.

6.3. Construction of quantization functors of coboundary Lie bialgebras.

THEOREM 6.8. Any even associator defined over k gives rise to a quantiza-
tion functor of coboundary Lie bialgebras.

Remark 6.9.1In [BN98], the existence of rational even associators is proved.
This implies the existence of quantization functors of coboundary Lie bialgebras
over any field k of characteristic 0.

Proof. There is a unique automorphism 7, of Cob, defined by u — u and
p — —p. Then the following diagrams of prop morphisms commute:

LBA 2L Cob «1 _LBA; —~ Cob
/
(34) TLBA l l Tcob and LBA l Tcob
LBA —% Cob 2 LBA; —<= Cob.

Let Q : Bialg — S(LBA) be a quantization functor corresponding to an even
associator. Then O := S(k ok1) o Q : Bialg — S(Cob) is a prop morphism. We
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have

S(tcey) 0 Sk 0k1) 0 Q = S(kok1) o St gs) 0 Q
= S(koK1)ob(; ") 0 O o1y,
= 0(S(kox1)(E; ")) 0 Sk ok1) 0 Q 0 Tyiyye,

where the first equality uses the first diagram of (34), and the second equality uses
Proposition 6.1. Therefore

S(teop) 0@ =0(5;)0 Qo Tgialg Where £ =Sk OKI)(E;I)-
On the other hand, there exists
FeLBA;(1,5%%)* and ie S(LBA/)(id,id)*

such that S(k2) 0 Q = 0(i) o¥(S(k1) o Q). Composing this equality with S(«), we
get S(k ok2) 0 Q = 0(S(x)(i)) 0 SW®(Q). Now S(k ok2) 0 Q = S(1¢y,) © O
(using the second diagram in (34)), so

S(teap) © 0 = (S () 0 *®P(Q).
We therefore get 0(£;) 0 Q o Ty, = 0(S(k)(i)) o SE2WE G, 50
(35) FO =0(")0 0 oty

where £’ = S(k)(i)"! o £, and F' = S®2(k)(F). Here £’ € S(Cob)(id, id)* has
the form idg + terms of positive degree in p, and F' € Cob(1, S®2) satisfies

(36) (F)g" *g (F)g™ = (F)5 +g (F)g™ and (F)g' = (F)5” = inj.
and

(37) F = injf)z’2 + p + terms of degree > 2 in p.

We will prove this:

PROPOSITION 6.10. There exists G € Cob(1, S®?) satisfying (36) (where Q
is also used), (37),

GxpG>' =G> x5 G =inj”, and (21)0 Q(A) =Ad(G)o O(A).
(Recall that the definition of Ad(G) involves Q (m).)

This proposition implies the theorem, since we now have a prop morphism
COB — S(Cob), obtained by extending O : Bialg — S(Cob) by R — G.
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Proof. We start by making (35) explicit, which means that
O(m) = ()20 0(m)o (€7,
o) =¢£"00(),
0(e) = Q(e) 0 &”, (€20 (21)0 Q(A)o (§")"" = Ad(F) 0 O(A).

We first prove a lemma.

LEMMA 6.11. There exists a unique H € Cob(1, S®?)* such that

H= injgz’2 + terms of degree > 1 in p, and
(ENYMZ o H) x5 H=((")*? o (F)>") x5 F .

Then (€")8%0 Q(A) o (€)' = Ad(H) o O(A), H satisfies the identities (36), and
H= injgg)2 + terms of degree > 2 in p.

Proof. The existence of H is a consequence of the following statement. Let
A=A%> A' >... be a filtered algebra that is complete and separated for this filtra-
tion. Let # be a topological automorphism of A such that (6 —id4)(A4") C A**+!
for any n. Let u € A be such that u = 1 modulo A'. Then there exists a unique
v € A with v = 1 modulo A! and v6(v) = u. We will apply this statement to
A = Cob(1, S®?) equipped with the product given by Q(m). The filtration is
given by the degree in p, and 6(F) = (§”)¥? oF.

