On the classification of finite-dimensional pointed Hopf algebras

Abstract

We classify finite-dimensional complex Hopf algebras $A$ which are pointed, that is, all of whose irreducible comodules are one-dimensional, and whose group of group-like elements $G(A)$ is abelian such that all prime divisors of the order of $G(A)$ are $>7$. Since these Hopf algebras turn out to be deformations of a natural class of generalized small quantum groups, our result can be read as an axiomatic description of generalized small quantum groups.

  • [AS1] Go to document N. Andruskiewitsch and H. -J. Schneider, "Lifting of quantum linear spaces and pointed Hopf algebras of order $p^3$," J. Algebra, vol. 209, iss. 2, pp. 658-691, 1998.
    @article {AS1, MRKEY = {1659895},
      AUTHOR = {Andruskiewitsch, N. and Schneider, H.-J.},
      TITLE = {Lifting of quantum linear spaces and pointed {H}opf algebras of order {$p\sp 3$}},
      JOURNAL = {J. Algebra},
      FJOURNAL = {Journal of Algebra},
      VOLUME = {209},
      YEAR = {1998},
      NUMBER = {2},
      PAGES = {658--691},
      ISSN = {0021-8693},
      CODEN = {JALGA4},
      MRCLASS = {16W30},
      MRNUMBER = {99k:16075},
      MRREVIEWER = {Stefaan Caenepeel},
      DOI = {10.1006/jabr.1998.7643},
      ZBLNUMBER = {0919.16027},
      }
  • [AS2] Go to document N. Andruskiewitsch and H. Schneider, "Finite quantum groups and Cartan matrices," Adv. Math., vol. 154, iss. 1, pp. 1-45, 2000.
    @article {AS2, MRKEY = {1780094},
      AUTHOR = {Andruskiewitsch, Nicol{á}s and Schneider, Hans-J{ü}rgen},
      TITLE = {Finite quantum groups and {C}artan matrices},
      JOURNAL = {Adv. Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {154},
      YEAR = {2000},
      NUMBER = {1},
      PAGES = {1--45},
      ISSN = {0001-8708},
      CODEN = {ADMTA4},
      MRCLASS = {16W30},
      MRNUMBER = {2001g:16070},
      MRREVIEWER = {R. Gylys},
      DOI = {10.1006/aima.1999.1880},
      ZBLNUMBER = {1007.16027},
      }
  • [AS3] N. Andruskiewitsch and H. -J. Schneider, "Lifting of Nichols algebras of type $A_2$ and Pointed Hopf Algebras of order $ p^4$," in Hopf Algebras and Quantum Groups, Caenepeel, S. and van Oystaeyen, F., Eds., New York: Dekker, 2000, vol. 209, pp. 1-14.
    @incollection{AS3,
      author = {Andruskiewitsch, N. and Schneider, H.-J.},
      TITLE={Lifting of Nichols algebras of type $A_2$ and Pointed Hopf Algebras of order $ p^4$},
      BOOKTITLE={Hopf Algebras and Quantum Groups},
      VENUE={Brussels, 1998},
      EDITOR={S. Caenepeel and F. van Oystaeyen},
      SERIES={Lect. Notes in Pure and Appl. Math.},
      VOLUME={209},
      PAGES={1--14},
      PUBLISHER={Dekker},
      ADDRESS={New York},
      YEAR={2000},
      MRNUMBER={2001f:16069},
      ZBLNUMBER={1020.16022},
      }
  • [AS4] Go to document N. Andruskiewitsch and H. Schneider, "Finite quantum groups over abelian groups of prime exponent," Ann. Sci. École Norm. Sup., vol. 35, iss. 1, pp. 1-26, 2002.
    @article {AS4, MRKEY = {1886004},
      AUTHOR = {Andruskiewitsch, Nicol{á}s and Schneider, Hans-J{ü}rgen},
      TITLE = {Finite quantum groups over abelian groups of prime exponent},
      JOURNAL = {Ann. Sci. École Norm. Sup.},
      FJOURNAL = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      VOLUME = {35},
      YEAR = {2002},
      NUMBER = {1},
      PAGES = {1--26},
      ISSN = {0012-9593},
      CODEN = {ASENAH},
      MRCLASS = {16W35 (16W30)},
      MRNUMBER = {2003a:16055},
      MRREVIEWER = {Mat{\'ı}as A. Gra{ñ}a},
      DOI = {10.1016/S0012-9593(01)01082-5},
      ZBLNUMBER = {1007.16028},
      }
  • [AS5] N. Andruskiewitsch and H. Schneider, "Pointed Hopf algebras," in New Directions in Hopf Algebras, Cambridge: Cambridge Univ. Press, 2002, pp. 1-68.
