A rigid irregular connection on the projective line

Abstract

In this paper we construct a connection $\nabla$ on the trivial $G$-bundle on $\mathbb{P}^1$ for any simple complex algebraic group $G$, which is regular outside of the points $0$ and $\infty$, has a regular singularity at the point $0$, with principal unipotent monodromy, and has an irregular singularity at the point $\infty$, with slope $1/h$, the reciprocal of the Coxeter number of $G$. The connection $\nabla$, which admits the structure of an oper in the sense of Beilinson and Drinfeld, appears to be the characteristic $0$ counterpart of a hypothetical family of $\ell$-adic representations, which should parametrize a specific automorphic representation under the global Langlands correspondence. These $\ell$-adic representations, and their characteristic $0$ counterparts, have been constructed in some cases by Deligne and Katz. Our connection is constructed uniformly for any simple algebraic group, and characterized using the formalism of opers. It provides an example of the geometric Langlands correspondence with wild ramification. We compute the de Rham cohomology of our connection with values in a representation $V$ of $G$, and describe the differential Galois group of $\nabla$ as a subgroup of $G$.

  • [A] D. Arinkin, "Fourier transform and middle convolution for irregular $\mathcal D$-modules," , preprint , 2008.
    @techreport{A,
      author={Arinkin, D},
      TITLE={Fourier transform and middle convolution for irregular $\mathcal D$-modules},
      type={preprint},
      ARXIV={0808.0742},
      year=2008, }
  • [B] Go to document P. P. Boalch, "Stokes matrices, Poisson Lie groups and Frobenius manifolds," Invent. Math., vol. 146, iss. 3, pp. 479-506, 2001.
    @article {B, MRKEY = {1869848},
      AUTHOR = {Boalch, P. P.},
      TITLE = {Stokes matrices, {P}oisson {L}ie groups and {F}robenius manifolds},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {146},
      YEAR = {2001},
      NUMBER = {3},
      PAGES = {479--506},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {53D45 (34M55 53D30)},
      MRNUMBER = {2003a:53127},
      MRREVIEWER = {Ian A. B. Strachan},
      DOI = {10.1007/s002220100170},
      ZBLNUMBER = {1044.53060},
      }
  • [BD-H] Go to document A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves.
    @misc{BD-H,
      author={Beilinson, A. and Drinfeld, V.},
      TITLE={Quantization of Hitchin's integrable system and Hecke eigensheaves},
      URL={http://www.math.uchicago.edu/~mitya/langlands/hitchin/BD-hitchin.pdf},
      }
  • [BD] A. Beilinson and D. Drinfeld, "Opers," , preprint , 2005.
    @techreport{BD,
      author={Beilinson, A. and Drinfeld, D.},
      TITLE={Opers},
      type={preprint},
      ARXIV={math.AG/0501398},
      year=2005, }
  • [BE] Go to document S. Bloch and H. Esnault, "Local Fourier transforms and rigidity for $\mathcal D$-modules," Asian J. Math., vol. 8, iss. 4, pp. 587-605, 2004.
    @article {BE, MRKEY = {2127940},
      AUTHOR = {Bloch, Spencer and Esnault, H{é}l{è}ne},
      TITLE = {Local {F}ourier transforms and rigidity for {$\mathcal D$}-modules},
      JOURNAL = {Asian J. Math.},
      FJOURNAL = {The Asian Journal of Mathematics},
      VOLUME = {8},
      YEAR = {2004},
      NUMBER = {4},
      PAGES = {587--605},
      ISSN = {1093-6106},
      MRCLASS = {14F10 (11G99)},
      MRNUMBER = {2006b:14028},
      MRREVIEWER = {Ricardo Garc{\'ı}a L{ó}pez},
      URL = {http://projecteuclid.org/getRecord?id=euclid.ajm/1118669692},
      ZBLNUMBER = {1082.14506},
      }
  • [Carter] R. W. Carter, Finite Groups of Lie Type, New York: John Wiley & Sons, 1985.
