Abstract
We classify finite-dimensional complex Hopf algebras $A$ which are pointed, that is, all of whose irreducible comodules are one-dimensional, and whose group of group-like elements $G(A)$ is abelian such that all prime divisors of the order of $G(A)$ are $>7$. Since these Hopf algebras turn out to be deformations of a natural class of generalized small quantum groups, our result can be read as an axiomatic description of generalized small quantum groups.
-
[AS1]
N. Andruskiewitsch and H. -J. Schneider, "Lifting of quantum linear spaces and pointed Hopf algebras of order $p^3$," J. Algebra, vol. 209, iss. 2, pp. 658-691, 1998.
@article {AS1, MRKEY = {1659895},
AUTHOR = {Andruskiewitsch, N. and Schneider, H.-J.},
TITLE = {Lifting of quantum linear spaces and pointed {H}opf algebras of order {$p\sp 3$}},
JOURNAL = {J. Algebra},
FJOURNAL = {Journal of Algebra},
VOLUME = {209},
YEAR = {1998},
NUMBER = {2},
PAGES = {658--691},
ISSN = {0021-8693},
CODEN = {JALGA4},
MRCLASS = {16W30},
MRNUMBER = {99k:16075},
MRREVIEWER = {Stefaan Caenepeel},
DOI = {10.1006/jabr.1998.7643},
ZBLNUMBER = {0919.16027},
} -
[AS2]
N. Andruskiewitsch and H. Schneider, "Finite quantum groups and Cartan matrices," Adv. Math., vol. 154, iss. 1, pp. 1-45, 2000.
@article {AS2, MRKEY = {1780094},
AUTHOR = {Andruskiewitsch, Nicol{á}s and Schneider, Hans-J{ü}rgen},
TITLE = {Finite quantum groups and {C}artan matrices},
JOURNAL = {Adv. Math.},
FJOURNAL = {Advances in Mathematics},
VOLUME = {154},
YEAR = {2000},
NUMBER = {1},
PAGES = {1--45},
ISSN = {0001-8708},
CODEN = {ADMTA4},
MRCLASS = {16W30},
MRNUMBER = {2001g:16070},
MRREVIEWER = {R. Gylys},
DOI = {10.1006/aima.1999.1880},
ZBLNUMBER = {1007.16027},
} -
[AS3] N. Andruskiewitsch and H. -J. Schneider, "Lifting of Nichols algebras of type $A_2$ and Pointed Hopf Algebras of order $ p^4$," in Hopf Algebras and Quantum Groups, Caenepeel, S. and van Oystaeyen, F., Eds., New York: Dekker, 2000, vol. 209, pp. 1-14.
@incollection{AS3,
author = {Andruskiewitsch, N. and Schneider, H.-J.},
TITLE={Lifting of Nichols algebras of type $A_2$ and Pointed Hopf Algebras of order $ p^4$},
BOOKTITLE={Hopf Algebras and Quantum Groups},
VENUE={Brussels, 1998},
EDITOR={S. Caenepeel and F. van Oystaeyen},
SERIES={Lect. Notes in Pure and Appl. Math.},
VOLUME={209},
PAGES={1--14},
PUBLISHER={Dekker},
ADDRESS={New York},
YEAR={2000},
MRNUMBER={2001f:16069},
ZBLNUMBER={1020.16022},
} -
[AS4]
N. Andruskiewitsch and H. Schneider, "Finite quantum groups over abelian groups of prime exponent," Ann. Sci. École Norm. Sup., vol. 35, iss. 1, pp. 1-26, 2002.
@article {AS4, MRKEY = {1886004},
AUTHOR = {Andruskiewitsch, Nicol{á}s and Schneider, Hans-J{ü}rgen},
TITLE = {Finite quantum groups over abelian groups of prime exponent},
JOURNAL = {Ann. Sci. École Norm. Sup.},
FJOURNAL = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
VOLUME = {35},
YEAR = {2002},
NUMBER = {1},
PAGES = {1--26},
ISSN = {0012-9593},
CODEN = {ASENAH},
MRCLASS = {16W35 (16W30)},
MRNUMBER = {2003a:16055},
MRREVIEWER = {Mat{\'ı}as A. Gra{ñ}a},
DOI = {10.1016/S0012-9593(01)01082-5},
ZBLNUMBER = {1007.16028},
} -
[AS5] N. Andruskiewitsch and H. Schneider, "Pointed Hopf algebras," in New Directions in Hopf Algebras, Cambridge: Cambridge Univ. Press, 2002, pp. 1-68.