    @incollection {AS5, MRKEY = {1913436},
      AUTHOR = {Andruskiewitsch, Nicol{á}s and Schneider, Hans-J{ü}rgen},
      TITLE = {Pointed {H}opf algebras},
      BOOKTITLE = {New Directions in {H}opf Algebras},
      SERIES = {Math. Sci. Res. Inst. Publ.},
      NUMBER = {43},
      PAGES = {1--68},
      PUBLISHER = {Cambridge Univ. Press},
      ADDRESS = {Cambridge},
      YEAR = {2002},
      MRCLASS = {16W30},
      MRNUMBER = {2003e:16043},
      MRREVIEWER = {Mitsuhiro Takeuchi},
      ZBLNUMBER = {1011.16025},
      }
  • [AS6] Go to document N. Andruskiewitsch and H. Schneider, "A characterization of quantum groups," J. Reine Angew. Math., vol. 577, pp. 81-104, 2004.
    @article {AS6, MRKEY = {2108213},
      AUTHOR = {Andruskiewitsch, Nicol{á}s and Schneider, Hans-J{ü}rgen},
      TITLE = {A characterization of quantum groups},
      JOURNAL = {J. Reine Angew. Math.},
      FJOURNAL = {Journal für die Reine und Angewandte Mathematik},
      VOLUME = {577},
      YEAR = {2004},
      PAGES = {81--104},
      ISSN = {0075-4102},
      CODEN = {JRMAA8},
      MRCLASS = {16W35},
      MRNUMBER = {2005i:16083},
      MRREVIEWER = {Uma Naganathan Iyer},
      DOI = {10.1515/crll.2004.2004.577.81},
      ZBLNUMBER = {1084.16027},
      }
  • [AS7] N. Andruskiewitsch and H. -J. Schneider, "Isomorphism classes and automorphisms of finite Hopf algebras of type $A_n$," in Proc. XVth Latin American Algebra Colloq. (Spanish), Madris, 2007, pp. 201-226.
    @inproceedings{AS7,
      author = {Andruskiewitsch, N. and Schneider, H.-J.},
      TITLE = {Isomorphism classes and automorphisms of finite Hopf algebras of type $A_n$},
      BOOKTITLE={Proc. {\rm XVth} Latin American Algebra Colloq. {\rm (Spanish)}},
      PAGES={201--226},
      YEAR={2007},
      PUBLISHER={Bibl. Rev. Math. Iberoamericana},
      ADDRESS={Madris},
      MRNUMBER={2500360},
      }
  • [B] N. Bourbaki, Éléments de Mathématique. Fasc. XXXIV. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et Systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Paris: Hermann, 1968.
    @book {B, MRKEY = {0240238},
      AUTHOR = {Bourbaki, N.},
      TITLE = {\'{E}léments de Mathématique. {F}asc. {XXXIV}. {G}roupes et Algèbres de {L}ie. {C}hapitre {IV}: {G}roupes de {C}oxeter et Systèmes de {T}its. {C}hapitre {V}: {G}roupes engendrés par des réflexions. {C}hapitre {VI}: systèmes de racines},
      SERIES = {Actualités Scientifiques et Industrielles, No. 1337},
      PUBLISHER = {Hermann},
      ADDRESS = {Paris},
      YEAR = {1968},
      PAGES = {288 pp. (loose errata)},
      MRCLASS = {22.50 (17.00)},
      MRNUMBER = {39 \#1590},
      MRREVIEWER = {G. B. Seligman},
      }
  • [BDR] Go to document M. Beattie, S. Duascualescu, and \cS. Raianu, "Lifting of Nichols algebras of type $B_2$," Israel J. Math., vol. 132, pp. 1-28, 2002.