To prove the existence of v, we construct inductively the class [v], of v in
A/A"™: assume that [v], has been found such that [v],60([v],) = [u], in A/A", and
let v’ be a lift of [v], to A/A"T1. Then v/6(v') = [u]n+1 modulo A" /A" 1. Then
we set [v]n1 = ' —(1/2)(0'0(v') — [un1]) in A/A" 1.

Let us prove the uniqueness of v. Letting v and v’ be solutions, we prove by
induction on 7 that [v], = [v'],. Assuming that this has been proved up to order
n—1, let us prove it at order n. We have v0(v)—v'0(v') = (v—v")0(v) +v' (B (v)—
6(v")). Then we have v — v’ € A"~ and §(v) —O(v') € A", and the classes of
these elements are equal in A”~1/A™. So the class of v8(v) —v'8(v') in A"~/ A"
is equal to twice the class of v — v’ in A”~1/A". Since vl (v) = v'A(v’), the latter
class is 0, so v — v’ € A",

Before we prove the properties of H, we construct the following propic version
of the theory of twists. Let us denote by A the set of all A € Cob(S, S®?) such
that there exists a prop morphism QZ : Bialg — S(Cob) such that

0x(A) =A, Ox(m)= Q(m),
0x(e)=0(). Oz =0M.

For A € A, we denote by Tw(A1, -) the set of all F; € Cob(1, S®2)* satisfying
(36), where the underlying structure is that given by Qx . Then if A := Ad(Fy) o
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A1, we have Ay € A. If A, A, € A, let us denote by Tw(Zl, As) C TW(ZI,-)
the set of all F; such that A, = Ad(F1)o A;.

Then if A; € A for i = 1,2,3, the map (F;,F,) — F»F; (which is the
product in Cob(1, S®2) using O (m)) defines a map Tw(A1, Az) x Tw(A,, Az) —
TW(Z], 53)

Let us now prove the properties of H. We have

F e Tw(0(A), (£")®%0 (21) 0 O(A) o (§")7Y),
(E"®2o (F)>! e Tw((E")®20(21)0 O(A) o (") 1, (E")HM?0 0(A) o (E")72).

Therefore 7 := (67220 (F)>1) x5 F' € Tw(Q(A). ((€)2)®20 () o (£")2).
In particular, we have

(E))XM%0 0(A) o (") = Ad(F) 0 O(A).

Then if we set F(n) = (€)X V 0 F) x5 - 45 (€")¥? 0 F) x5 F, we have
for n integer > 0

(38) ("M 20 0(A) o ()" = Ad(F(m)) 0 O(A).

Cob(S, S) is the completion of an N-graded algebra, where the degree is
given by deg(p) = 1 and deg(ut) = 0. The element §” € Cob(S, S) is equal to the
identity modulo terms of positive degree. We have therefore a unique formal map
t — (£”)!, inducing a polynomial map k — Cob(S, S)/(its part of degree > k)
for each k > 0, which coincides with the map n > (class of (§”)") forz € N.

On the other hand, one checks that there is a unique formal map ¢ +— F(r)
with values in Cob(1, S®?) such that the induced map k — Cob(1, §®?)/(its part
of degree > k) is polynomial for any £ > 0 and coincides with the maps n > (class
of &(n)) for t € N.

It follows that (38) also holds when » is replaced by the formal variable 7.
The resulting identity can be specialized for n = 1/2. The specialization of (£§”)%!
fort =1/21is &”.

We now prove that %(1/2) = H. Let us set

H(n) = (") D o H) g -+ 55 (") 2 o H) x5 H.

Then we have a unique formal map ¢ — H(¢) with values in Cob(1, S®2) such that
the induced map k — Cob(1, S®2)/(its part of degree > k) is polynomial for any
k > 0 and coincides with the maps n — (class of H(n)) for t € N.