    @book {Carter, MRKEY = {794307},
      AUTHOR = {Carter, Roger W.},
      TITLE = {Finite Groups of {L}ie Type},
      SERIES = {Pure and Applied Mathematics (New York)},
      NOTE = {Conjugacy classes and complex characters, A Wiley-Interscience Publication},
      PUBLISHER = {John Wiley \& Sons},
      ADDRESS = {New York},
      YEAR = {1985},
      PAGES = {xii+544},
      ISBN = {0-471-90554-2},
      MRCLASS = {20G40 (20-02 20C15)},
      MRNUMBER = {87d:20060},
      MRREVIEWER = {David B. Surowski},
      }
  • [Trig] P. Deligne, "Application de la formule des traces aux sommes trigonometriques," in Cohomology Étale, New York: Springer-Verlag, 1977, vol. 569, pp. 168-239.
    @incollection{Trig,
      author = {Deligne, Pierre},
      TITLE={Application de la formule des traces aux sommes trigonometriques},
      BOOKTITLE={Cohomology Étale},
      SERIES={Lectures Notes in Math.\/},
      VOLUME={569},
      PAGES={168--239},
      YEAR={1977},
      PUBLISHER={Springer-Verlag},
      ADDRESS={New York},
      }
  • [D] P. Deligne, Équations Différentielles à Points Singuliers Réguliers, New York: Springer-Verlag, 1970, vol. 163.
    @book {D, MRKEY = {0417174},
      AUTHOR = {Deligne, Pierre},
      TITLE = {\'{E}quations Différentielles à Points Singuliers Réguliers},
      SERIES = {Lecture Notes in Math.},
      VOLUME={163},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1970},
      PAGES = {iii+133},
      MRCLASS = {14D05 (14C30)},
      MRNUMBER = {54 \#5232},
      MRREVIEWER = {Helmut Hamm},
      ZBLNUMBER = {0244.14004},
      }
  • [DM] P. Deligne and J. Milne, "Tannakian categories," Lecture Notes in Math., vol. 900, pp. 101-228, 1982.
    @article{DM,
      author={Deligne, Pierre and Milne, J.},
      TITLE={Tannakian categories},
      JOURNAL={Lecture Notes in Math.},
      VOLUME={900},
      PAGES={101--228},
      YEAR={1982},
      NOTE={Springer-Verlag, New York},
      }
  • [DS] V. Drinfeld and V. Sokolov, "Lie algebras and KdV type equations," J. Soviet Math., vol. 30, pp. 1975-2036, 1985.
    @article{DS,
      author={Drinfeld, V. and Sokolov, V.},
      TITLE={Lie algebras and KdV type equations},
      JOURNAL={J. Soviet Math.},
      VOLUME={30},
      YEAR={1985},
      PAGES={1975--2036},
      }
  • [Dynkin] E. B. Dynkin, "Semisimple subalgebras of semisimple Lie algebras (Russian)," Mat. Sb., vol. 30, pp. 349-462, 1952.
    @article{Dynkin,
      author={Dynkin, E. B.},
      TITLE={Semisimple subalgebras of semisimple Lie algebras (Russian)},
      JOURNAL={Mat. Sb.},
      VOLUME={30},
      YEAR={1952},
      PAGES={349--462},
      }
  • [FFkdv] B. Feigin and E. Frenkel, "Quantization of soliton systems and Langlands duality," , preprint , 2007.
    @techreport{FFkdv,
      author={Feigin, B. and Frenkel, E.},
      TITLE={Quantization of soliton systems and Langlands duality},
      type={preprint},
      ARXIV={0705.2486},
      year=2007, }
  • [FFR] B. Feigin, E. Frenkel, and L. Rybinikov, "Opers with irregular singularity and spectra of the shift of argument subalgebra," , preprint , 2007.
    @techreport{FFR,
      author={Feigin, B. and Frenkel, E. and Rybinikov, L.},
      TITLE={Opers with irregular singularity and spectra of the shift of argument subalgebra},
      type={preprint},
      ARXIV={0712.1183},
      year=2007, }
  • [FFT] B. Feigin, E. Frenkel, and V. Toledano Laredo, "Gaudin models with irregular singularities," , preprint , 2006.
    @techreport{FFT,
      author={Feigin, B. and Frenkel, E. and Toledano Laredo, V.},
      TITLE={Gaudin models with irregular singularities},
      type={preprint},
      ARXIV={math.QA/0612798},
      NOTE={{\it Adv. in Math.},
      accepted for publication},
      year={2006},
      }
  • [Fr] E. Frenkel, Langlands Correspondence for Loop Groups, Cambridge: Cambridge Univ. Press, 2007.