@incollection {AS5, MRKEY = {1913436},
AUTHOR = {Andruskiewitsch, Nicol{á}s and Schneider, Hans-J{ü}rgen},
TITLE = {Pointed {H}opf algebras},
BOOKTITLE = {New Directions in {H}opf Algebras},
SERIES = {Math. Sci. Res. Inst. Publ.},
NUMBER = {43},
PAGES = {1--68},
PUBLISHER = {Cambridge Univ. Press},
ADDRESS = {Cambridge},
YEAR = {2002},
MRCLASS = {16W30},
MRNUMBER = {2003e:16043},
MRREVIEWER = {Mitsuhiro Takeuchi},
ZBLNUMBER = {1011.16025},
} -
[AS6]
N. Andruskiewitsch and H. Schneider, "A characterization of quantum groups," J. Reine Angew. Math., vol. 577, pp. 81-104, 2004.
@article {AS6, MRKEY = {2108213},
AUTHOR = {Andruskiewitsch, Nicol{á}s and Schneider, Hans-J{ü}rgen},
TITLE = {A characterization of quantum groups},
JOURNAL = {J. Reine Angew. Math.},
FJOURNAL = {Journal für die Reine und Angewandte Mathematik},
VOLUME = {577},
YEAR = {2004},
PAGES = {81--104},
ISSN = {0075-4102},
CODEN = {JRMAA8},
MRCLASS = {16W35},
MRNUMBER = {2005i:16083},
MRREVIEWER = {Uma Naganathan Iyer},
DOI = {10.1515/crll.2004.2004.577.81},
ZBLNUMBER = {1084.16027},
} -
[AS7] N. Andruskiewitsch and H. -J. Schneider, "Isomorphism classes and automorphisms of finite Hopf algebras of type $A_n$," in Proc. XVth Latin American Algebra Colloq. (Spanish), Madris, 2007, pp. 201-226.
@inproceedings{AS7,
author = {Andruskiewitsch, N. and Schneider, H.-J.},
TITLE = {Isomorphism classes and automorphisms of finite Hopf algebras of type $A_n$},
BOOKTITLE={Proc. {\rm XVth} Latin American Algebra Colloq. {\rm (Spanish)}},
PAGES={201--226},
YEAR={2007},
PUBLISHER={Bibl. Rev. Math. Iberoamericana},
ADDRESS={Madris},
MRNUMBER={2500360},
} -
[B] N. Bourbaki, Éléments de Mathématique. Fasc. XXXIV. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et Systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Paris: Hermann, 1968.
@book {B, MRKEY = {0240238},
AUTHOR = {Bourbaki, N.},
TITLE = {\'{E}léments de Mathématique. {F}asc. {XXXIV}. {G}roupes et Algèbres de {L}ie. {C}hapitre {IV}: {G}roupes de {C}oxeter et Systèmes de {T}its. {C}hapitre {V}: {G}roupes engendrés par des réflexions. {C}hapitre {VI}: systèmes de racines},
SERIES = {Actualités Scientifiques et Industrielles, No. 1337},
PUBLISHER = {Hermann},
ADDRESS = {Paris},
YEAR = {1968},
PAGES = {288 pp. (loose errata)},
MRCLASS = {22.50 (17.00)},
MRNUMBER = {39 \#1590},
MRREVIEWER = {G. B. Seligman},
} -
[BDR]
M. Beattie, S. Duascualescu, and \cS. Raianu, "Lifting of Nichols algebras of type $B_2$," Israel J. Math., vol. 132, pp. 1-28, 2002.