We have H(2n) = %(n) for any integer n, so this identity also holds when n
is replaced by the formal variable ¢. Specializing the resulting identity for = 1/2,
we get F(1/2) = H(1) = H.

The specialization of the formal version of (38) for r = 1/2 then gives

(39) ENX¥200(A) o (E")7! = Ad(H) 0 O(A).
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Let us now prove the identities (36) in H. We have
(£" o (HZ1)) >|<QH®’1 =inj, and H?'! = inj, + terms of positive degree in p,

Hence, by the uniqueness result proved above, H%! = Q (). In the same way,
HZ = inj,.
We now prove that

(40) H)g* xg HF” = G x5 HG?.
Let W € Cob(1, §®3)* be such that (H) 5 x5 (H) 5> = (H)g° x5 (H) 5> x5 V.
We have (F)55° *5 (F)g > = (NG x5 (F)g>, that is
(FROM) *5 (Q(ARN o F) = (Q(NRF) x5 (Q(RA) o F).

This is rewritten

((EM™2e(HRQ (1))* 5 (HRO (1)*5(0 (ARN)oE™?oH)* 5(Q (ARn)oH)
= (E")™?e(Q(MRH)) x5 (0 (NRH) 5 (0 (MR A) 0™ oH) x5 (0 (R A) oH).

Using £” o inj, = inj, and (39), we get

(") *2o(HBIQ (1)) ("0 0 (AKN)oH)+5(H KO (1)*5(Q (ARn)oH)
= ((E"™M2o(Q(RH)) x5 (E"™ 00 (MR A)oH) %5 (0 (N BH) 5 (Q (R A)oH).
Since X > (£€”)®3 0 X is an automorphism of Cob(1, S®3), we get

(€23 o (HRO(m)(Q(A R ) o H))) x5 (HRO () 5 (O(AK p) o H)
= (") o (O() RH)(D (1R A) o H))) x5 (D(n) K H) #5 (D(nK A) o H),

that is,
(€M% 0 W) x5 ()G x5 (H)57) x5 ¥ = ()G’ 5 (™).

We now prove that this implies that ¥ = inj§3. For this, we apply a general
statement: Let A = A% D A! O ... be an algebra equipped with a decreasing
filtration, complete and separated for this filtration. Let 6 be a topological auto-
morphism of A such that (f —idg)(4") C A1, Let X € A4 be such that X = 1
modulo A!. Let x € A be such that x = 1 modulo A' and (x)Xx = X. Then
x = 1. This is proved by induction. Assume that we have proved that x = 1 modulo
A" 1. Then 6(x)XxX 1 =1+ 2(x — 1) modulo A”. Therefore x = 1 modulo
A", Finally x = 1.

Applying the statement to 4 = Cob(1, S®3) and 6 : X — (§”)®30 X, we get
v = inj?3. This implies (40). This ends the proof of Lemma 6.11. |
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We now finish the proof of Proposition 6.10. Lemma 6.11 says that
HeTw(Q(A). ()20 0(A)o (")),
and since F' € Tw(Q(A), (§")%20 (21) 0 Q(A) o (§”)™1), we have
G :=(@21)oH™) xgF € Tw(Q(A), (21) 0 0(A)).

Let us set ¢ := (G')%! *g G’. Then ¢ € Tw(Q(A), Q(A)). For any integer
n > 0, we then have ()" € Tw(Q(A), O(A)). As before, there exists a unique
formal map ¢ — (9’)’ such that the map ¢ — (class of (9¢)?) in Cob(1, S®")/(its
part of degree > k) is polynomial and extends n > (9¢')". Specializing fort = —1/2,
we get (4)"12 e Tw(Q(A), O(A)). Set

Gi=G'#p(¥) 712 =G xg(G* x5 )2

Then G € Tw(Q(A), (21) 0 Q(A)).