    @book {Fr, MRKEY = {2332156},
      AUTHOR = {Frenkel, Edward},
      TITLE = {Langlands Correspondence for Loop Groups},
      SERIES = {Cambridge Studies in Advanced Mathematics},
      NUMBER = {103},
      PUBLISHER = {Cambridge Univ. Press},
      ADDRESS = {Cambridge},
      YEAR = {2007},
      PAGES = {xvi+379},
      ISBN = {978-0-521-85443-6},
      MRCLASS = {22E67 (17B67)},
      MRNUMBER = {2008h:22017},
      MRREVIEWER = {David Ben-Zvi},
      ZBLNUMBER = {1133.22009},
      }
  • [Frev] E. Frenkel, "Lectures on the Langlands program and conformal field theory," in Frontiers in Number Theory, Physics, and Geometry. II, New York: Springer-Verlag, 2007, pp. 387-533.
    @incollection {Frev, MRKEY = {2290768},
      AUTHOR = {Frenkel, Edward},
      TITLE = {Lectures on the {L}anglands program and conformal field theory},
      BOOKTITLE = {Frontiers in Number Theory, Physics, and Geometry. {\rm II}},
      PAGES = {387--533},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {2007},
      MRCLASS = {11G45 (14D21 22E55 81T40)},
      MRNUMBER = {2007k:11102},
      MRREVIEWER = {David Ben-Zvi},
      }
  • [FG] E. Frenkel and D. Gaitsgory, "Local geometric Langlands correspondence and affine Kac-Moody algebras," in Algebraic geometry and number theory, Boston, MA: Birkhäuser, 2006, pp. 69-260.
    @incollection {FG, MRKEY = {2263193},
      AUTHOR = {Frenkel, Edward and Gaitsgory, Dennis},
      TITLE = {Local geometric {L}anglands correspondence and affine {K}ac-{M}oody algebras},
      BOOKTITLE = {Algebraic geometry and number theory},
      SERIES = {Progr. Math.},
      NUMBER = {253},
      PAGES = {69--260},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Boston, MA},
      YEAR = {2006},
      MRCLASS = {17B67 (11G45 11R39 14D20)},
      MRNUMBER = {2008e:17023},
      MRREVIEWER = {Peter Fiebig},
      ZBLNUMBER = {05234056},
      }
  • [FZ] E. Frenkel and X. Zhu, "Any flat bundle on a punctured disc has an oper structure," , preprint , 2008.
    @techreport{FZ,
      author={Frenkel, E. and Zhu, X.},
      TITLE={Any flat bundle on a punctured disc has an oper structure},
      type={preprint},
      ARXIV={0811.3186},
      year=2008, }
  • [GM] S. I. Gelfand and Y. I. Manin, Homological Algebra, New York: Springer-Verlag, 1994.
    @book {GM,
      author={Gelfand, S. I. and Manin, Yu. I.},
      MRKEY = {1309679},
      TITLE = {Homological Algebra},
      SERIES = {Encycl. Math. Sci.},
      NUMBER = {38},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1994},
      PAGES = {iv+222},
      ISBN = {3-540-53373-7},
      MRCLASS = {18Exx (00A05 14C30 14D07 18-02 19-02 32C38)},
      MRNUMBER = {95g:18007},
      }
  • [G1] B. H. Gross, "On the motive of $G$ and the principal homomorphism ${ SL}_2\to\widehat G$," Asian J. Math., vol. 1, iss. 1, pp. 208-213, 1997.
    @article {G1, MRKEY = {1480995},
      AUTHOR = {Gross, Benedict H.},
      TITLE = {On the motive of {$G$} and the principal homomorphism {${\rm SL}\sb 2\to\widehat G$}},
      JOURNAL = {Asian J. Math.},
      FJOURNAL = {The Asian Journal of Mathematics},
      VOLUME = {1},
      YEAR = {1997},
      NUMBER = {1},
      PAGES = {208--213},
      ISSN = {1093-6106},
      MRCLASS = {20G25 (11S37 20G15 22E50)},
      MRNUMBER = {99d:20077},
      MRREVIEWER = {Ernst-Wilhelm Zink},
      ZBLNUMBER = {0942.20031},
      }
  • [G2] Go to document B. H. Gross, "On the motive of a reductive group," Invent. Math., vol. 130, iss. 2, pp. 287-313, 1997.