@article {BDR, MRKEY = {1952612},
AUTHOR = {Beattie, M. and D{\u{a}}sc{\u{a}}lescu, S. and Raianu, {\c{S}}.},
TITLE = {Lifting of {N}ichols algebras of type {$B_2$}},
JOURNAL = {Israel J. Math.},
FJOURNAL = {Israel Journal of Mathematics},
VOLUME = {132},
YEAR = {2002},
PAGES = {1--28},
ISSN = {0021-2172},
CODEN = {ISJMAP},
MRCLASS = {16W30},
MRNUMBER = {2004b:16055},
MRREVIEWER = {Ralf Holtkamp},
DOI = {10.1007/BF02784503},
ZBLNUMBER = {1054.16027},
} -
[dCK] C. De Concini and V. G. Kac, "Representations of quantum groups at roots of $1$," in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Boston, MA: Birkhäuser, 1990, pp. 471-506.
@incollection {dCK, MRKEY = {1103601},
AUTHOR = {De Concini, Corrado and Kac, Victor G.},
TITLE = {Representations of quantum groups at roots of {$1$}},
BOOKTITLE = {Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory ({P}aris, 1989)},
SERIES = {Progr. Math.},
NUMBER = {92},
PAGES = {471--506},
PUBLISHER = {Birkhäuser},
ADDRESS = {Boston, MA},
YEAR = {1990},
MRCLASS = {17B37 (16W30)},
MRNUMBER = {92g:17012},
MRREVIEWER = {Jie Du},
ZBLNUMBER = {0738.17008},
} -
[dCP] C. De Concini and C. Procesi, "Quantum groups," in $D$-Modules, Representation Theory, and Quantum Groups (Venice, 1992), New York: Springer-Verlag, 1993, pp. 31-140.
@incollection {dCP, MRKEY = {1288995},
AUTHOR = {De Concini, C. and Procesi, C.},
TITLE = {Quantum groups},
BOOKTITLE = {{$D$}-Modules, Representation Theory, and Quantum Groups ({V}enice, 1992)},
SERIES = {Lecture Notes in Math.},
NUMBER = {1565},
PAGES = {31--140},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1993},
MRCLASS = {17B37 (16W30 58F06 81R50)},
MRNUMBER = {95j:17012},
MRREVIEWER = {Arun Ram},
ZBLNUMBER = {0795.17005},
} -
@article {D1, MRKEY = {1935506},
AUTHOR = {Didt, Daniel},
TITLE = {Linkable {D}ynkin diagrams},
JOURNAL = {J. Algebra},
FJOURNAL = {Journal of Algebra},
VOLUME = {255},
YEAR = {2002},
NUMBER = {2},
PAGES = {373--391},
ISSN = {0021-8693},
CODEN = {JALGA4},
MRCLASS = {16W30 (17B37)},
MRNUMBER = {2003h:16063},
MRREVIEWER = {Nicol{á}s Andruskiewitsch},
DOI = {10.1016/S0021-8693(02)00148-5},
ZBLNUMBER = {1062.16042},
} -
[D2]
D. Didt, "Linkable Dynkin diagrams and Quasi-isomorphisms for finite dimensional pointed Hopf algebras," PhD Thesis , Ludwig-Maximilians-Universität München, 2002.
@phdthesis{D2,
author = {Didt, Daniel},
TITLE={Linkable Dynkin diagrams and Quasi-isomorphisms for finite dimensional pointed Hopf algebras},
SCHOOL={Ludwig-Maximilians-Universität München},
URL={http://edoc.ub.uni-muenchen.de/785/1/Didt_Daniel.pdf},
YEAR={2002},
} -
[EO] P. Etingof and V. Ostrik, "Finite tensor categories," Mosc. Math. J., vol. 4, iss. 3, pp. 627-654, 782, 2004.
@article {EO, MRKEY = {2119143},
AUTHOR = {Etingof, Pavel and Ostrik, Viktor},
TITLE = {Finite tensor categories},
JOURNAL = {Mosc. Math. J.},
FJOURNAL = {Moscow Mathematical Journal},
VOLUME = {4},
YEAR = {2004},
NUMBER = {3},
PAGES = {627--654, 782--783},
ISSN = {1609-3321},
MRCLASS = {18D10 (16W30)},
MRNUMBER = {2005j:18006},
MRREVIEWER = {Sebastian Burciu},
ZBLNUMBER = {1077.18005},
} -
[Ga]
M. R. Gaberdiel, "An algebraic approach to logarithmic conformal field theory," in Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and its Applications (Tehran, 2001), 2003, pp. 4593-4638.