Then we have G’ >|<§(G’2’1 *g GH" = (G *g Gy *g G’ for any integer
n > 0, so this identity also holds when 7 is replaced by a formal variable ¢. Spe-
cializing the latter identity to t = 1/2, we get G = (G’ x5 G'>1)~1/2 *g G'. Then

GxgG>' =G #5(G" x5 G x5 G>! = injg 2,

so we also have G?! *o G= inj?z. This ends the proof of Proposition 6.10 and
therefore also of Theorem 6.8. o 0O

Remark 6.12. The proof of Proposition 6.10 is a propic version of the proof
of the following statement. Let (U, my, ny) be a formal deformation over K[[#]]
of an enveloping algebra U(a) (as an algebra). Let Ay be the set of all morphisms
A :U — U®? such that (U,my, A, ny, ey) is a QUE algebra formally deforming
the bialgebra U(a). If A1, Ay € Ay, then we say that Fiy € Tw(A1, Ay) if and
only if Fyy € (U®?)%,

(ev ®idy ) (Fy) = (idy ®ey)(Fy) = 1y,
(Fy ® 1y)(A1 ®idy ) (Fy) = (ly ® Fy)(idy A1) (Fy)

and Ay = Ad(Fy)o Ay, where Ad(Fy) : U®? — U®? is given by x > FUxFlj1
(and 1y = ny(1)). For A € Ay and Oy € Aut(U,my, ny) such that Oy =
idy +O(#), we also have A?! € Ay and 9[‘5]92 oA?lo 851 € Ay. The statement
is that if for such A and 0y there exists an Fy € Tw(A, 95’2 oA?lo 951), then
there exists a Gy € Tw(A, A21) such that GUG?,’1 =132,

6.4. Relation with quasi-Poisson manifolds. Define a coboundary quasi-Lie
bialgebra (QLBA) as a set (g, jtg, 84, Zg.7g), Where (g, (g, 04, Zg) is a quasi-Lie
bialgebra and ry € A?(g) is such that §4(x) = [rg, x ® 1 + 1 ® x]. In [Dri89],
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coboundary QUE quasi-Hopf algebras were introduced; the classical limit of this
structure is a coboundary QLBA.

According to [Dri89, Prop. 3.13], a coboundary QUE quasi-Hopf algebra with
classical limit the coboundary QLBA (g, g, 84, Zg,7g) is twist-equivalent to a
coboundary QUE Hopf algebra of the form

(U(gn).mo, Mo, R=1,® =€(h*Zy)).

where g3 is a deformation of g (as a Lie algebra) in the category of topologically
free k[[A]-modules, Zj € A3(gs)® is a deformation of

Zg+ (83 ®id)(rg) +c.p. — CYB(ry),

and¢(Z) =1+ Z/6+--- is a series introduced in [Dri89]. (Here m¢ and Aq are
the undeformed operations.)

Let now (a, rq) be a coboundary Lie bialgebra. Let (Uj(a), R,) be a quantiza-
tion of it: this is a coboundary QUE Hopf algebra. Applying to it the above result,
we obtain that

(a) there exists a deformation az of a in the category of topologically free k[[%]]-
Lie algebras such that Uy (a) is isomorphic to U(az) as an algebra;

(b) there exists a J € U(ay)®? of the form J = 1 + Ary/2 + O(#?) such that
J23JL23¢(h2Zy) = JL2J123) where Zj € A3(az)™ is a deformation
of Z,.

If A is a Lie group with Lie algebra a, then r4 induces the following quasi-
Poisson homogeneous structure on A under the quasi-Lie bialgebra (a, 84 =0, Z,):
The action of a is the regular left action, and the quasi-Poisson structure is { f, g} =
moL®2(ry)(f ® g), where f and g are functions on A and m is the product of
functions. As explained in [EE03], J constructed above gives rise to a quantization
of this quasi-Poisson homogeneous space, compatible with the quasi-Hopf algebra
(U(az), mo, Ao, R =1, d =€(h>Z3)).

Notice that the deformation class of (az, Z3) is a priori dictated by r,.
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