    @article {G2, MRKEY = {1474159},
      AUTHOR = {Gross, Benedict H.},
      TITLE = {On the motive of a reductive group},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {130},
      YEAR = {1997},
      NUMBER = {2},
      PAGES = {287--313},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {20G35 (11G09 11G40 14F99 20G30)},
      MRNUMBER = {98m:20060},
      MRREVIEWER = {Dipendra Prasad},
      DOI = {10.1007/s002220050186},
      ZBLNUMBER = {0904.11014},
      }
  • [G3] Go to document B. H. Gross, "Irreducible cuspidal representations with prescribed local behavior," , preprint.
    @techreport{G3, type={preprint},
      AUTHOR ={Gross, Benedict H.},
      TITLE={Irreducible cuspidal representations with prescribed local behavior},
      URL={http://www.math.harvard.edu/~gross/preprints/cusp.pdf},
      }
  • [GAMF] Go to document B. H. Gross, "Algebraic modular forms," Israel J. Math., vol. 113, pp. 61-93, 1999.
    @article {GAMF, MRKEY = {1729443},
      AUTHOR = {Gross, Benedict H.},
      TITLE = {Algebraic modular forms},
      JOURNAL = {Israel J. Math.},
      FJOURNAL = {Israel Journal of Mathematics},
      VOLUME = {113},
      YEAR = {1999},
      PAGES = {61--93},
      ISSN = {0021-2172},
      CODEN = {ISJMAP},
      MRCLASS = {11F55 (11F80 20G30 22E55)},
      MRNUMBER = {2001b:11037},
      MRREVIEWER = {Stefan K{ü}hnlein},
      DOI = {10.1007/BF02780173},
      ZBLNUMBER = {0965.11020},
      }
  • [GR] Go to document B. H. Gross and M. Reeder, "Arithmetic invariants of discrete Langlands parameters," , preprint.
    @techreport{GR, type={preprint},
      AUTHOR={Gross, Benedict H. and Reeder, M.},
      TITLE={Arithmetic invariants of discrete Langlands parameters},
      URL={http://www.math.harvard.edu/~gross/preprints/adjointgamma3.pdf},
      }
  • [Kac1] V. G. Kac, "Infinite-dimensional algebras, Dedekind’s $\eta$-function, classical Möbius function and the very strange formula," Adv. Math., vol. 30, pp. 85-136, 1978.
    @article{Kac1,
      author={Kac, V. G.},
      TITLE={Infinite-dimensional algebras, Dedekind's $\eta$-function, classical Möbius function and the very strange formula},
      JOURNAL={Adv. Math.},
      VOLUME={30},
      PAGES={85--136},
      YEAR={1978},
      }
  • [Kac] V. G. Kac, Infinite-dimensional Lie Algebras, Third ed., Cambridge: Cambridge Univ. Press, 1990.
    @book{Kac,
      author={Kac, V. G.},
      TITLE={Infinite-dimensional Lie Algebras},
      EDITION={{T}hird},
      YEAR={1990},
      PUBLISHER={Cambridge Univ. Press},
      ADDRESS={Cambridge},
      }
  • [Katzinv] Go to document N. M. Katz, "On the calculation of some differential Galois groups," Invent. Math., vol. 87, iss. 1, pp. 13-61, 1987.
    @article {Katzinv, MRKEY = {862711},
      AUTHOR = {Katz, Nicholas M.},
      TITLE = {On the calculation of some differential {G}alois groups},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {87},
      YEAR = {1987},
      NUMBER = {1},
      PAGES = {13--61},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {12H05 (14E20 14F20 34B30)},
      MRNUMBER = {88c:12010},
      MRREVIEWER = {F. Baldassarri},
      DOI = {10.1007/BF01389152},
      ZBLNUMBER = {0609.12025},
      }
  • [K] N. M. Katz, Exponential sums and differential equations, Princeton, NJ: Princeton Univ. Press, 1990.