    @article {BDR, MRKEY = {1952612},
      AUTHOR = {Beattie, M. and D{\u{a}}sc{\u{a}}lescu, S. and Raianu, {\c{S}}.},
      TITLE = {Lifting of {N}ichols algebras of type {$B_2$}},
      JOURNAL = {Israel J. Math.},
      FJOURNAL = {Israel Journal of Mathematics},
      VOLUME = {132},
      YEAR = {2002},
      PAGES = {1--28},
      ISSN = {0021-2172},
      CODEN = {ISJMAP},
      MRCLASS = {16W30},
      MRNUMBER = {2004b:16055},
      MRREVIEWER = {Ralf Holtkamp},
      DOI = {10.1007/BF02784503},
      ZBLNUMBER = {1054.16027},
      }
  • [dCK] C. De Concini and V. G. Kac, "Representations of quantum groups at roots of $1$," in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Boston, MA: Birkhäuser, 1990, pp. 471-506.
    @incollection {dCK, MRKEY = {1103601},
      AUTHOR = {De Concini, Corrado and Kac, Victor G.},
      TITLE = {Representations of quantum groups at roots of {$1$}},
      BOOKTITLE = {Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory ({P}aris, 1989)},
      SERIES = {Progr. Math.},
      NUMBER = {92},
      PAGES = {471--506},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Boston, MA},
      YEAR = {1990},
      MRCLASS = {17B37 (16W30)},
      MRNUMBER = {92g:17012},
      MRREVIEWER = {Jie Du},
      ZBLNUMBER = {0738.17008},
      }
  • [dCP] C. De Concini and C. Procesi, "Quantum groups," in $D$-Modules, Representation Theory, and Quantum Groups (Venice, 1992), New York: Springer-Verlag, 1993, pp. 31-140.
    @incollection {dCP, MRKEY = {1288995},
      AUTHOR = {De Concini, C. and Procesi, C.},
      TITLE = {Quantum groups},
      BOOKTITLE = {{$D$}-Modules, Representation Theory, and Quantum Groups ({V}enice, 1992)},
      SERIES = {Lecture Notes in Math.},
      NUMBER = {1565},
      PAGES = {31--140},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1993},
      MRCLASS = {17B37 (16W30 58F06 81R50)},
      MRNUMBER = {95j:17012},
      MRREVIEWER = {Arun Ram},
      ZBLNUMBER = {0795.17005},
      }
  • [D1] Go to document D. Didt, "Linkable Dynkin diagrams," J. Algebra, vol. 255, iss. 2, pp. 373-391, 2002.
    @article {D1, MRKEY = {1935506},
      AUTHOR = {Didt, Daniel},
      TITLE = {Linkable {D}ynkin diagrams},
      JOURNAL = {J. Algebra},
      FJOURNAL = {Journal of Algebra},
      VOLUME = {255},
      YEAR = {2002},
      NUMBER = {2},
      PAGES = {373--391},
      ISSN = {0021-8693},
      CODEN = {JALGA4},
      MRCLASS = {16W30 (17B37)},
      MRNUMBER = {2003h:16063},
      MRREVIEWER = {Nicol{á}s Andruskiewitsch},
      DOI = {10.1016/S0021-8693(02)00148-5},
      ZBLNUMBER = {1062.16042},
      }
  • [D2] Go to document D. Didt, "Linkable Dynkin diagrams and Quasi-isomorphisms for finite dimensional pointed Hopf algebras," PhD Thesis , Ludwig-Maximilians-Universität München, 2002.
    @phdthesis{D2,
      author = {Didt, Daniel},
      TITLE={Linkable Dynkin diagrams and Quasi-isomorphisms for finite dimensional pointed Hopf algebras},
      SCHOOL={Ludwig-Maximilians-Universität München},
      URL={http://edoc.ub.uni-muenchen.de/785/1/Didt_Daniel.pdf},
      YEAR={2002},
      }
  • [EO] P. Etingof and V. Ostrik, "Finite tensor categories," Mosc. Math. J., vol. 4, iss. 3, pp. 627-654, 782, 2004.
    @article {EO, MRKEY = {2119143},
      AUTHOR = {Etingof, Pavel and Ostrik, Viktor},
      TITLE = {Finite tensor categories},
      JOURNAL = {Mosc. Math. J.},
      FJOURNAL = {Moscow Mathematical Journal},
      VOLUME = {4},
      YEAR = {2004},
      NUMBER = {3},
      PAGES = {627--654, 782--783},
      ISSN = {1609-3321},
      MRCLASS = {18D10 (16W30)},
      MRNUMBER = {2005j:18006},
      MRREVIEWER = {Sebastian Burciu},
      ZBLNUMBER = {1077.18005},
      }
  • [Ga] Go to document M. R. Gaberdiel, "An algebraic approach to logarithmic conformal field theory," in Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and its Applications (Tehran, 2001), 2003, pp. 4593-4638.