@inproceedings {Ga, MRKEY = {2030633},
AUTHOR = {Gaberdiel, Matthias R.},
TITLE = {An algebraic approach to logarithmic conformal field theory},
BOOKTITLE = {Proceedings of the {S}chool and {W}orkshop on {L}ogarithmic {C}onformal {F}ield {T}heory and its {A}pplications ({T}ehran, 2001)},
SERIES = {Internat. J. Modern Phys. A},
FJOURNAL = {International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology. Nuclear Physics},
VOLUME = {18},
YEAR = {2003},
NUMBER = {25},
PAGES = {4593--4638},
ISSN = {0217-751X},
MRCLASS = {81T40 (17B69 81R10)},
MRNUMBER = {2005h:81326},
DOI = {10.1142/S0217751X03016860},
ZBLNUMBER = {1055.81064},
} -
[H1] I. Heckenberger, Finite dimensional rank 2 Nichols algebras of diagonal type I: Examples, preprint math.QA/0402350v2, 2004.
@misc{H1,
author={Heckenberger, I.},
TITLE={Finite dimensional rank 2 Nichols algebras of diagonal type I: Examples, preprint math.QA/0402350v2},
YEAR={2004},
} -
[H2] I. Heckenberger, Finite dimensional rank 2 Nichols algebras of diagonal type II: Classification, preprint math.QA/0404008, 2004.
@misc{H2,
author={Heckenberger, I.},
TITLE={Finite dimensional rank 2 Nichols algebras of diagonal type II: Classification, preprint math.QA/0404008},
YEAR={2004},
} -
[H3]
I. Heckenberger, "The Weyl groupoid of a Nichols algebra of diagonal type," Invent. Math., vol. 164, iss. 1, pp. 175-188, 2006.
@article {H3, MRKEY = {2207786},
AUTHOR = {Heckenberger, I.},
TITLE = {The {W}eyl groupoid of a {N}ichols algebra of diagonal type},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {164},
YEAR = {2006},
NUMBER = {1},
PAGES = {175--188},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {16W35 (17B37)},
MRNUMBER = {2007e:16047},
MRREVIEWER = {Kenneth A. Brown},
DOI = {10.1007/s00222-005-0474-8},
ZBLNUMBER = {05027328},
} -
[KSZ] Y. Kashina, Y. Sommerhäuser, and Y. Zhu, On Higher Frobenius-Schur Indicators, Providence, RI: A. M. S, 2006, vol. 811.
@book{KSZ,
author={Kashina, Y. and Sommerhäuser, Y. and Zhu, Y.},
TITLE={On Higher Frobenius-Schur Indicators},
SERIES={Mem. Amer. Math. Soc.},
VOLUME={811},
PUBLISHER={A. M. S},
ADDRESS={Providence, RI},
YEAR={2006},
MRNUMBER={2213320},
} -
[K] V. K. Kharchenko, "A quantum analogue of the Poincaré-Birkhoff-Witt theorem," Algebra Log., vol. 38, iss. 4, pp. 476-507, 509, 1999.
@article {K, MRKEY = {1763385},
AUTHOR = {Kharchenko, V. K.},
TITLE = {A quantum analogue of the {P}oincaré-{B}irkhoff-{W}itt theorem},
JOURNAL = {Algebra Log.},
FJOURNAL = {Algebra i Logika. Institut DiskretnoĭMatematiki i Informatiki},
VOLUME = {38},
YEAR = {1999},
NUMBER = {4},
PAGES = {476--507, 509},
ISSN = {0373-9252},
MRCLASS = {16W30},
MRNUMBER = {2001f:16075},
MRREVIEWER = {Tomasz Brzezi{ń}ski},
ZBLNUMBER={0936.16034},
} -
[KS] A. Klimyk and K. Schmüdgen, Quantum Groups and their Representations, New York: Springer-Verlag, 1997.