    @book {K, MRKEY = {1081536},
      AUTHOR = {Katz, Nicholas M.},
      TITLE = {Exponential sums and differential equations},
      SERIES = {Annals of Math. Studies},
      NUMBER = {124},
      PUBLISHER = {Princeton Univ. Press},
      ADDRESS = {Princeton, NJ},
      YEAR = {1990},
      PAGES = {xii+430},
      ISBN = {0-691-08598-6; 0-691-08599-4},
      MRCLASS = {14D10 (11L03 11T23 14G15)},
      MRNUMBER = {93a:14009},
      MRREVIEWER = {Hernando Enrique Sierra-Morales},
      ZBLNUMBER = {0731.14008},
      }
  • [Ks] B. Kostant, "Lie group representations on polynomial rings," Amer. J. Math., vol. 85, pp. 327-404, 1963.
    @article{Ks,
      author={Kostant, B.},
      TITLE={Lie group representations on polynomial rings},
      JOURNAL={Amer. J. Math.},
      VOLUME={85},
      YEAR={1963},
      PAGES={327--404},
      }
  • [Kt] R. Kottwitz, "Tamagawa numbers," Ann. of Math., vol. 127, pp. 629-646, 1988.
    @article{Kt,
      author={Kottwitz, R.},
      TITLE={Tamagawa numbers},
      JOURNAL={Ann. of Math.},
      VOLUME={127},
      YEAR={1988},
      PAGES={629--646},
      MRNUMBER={90e:11075},
      ZBLNUMBER={0678.22012},
      }
  • [SS] J. Saxl and G. M. Seitz, "Subgroups of groups containing a principal unipotent element," J. London Math. Soc., vol. 55, pp. 370-386, 1997.
    @article{SS,
      author={Saxl, J. and Seitz, G. M.},
      TITLE={Subgroups of groups containing a principal unipotent element},
      JOURNAL={J. London Math. Soc.},
      VOLUME={55},
      YEAR={1997},
      PAGES={370--386},
      }
  • [Sp] T. Springer, "Regular elements of finite reflection groups," Invent. Math., vol. 25, pp. 159-198, 1974.
    @article{Sp,
      author={Springer, T.},
      TITLE={Regular elements of finite reflection groups},
      JOURNAL={Invent. Math.},
      VOLUME={25},
      YEAR={1974},
      PAGES={159--198},
      }
  • [Katz2] N. M. Katz, Rigid Local Systems, Princeton, NJ: Princeton Univ. Press, 1996.
    @book {Katz2, MRKEY = {1366651},
      AUTHOR = {Katz, Nicholas M.},
      TITLE = {Rigid Local Systems},
      SERIES = {Annals of Math. Studies},
      NUMBER = {139},
      PUBLISHER = {Princeton Univ. Press},
      ADDRESS = {Princeton, NJ},
      YEAR = {1996},
      PAGES = {viii+223},
      ISBN = {0-691-01118-4},
      MRCLASS = {14F20 (14F05)},
      MRNUMBER = {97e:14027},
      MRREVIEWER = {Abdellah Mokrane},
      ZBLNUMBER = {0864.14013},
      }
  • [W] A. Weil, Dirichlet Series and Automorphic Forms, New York: Springer-Verlag, 1971, vol. 189.
    @book{W,
      author={Weil, A.},
      TITLE={Dirichlet Series and Automorphic Forms},
      SERIES={Lecture Notes in Math},
      VOLUME={189},
      PUBLISHER={Springer-Verlag},
      ADDRESS={New York},
      YEAR={1971},
      }
  • [Wi] Go to document E. Witten, "Gauge theory and wild ramification," Anal. Appl. $($Singapore$)$, vol. 6, iss. 4, pp. 429-501, 2008.
    @article {Wi, MRKEY = {2459120},
      AUTHOR = {Witten, Edward},
      TITLE = {Gauge theory and wild ramification},
      JOURNAL = {Anal. Appl. $($Singapore$)$},
      FJOURNAL = {Analysis and Applications},
      VOLUME = {6},
      YEAR = {2008},
      NUMBER = {4},
      PAGES = {429--501},
      ISSN = {0219-5305},
      MRCLASS = {22Exx (11R99 34Mxx 81T13)},
      MRNUMBER = {2459120},
      DOI = {10.1142/S0219530508001195},
      ZBLNUMBER = {05492597},
      }

Authors

Edward Frenkel

Department of Mathematics
University of California, Berkeley
970 Evans Hall #3840
Berkeley, CA 94720-3840
United States

Benedict Gross

Department of Mathematics
Harvard University
One Oxford Street
Cambridge, MA 02138
United States