    @inproceedings {Ga, MRKEY = {2030633},
      AUTHOR = {Gaberdiel, Matthias R.},
      TITLE = {An algebraic approach to logarithmic conformal field theory},
      BOOKTITLE = {Proceedings of the {S}chool and {W}orkshop on {L}ogarithmic {C}onformal {F}ield {T}heory and its {A}pplications ({T}ehran, 2001)},
      SERIES = {Internat. J. Modern Phys. A},
      FJOURNAL = {International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology. Nuclear Physics},
      VOLUME = {18},
      YEAR = {2003},
      NUMBER = {25},
      PAGES = {4593--4638},
      ISSN = {0217-751X},
      MRCLASS = {81T40 (17B69 81R10)},
      MRNUMBER = {2005h:81326},
      DOI = {10.1142/S0217751X03016860},
      ZBLNUMBER = {1055.81064},
      }
  • [H1] I. Heckenberger, Finite dimensional rank 2 Nichols algebras of diagonal type I: Examples, preprint math.QA/0402350v2, 2004.
    @misc{H1,
      author={Heckenberger, I.},
      TITLE={Finite dimensional rank 2 Nichols algebras of diagonal type I: Examples, preprint math.QA/0402350v2},
      YEAR={2004},
      }
  • [H2] I. Heckenberger, Finite dimensional rank 2 Nichols algebras of diagonal type II: Classification, preprint math.QA/0404008, 2004.
    @misc{H2,
      author={Heckenberger, I.},
      TITLE={Finite dimensional rank 2 Nichols algebras of diagonal type II: Classification, preprint math.QA/0404008},
      YEAR={2004},
      }
  • [H3] Go to document I. Heckenberger, "The Weyl groupoid of a Nichols algebra of diagonal type," Invent. Math., vol. 164, iss. 1, pp. 175-188, 2006.
    @article {H3, MRKEY = {2207786},
      AUTHOR = {Heckenberger, I.},
      TITLE = {The {W}eyl groupoid of a {N}ichols algebra of diagonal type},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {164},
      YEAR = {2006},
      NUMBER = {1},
      PAGES = {175--188},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {16W35 (17B37)},
      MRNUMBER = {2007e:16047},
      MRREVIEWER = {Kenneth A. Brown},
      DOI = {10.1007/s00222-005-0474-8},
      ZBLNUMBER = {05027328},
      }
  • [KSZ] Y. Kashina, Y. Sommerhäuser, and Y. Zhu, On Higher Frobenius-Schur Indicators, Providence, RI: A. M. S, 2006, vol. 811.
    @book{KSZ,
      author={Kashina, Y. and Sommerhäuser, Y. and Zhu, Y.},
      TITLE={On Higher Frobenius-Schur Indicators},
      SERIES={Mem. Amer. Math. Soc.},
      VOLUME={811},
      PUBLISHER={A. M. S},
      ADDRESS={Providence, RI},
      YEAR={2006},
      MRNUMBER={2213320},
      }
  • [K] V. K. Kharchenko, "A quantum analogue of the Poincaré-Birkhoff-Witt theorem," Algebra Log., vol. 38, iss. 4, pp. 476-507, 509, 1999.
    @article {K, MRKEY = {1763385},
      AUTHOR = {Kharchenko, V. K.},
      TITLE = {A quantum analogue of the {P}oincaré-{B}irkhoff-{W}itt theorem},
      JOURNAL = {Algebra Log.},
      FJOURNAL = {Algebra i Logika. Institut DiskretnoĭMatematiki i Informatiki},
      VOLUME = {38},
      YEAR = {1999},
      NUMBER = {4},
      PAGES = {476--507, 509},
      ISSN = {0373-9252},
      MRCLASS = {16W30},
      MRNUMBER = {2001f:16075},
      MRREVIEWER = {Tomasz Brzezi{ń}ski},
      ZBLNUMBER={0936.16034},
      }
  • [KS] A. Klimyk and K. Schmüdgen, Quantum Groups and their Representations, New York: Springer-Verlag, 1997.
    @book {KS, MRKEY = {1492989},
      AUTHOR = {Klimyk, Anatoli and Schm{ü}dgen, Konrad},
      TITLE = {Quantum Groups and their Representations},
      SERIES = {Texts Monogr. Physics},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1997},
      PAGES = {xx+552},
      ISBN = {3-540-63452-5},
      MRCLASS = {17B37 (16W30 17B81 46L87 58B30 81R50)},
      MRNUMBER = {99f:17017},
      MRREVIEWER = {Ian M. Musson},
      ZBLNUMBER={0891.17010},
      }
  • [L1] Go to document G. Lusztig, "Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra," J. Amer. Math. Soc., vol. 3, iss. 1, pp. 257-296, 1990.