@book {KS, MRKEY = {1492989},
AUTHOR = {Klimyk, Anatoli and Schm{ü}dgen, Konrad},
TITLE = {Quantum Groups and their Representations},
SERIES = {Texts Monogr. Physics},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1997},
PAGES = {xx+552},
ISBN = {3-540-63452-5},
MRCLASS = {17B37 (16W30 17B81 46L87 58B30 81R50)},
MRNUMBER = {99f:17017},
MRREVIEWER = {Ian M. Musson},
ZBLNUMBER={0891.17010},
} -
[L1]
G. Lusztig, "Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra," J. Amer. Math. Soc., vol. 3, iss. 1, pp. 257-296, 1990.
@article {L1, MRKEY = {1013053},
AUTHOR = {Lusztig, George},
TITLE = {Finite-dimensional {H}opf algebras arising from quantized universal enveloping algebra},
JOURNAL = {J. Amer. Math. Soc.},
FJOURNAL = {Journal of the American Mathematical Society},
VOLUME = {3},
YEAR = {1990},
NUMBER = {1},
PAGES = {257--296},
ISSN = {0894-0347},
MRCLASS = {17B37 (16W30 20G40)},
MRNUMBER = {91e:17009},
MRREVIEWER = {S. Paul Smith},
ZBLNUMBER={0695.06006},
DOI = {10.2307/1990988},
} -
[L2]
G. Lusztig, "Quantum groups at roots of $1$," Geom. Dedicata, vol. 35, iss. 1-3, pp. 89-113, 1990.
@article {L2, MRKEY = {1066560},
AUTHOR = {Lusztig, George},
TITLE = {Quantum groups at roots of {$1$}},
JOURNAL = {Geom. Dedicata},
FJOURNAL = {Geometriae Dedicata},
VOLUME = {35},
YEAR = {1990},
NUMBER = {1-3},
PAGES = {89--113},
ISSN = {0046-5755},
CODEN = {GEMDAT},
MRCLASS = {17B37 (20G99)},
MRNUMBER = {91j:17018},
MRREVIEWER = {Toshiyuki Tanisaki},
DOI = {10.1007/BF00147341},
ZBLNUMBER = {0714.17013},
} -
[L3] G. Lusztig, Introduction to Quantum Groups, Boston, MA: Birkhäuser, 1993.
@book {L3, MRKEY = {1227098},
AUTHOR = {Lusztig, George},
TITLE = {Introduction to Quantum Groups},
SERIES = {Progr. in Math.},
NUMBER = {110},
PUBLISHER = {Birkhäuser},
ADDRESS = {Boston, MA},
YEAR = {1993},
PAGES = {xii+341},
ISBN = {0-8176-3712-5},
MRCLASS = {17B37 (16W30 17-02 17B35 81R50)},
MRNUMBER = {94m:17016},
MRREVIEWER = {Jie Du},
ZBLNUMBER = {0788.17010},
} -
[Ma]
A. Masuoka, "On Hopf algebras with cocommutative coradicals," J. Algebra, vol. 144, iss. 2, pp. 451-466, 1991.
@article {Ma, MRKEY = {1140616},
AUTHOR = {Masuoka, Akira},
TITLE = {On {H}opf algebras with cocommutative coradicals},
JOURNAL = {J. Algebra},
FJOURNAL = {Journal of Algebra},
VOLUME = {144},
YEAR = {1991},
NUMBER = {2},
PAGES = {451--466},
ISSN = {0021-8693},
CODEN = {JALGA4},
MRCLASS = {16W30},
MRNUMBER = {92k:16053},
MRREVIEWER = {E. J. Taft},
DOI = {10.1016/0021-8693(91)90116-P},
ZBLNUMBER = {0737.16024},
} -
[M] S. Montgomery, Hopf Algebras and their Actions on Rings, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993.