    @article {L1, MRKEY = {1013053},
      AUTHOR = {Lusztig, George},
      TITLE = {Finite-dimensional {H}opf algebras arising from quantized universal enveloping algebra},
      JOURNAL = {J. Amer. Math. Soc.},
      FJOURNAL = {Journal of the American Mathematical Society},
      VOLUME = {3},
      YEAR = {1990},
      NUMBER = {1},
      PAGES = {257--296},
      ISSN = {0894-0347},
      MRCLASS = {17B37 (16W30 20G40)},
      MRNUMBER = {91e:17009},
      MRREVIEWER = {S. Paul Smith},
      ZBLNUMBER={0695.06006},
      DOI = {10.2307/1990988},
      }
  • [L2] Go to document G. Lusztig, "Quantum groups at roots of $1$," Geom. Dedicata, vol. 35, iss. 1-3, pp. 89-113, 1990.
    @article {L2, MRKEY = {1066560},
      AUTHOR = {Lusztig, George},
      TITLE = {Quantum groups at roots of {$1$}},
      JOURNAL = {Geom. Dedicata},
      FJOURNAL = {Geometriae Dedicata},
      VOLUME = {35},
      YEAR = {1990},
      NUMBER = {1-3},
      PAGES = {89--113},
      ISSN = {0046-5755},
      CODEN = {GEMDAT},
      MRCLASS = {17B37 (20G99)},
      MRNUMBER = {91j:17018},
      MRREVIEWER = {Toshiyuki Tanisaki},
      DOI = {10.1007/BF00147341},
      ZBLNUMBER = {0714.17013},
      }
  • [L3] G. Lusztig, Introduction to Quantum Groups, Boston, MA: Birkhäuser, 1993.
    @book {L3, MRKEY = {1227098},
      AUTHOR = {Lusztig, George},
      TITLE = {Introduction to Quantum Groups},
      SERIES = {Progr. in Math.},
      NUMBER = {110},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Boston, MA},
      YEAR = {1993},
      PAGES = {xii+341},
      ISBN = {0-8176-3712-5},
      MRCLASS = {17B37 (16W30 17-02 17B35 81R50)},
      MRNUMBER = {94m:17016},
      MRREVIEWER = {Jie Du},
      ZBLNUMBER = {0788.17010},
      }
  • [Ma] Go to document A. Masuoka, "On Hopf algebras with cocommutative coradicals," J. Algebra, vol. 144, iss. 2, pp. 451-466, 1991.
    @article {Ma, MRKEY = {1140616},
      AUTHOR = {Masuoka, Akira},
      TITLE = {On {H}opf algebras with cocommutative coradicals},
      JOURNAL = {J. Algebra},
      FJOURNAL = {Journal of Algebra},
      VOLUME = {144},
      YEAR = {1991},
      NUMBER = {2},
      PAGES = {451--466},
      ISSN = {0021-8693},
      CODEN = {JALGA4},
      MRCLASS = {16W30},
      MRNUMBER = {92k:16053},
      MRREVIEWER = {E. J. Taft},
      DOI = {10.1016/0021-8693(91)90116-P},
      ZBLNUMBER = {0737.16024},
      }
  • [M] S. Montgomery, Hopf Algebras and their Actions on Rings, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993.
    @book {M, MRKEY = {1243637},
      AUTHOR = {Montgomery, Susan},
      TITLE = {Hopf Algebras and their Actions on Rings},
      SERIES = {{\rm CBMS} Regional Conf. Ser. in Math.},
      NUMBER = {82},
      PUBLISHER = {Published for the Conference Board of the Mathematical Sciences, Washington, DC},
      YEAR = {1993},
      PAGES = {xiv+238},
      ISBN = {0-8218-0738-2},
      MRCLASS = {16W30},
      MRNUMBER = {94i:16019},
      MRREVIEWER = {E. J. Taft},
      ZBLNUMBER = {0793.16029},
      }
  • [M1] Go to document E. Müller, "Some topics on Frobenius-Lusztig kernels. I, II," J. Algebra, vol. 206, iss. 2, pp. 624-658, 659, 1998.
    @article {M1, MRKEY = {1637096},
      AUTHOR = {M{ü}ller, Eric},
      TITLE = {Some topics on {F}robenius-{L}usztig kernels. {I},
      {II}},
      JOURNAL = {J. Algebra},
      FJOURNAL = {Journal of Algebra},
      VOLUME = {206},
      YEAR = {1998},
      NUMBER = {2},
      PAGES = {624--658, 659--681},
      ISSN = {0021-8693},
      CODEN = {JALGA4},
      MRCLASS = {16W30 (17B37)},
      MRNUMBER = {99g:16051},
      MRREVIEWER = {Mitsuhiro Takeuchi},
      ZBLNUMBER={0948.07010},
      DOI = {10.1006/jabr.1997.7364},
      }
  • [M2] Go to document E. Müller, "The coradical filtration of $U_q(\mathfrak{g})$ at roots of unity," Comm. Algebra, vol. 28, iss. 2, pp. 1029-1044, 2000.
    @article {M2, MRKEY = {1736778},
      AUTHOR = {M{ü}ller, Eric},
      TITLE = {The coradical filtration of {$U_q(\mathfrak{g})$} at roots of unity},
      JOURNAL = {Comm. Algebra},
      FJOURNAL = {Communications in Algebra},
      VOLUME = {28},
      YEAR = {2000},
      NUMBER = {2},
      PAGES = {1029--1044},
      ISSN = {0092-7872},
      CODEN = {COALDM},
      MRCLASS = {17B37},
      MRNUMBER = {2000j:17024},
      MRREVIEWER = {Fabio Gavarini},
      ZBLNUMBER={0961.17008},
      DOI = {10.1080/00927870008826875},
      }
  • [Ri] Go to document C. M. Ringel, "Hall algebras and quantum groups," Invent. Math., vol. 101, iss. 3, pp. 583-591, 1990.
    @article {Ri, MRKEY = {1062796},
      AUTHOR = {Ringel, Claus Michael},
      TITLE = {Hall algebras and quantum groups},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {101},
      YEAR = {1990},
      NUMBER = {3},
      PAGES = {583--591},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {16E60 (16G60 16P10 16S30 17B37)},
      MRNUMBER = {91i:16024},
      MRREVIEWER = {Jie Du},
      DOI = {10.1007/BF01231516},
      ZBLNUMBER = {0735.16009},
      }
  • [Ro] Go to document M. Rosso, "Quantum groups and quantum shuffles," Invent. Math., vol. 133, iss. 2, pp. 399-416, 1998.
    @article {Ro, MRKEY = {1632802},
      AUTHOR = {Rosso, Marc},
      TITLE = {Quantum groups and quantum shuffles},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {133},
      YEAR = {1998},
      NUMBER = {2},
      PAGES = {399--416},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {17B37 (16W35)},
      MRNUMBER = {2000a:17021},
      MRREVIEWER = {Anthony Joseph},
      DOI = {10.1007/s002220050249},
      ZBLNUMBER = {0912.17005},
      }
  • [S] M. E. Sweedler, Hopf Algebras, New York: W. A Benjamin, 1969.
    @book{S,
      author={Sweedler, M. E.},
      TITLE={Hopf Algebras},
      SERIES={Math. Lect. Note Ser.},
      PUBLISHER={W. A Benjamin},
      ADDRESS={New York},
      MRNUMBER={40\#5705},
      YEAR={1969},
      }
  • [Z] Go to document Y. Zhu, "Hopf algebras of prime dimension," Internat. Math. Res. Notices, iss. 1, pp. 53-59, 1994.
    @article {Z, MRKEY = {1255253},
      AUTHOR = {Zhu, Yongchang},
      TITLE = {Hopf algebras of prime dimension},
      JOURNAL = {Internat. Math. Res. Notices},
      FJOURNAL = {International Mathematics Research Notices},
      YEAR = {1994},
      NUMBER = {1},
      PAGES = {53--59},
      ISSN = {1073-7928},
      MRCLASS = {16W30},
      MRNUMBER = {94j:16072},
      MRREVIEWER = {Richard G. Larson},
      DOI = {10.1155/S1073792894000073},
      ZBLNUMBER = {0822.16036},
      }

Authors

Nicolás Andruskiewitsch

Facultad de Matemática, Astronomía y física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina

Hans-Jürgen Schneider

Mathematisches Institut, Universität München, Theresienstr. 39, D-80333 München, Germany