@book {M, MRKEY = {1243637},
AUTHOR = {Montgomery, Susan},
TITLE = {Hopf Algebras and their Actions on Rings},
SERIES = {{\rm CBMS} Regional Conf. Ser. in Math.},
NUMBER = {82},
PUBLISHER = {Published for the Conference Board of the Mathematical Sciences, Washington, DC},
YEAR = {1993},
PAGES = {xiv+238},
ISBN = {0-8218-0738-2},
MRCLASS = {16W30},
MRNUMBER = {94i:16019},
MRREVIEWER = {E. J. Taft},
ZBLNUMBER = {0793.16029},
} -
[M1]
E. Müller, "Some topics on Frobenius-Lusztig kernels. I, II," J. Algebra, vol. 206, iss. 2, pp. 624-658, 659, 1998.
@article {M1, MRKEY = {1637096},
AUTHOR = {M{ü}ller, Eric},
TITLE = {Some topics on {F}robenius-{L}usztig kernels. {I},
{II}},
JOURNAL = {J. Algebra},
FJOURNAL = {Journal of Algebra},
VOLUME = {206},
YEAR = {1998},
NUMBER = {2},
PAGES = {624--658, 659--681},
ISSN = {0021-8693},
CODEN = {JALGA4},
MRCLASS = {16W30 (17B37)},
MRNUMBER = {99g:16051},
MRREVIEWER = {Mitsuhiro Takeuchi},
ZBLNUMBER={0948.07010},
DOI = {10.1006/jabr.1997.7364},
} -
[M2]
E. Müller, "The coradical filtration of $U_q(\mathfrak{g})$ at roots of unity," Comm. Algebra, vol. 28, iss. 2, pp. 1029-1044, 2000.
@article {M2, MRKEY = {1736778},
AUTHOR = {M{ü}ller, Eric},
TITLE = {The coradical filtration of {$U_q(\mathfrak{g})$} at roots of unity},
JOURNAL = {Comm. Algebra},
FJOURNAL = {Communications in Algebra},
VOLUME = {28},
YEAR = {2000},
NUMBER = {2},
PAGES = {1029--1044},
ISSN = {0092-7872},
CODEN = {COALDM},
MRCLASS = {17B37},
MRNUMBER = {2000j:17024},
MRREVIEWER = {Fabio Gavarini},
ZBLNUMBER={0961.17008},
DOI = {10.1080/00927870008826875},
} -
[Ri]
C. M. Ringel, "Hall algebras and quantum groups," Invent. Math., vol. 101, iss. 3, pp. 583-591, 1990.
@article {Ri, MRKEY = {1062796},
AUTHOR = {Ringel, Claus Michael},
TITLE = {Hall algebras and quantum groups},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {101},
YEAR = {1990},
NUMBER = {3},
PAGES = {583--591},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {16E60 (16G60 16P10 16S30 17B37)},
MRNUMBER = {91i:16024},
MRREVIEWER = {Jie Du},
DOI = {10.1007/BF01231516},
ZBLNUMBER = {0735.16009},
} -
[Ro]
M. Rosso, "Quantum groups and quantum shuffles," Invent. Math., vol. 133, iss. 2, pp. 399-416, 1998.
@article {Ro, MRKEY = {1632802},
AUTHOR = {Rosso, Marc},
TITLE = {Quantum groups and quantum shuffles},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {133},
YEAR = {1998},
NUMBER = {2},
PAGES = {399--416},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {17B37 (16W35)},
MRNUMBER = {2000a:17021},
MRREVIEWER = {Anthony Joseph},
DOI = {10.1007/s002220050249},
ZBLNUMBER = {0912.17005},
} -
[S] M. E. Sweedler, Hopf Algebras, New York: W. A Benjamin, 1969.
@book{S,
author={Sweedler, M. E.},
TITLE={Hopf Algebras},
SERIES={Math. Lect. Note Ser.},
PUBLISHER={W. A Benjamin},
ADDRESS={New York},
MRNUMBER={40\#5705},
YEAR={1969},
} -
[Z]
Y. Zhu, "Hopf algebras of prime dimension," Internat. Math. Res. Notices, iss. 1, pp. 53-59, 1994.
@article {Z, MRKEY = {1255253},
AUTHOR = {Zhu, Yongchang},
TITLE = {Hopf algebras of prime dimension},
JOURNAL = {Internat. Math. Res. Notices},
FJOURNAL = {International Mathematics Research Notices},
YEAR = {1994},
NUMBER = {1},
PAGES = {53--59},
ISSN = {1073-7928},
MRCLASS = {16W30},
MRNUMBER = {94j:16072},
MRREVIEWER = {Richard G. Larson},
DOI = {10.1155/S1073792894000073},
ZBLNUMBER = {0822.16036},
}